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PDE AS A UNIFIED SUBJECT

SERGIU KLAINERMAN

Introduction

Given that one of the goals of the conference is to address the issue of the
unity of Mathematics, I feel emboldened to talk about a question which has
kept bothering me all through my scientific career: Is there really a unified
subject of Mathematics which one can call PDE? At first glance this seems
easy: we may define PDE as the subject which is concerned with all partial
differential equations. According to this view, the goal of the subject is to
find a general theory of all, or very general classes of PDE’s. This “natural”
definition comes dangerously close to what M. Gromov had in mind, I
believe, when he warned us, during the conference, that objects, definitions
or questions which look natural at first glance may in fact “be stupid”.
Indeed, it is now recognized by many practitioners of the subject that the
general point of view, as a goal in itself, is seriously flawed. That it ever had
any credibility is due to the fact that it works quite well for linear PDE’s
with constant coefficients, in which case the Fourier transform is extremely
effective. It has also produced significant results for some general special
classes of linear equations with variable coefficients.! Its weakness is most
evident in connection to nonlinear equations. The only useful general result
we have is the Cauchy-Kowalevsky theorem, in the quite boring class of
analytic solutions. In the more restrictive frameworks of elliptic, hyperbolic,
or parabolic equations, some important local aspects of nonlinear equations
can be treated with a considerable degree of generality. It is the passage
from local to global properties which forces us to abandon any generality
and take full advantage of the special features of the important equations.

The fact is that PDE’s, in particular those that are nonlinear, are too
subtle to fit into a too general scheme; on the contrary each important

!Linear equations with variable coefficients appear naturally by linearizing nonlinear
equations around specific solutions. They also appear in the study of specific operators
on manifolds, in Several Complex Variables, and Quantum Mechanics. The interaction
between the 8 operator in SCV and its natural boundary value problems have led to very
interesting linear equations with exotic features, such as lack of solvability.
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PDE seems to be a world in itself. Moreover, general points of view often
obscure, through unnecessary technical complications, the main properties
of the important special cases. A useful general framework is one which
provides a simple and elegant treatment of a particular phenomenon, as is
the case of symmetric hyperbolic systems in connection to the phenomenon
of finite speed of propagation and the general treatment of local existence
for nonlinear hyperbolic equations. Yet even when a general framework is
useful, as symmetric hyperbolic systems certainly are, one would be wrong
to expand the framework beyond its natural role. Symmetric hyperbolic
systems turn out to be simply too general for the study of more refined
questions concerning the important examples of hyperbolic equations.

As the general point of view has lost its appeal many of us have adopted
a purely pragmatic point of view of our subject; we chose to be concerned
only with those PDE’s or classes of PDE’s which are considered important.
And indeed the range of applications of specific PDE’s is phenomenal, many
of our basic equations being in fact at the heart of fully fledged fields of
Mathematics or Physics such as Complex Analysis, Several Complex Vari-
ables, Minimal Surfaces, Harmonic Maps, Connections on Principal Bun-
dles, Kahlerian and Einstein Geometry, Geometric Flows, Hydrodynam-
ics, Elasticity, General Relativity, Electrodynamics, Nonrelativistic Quan-
tum Mechanics, etc. Other important subjects of Mathematics, such as
Harmonic Analysis, Probability Theory and various areas of Mathematical
Physics are intimately tied to elliptic, parabolic, hyperbolic or Schrédinger
type equations. Specific geometric equations such as Laplace—Beltrami and
Dirac operators on manifolds, Hodge systems, Pseudo-holomorphic curves,
Yang—Mills and recently Seiberg—Witten, have proved to be extraordinar-
ily useful in Topology and Symplectic Geometry. The theory of Integrable
systems has turned out to have deep applications in Algebraic Geometry;
the spectral theory Laplace—Beltrami operators as well as the scattering
theory for wave equations are intimately tied to the study of automorphic
forms in Number Theory. Finally, Applied Mathematics takes an inter-
est not only in the basic physical equations but also on a large variety of
phenomenological PDE’s of relevance to engineers, biologists, chemists or
economists.

With all its obvious appeal the pragmatic point of view makes it difficult
to see PDE as a subject in its own right. The deeper one digs into the study
of a specific PDE the more one has to take advantage of the particular
features of the equation and therefore the corresponding results may make



GAFA2000 PDE AS A UNIFIED SUBJECT 3

sense only as contributions to the particular field to which that PDE is
relevant. Thus each major equation seems to generate isolated islands of
mathematical activity. Moreover, a particular PDE may be studied from
largely different points of view by an applied mathematician, a physicist,
a geometer or an analyst. As we lose perspective on the common features
of our main equations we see PDE less and less as a unified subject. The
field of PDE, as a whole, has all but ceased to exist, except in some old
fashioned textbooks. What we have instead is a large collection of loosely
connected subjects.

In the end I find this view not only somewhat disconcerting but also,
intellectually, as unsatisfactory as the first. There exists, after all, an im-
pressive general body of knowledge which would certainly be included under
the framework of a unified subject if we only knew what that was. Here
are just a few examples of powerful general ideas:?:

1) Well-posedness: First investigated by Hadamard at the beginning of
this century well-posed problems are at the heart of the modern theory of
PDE. The issue of well-posedness comes about when we distinguish between
analytic and smooth solutions. This is far from being an academic subtlety,
without smooth, non-analytic solutions we cannot talk about finite speed
of propagation, the distinctive mark of relativistic physics. Problems are
said to be well posed if they admit unique solutions for given smooth ini-
tial or boundary conditions. The corresponding solutions have to depend
continuously on the data. This leads to the classification of linear equa-
tions into elliptic, hyperbolic and parabolic with their specific boundary
value problems. Well-posedness also plays a fundamental role in the study
of nonlinear equations, see a detailed discussion in the last section of this
paper. The counterpart of well-posedness is also important in many ap-
plications. Ill-posed problems appear naturally in Control Theory, Inverse
Scattering, etc., whenever we have a limited knowledge of the desired so-
lutions. Unique continuation of solutions to general classes of PDE’s is
intimately tied to ill-posedness.

%] failed to mention, in the few examples given above, the development of topological
methods for dealing with global properties of elliptic PDE’s as well as some of the im-
portant functional analytic tools connected to Hilbert space methods, compactness, the
implicit function theorems, etc. I also failed to mention the large body of knowledge with
regard to spaces of functions, such as Sobolev, Schauder, BMO and Hardy, etc., or the
recent important developments in nonlinear wave and dispersive equations connected to
restriction theorems in Fourier Analysis. For a more in depth discussions of many of the
ideas mentioned below, and their history, see the recent survey [BreB].
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2) A priori estimates, boot-strap and continuity arguments: A priori esti-
mates allow us to derive crucial information about solutions to complicated
equations without having to solve the equations. The best known examples
are energy estimates, maximum principle or monotonicity type arguments.
Carleman type estimates appear in connection to ill-posed problems. The
a priori estimates can be used to actually construct the solutions, prove
their uniqueness and regularity, and provide other qualitative information.
The boot-strap type argument is a powerful general philosophy to derive a
priori estimates for nonlinear equations. According to it we start by making
assumptions about the solutions we are looking for. This allows us to think
of the original nonlinear problem as a linear one whose coefficients satisfy
properties consistent with the assumptions. We may then use linear meth-
ods, a priori estimates, to try to show that the solutions to the new linear
problem behave as well, or better, than we have postulated. A continuity
type argument allows us to conclude the original assumptions are in fact
true. This “conceptual linearization” of the original nonlinear equation lies
at the heart of our most impressive results for nonlinear equations.

3) Regularity theory for linear elliptic equations: We have systematic
methods for deriving powerful regularity estimates for linear elliptic equa-
tions. The L* estimates are covered by Schauder theory. The more refined
LP theory occupies an important part of modern Real and Harmonic Anal-
ysis. The theory of singular integrals and pseudodifferential operators are
intimately tied to the development of LP-regularity theory.

4) Direct variational methods: The simplest example of a direct varia-
tional method is the Dirichlet Principle. Though first proposed by Dirichlet
as a method of solving the Poisson equation A¢ = f and later used by Rie-
mann in his celebrated proof of the Riemann Mapping Theorem in complex
analysis, it was only put on a firm mathematical ground in this century.
The method has many deep applications to elliptic problems. It allows
one to first solve the original problem in a“generalized sense”, and then
use regularity estimates, to show that the generalized solutions are in fact
classical. The ultimate known expression of this second step is embodied
in the Nash-De-Giorgi method which allows one to derive full regularity
estimates for the generalized solutions of nomnlinear, scalar, elliptic equa-
tions. This provides, in particular the solution to the famous problem of
the regularity of minimal hypersurfaces, as graphs over convex, or mean
convex, domains, in all dimensions. Other important applications of the
Nash—De-Giorgi method were found in connection with such diverse situa-
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tions as the Calabi problem in Kahler Geometry, R. Hamilton’s Ricci flow
and free boundary value problem arising in Continuum Mechanics.

5) Energy type estimates: The energy estimates provide a very general
tool for deriving a priori estimates for hyperbolic equations. Together with
Sobolev inequalities, which were developed for this reason, they allow us
to prove local in time existence, uniqueness and continuous dependence on
the initial data for general classes of nonlinear hyperbolic equations, such
as symmetric hyperbolic, similar to the classical local existence result for
ordinary differential equations. A more general type of energy estimates,
based on using the symmetries of the linear part of the equations, allows
one to also prove global in time, perturbation results, such as the global
stability of the Minkowski space in General Relativity.

6) Microlocal analysis, parametrices and paradifferential calculus: One of
the fundamental difficulties of hyperbolic equations consists of the interplay
between geometric properties, which concern the physical space, and prop-
erties intimately tied to oscillations, which are best seen in Fourier space.
Microlocal analysis is a general, still developing, philosophy according to
which one isolates the main difficulties by careful localizations in physi-
cal or Fourier space, or in both. An important application of this point
of view is the construction of parametrices, as Fourier integral operators,
for linear hyperbolic equations and their use in propagation of singulari-
ties results. The paradifferential calculus can be viewed as an extension
of this philosophy to nonlinear equations. It allows one to manipulate the
form of a nonlinear equation, by taking account of the way large and small
frequencies interact, to achieve remarkable technical versatility.

7) Generalized solutions: The idea of a generalized solution appears al-
ready in the work of D’Alembert (see [Lu]) in connection with the one
dimensional wave equation (vibrating string). A systematic and com-
pelling concept of generalized solutions has developed in connection with
the Dirichlet principle; more generally via the direct variational method.
The construction of fundamental solutions to linear equations led also to
various types of such solutions. This and other developments in linear
theory led to the introduction of distributions by L. Schwartz. The the-
ory of distributions provides a most satisfactory framework to generalized
solutions in linear theory. The question of what is a good concept of a gen-
eralized solution in nonlinear equations, though fundamental, is far more
murky. For elliptic equations the solutions derived by the direct variational
methods have proved very useful. For nonlinear, one dimensional, conser-
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vation laws the concept of a generalized solution has been discussed quite
early in the works of J.J. Stokes (see [St]), Rankine, Hugoniot, Riemann,
etc. For higher dimensional evolution equations the first concept of a weak
solution was introduced by J. Leray. I call weak a generalized solution for
which one cannot prove any type of uniqueness. This unsatisfactory situa-
tion may be temporary, due to our technical inabilities, or unavoidable in
the sense that the concept itself is flawed. Leray was able to produce, by
a compactness method, a weak solution of the initial value problem for the
Navier—Stokes equations. The great advantage of the compactness method
(and its modern extensions which can, in some cases, cleverly circumvent
lack of compactness) is that it produces global solutions for all data. This
is particularly important for supercritical, or critical, nonlinear evolution
equations where we expect that classical solutions develop finite time sin-
gularities. The problem, however, is that one has very little control of these
solutions, in particular we don’t know how to prove their uniqueness.® Sim-
ilar types of solutions were later introduced for other important nonlinear
evolution equations. In most of the interesting cases of supercritical evolu-
tion equations, such as Navier—Stokes, the usefulness of the type of weak
solutions used so far remains undecided.

8) Scaling properties and classification of nonlinear equations: Essentially
all basic nonlinear equations have well-defined scaling properties. The rela-
tionship between the nonlinear scaling and the coercive a priori estimates®
of the equations leads to an extremely useful classification between subcrit-
ical, critical and supercritical equations. The definition of criticality and
its connection to the issue of regularity was first understood in the case
of elliptic equations such as Harmonic Maps, the euclidean Yang—Mills or
Yamabe problem. The same issue appears in connection with geometric
heat flows and nonlinear wave equations.

Given that some PDE’s are interesting from a purely mathematical
point of view, while others owe their relevance to physical theories, one
of the problems we face when trying to view PDE as a coherent subject is
that of the fundamental ambiguity of its status; is it part of Mathematics or
Physics or both? In the next section I will try to broaden the discussion by
considering some aspects of the general relationship between Mathematics

3Leray was very concerned about this point. Though, like all other researchers after
him, he was unable to prove uniqueness of his weak solution; he showed however that it
must coincide with a classical one as long as the latter remains smooth.

*See the section “The Problem of Breakdown” for a more thorough discussion.
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and Physics, relevant to our main concern. I will try to argue that we can
redraw the boundaries between the two subjects in a way which allows us
to view PDE as a core subject of Mathematics, with an important applied
component. In the third section I will attempt to show how some of the
basic principles of modern physics can help us organize the immense variety
of PDE’s into a coherent field. Equally important, in the fourth section,
I will attempt to show that our main PDE’s are not only related through
their derivation; they also share a common fundamental problem, regularity
or breakdown. I have tried to keep the discussion of the first four sections
as general as possible, and have thus avoided giving more than just a few
references. I apologize to all those who feel that their contributions, alluded
to in my text, should have been properly mentioned. In the last section
of the paper I concentrate on a topic of personal research interest, tied
to the issue of regularity, concerning the problem of well-posedness for
nonlinear wave equations. My main goal here is to discuss three precise
conjectures which I feel are important, difficult and accessible to generate
future developments in the field. Even in this section, however, I only
provide full references to works directly connected to these conjectures.

Many of the important points I make below, such as the unified geomet-
ric structure of the main PDE’s, the importance of the scaling properties
of the equations and its connection to regularity and well-posedness, have
been discussed in similar ways before and are shared by many of my friends
and collaborators. My only claim to originality in this regard is the form
in which I have assembled them. The imperfections, errors and omissions
are certainly my own.

I would like to thank my friends H. Brézis, A. Chang, D. Christodoulou,
C. Dafermos, P. Deift, Weinan E, G. Huisken, J. Kohn, E. Stein, P. Sarnak,
Y. Sinai, M. Struwe, J. Stalker, and my wife Anca for reading previous
versions of the paper and suggesting many corrections and improvements.

Between Mathematics and Physics

In search of a unified point of view for our subject it pays to look at the
broader problem of Mathematics as a whole. Isn’t Mathematics also in
danger of becoming a large collection of loosely connected subjects? Our
cherished intellectual freedom to pursue whatever problems strike our imag-
ination as worthwhile is a great engine of invention, but, in the absence
of unifying goals, it seems to lead to an endless proliferation of subjects.
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This is precisely, I believe, what Poincaré [P] had in mind in the follow-
ing passage, contained in his address to the first International Congress of
Mathematicians, more than a hundred years ago.

“ .. The combinations that can be formed with numbers and symbols
are an infinite multitude. In this thicket how shall we choose those that are
worthy of our attention? Shall we be guided only by whimsy?...... [This]
would undoubtedly carry us far from each other, and we would rapidly
cease to understand each other. But that is only the minor side of the
problem. Not only will physics perhaps prevent us from getting lost, but
it will also protect us from a more fearsome danger . ... .. turning around
forever in circles. History [shows that] physics has not only forced us to
choose [from the multitude of problems which arise], but it has also imposed
on us directions that would never have been dreamed of otherwise. . .....
What could be more useful!

The full text of [P] is a marvelous analysis of the complex interactions
between Mathematics and Physics. Poincaré argues not only that Physics
provides us with a great source of inspiration and cohesiveness but that
itself, in return, owes its language, sense of beauty and order to Mathemat-
ics. Yet Poincaré’s viewpoint concerning the importance of close relations
with Physics was largely ignored during most of this century by a large seg-
ment of the mathematical community. One reason is certainly due to the
fact that traditional areas of Mathematics such as Algebra, Number The-
ory and Topology have, or seemed to have, relatively little to gain from
direct interactions with Physics. Another, more subtle, reason may have to
do with the remarkable and unexpected effectiveness of pure mathematical
structures in the formulation of the major physical theories of the century:
Special and General Relativity, Quantum Mechanics and Gauge Theories.
This has led to the popular point of view, coined by Wigner [Wi] as “The
unreasonable effectiveness of Mathematics,” according to which mathemat-
ical objects or ideas developed originally without any reference to Physics
turn out to be at the heart of solutions to deep physical problems. Einstein,
himself, wrote that any important advance in Physics will have to come in
the wake of major new developments in Mathematics. This very seductive
picture has emboldened us mathematicians to believe that anything we do
may turn out, eventually, to have real applications and has thus, paradox-
ically, contributed to the problem of ignoring the physical world Poincaré

The situation has changed dramatically in the last 25 years with the advent of Gauge
fields and String Theories.
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has warned us against.

But this is only a minor paradox by comparison to the one which seems
to arise from the above discussion relative to the remarkable symbiosis be-
tween Physics and Mathematics. On one hand, as Poincaré argues very
convincingly in [P], Mathematics needs, to keep itself together, unifying
goals and principles; Physics, due, I guess, to the perceived unity of the
Physical World, is in a perfect position to provide them for us. On the
other hand, Physics owes to Mathematics the very tools which makes it
possible to uncover and formulate the unified features of physical reality;
it is indeed the search for a selfconsistent mathematical formalism which
seems to be at the core of the current attempts to find that unified the-
ory of everything which, as theoretical physicists often declare, is Physics’
ultimate goal. The paradox is due, of course, to the artificial distinctions
we make between the two subjects. We imagine them as separated when
in fact they have a nontrivial intersection. Can we identify that intersec-
tion? The naive picture would be of two sets which intersect in an area,
somewhat peripheral to both, which we might call Mathematical Physics.
But this picture does not help to solve the paradox we have mentioned
above, which concerns the core of both subjects. A central intersection,
however, could imply some form of equality or inclusion between the two
subjects, which is definitely not the case. Mathematics pursues goals which
are not necessarily suggested by the physical sciences. A research direction
is deemed important by mathematicians if it leads to elegant developments
and unexpected connections. Physics, on the other hand, cannot allow it-
self the luxury of being carried away by elegant mathematical theories; in
the final analysis it has to subject itself to the tough test of real experi-
ments. Moreover the difference between the work practice and professional
standards of mathematicians and modern theoretical physicists cannot be
more striking. We mathematicians find ourselves constrained by rigor and
are often reluctant to proceed without a systematic analysis of all obstacles
in our path. In their quest for the ultimate truth theoretical physicists have
no time to waste on unexpected hurdles and unpromising territory. Clearly
the relationship between the two subjects is far more complex than may
seem at first glance.

The task of defining PDE as a unified subject is tied to that of clar-
ifying, somehow, this ambiguous relationship between Mathematics and
Physics. The very concept of partial differential equations has its roots in
Physics or, more appropriately Mathematical Physics; there were no clear
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distinctions at the time of D’Alembert, Euler, Poisson, Laplace, between
the two subjects. Riemann was the first, I believe, to show how one can use
PDE’s to attack problems considered pure mathematical in nature, such as
conformal mappings in Complex Analysis. The remarkable effectiveness
of PDE’s as a tool to solve problems in Complex Analysis, Geometry and
Topology has been confirmed many times during this century.

One can separate all mathematicians and other scientists concerned with
the study of PDE’s into four® groups, according to their main interests. In
the first group I include those developing and using PDE methods to attack
problems in Differential Geometry, Complex Analysis, Symplectic Geome-
try, Topology and Algebraic Geometry. In the second I include those whose
main motivation is the development of rigorous mathematical methods to
deal with the PDE’s arising in the physical theories. In the third group I
include mathematicians, physicists or engineers interested in understand-
ing the main consequences of the physical theories, governed by PDE’s,
using a variety of heuristic, computational or experimental methods. It is
only fair to define yet a fourth category” which include all those left out of
the groups defined above. According to the common preconceptions about
the proper delimitations between Mathematics and Physics only the first
group belongs unambiguously within Mathematics. The third group is con-
sidered, correctly in my view, as belonging either to Applied Mathematics
or Applied Physics. The second group however has an ill defined identity.
Since the ultimate goals are not directly connected to specific applications
to the traditional branches of Mathematics, many view this group as part
of either Applied Mathematics or Mathematical Physics. Yet, apart from
the original motivation, it is hard to distinguish the second group from the
first. Both groups are dedicated to the development of rigorous analytic
techniques. They are tied by many similar concerns, concepts and methods.
They are both intimately tied to subjects considered pure, mainly Real and
Fourier Analysis but also Geometry, Topology and Algebraic Geometry.

In view of the above ambiguities it helps to take a closer look at the role
played by Mathematics in developing the consequences of the established

6My classification is mainly rhetorical. There are, of course, many mathematicians
who can cross these artificial boundaries. I will in fact argue below that the first two
groups should be viewed as one.

"This includes, in particular, PDE’s appearing in Biology or Economics. Exotic
PDE’s, not necessarily connected with any specific application, should also be included
in this class.
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physical theories.® 1 have heard theoretical physicists and also, alas, math-
ematicians, expressing the view that the consequences of an established
physical theory are of lesser importance and may properly be relegated
to Engineering or Chemistry. Nothing, in my mind, can be further from
the truth. The first successful physical theory, that of space, was written
down by Euclid more than two thousand years ago. Undoubtedly Eu-
clidean Geometry was used by engineers to design levers, pulleys and many
other marvelous applications, but does anybody view the further develop-
ment of the subject as Engineering? Geometry is the primary example of
a “physical theory” developed for centuries as a pure mathematical disci-
pline, without too much new input from the physical world, which grew to
have deep, mysterious, completely unexpected consequences to the point
that pre-eminent physicists talk today of a complete “geometrization” of
modern physics, see [N].

But this is not all; the Principle of Least Action was developed by math-
ematicians such as Fermat, Leibnitz, Maupertius, the Bernoulli brothers
and Euler from the analysis of simple geometric and physical problems (see
[HT] for a very good presentation of the early history of the principle).
Their work led to a comprehensive reformulation of the laws of Mechanics
by Lagrange who showed how to derive them from a simple Variational
Principle. Today the Lagrangian point of view, together with its Hamil-
tonian reformulation and the famous result of E. Noether concerning the
relation between the symmetries of the Lagrangian and conservation laws,
is a foundational principle for all Physics. Connected to these are the con-
tinuous groups of symmetries attached to the name of S. Lie.

Fourier Analysis was initiated in works by D’Alembert, Euler and
D. Bernoulli in connection with the study of the initial-boundary value
problem for the one dimensional wave equation (vibrating string). Ber-
noulli’s idea of approximating general periodic functions by sums of sines
and cosines was later developed by J. Fourier in connection with the Heat
Equation. Further mathematical developments made the theory into a fun-

8] distinguish between the quest to uncover the basic laws of Nature, which defines
the core of theoretical Physics, and the scientific activities concerned with deriving the
consequences of a given, established, theory which involve applied physicists, engineers,
chemists, applied mathematicians and, as I argue below, “pure” mathematicians. Need-
less to say, mathematicians have often had direct, fundamental, contributions to theo-
retical Physics. But more often, I believe, the most impressive contributions came from
inner developments within Mathematics of subjects with deep roots in the physical world,
such as Geometry, Newtonian Mechanics, Electromagnetism, Quantum Mechanics, etc.
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damental tool throughout all of Science.

There are plenty of other examples. I suspect that many, if not most, of
the examples of the“unreasonable effectiveness of mathematics” are in fact
of this type.® There are also many other examples of ideas which originate
in Mathematical Physics, and turn out to have a deep, mysterious, impact
on the traditional subjects of Mathematics, such as Topology, Geometry or
even Number Theory.

All this seems to point to the fact that the further development of the
established physical theories ought to be viewed as a genuine and central
goal of Mathematics itself. In view of this I think we need to reevaluate our
current preconception about what subjects we consider as belonging prop-
erly within Mathematics. We may gain, consistent with Poincaré’s point of
view, considerably more unity by enlarging the boundaries of Mathematics
to include, on equal footing with all other more traditional fields, physical
theories such as Classical and Quantum Mechanics and Relativity Theory,
which are expressed in clear and unambiguous mathematical language. We
may then develop them, if we wish, on pure mathematical terms asking
questions we consider fundamental, which may not coincide, at any given
moment, with those physicists are most interested in, and providing full
rigor to our proofs. Of course this has happened to a certain extent, Math-
ematical Physics and parts of Applied Mathematics fulfill precisely this
role. Yet their status remains ambiguous and somewhat peripheral. Many
mathematicians assume that subjects like Classical General Relativity'® or

®A clear example of this type, this century, is the discovery of the soliton and the
“integrable method.” Though they both emerged in connection with simple nonlinear
partial differential equations the integrability method has found deep applications way
beyond the original PDE context. There are other examples which do not quite fit into
my description. The extraordinary role played by complex numbers in the formulation of
Quantum Mechanics is certainly one which has its roots in Algebra rather than Geometry
or Mathematical Physics.

1°The formulation of General Relativity, by A. Einstein, following the work of Gauss
and Riemann in Geometry, and that of Lorentz, Poincaré, Einstein and Minkowski on
special relativity can be viewed as one of the most impressive triumphs of Mathematics.
Following the recent experiments with double pulsars, GR is considered the most accu-
rate of all physical theories. Research in General Relativity involves, in a fundamental
way, all aspects of traditional mathematics; Differential Geometry, Analysis, Topology,
Group Representation, Dynamical systems, and of course PDE’s. Assuming that the
further development of the subject is covered by physics departments is misleading; most
theoretical physicists view classical GR as a completely understood physical theory, their
main goal now is to develop a quantum theory of gravity. Given their lack of interest
and the rich mathematical content of the subject, is there any reason why we should not
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Quantum Mechanics belong properly to Physics departments while Physi-
cists often consider them as perfectly well understood, closed, subjects.
They are indeed closed, or so it seems, in so far as theoretical physicists are
concerned. From their perspective Geometry may have become a closed
book more than 2000 years ago, with the publication of Euclid’s Elements.
But they present us, mathematicians, with wonderful, fundamental chal-
lenges formulated in the purest mathematical language. Should we relegate
subjects such as Classical and Quantum Mechanics or General Relativity
to the periphery of Mathematics, despite their well defined and rich mathe-
matical structures, only because they happen to describe important aspects
of the physical world? Is it reasonable to hesitate to include General Rel-
ativity as a subject of Mathematics simply because it concerns itself with
Lorentz rather than Riemannian metrics? Or because it does not seem to
have any applications to Topology? (There are in fact proposals to tie GR
to the geometrization conjecture of 3D manifolds, see [FM].)

My proposal is not just to accept these disciplines as some applied ap-
pendices to pure Mathematics, but to give them the central role!! they
deserve. This would force us to broaden our outlook and would give us
fresh energy and cohesion in the spirit envisioned by Poincaré. It would
help us, in particular, to clarify the ambiguous status of subjects such as
PDE’s and Mathematical Physics and their relations with Applied Math-
ematics. It would also set more natural boundaries between Mathematics
and Physics. As theoretical physicists are primarily interested in under-
standing new physical phenomena, the further mathematical developments
of a confirmed physical theory becomes one of our tasks.!? Though our
pure mathematical considerations may lead us into seemingly esoteric di-
rections, we should hold our ground for with time physicists may come to
admit, once more, to the unexpected effectiveness of our Science.

Finally I want to distinguish my proposal from another, more radical,
point of view, discussed in this conference, according to which Mathemat-
ics ought to become fully engaged with the great problems of Chemistry,
Biology, Computing, Economics and Engineering. Though I strongly sus-
pect that one day some, still to be discovered, deep mathematical structure

take the opportunity and embrace it fully, as our own?

1 An easy step, which will go a long way in this direction, would be to add, as a require-
ment for mathematics majors, or graduate students, a course containing a comprehensive
discussion of the mathematical structures which underly the main physical theories.

12This does not exclude the possibility that the same subject may be pursued, in
different ways, in both Mathematics and Physics departments.
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will help explain some of the important features of complex biological sys-
tems, we are very far from that. It is certainly to be hoped that individual
mathematicians will make significant contributions to these fields but it is
unrealistic to think that Mathematics can fully embrace these areas while
maintaining its inner continuity, coherence, and fundamental commitment
to rigor. We have to distinguish between the core of Mathematics, where
I believe the basic physical theories ought to belong, and various problems
of Science and Engineering where mathematicians can play a very useful
role.

The Main Equations

To return to PDE, I want to sketch a way of looking at the subject from
simple first principles which happen to coincide with some of the underlying
geometric principles of modern Physics. It turns out that most of our basic
PDE’s can be derived in this fashion. Thus the main objects of our sub-
ject turn out to be in no way less “pure mathematical” in nature than the
other fundamental objects'?® studied by mathematicians: numbers, func-
tions and various types of algebraic and geometric structures. But most
importantly, these simple principles provide a unifying framework!* for our
subject and thus help endow it with a sense of purpose and cohesion. It also
explains why a very small number of linear differential operators, such as
the Laplacian and D’Alembertian, are all pervasive; they are the simplest
approximations to equations naturally tied to the two most fundamental
geometric structures, Euclidean and Minkowskian. The Heat equation is
the simplest paradigm for diffusive phenomena while the Schrédinger equa-

139ome pure mathematicians distrust the basic physical PDE’s, as proper objects of
Mathematics, on the spurious notion that they are just imperfect approximations to
an ultimate physical reality of which we are still ignorant. On the basis of this analysis
groups, C* algebras, topological vector spaces or the 8 operator are perfect mathematical
objects, as long as they have no direct relations to Physics, while Hamiltonian systems,
the Maxwell, Euler, Schrodinger and Einstein equations are not!

'%The scheme I present below is only an attempt to show that, in spite of the enor-
mous number of PDE’s studied by mathematicians, physicists and engineers, there are
nevertheless simple basic principles which unite them. I don’t want, by any means, to
imply that the equations discussed below are the only ones worthy of our attention. It
would be also foolish to presume that we can predict which PDE’s are going to lead to
the most interesting developments. Certainly, nobody could have predicted 100 years ago
the emergence on the scene of the Einstein and Yang—Mills equations, or the remarkable
mathematical structure behind the seemingly boring KdV equation.
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tion can be viewed as the Newtonian limit of a lower order perturbation
of the D’Alembertian. The geometric framework of the former is Galilean

space which, itself, is simply the Newtonian limit of the Minkowski space,
see [M].

Starting with the Euclidean space R™, the Laplacian A is the simplest
differential operator invariant under the group of isometries, or rigid trans-
formations, of R™. The heat, Schrédinger, and wave operators 9; — A,
%3,5 — A and 82 — A are the simplest evolution operators which we can
form using A. The wave operator [0 = —82 + A has a deeper meaning;
it is associated to the Minkowski space R™*! in the same way that A is
associated to R™. Moreover, the solutions to the equation A¢ = 0 can be
viewed as special, time independent solutions, to [1¢p = 0. The Schrédinger
equation can also be obtained, by a simple limiting procedure, from the
Klein—Gordon operator [ — m?. Appropriate, invariant, and local defini-
tions of square roots of A and [, or [0 — m?, corresponding to spinorial
representations of the Lorentz group, lead to the associated Dirac operators.

In the same vein we can associate to every Riemannian, or Lorentzian,
manifold (M, g) the operators Ay, resp. Oy, or the corresponding Dirac
operators. These equations inherit in a straightforward way the symme-
tries of the spaces on which they are defined. There exists a more general,
unreasonably effective, scheme of generating equations with prescribed sym-
metries. The variational Principle allows us to associate to any Lagrangian
L asystem of partial differential equations, called the Euler-Lagrange equa-
tions, which inherit the symmetries built in L. In view of Noether’s prin-
ciple, to any continuous symmetry of the Lagrangian there corresponds a
conservation law for the associated Euler-Lagrange PDE. Thus, the Varia-
tional Principle generates equations with desired conservation laws such as
Energy, Linear and Angular Momenta, etc. The general class of Lagrangian
equations, plays the same selected role among all PDE’s as that played by
Hamiltonian systems among ODE’s. Calculus of Variations is by itself a
venerable and vast subject of Mathematics. The main equations of interest
in both Geometry'® and Physics, however, are not just variational; they

!5 There are, however, important geometric problems, such as prescribed curvature and
isometric embeddings in Riemannian Geometry or Lewy flat surfaces in Complex Geom-
etry, without an obvious variational structure. The real and complex Monge Ampere
equations are typical examples. The Pseudo-holomorphic Curves, used by Gromov in
the study of symplectic manifolds, provides another example. Nevertheless these equa-
tions have a rich geometric structure and share with the variational PDE’s many common
characteristics. Moreover on closer inspection they may turn out to have a nontrivial,
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are obtained from Lagrangians constructed from simple geometric objects
such as:

1) Lorentz or Riemannian metrics: On a Lorentzian manifold (M, g) the
Lagrangian given by the scalar curvature R(g) of the metric leads, through
variations of the metric, to the Einstein-Vacuum (EV) equations of General
Relativity. A similar procedure leads to Einstein metrics in Riemannian ge-
ometry. The restriction of the Einstein functional | R(g)dv, to a conformal
class of metrics leads to the well-known Yamabe equation.

2) Connections on a principal bundle: The quadratic scalar invariant
formed by the curvature of a connection defines the Yang—Mills Lagrangian.
The Yang-Mills (YM) equations are obtained through variations of the con-
nection. The Maxwell equations correspond to the case of a trivial bundle
over the Minkowski space with structure group U(1). The standard model
of particle physics corresponds to the group SU(3) x SU(2) x U(1). The
YM equations used in Topology correspond to Riemannian connections
with nonabelian group SU(2).

3) Scalar equations: Are derived for scalar functions ¢ : M — R, C. The

Lagrangian is L = g"¢,¢, + V(¢), with V(¢) > 0. When V = 0 we

derive Ag¢p = 0, in the Riemannian case, and [y¢ = 0 in the Lorentzian

case. The case V(¢) = %m2|¢|2 corresponds to the Klein—-Gordon equation,
1

V(¢) = 3|¢|* leads to the well-known cubic wave equation. We will refer

to this type of equations as nonlinear scalar wave equations (NSWE).

4) Mappings between two manifolds: Consider mappings ¢ : (M,g) —
(N, h) between the pseudoriemannian domain manifold M of dimension
d 4+ 1 and Riemannian target N of dimension n. Let ¢*h be the sym-
metric 2-tensor on M obtained by taking the pull-back of the metric h
of N. Let Ag,A1,...,Aq be the eigenvalues of ¢*h relative to the metric
g and Sy, S1, ..., 54 the corresponding elementary symmetric polynomials
in Ag, A1, ..., Ag. Any symmetric function of Ag, Ay, ..., Ag, or equivalently,
any function L(So, Si,...,S4), can serve as a Lagrangian. By varying the
action integral [, Ldv, relative to ¢, with dv, the volume element of the
metric g, we obtain a vast class of interesting equations. Here are some
examples:!®

hidden, variational structure. This is the case, for example, of the Monge Ampere equa-
tions, see [Br].

18] want to thank D. Christodoulou for his help in the presentation of this section.
Most of the examples below, and much more, are discussed in detail in his book [Chrl].
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(i) The Harmonic and Wave Maps (WM) are obtained in the particular
case L = try(¢*h). The only distinction between them is due to the
character, Riemannian respectively Lorentzian, of the metric g.

(ii) The basic equations of Continuum Mechanics are obtained from a
general Lagrangian, as described above, in the particular case when
g is Lorentzian, n = d = 3 and the additional assumptions that ¢ has
maximal rank at every point and the curves ¢~ (p) are time-like for
all p € N. Since the dimension of N is one less than the dimension of
M one of the eigenvalues, say Ag, is identically zero. Elasticity corre-
sponds to general choices of L as a symmetric function of Aq, ..., Ag.
Fluid Mechanics corresponds to the special case when L depends only
on the product A; - Ag---- Ay. One can also derive the equations of
Magneto-hydrodynamics (MHD) by assuming an additional structure
on N given by a 2-form 2. The 2-form F = ¢*w defines the electro-
magnetic field on M. The Lagrangian of MHD is obtained by adding
the Maxwell Lagrangian %Fuu - F¥¥ to the fluid Lagrangian described
above.

(iii) The minimal surface equation is derived from the Lagrangian L =
\/dety ¢*h/+/det(g) in the case when g is Riemannian and m =
d+ 1 < n. The case when g is Lorentzian leads to a quasilinear

wave equation.

5) Lagrangian leading to higher order equations: While the main equa-
tions of Physics are all first or second order, there is no reason why one
should avoid higher order equations for applications to Geometry. It is nat-
ural, for example, to consider equations associated to conformally invariant
Lagrangians. Many of the known Lagrangians, which lead to second order
equations such as Harmonic Maps, are conformally invariant only in dimen-
sion 2. To produce a larger class of conformally invariant equations, in even
dimensions, it pays to look for higher order theories such as biharmonic
maps in 4D, see [CWY]. The variational problem associated to the zeta
functional determinant of the Laplace-Beltrami operator, of a higher di-
mensional Riemannian metric, also leads to higher order equations. Finally
the Willmore problem for closed surfaces in R® provides another interesting
example of a fourth order equation.

6) Composite Lagrangians: By adding various Lagrangians we derive other
basic equations. This is true, most remarkably, for the gravitational La-
grangian, given by the scalar curvature of the metric. In combination
with the Lagrangian of a matter theory, in fact any other relativistic La-
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grangians described above, it leads to the famous Einstein Field Equations
R, — %gwR = 87T, with T the energy momentum tensor of the matter
Lagrangian. The Lagrangian of the Seiberg—Witten equations are obtained
by coupling the Lagrangian of the Maxwell theory with that of the Dirac
equation.

The equations derived by the above geometric constructions are elliptic,
if the metric g on M is Riemannian, and hyperbolic if g is Lorentzian. In
the hyperbolic case we distinguish between the Field Theories, for which the
only characteristics of the corresponding PDE’s are given by the Lorentz
metric g, and the other equations; Fluids, Continuum Mechanics, MHD,
etc., which have additional characteristics. The YM, WM and the EV are
all field theories in the sense we have just defined. The EV equations is
distinguished from the other field theories by being the only one for which
the metric g itself is the solution. This fact gives the EV equations a
quasilinear character. For all other field equations, since the metric g is
fixed, the equations are semilinear.

With the exceptional case of EV, which does not have local conservation
laws, all equations described above have associated to them, a well-defined
energy-momentum tensor 7" which verifies the positive energy condition. I
recall that the energy-momentum tensor of a Lagrangian theory is a rank 2
symmetric tensor T}, verifying the local conservation law D#T,, = 0. We
say that T satisfies the positive energy condition if 7(X,Y) > 0 for all
time-like future oriented vectorfields X, Y.

Many other familiar equations can be derived from the fundamental
ones described above by the following procedures:

(a) Symmetry reductions: Are obtained by assuming that the solu-
tions we are looking for have certain continuous symmetries. They lead to
much simpler equations than the original, often intractable ones. Another,
somewhat more general, way of obtaining simpler equations is to look for
solutions which verify a certain ansatz, such as stationary, spherically sym-
metric, equivariant, self-similar, traveling waves, etc.

(b) The Newtonian approximation and other limits: We can derive a
large class of new equations, from the basic ones described above, by taking
one or more characteristic speeds to infinity. The most important one is
the Newtonian limit, which is formally obtained by letting the velocity
of light go to infinity. At the level of the space-time manifold itself this
limit, described in the seminal paper of Minkowski [M], takes a Lorentz
manifold to the Galilean space-time of Newtonian mechanics. As we have
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mentioned above the Schrodinger equation itself can be derived, in this
fashion, from the linear Klein—Gordon equation. In the same way we can
formally derive the Lagrangian of nonrelativistic Elasticity (see [Z]), Fluids
or MHD equations. The formal Newtonian limit of the full Einstein field
equations leads to the various continuum mechanics theories in the presence
of Newtonian gravity. The Newtonian potential is tied to the lapse function
of the original space-time metric.

We should not be surprised that the better known nonrelativistic equa-
tions, look more messy than the relativistic ones. The simple geometric
structure of the original equations gets lost in the limit. The remarkable
simplicity of the relativistic equations is a powerful example of the impor-
tance of Relativity as a unifying principle.

Once we are in the familiar world of Newtonian physics we can perform
other well-known limits. The famous incompressible Euler equations are
obtained by taking the limit of the general nonrelativistic fluid equations
as the speed of sound tends to infinity. Various other limits are obtained
relative to other characteristic speeds of the system or in connection with
specific boundary conditions, such as the boundary layer approximation in
fluids. The equations of Elasticity, for example, approach in the limit, when
all characteristic speeds tend to infinity, to the familiar equations of a rigid
body in Classical Mechanics. Another important type of limit, leading to
the well-known Hamilton—Jacobi equations of Classical Mechanics, is the
high frequency or the geometric optics approximation.

Many of these very singular limits remain purely formal. While some
of them have been rigorously derived, many more present serious analytic
difficulties.

(c) Phenomenological assumptions: Even after taking various limits
and making symmetry reductions, the equations may still remain unyield-
ing. In various applications it makes sense to assume that certain quantities
are small and may be neglected. This leads to simplified equations which
could be called phenomenological'™ in the sense that they are not derivable
from first principles. They are used to illustrate and isolate important phys-
ical phenomena present in complicated systems. A typical way of generating
interesting phenomenological equations is to try to write down the simplest
model equation which describes a particular feature of the original system.

171 use this term here quite freely, it is typically used in a somewhat different con-
text. Also some of the equations which I call phenomenological below, e.g., dispersive
equations, can be given formal asymptotics derivations by Applied Math. techniques.
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Thus, the self-focusing, plane wave effects of compressible fluids, or elastic-
ity, can be illustrated by the simple minded Burgers equation u; + uu, = 0.
Nonlinear dispersive phenomena, typical to fluids, can be illustrated by the
famous KdV equation u; + uty + Ugee = 0. The nonlinear Schrédinger
equations provide good model problems for nonlinear dispersive effects in
Optics. The Ginzburg-Landau equations provide a simple model equation
for symmetry breaking phase transitions. The Maxwell-Vlasov equations is
a simplified model for the interactions between Electomagnetic forces and
charged particles, used in Plasma Physics.

When well chosen, a model equation leads to basic insights into the
original equation itself. For this reason simplified model problems are also
essential in the day to day work of the rigorous PDE mathematician. We
all test our ideas on such carefully selected model problems. It is crucial
to emphasize that good results concerning the basic physical equations are
rare; a very large percentage of important rigorous work in PDE deals with
simplified equations selected, for technical reasons, to isolate and focus our
attention on some specific difficulties present in the basic equations.

It is not at all a surprise that the equations derived by symmetry re-
ductions, various limits and phenomenological assumptions have additional
symmetries and therefore additional conservation laws. It is however re-
markable that some of them have infinitely many conserved quantities or
turn out to be even integrable. The discovery of the integrability of the KdV
equation and, later, that of other integrable PDE’s is one of the most im-
pressive achievements of the field of PDE’s in this century. It remains also
the model case of a beneficial interaction between numerical experiments,
heuristic applied mathematics arguments algebra and rigorous analysis. To-
gether they have led to the creation of a beautiful mathematical theory with
extensive and deep applications outside the field of PDE’s where they have
originated from. We have to be aware, however, of the obvious limitations
of integrable systems; with few exceptions (the KP-I and KP-II equations
are, sort of, 2-dimensional) all known integrable evolution equations are
restricted to one space dimension.

In all the above discussion we have not mentioned diffusive equations
such as the Navier—Stokes. They are in fact not variational and, therefore,
do not fit at all in the above description. They provide a link between
the microscopic, discrete, world of Newtonian particles and the continuous
macroscopic one described by Continuum Mechanics. Passing from dis-
crete to continuous involves some loss of information hence the continuum
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equations have diffusive features. The best known examples of diffusive
effects are the “heat conduction,” which appears in connection with the
dissipation of energy in compressible fluids, and “viscosity,” corresponding
to dissipation of momentum, in Fluids. Another example is that of “electri-
cal resistivity” for the electrodynamics of continuum media. The Navier—
Stokes equation appears in the incompressible limit. The incompressible
Euler equations are the formal limit of the Navier—Stokes equations as the
viscosity tends to zero. Because of the loss of information involved in their
derivation the diffusive equations have probabilistic interpretations.

Diffusive equations turn out to be also very useful in connection with
geometric problems. Geometric flows such as mean curvature, inverse mean
curvature, Harmonic Maps, Gauss Curvature and Ricci flows are some of
the best known examples. Some can be interpreted as the gradient flow for
an associated elliptic variational problem. They can be used to construct
nontrivial stationary solutions to the corresponding stationary systems, in
the limit as ¢ — oo, or to produce foliations with remarkable properties,
such as that used recently in the proof of the Penrose conjecture.

REMARK. The equations which are obtained by approximations or by phe-
nomenological assumptions present us with an interesting dilemma. The
dynamics of such equations may lead to behavior which is incompatible
with the assumptions made in their derivation. Should we continue to trust
and study them, nevertheless, for pure mathematical reasons or should we
abandon them in favor of the original equations or a better approximation?
Whatever one may feel about this in a specific situation it is clear that
the problem of understanding, rigorously, the range of validity of various
approximations is one of the fundamental problems in PDE.

The Problem of Breakdown

The most basic mathematical question in PDE is, by far, that of regularity.
In the case of elliptic equations, or subelliptic in Complex Analysis, the
issue is to determine the regularity of the solutions to a geometric varia-
tional problem. In view of the modern way of treating elliptic equations,
one first constructs a generalized solution by using the variational character
of the equations. The original problem, then, translates to that of showing
that the generalized solution has additional regularity. This is a common
technique for both linear and nonlinear problems. Moreover the technique
can be extended to scalar, fully nonlinear, nonvariational problems, such
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as Monge-Ampere equations, with the help of the viscosity method. In
linear cases as well as in some famous nonlinear cases, such as the mini-
mal hypersurfaces as graphs over mean convex domains, one can show that
the generalized solutions are smooth. The solutions to the general Plateau
problem, however, may have singularities. In this case the main issue be-
comes the structure of the singular set of a given nonsmooth solutions.
Geometric Measure Theory provides sophisticated analytical tools to deal
with this problem. Singularities are also known to occur in the case of
higher dimensional harmonic maps, for positively curved target manifolds
such as spheres.

In the case of evolution equations the issue is the possible spontaneous,
finite time (in view of results concerning local in time existence, the break-
down can only occur after a short time interval), breakdown of solutions,
corresponding to perfectly nice initial conditions. This is a typical nonlin-
ear, multidimensional phenomenon.'® It can be best illustrated in the case
of the Burgers equation u; + uu, = 0. Despite the presence of infinitely
many positive conserved quantities, [ |u(¢, z)|?*dz, k € N, all solutions, cor-
responding to smooth, compactly supported, nonzero initial data at ¢ = 0,
breakdown in finite time. The breakdown corresponds, physically, to the
formation of a shock wave. Similar examples of breakdown can be con-
structed for compressible fluids or Elasticity, see [J], [Si]. Singularities are
also known to form, in some special cases, for solutions to the Einstein field
equations in General Relativity. Moreover, one expects this to happen, in
general, in the presence of strong gravitational fields. It is also widely ex-
pected that the general solutions of the incompressible Euler equations in
three space dimensions, modeling the behavior of inviscid fluids, breakdown
in finite time. Some speculate that the breakdown may have something to
do with the onset of turbulence for incompressible fluids with very high
Reynolds numbers. These fluids are in fact described by the Navier—Stokes
equations. In this case the general consensus is that the evolution of all
smooth, finite energy, initial data lead to global in time, smooth, solutions.
The problem is still widely open. It is conceivable that there are in fact
plenty of solutions which break down but are unstable, and thus impossible
to detect numerically or experimentally.

Breakdown of solutions is also an essential issue concerning nonlinear

!8For smooth, one dimensional, Hamiltonian systems with positive energy, solutions
are automatically global in time. This the case, for example, of the nonlinear harmonic
2
oscillator 4.z + Vi(z) =0,V >0.

dt?
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geometric flows, such as the mean and inverse mean curvature flows, Ricci
flow, etc. As singularities do actually form in many important geometric
situations, one is forced to understand the structure of singularities and find
ways to continue the flow past them. Useful constructions of generalized
flows can lead to the solution of outstanding geometric problems, as in the
recent case of the Penrose conjecture [Hul].

The problem of possible breakdown of solutions to interesting, non-
linear, geometric and physical systems is not only the most basic problem
in PDE; it is also the most conspicuous unifying problem, in that it af-
fects all PDE’s. It is intimately tied to the basic mathematical question
of understanding what we actually mean by solutions and, from a physical
point of view, to the issue of understanding the very limits of validity of the
corresponding physical theories. Thus, in the case of the Burgers equation,
for example, the problem of singularities can be tackled by extending our
concept of solutions to accommodate “shock waves,” i.e. solutions discon-
tinuous across curves in the ¢, z space. One can define a functional space of
generalized solutions in which the initial value problem has unique, global
solutions. Though the situation for more realistic physical systems is far
less clear and far from being satisfactorily solved, the generally held opin-
ion is that shock wave type singularities can be accommodated without
breaking the boundaries of the physical theory at hand. The situation of
singularities in General Relativity is radically different. The type of sin-
gularities expected here is such that no continuation of the solutions is
possible without altering the physical theory itself. The prevaling opinion,
in this respect, is that only a quantum field theory of Gravity could achieve
this.

One can formulate a general philosophy to express our expectations
with regard to regularity. To do that we need to classify our main equa-
tions according to the strength of their nonlinearities relative to that of the
known coercive conservation laws or other a priori estimates. Among the
basic conservation laws that provided by the Energy is coercive, because
it leads to an absolute, local, space-time bound on the size of solutions, or
their first derivatives. The others, such as the linear and angular momen-
tum, do not provide any additional information concerning local regularity.
For the basic evolution equations, discussed in the previous section, the en-
ergy integral provides the best possible a priori estimate and therefore the
classification is done relative to it. This raises a question of fundamental
importance; are there other, stronger, local a priori bounds which cannot be
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derived from Noether’s Principle? There are methods which can rule out
the existence of some exact conserved quantities, different from the phys-
ical ones, yet there is no reason, I believe, to discount other, more subtle
bounds. A well-known Morawetz multiplier method leads, for some classes
of nonlinear wave equations, to bounded space-time quantities which do
not correspond to any conservation law. The Morawetz quantity, however,
has the same scaling properties as the energy integral; it only provides ad-
ditional information in the large. The discovery of any new bound, stronger
than that provided by the emergy, for general solutions of any of our basic
physical equations would have the significance of a major event.

In other cases, when there are additional symmetries, one often has
better a priori estimates. For many elliptic equations, for example, one
can make use of the maximal principle or some monotonicity arguments to
derive far more powerful a priori estimates than those given by the energy
integral. Integrable equations, such as KdV, also have additional, coercive,
conservation laws. As explained above, the Burgers equation has infinitely
many positive conserved quantities. The incompressible Euler equations
in dimension n = 2 have, in addition to the energy, a pointwise a priori
estimate for the vorticity. It is for this reason that we can prove global
regularity for 2D Euler equations. In all these cases the classification has
to be done relative to the optimal available a priori estimate.

In what follows I will restrict myself to the case I find, personally, most
interesting, that of the basic evolution equations for which there are no
better known, a priori estimates than those provided by the Energy integral.
These include all relativistic field theories, Fluids, Continuum Mechanics
and Magentofluidynamic, in three space dimensions and the absence of
any additional symmetries. In these cases the classification is done by
measuring the scaling properties of the energy integral relative to those of
the equations. To illustrate how this is done consider the nonlinear scalar
equation (¢ — V'(¢) = 0 with V(¢) = Iﬁ|¢|p+1. The energy integral is
given by [ (3]0¢(t,z)|> 4 |¢[PT1(t,z))dz. If we assign to the space-time
variables the dimension of length, L', then [0 has the dimension of L~2
and ¢ acquires, from the equation, the dimension Lﬁ. Thus the energy
integral has the dimension L¢, e =n—2+ ﬁ. We say that the equation is
subcritical if e < 0, critical for e = 0 and supercritical for e > 0. The same
analysis can be done for all the other basic equations. YM is subcritical
for n < 3, critical for n = 4 and supercritical for n > 4. WM is subcritical
for n = 1, critical for n = 2, and supercritical for all other dimensions.
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The same holds true for the Einstein Vacuum equations. Most of our
basic equations, such as EV, Euler, Navier—Stokes, Compressible Euler,
Elasticity, etc., turn out to be supercritical in the physical dimension n = 3.
A PDE is said to be regular if all smooth, finite energy, initial conditions
lead to global smooth solutions.

The general philosophy is that subcritical equations are regular while
supercritical equations may develop singularities. Critical equations are
important!® borderline cases. For the particular case of field theories, as
defined in the previous section, one can formulate a more precise conjecture:

GENERAL CONJECTURE. (i) All basic, subcritical, field theories are regular
for all smooth data.

(ii) Under well defined restrictions on their geometric set-up the critical
field theories are regular for all smooth data.

(iii) “Sufficiently small” solutions to the supercritical field theories are
regular. There exist solutions, corresponding to large, smooth, finite energy
data, which develop singularities in finite time.

The part (iii) of the Conjecture is the most intriguing. The fact that
all small solutions are regular seems to be typical to field theories; it may
fail for fluids or the general elasticity equations. The issue of existence of
singular solutions for supercritical equations is almost entirely open. In
the case of supercritical, defocusing NSWE, ¢ — V'(¢) = 0 for positive
power law potential V, most analysts, familiar with the problem, expect
that global regularity still prevails. Numerical calculations seem to support
that view. It is however entirely possible that singular solutions exist but are
unstable and therefore difficult to construct analytically and impossible to
detect numerically. A similar phenomenon may hold true in the case of the
3D Navier—Stokes equations, which would contradict the almost universal
assumption that these equations are globally regular.

If this worst case scenario is true, the big challenge for us would be to
prove that almost all solutions to such equations are globally regular. At
the opposite end of possible situations is that for which almost all solutions
form singularities. The 3D incompressible Euler equations are a good can-
didate for this situation. Moreover it is not inconceivable that this most

19Some of the most exciting advances in Geometric PDE’s in the last twenty five years
involve the study of PDE’s which are critical relative to the optimal available a priori
estimates. This is the case of the Yamabe problem (related to the critical exponent of
the Sobolev inequality), Weakly Harmonic Maps in 2D, Yang-Mills connections in 4D,
the Wilmore problem in 2D. See [S] for a beautiful survey and [Y] for his updated list of
problems in Geometry.
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unstable of all known equations would exhibit the following perverse sce-
nario: The set of all initial data which lead to global regular solutions has
measure zero, yet, it is dense in the set of all regular initial conditions, rela-
tive to a reasonable topology. Such a possibility, which cannot be ruled out,
would certainly explain why it is so difficult to make any progress on the
3D Euler equations with our present techniques. It would also explain, in
particular, why it is so difficult to produce specific examples, or numerical
evidence, of the widely expected finite time breakdown of solutions.

REMARK. The development of methods which would allow us to prove
generic, global, results may be viewed as one of the great challenges for the
subject of PDE’s in the next century.

It is expected that the global structure of singularities in General Rel-
ativity will have to be phrased in terms of generic conditions (see [AM]
and [W] for up to date surveys concerning Cosmic Censorship and recent
mathematical progress on it). Understanding the problem of turbulence
for the Navier—Stokes equations would almost certainly require a statistical
approach. The effectiveness of many geometric flows is hindered by the
presence of bad, seemingly nongeneric, type of singularities. So far the
subject of nonlinear PDE’s has been dominated by methods well suited for
the study of individual solutions; we have had very little success in dealing
with families of solutions. By comparison in the case of finite dimensional
Hamiltonian systems the natural Liouville measure, defined in the space
phase, allows one to prove nontrivial generic results?® such as Poincaré’s
recurrence theorem.

The Problem of Well-posedness for Nonlinear Equations

With the exception of the a priori estimates derived from conservation laws,
or monotonicity and maximum principle for elliptic or parabolic equations,
almost all methods currently used to deal with nonlinear PDE’s depend on
elaborate comparison arguments between solutions to the original system
and those of an appropriate linearization of it. It is essential to have very
precise estimates for the linear system, in tune with the a priori estimates
and the scaling properties of the nonlinear equations. In the case of elliptic
and parabolic problems we have a large and powerful arsenal of such esti-

20There exist some interesting generic results in PDE also, based on the construction of
Gibbs measures on the space of solutions, see [B1,2]. Unfortunately the class of equations
for which such measures can be constructed is extremely limited.
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mates, almost all developed during the course of this century, see [BreB].
Our knowledge of linear estimates for hyperbolic and dispersive equations
is far less satisfactory.

The need for a well adapted linear theory, for evolution equations, can
be best understood from the perspective of the problem of optimal well
posedness. In what follows I will limit my discussion to field theories such
as the nonlinear scalar wave equation (NSWE), Yang-Mills (YM), Wave-
Maps (WM) and the Einstein Vacuum (EV) equations. My goal is to write
down three specific conjectures, WP1-WP3, which are, I feel, just beyond
the boundary of what can be obtained with present day techniques. They
are thus both accessible and important to generate interesting mathematics.

The initial value problem for an evolutionary system of equations is said
to be well posed (WP) relative to a Banach, functional, space X if, for any
data in X, there exist uniquely defined local in time solutions belonging to
X for t # 0, and depending continuously on the data. The problem is said
to be strongly WP if the dependence on the data is analytic and weakly
WP if the dependence is merely continuous or differentiable. In the case of
hyperbolic equations, especially quasilinear, there is a natural, apparently
unique, choice for X. Locally, it has to coincide with the Sobolev?! space
H*(R™). This is due to the fact that L? norms are not preserved by the
linear evolution in dimension n > 1 while norms defined in Fourier space
are meaningless for quasilinear equations. Taking into account the scaling
properties of the basic field equations and proceeding in the same manner
as in the previous section, one can define the critical WP exponent s, to
be that value of s for which the H® norm of initial data is dimensionless.
With this definition we can formulate the following;:

GENERAL WP CONIJECTURE. i) For all basic field theories the initial value
problem is locally, strongly well posed for any data in H?, s > s..

ii) The basic field theories are weakly, globally well posed for all initial
data with small H*® norm.

iii) There can be no well defined solutions®? for s < s,.

The proof of the WP conjecture for s > s. will provide us with an
essential tool for the problem of regularity discussed in the previous sec-

21 We talk of a space H*® rather than a pair H*, H*~'. Thus, in the case of the IVP for
the wave equation [l = 0, ¢(0) = f, 8:¢(0) = g, (f,g9) € H® means f € H*, g c H*™'.

22Weak solutions may exist below the s. threshold but are, completely unstable and
have weird properties. In other words weak solutions, corresponding to s < s., are
mathematical “ghosts”.
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tion. So far the conjecture was proved only in the case of NSWE (see [K]
and [ShS]); it is based entirely on Strichartz type inequalities. Semilinear
equations whose nonlinear terms involve derivatives, such as YM and WM,
are far more difficult, see discussion below. The case s < s, is interesting
for a philosophical reason. There are supercritical cases (in the case of
the supercritical NSWE see [Str], for the case of WM see [Sh], [MuS]), for
which one can prove the existence of a weak solution corresponding to any,
finite energy, initial conditions. Part iii) of the above conjecture asserts
that these solutions are unstable (it is easy in fact to see that they are
linearly unstable) and therefore not particularly useful. It is interesting to
remark, in this respect, the recent remarkable result of Schaeffer [S], see
also [Shn]. Schaeffer has constructed examples of weak solutions for the 3D
Euler equations which are compactly supported in space-time! The result
is reminiscent of the famous result of Nash [N], see also Kuiper [Ku], on C*
isometric imbeddings, which turn out to be plentiful, dense in the set of all
smooth functions, and a lot more pliant than the more regular ones.?® An-
other remarkable example of how bad weak solutions can sometimes be is
that of Riviere, concerning weak harmonic maps from a three dimensional
space to S? with a dense set of singularities [R]. This is in sharp contrast
to the case of minimizers [SchU], or stationary solutions [E] for the same
equations. I suspect that similar, unacceptable properties of weak solutions
type results can be proved for solutions to nonlinear wave equations, below
the critical regularity. Moreover, short of additional regularity assumptions
on the initial data, there may exist no entropy type conditions which would
stablize the solutions.

In the case of subcritical equations, for which the energy norm is stronger
than H®c, part i) of the conjecture would imply well-posedness in the en-
ergy norm, and therefore, by energy conservation, global well-posedness
and regularity. In other words the solutions preserve the H? regularity of
the data for any s > s.. This would thus settle the first part of the General
Conjecture stated in the previous section.

In the case of critical equations, part ii) of the WP conjecture will imply
the following;:

SMALL ENERGY CONJECTURE. For all basic critical field theories all small
energy solutions are globally regular.

23This phenomenon has been called the h-Principle and discussed in a very general
set-up by M. Gromov, see [Gr].
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The small energy conjecture is an essential step in the proof of the gen-
eral regularity conjecture for critical field theories. In the case of wave
equations, whose nonlinearities do not depend on derivatives or in the case
of spherical symmetric solutions, one can prove it directly. In the case
of equations like YM or WM, with derivatives appearing in the nonlinear
terms, it is now believed that the only way to settle the small energy con-
jecture is to prove the much stronger part ii) of the WP conjecture. In
what follows I will give a more precise formulation of it for the special case
of the WM and YM equations.

CONJECTURE WP1. The Wave Maps equation, defined from the Minkowski
R™*! to a complete, Riemannian, target manifold, is globally well posed
for small initial data in H™/?, n > 2.

CoNJECTURE WP2. The Yang-Mills equation, for SO(N), SU(N) struc-
ture groups, is globally well posed for small initial data in an;z, n > 4.

To understand the difficulties involved in WP1, I will summarize below
what are the most significant known results in connection to it.

1) The conjecture is true in the case of equivariant wave maps, see [ShZ],
in which case the nonlinear terms do not depend on derivatives. In [ChrZ]
the small energy conjecture was proved for the special case of spherically
symmetric solutions. Their approach avoids the proof of the WP1 conjec-
ture, which is still not known, even in the spherically symmetric case, by
proving directly, in this case, the small energy conjecture. In the general
case it does not seem possible to prove the small energy conjecture inde-
pendent of Conjecture WP. This has to do with the lack of any space-time
LP, p # 2, first derivative estimates (see [Wol]) for solutions to (¢ = F.

2) In [KIM3] and [KIS] one proves local well-posedness for all data in
H?® s> s.=mn/2,n> 2 (see also [KeT] for n = 1). The result depends
heavily on bilinear estimates. This was further improved in [Ta], who has
established well-posedness (his result is in fact global in time, in view of the
scaling properties of the equations) for small data in the Besov space B;/Z’l.
Both above mentioned results fail to to take into account the completeness
of the target manifold.

3) We know, from simple examples, that we may not have H /2 well-
posedness if the target manifold is not complete.

4) The dependence of solutions on the data, with respect to the H"/?
norm, cannot be twice differentiable.
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The methods which have been used to tackle the case s > s. depend
heavily on an iterative procedure in which one estimates the H*¢ norm of
each iterate, for s > /2,6 > 1/2, in terms of the H*% norms of the previous
iterates. These norms, defined with respect to the space-time Fourier trans-
form, are intimately tied to the symbol of [ and to bilinear estimates, see
[KIM1,3], [KIS] and [FoK]. Similar norms where introduced by J. Bourgain
[B3], see also [KenPV], in connection with nonlinear dispersive equations.

To treat the critical case one needs to overcome two difficulties. The
first has to do with improving the estimates at each iterative step, to make
them optimal. The second is an important conceptual difficulty, which has
to do with the iterative process itself. Any iterative procedure, if success-
ful, would imply not only well posedness but also analytic dependence on
the data in the H™?2 norm. This is however wrong, according to the ob-
servation (3) above. To understand this effect consider the Hilbert space
X = H"*(R™), u a function in X, and let ®(t) = e"**. It is known that
®(t) is a C*! function of ¢ with values in X but, since X is not closed under
multiplications, it is not in C? (see [KeT]). The reason e'* ¢ X is due
to the fact that the function e** is bounded, it cannot be guessed by just
considering the Taylor expansion e =¥, ., %(zu)” in which all terms are
divergent.

In the case of the WM equations any iterative procedure loses the crucial
information about the completeness of the target manifold and therefore
leads to logarithmic divergences. To see that consider WM solutions of the
form ¢ = y(u) where Cu = 0 with data in H™? and 7 is a geodesic of the
target manifold M. Since the L* norm of u is not controlled, v(u) makes
sense only if the geodesic is globally defined. A standard iteration fails to
distinguish between complete and incomplete geodesics.

This situation seems to call for a“renormalization” procedure. More pre-
cisely, one may hope that by understanding the nature of the logarithmic
divergences of each iterate, we can overcome them by a clever regulariza-
tion and limiting procedure. In view of the simple minded model problem
studied in [KIM4] one may hope that such an approach is not impossible.

I will only make a few remarks concerning the WP2 conjecture. The
optimal known result, in dimension n > 4, is small data well-posedness for
s > s, see [KIM5] and [KIT]. In the case s = s. it can be shown that any
iteration procedure leads to logarithmic divergences. The situation seems
thus similar to that described in the previous conjecture. In dimension
n = 3 we have global well posedness in the energy norm s = 1, see [KIM2]
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and the discussion in connection to WP3 below, and local well-posedness
for s > 3/4. It is not at all known what happens for s, =1/2 < s < 3/4.

The case of the Einstein Vacuum equations is far more difficult than
that of WM or YM. Written relative to wave coordinates the EV equations
take the form, g**8,0, 9.8 = N(g,0g), where g is a Lorentz metric and N
is a nonlinear term quadratic in the first derivatives of g. This form of the
Einstein leads to the study of quasilinear wave equations of the form:

D)9 = T(6)Qr(9¢, 0¢) , (1)

with g(¢) a Lorentz metric depending smoothly on ¢, I' smooth function of
¢ and Qr(0¢, 0¢) quadratic in 0¢. Other types of quasilinear wave equa-
tions, such as those appearing in Elasticity or Compressible Fluids, depend-
ing only on 0¢ can be written as systems of wave equations of type (1).

Using energy estimates and Sobolev inequalities one can prove the “clas-
sical local existence” result, or local well-posedness, for H* initial data with
s> s.+1= % + 1. This result leads, in the case of the EV expressed
relative to wave coordinates, to the well-known local existence result of
Y.C. Bruhat. (Bruhat’s result, see [Bru], requires in fact more derivatives
of the data. The optimal 3 4+ 1 dimensional result, s > s. + 1 = 5/2 was
proved in [FM].)

Getting close to the critical exponent s = s, = 3/2 is entirely out of
reach. I believe, however, that the intermediate result, s = 2, is both very
interesting and accessible.

CONJECTURE WP3. The Einstein Vacuum equations are strongly, locally,
well posed for initial data sets?* (X, g, k) for which Ric(g) € L*(X) and
ke H(D).

The conjecture can be viewed, in a sense, as a far more difficult analogue
of the well-posedness result, see [KIM2], for the 3+ 1 YM equations in the
energy norm. Writing the YM equations in the Lorentz gauge, which is the
precise analogue of wave coordinates, one is led to a system of equations of
the form

O = Qr(9,09) + C(9), (2)
with @Qr quadratic in ¢, 0¢ and linear in 8¢ and C cubic in ¢. In this case
the scaling exponent is s, = % The classical local existence result, based
on energy estimates and the H? C L*, 0 > n/2 Sobolev estimate, requires

data in H*, s > s. + 1. One can improve the result to s > s, + % forn=3

24(2,9) is a Riemannian 3D manifold and k a symmetric 2-tensor, verifying the con-
straint equations.
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and s = s.+ % in higher dimensions by using the classical Strichartz?® type
inequalities for solutions to the inhomogeneous standard wave equation
O¢ = F, Moreover one can show, see[Lind], that for n = 3 the result
s > s+ % = 1 is optimal for general equations of type (2). Therefore
to prove the H! well-posedness result for the Yang-Mills equations one
needs to take advantage of some additional cancellations present in the
nonlinear terms. One can do that by using the “gauge covariance” of the
Yang—-Mills equations, according to which a solution of YM is a class of
equivalence of solutions relative to gauge transformations. In view of this
one is free to pick the particular gauge conditions best suited to the problem
at hand. In [KIMZ2] the choice of the Coulomb gauge leads to a coupled
system of elliptic-hyperbolic equations which satisfies the “null condition”.
This means, very roughly, that the hyperbolic part of the YM (Coulomb)
system has the form

O¢ = Q(¢, ¢) + better behaved terms.

with Q(¢, ¢) a nonlocal “null” quadratic form. To deal with the cancella-
tions present in the null quadratic forms () one has developed the so called
bilinear estimates, see [KIM1], [FoK].

In trying to implement a similar strategy to EV one encounters fun-
damental difficulties due the quasilinear character of the Einstein equa-
tions. For example, to improve Bruhat’s classical local existence result
from s > s.+1to s > s.+ %, in wave coordinates, one needs to prove a
version of the classical Strichartz estimates for [] replaced with the wave
operator [y, where g is a rough (assuming we fix ¢, the metric g(¢) will
have the “expected” regularity of ¢) Lorentz metric.

Until recently this seemed to be an intractable problem. In fact it is
known that, if the coefficients of a linear wave equation have less regularity
than C1!, some of the main Strichartz inequalities may fail, see [SmS].
H. Smith, see [Sm], was also able to show that all the Strichartz type
inequalities hold true if the coefficients are at least C'! and n < 3, see [Ta]
for n > 3 . The C%! condition, however, is much too strong to apply to
nonlinear equations.

Recently J.Y. Chemin and H. Bahouri, see [ChB], have succeeded in
deriving the first improvement over the classical result. They have proved
local WP for equations of type 1 provided that s > s. + % for n > 3 and

Z5The Strichartz type inequalities are intimately tied to restriction results in Fourier
Analysis. Together with the more recent bilinear estimates they exemplify the strong,
modern, ties between Harmonic Analysis and nonlinear wave equations.
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§> 8.+ % for n = 2. The same result was proved also by D. Tataru [T2]
using a somewhat different method. Both Chemin-Bahouri and Tataru have
later obtained some further improvements but fall short of the expected
optimal result. (The optimal known result, s > s. + % for n > 3 and
§> 8.+ % is proved in [Ta].) In dimension n = 3 we also have examples,
due to H. Linblad [L2], which show that one cannot have well-posedness,

in general, for s < 2.

Even if the Strichartz based methods initiated by Chemin-Bahouri and
Tataru can be made optimal they will still fall short of proving the desired
H? result, conjectured by WP3. To obtain such a result one needs to take
into account the “null structure” of the EV equations. We know, indirectly
from the proof of stability of the Minkowski space, [ChrK], that written
in appropriate form, i.e. using their general covariance, the equations must
exhibit such a structure. Yet the indirect method of [ChrK], based on the
Bianchi identities and a careful decomposition of all geometric components
appearing in the equation relative to a null frame, cannot be used in this
case. One needs instead a method similar to the one we have sketched
above for YM. In other words we need a “gauge condition,” similar to the
Coulomb one in YM, relative to which all quadratic terms of the Einstein
equations exhibit a null bilinear structure. Once this is done we need to
develop techniques to prove bilinear estimates,?® similar to those of [KIM1],
[FoK], in a quasilinear set-up. A good warm-up problem, in this respect,
would be the study of the Minkowski space analogue of the minimal surface
equation, for which the null structure, in the sense of [KIl1,2], [Chr2], is
obvious.

To summarize, the study of Conjecture WP3 requires:

1) To develop new analytic techniques to improve the results of Chemin-
Bahouri to the optimal regularity possible for Strichartz based meth-
ods.

2) To investigate quasilinear equations which verify the null condition,
and develop bilinear estimates for linear equations with very rough
coefficients.

3) To investigate, in a direct way, the null structure of the Einstein
equations.

?8The bilinear estimates of [KIM1] have been recently derived, by Smith and Sogge
[Sm-So02], for C**! coefficients.
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