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When deriving the estimates on integral operators one often uses the Almost Orthogonality principle of M. Cotlar
and E.M. Stein, first proved by M. Cotlar in [Cot55]. This result is classical; our excuse for formulating it once again
is a need to have its weighted form which sometimes allows to reduce the number of integrations by parts in half
(hereby weakening smoothness requirements), and also to state explicitly the convergence of the series∑i Ti in the
strong operator topology.

Let E andF be the Hilbert spaces, and letT be a linear operator which acts fromE to F . An often situation is that
one can decompose the operatorT into an infinite sum of operatorsT = ∑i Ti , which satisfy certain estimates, and the
question is, under which assumptions onTi one can deduce an adequate estimate onT.

Definition 1 (Almost orthogonal operators). We will call a family of continuous operators

Ti : E → F, i ∈ Z

almost orthogonalif they satisfy the following conditions:

‖T∗
i Tj‖ ≤ a(i, j), ‖TiT

∗
j ‖ ≤ b(i, j), (1)

where a(i, j) and b(i, j) are non-negative symmetric functions onZ×Z which satisfy

‖a‖1/2
∞,1/2 := sup

i∈Z

∑
j∈Z

a1/2(i, j) < ∞, ‖b‖1/2
∞,1/2 := sup

i∈Z

∑
j∈Z

b1/2(i, j) < ∞, (2)

or, more generally,

‖a‖µ
∞,µ := sup

i∈Z

∑
j∈Z

aµ(i, j) < ∞, ‖b‖ν
∞,ν := sup

i∈Z

∑
j∈Z

bν(i, j) < ∞, (3)

with some non-negative exponents0≤ µ, ν ≤ 1, µ +ν = 1. (If µ or ν is zero, then in the summations in (3) we
leave out the terms with a(i, j) = 0 or b(i, j) = 0.)

Theorem 1 (Cotlar-Stein Lemma). Let Ti : E → F, i ∈ Z be a family of almost orthogonal operators that satisfy (1)
and (2), or, more generally, (1) and (3). Then the formal sum∑i Ti converges in the strong operator topology (but not
necessarily in the uniform operator topology) to a continuous linear operator

T : E → F,

which is bounded by

‖T‖ ≤ (‖a‖µ
∞,µ‖b‖ν

∞,ν)1/2 =

(

sup
i

∑
j

aµ(i, j)

)
1
2
(

sup
i

∑
j

bν(i, j)

)
1
2

. (4)

The proof is split into two steps. In Lemma 1 below, we prove that the norm of∑i∈I Ti is uniformly bounded for
any finite I ⊂ Z. An immediate consequence is that the series∑i∈Z Ti converges in the weak operator topology. In
Lemmas 2 and 3, we prove that the series∑i∈Z Ti converges in the strong operator topology.

For brevity, we denote

A := ‖a‖µ
∞,µ = sup

i
∑

j
aµ(i, j), B := ‖b‖ν

∞,ν = sup
i

∑
j

bν(i, j). (5)
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Lemma 1. For any finite subset I⊂ Z, the operator TI := ∑i∈I Ti is bounded by‖TI‖ ≤
√

AB, where A, B are defined
in (5).

Remark1. The important part of this claim is that the estimate does notdepend on the number of the summands,|I |.

Proof. We reproduce an elegant proof from the book of E.M. Stein [Ste93, Theorem 1 in Chapter VII§2]. For any
N ∈ N, we have:

‖(T∗
I TI )

N‖ =
∥

∥

∥ ∑
i1∈I , j1∈I , ... iN∈I , jN∈I

T∗
i1Tj1 . . .T∗

iNTjN

∥

∥

∥
≤ ∑

i1∈I , j1∈I , ... iN∈I , jN∈I
‖T∗

i1Tj1 . . .T∗
iNTjN‖. (6)

For each termT∗
i1

Tj1 . . .T∗
iN

TjN , we have two following bounds:

‖(T∗
i1Tj1) . . .(T∗

iNTjN)‖ ≤ a(i1, j1) . . .a(iN, jN), (7)

‖T∗
i1(Tj1T∗

i2) . . .(TjN−1T∗
iN)TjN‖ ≤ b(i1, i1)

1/2b( j1, i2) . . .b( jN−1, iN)b( jN, jN)1/2. (8)

Taking the weighted geometric mean of (7) and (8) and noting thatbν/2(i1, i1) ≤ B
1
2 andbν/2(iN, iN) ≤ B

1
2 by (5), we

bound‖T∗
i1

Tj1 . . .T∗
iN

TjN‖ by

‖T∗
i1Tj1 . . .T∗

iNTjN‖ ≤ B
1
2 aµ(i1, j1)b

ν( j1, i2) . . .bν( jN−1, iN)aµ(iN, jN)B
1
2 .

We first sum up ini1; according to (3), supj1 ∑i1 aµ(i1, j1)≤ A. Similarly, we sum up inj1, . . . , iN. Finally, summation
in jN results in the following bound on‖(T∗

I TI )
N‖:

∑
i1∈I , j1∈I , ... iN∈I , jN∈I

‖T∗
i1Tj1 . . .T∗

iNTjN‖ ≤ B
1
2 ANBN−1 ∑

jN∈I
B

1
2 = ANBN ∑

jN∈I
1 = |I |ANBN, (9)

where|I | < ∞ is the number of elements inI .
Now we assume thatN = 2n, for some integern. Using (6) and (9), we get:

‖TI‖2N = ‖T∗
I TI‖N = ‖(T∗

I TI )
2‖N/2 = . . . = ‖(T∗

I TI )
N‖ ≤ |I |ANBN, (10)

or ‖TI‖ ≤ |I | 1
2N A1/2B1/2. Since this bound is true for anyN = 2n, we have:‖TI‖ ≤ A1/2B1/2.

Now we need to know in what sense we can draw the conclusion about the norm ofT which consists of infinite
number of almost orthogonal piecesTi .

Corollary 2. The series∑i∈Z Ti converges in the weak operator topology.

Proof. To prove the convergence of∑i∈Z Ti in the weak operator topology, we need to show that for anyu∈ E, v∈ F ,
the series of numbers

∑
i∈Z

〈v,Tiu〉 (11)

converges. If it were not the case, then for anyC > 0 there would exist a finite subsetI ⊂Z such that|∑i∈I 〈v,Tiu〉|>C.
In particular, for some finiteI ⊂ Z,

|∑
i∈I

〈v,Tiu〉| >
√

AB‖u‖‖v‖.

On the other hand, by Lemma 1,|∑
i∈I

〈v,Tiu〉| = |〈v,TI u〉| ≤
√

AB‖u‖‖v‖. This contradiction finishes the proof.

In the next two lemmas, we prove that, as the matter of fact,∑i∈Z Ti converges not only in the weak operator
topology, but also in the strong operator topology. We startwith the following auxilliary result.

Lemma 2. Let m∈ N, and let Iα , 1≤ α ≤ m, be non-intersecting finite subsets ofZ. Then

‖
m

∑
α=1

T∗
Iα TIα‖ ≤ AB, where TIα = ∑

i∈Iα

Ti .
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Proof. We denote

∆ :=
m
⋃

α=1

Iα × Iα ⊂ Z×Z,

so that
m

∑
α=1

T∗
Iα TIα = ∑

(i, j)∈∆
T∗

i Tj . Then we have:

‖
( m

∑
α=1

T∗
Iα TIα

)N
‖ =

∥

∥

∥

(

∑
(i1, j1)∈∆

T∗
i1Tj1

)

. . .
(

∑
(iN, jN)∈∆

T∗
iNTjN

)∥

∥

∥
≤ ∑

(i1, j1)∈∆
. . . ∑

(iN, jN)∈∆
‖T∗

i1Tj1 . . .T∗
iNTjN‖

≤ ∑
i1∈I , j1∈I , ... iN∈I , jN∈I

‖T∗
i1Tj1 . . .T∗

iNTjN‖ ≤ |I |ANBN, where I =
m
⋃

α=1

Iα .

In the last inequality, we used (9). We note that∑m
α=1T∗

Iα TIα is self-adjoint. Therefore, as in (10), we assume that
N = 2n, n∈ N, and arrive at

‖
m

∑
α=1

T∗
Iα TIα‖N = ‖

( m

∑
α=1

T∗
Iα TIα

)2
‖N/2 = . . . = ‖

( m

∑
α=1

T∗
Iα TIα

)N
‖ ≤ |I |ANBN.

SinceN could be arbitrarily large, the conclusion of the Lemma follows.

Lemma 3. The series∑i∈Z Ti converges in the strong operator topology.

Proof. Pick a vectoru∈ E and denotevi = Tiu. We need to show that the series∑i∈Z vi converges inF . Let us assume
that this is not the case. Then there existsε > 0 and infinitely many non-intersecting finite subsetsIα ∈ Z such that
‖∑i∈Iα vi‖ ≥ ε. Therefore, there existsm∈ N such that

m

∑
α=1

‖ ∑
i∈Iα

vi‖2 > AB‖u‖2. (12)

On the other hand, by Lemma 2,

m

∑
α=1

‖ ∑
i∈Iα

vi‖2 =
m

∑
α=1

〈

∑
i∈Iα

Tiu, ∑
j∈Iα

Tju
〉

=
m

∑
α=1

〈

TIα u,TIα u
〉

=
〈

u,
m

∑
α=1

T∗
Iα TIα u

〉

≤ AB‖u‖2.

This contradicts (12), indicating that our assumption thatfor someu∈ E the series∑i∈Z Tiu does not converge inF
was false. This finishes the proof of the Lemma.

This concludes the proof of the Cotlar-Stein Lemma.
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