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When deriving the estimates on integral operators one oftea the Almost Orthogonality principle of M. Cotlar
and E.M. Stein, first proved by M. Cotlar in [Cot55]. This rigs classical; our excuse for formulating it once again
is a need to have its weighted form which sometimes allowsduce the number of integrations by parts in half
(hereby weakening smoothness requirements), and alsat®estplicitly the convergence of the serigsT; in the
strong operator topology.

Let E andF be the Hilbert spaces, and [Ethe a linear operator which acts frdato F. An often situation is that
one can decompose the operakanto an infinite sum of operators = 3; T, which satisfy certain estimates, and the
guestion is, under which assumptionsmne can deduce an adequate estimat€.on

Definition 1 (Almost orthogonal operators)Ve will call a family of continuous operators
T:E—F ic€Z

almost orthogonat they satisfy the following conditions:

where di, j) and ki, j) are non-negative symmetric functions®ix Z which satisfy
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with some non-negative exponent® < u, v <1, pu+v =1 (If yorv is zero, then in the summations in (3) we
leave out the terms with(a j) = 0or b(i, j) = 0.)

Theorem 1(Cotlar-Stein Lemma)Let T : E — F, i € Z be a family of almost orthogonal operators that satisfy (1)
and (2), or, more generally, (1) and (3). Then the formal sy converges in the strong operator topology (but not
necessarily in the uniform operator topology) to a continsitinear operator

T:E—F,

which is bounded by

ITI < (lalls bl )2 = (supza“<i,j>) (supz bV<i,j>> : @)
b b

The proof is split into two steps. In Lemma 1 below, we prowat the norm ofy ., Ti is uniformly bounded for
any finitel C Z. An immediate consequence is that the sefigs, Ti converges in the weak operator topology. In
Lemmas 2 and 3, we prove that the sef§gs; Ti converges in the strong operator topology.

For brevity, we denote

A:= |k, = supy at (i, }), B:= [Ibl}%, =sup} b¥(i, ). (5)
g b



Lemma 1. For any finite subset € Z, the operator T:= 3¢, T; is bounded by|T; || < vVAB, where A, B are defined
in (5).

Remarkl. The important part of this claim is that the estimate doeslepend on the number of the summaritis,

Proof. We reproduce an elegant proof from the book of E.M. SteindS&tdheorem 1 in Chapter VH2]. For any
N € N, we have:

TN = | T T Tin I T T T (6)
i1€l,ji€l, . IneEl, jnEl |1el,jlel,...|NeI7jNel
For each tern®;Tj, ... T Tjy, we have two following bounds:
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Taking the weighted geometric mean of (7) and (8) and notiagtt’/2(i1,i1) < B2 andb"/?(iy,in) < B3 by (5), we
bound|[T{Tj, ... Tig Ty [| by

1

1 .. . . . . . 1
[Ty Ty - Tig Tin [l < B2@H(ig, ja)b"(j1,i2) .. b (in—1,in)@" (in, in)B2.

We first sum up in1; according to (3), su Qz,la“(ll, j1) <A Similarly, we sumup irjg, . ..,in. Finally, summation
in j results in the following bound ofy(T;* T))N||:
H Tll Ti:ITJ'N” < B%ANBNil Z B% = ANBN Z 1= |||ANBN7 9)
i1€l, j1€l, . TinEl, jNEl jNEl JNEl

where|l| < o is the number of elements In
Now we assume thad = 2", for some integen. Using (6) and (9), we get:

TN = TN = ()22 == (TN < A8, (10)

or | Ti|| < |I|2vAY/2BY/2. Since this bound is true for aly = 2", we have:||T;|| < AL/2BY/2. O

Now we need to know in what sense we can draw the conclusiont @ls® norm ofT which consists of infinite
number of almost orthogonal piecés

Corollary 2. The series iz Ti converges in the weak operator topology.

Proof. To prove the convergence §f.; Ti in the weak operator topology, we need to show that foraaye, v e F,
the series of numbers
> (v Tiu) (11)
iEL
converges. If it were not the case, then for &y 0 there would exist a finite subdet Z such that 5, (v, Tiu)| > C.
In particular, for some finité C Z,

|Z<V7Tiu>| > VAB||U[[[v]].

le

On the other hand, by Lemma|1Z<v,Tiu>\ = [(v, Tiu)| < VAB||u[[||v||. This contradiction finishes the proof. [
S

In the next two lemmas, we prove that, as the matter of fagt; Ti converges not only in the weak operator
topology, but also in the strong operator topology. We stéttt the following auxilliary result.
Lemma 2. Letme N, and let |;, 1 < o < m, be non-intersecting finite subsetsZofThen

m
I z T T, || <AB, where T, = Ti.
d=1

iEa



Proof. We denote

m
A= laxlg CZXZ,
a=1

m
sothaty Ty T, = 5 T Tj. Then we have:
d=1 (i.)ea

m
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In the last inequality, we used (9). We note tlzﬂzl'r,j,T.a is self-adjoint. Therefore, as in (10), we assume that
N =2"neN, and arrive at

il N il N/2 il N NN
I3 Tl :H(Znam) 2= =1 3 ) I A,

SinceN could be arbitrarily large, the conclusion of the Lemmadaf. O
Lemma 3. The series .z Ti converges in the strong operator topology.

Proof. Pick a vectowu € E and denote; = Tju. We need to show that the serigs; vi converges iri-. Let us assume
that this is not the case. Then there exists 0 and infinitely many non-intersecting finite subskts Z such that
|| Siel, Vil > €. Therefore, there exista € N such that

m
> 1| 3wl > ABu. (12)
a=1 i€ly

On the other hand, by Lemma 2,

m m m m
z I Zvin: z < Tiu, Z Tju> = Z <T|au,T|au> = <u, z 'I]Z'I]au> < ABJ|u)®.
a=1 i€ly a=1 ‘i€ly j€la a=1 a=1
This contradicts (12), indicating that our assumption thatsomeu € E the seriesy ;.5 Tiu does not converge iR

was false. This finishes the proof of the Lemma. O

This concludes the proof of the Cotlar-Stein Lemma.
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