

*Asteroid Mining Project

Deliver Metals to Earth

Large or Small Asteroids?

Al Globus
San Jose State University
NASA Ames Research Center

Original Task

- Define a system to mine a large metal asteroid for metals and bring them to the Earth's surface.
- Define a system to return small metal asteroids whole.
- Perform a trade study comparing these options.
- Define a development path that can be financed by borrowing against the value of the materials.
- Define a business plan that avoids flooding the market and depressing prices.
- Make a legal argument that consuming NEOs does not violate existing space law.

M-Class Asteroids

- Determine by spectroscopy from the ground
- Probably the source of iron meteorites
 - 95% Fe, Ni, and Co
 - 0-350 ppm precious metals [1]
- Possibly 6-7% of NEOs (Near Earth Objects)
- Kargel: 1 km diameter worth \$323 billion
- Lewis: 3554 Amun (2km) worth \$20 trillion

Metallic Near Earth Objects

- 900 NEOs diameter > 1 km (60 M-class
 [1])
- 200,000 diameter > 100 m (10,000 M-class)
- 1 billion diameter ~ 10 m [3] (70,000,000
 M-class)
- Far more diameter ~ 1m

Mine Large Asteroid

- Target
 - Only one needed
 - Most diameter > 1 km known
 - Precious metal content difficult to predict.
 - Robust to rotation rate, within reason.
- Difficult to automate mining as composition uncertain
- Many NEOs are ruble piles and easy to mine
 - Possibly not metallic NEOs

Return Small Asteroids

- Very large number of potential targets
 - There should be one wherever you want one :-)
- Many nearly-identical missions
 - Inherently redundant
 - Inherently small
 - Robust to composition
 - Economies of scale
- Not necessarily robust to high rotation rate.
- * Detection difficult.

Detection of Small Asteroids

- · Current Earth-based optical asteroid telescopes
 - Smallest found ~ 5m diameter
 - Maximum 1m detection distance ~ 10⁶ km
 - 2,000 to 200,000 1m diameter within range at any given time
 - 5-7 hit the Earth each day
- To find them in time, may need appropriately placed space telescope(s)
 - Where do we want small asteroids to be? Look there.

Additional Consideration

- Carbonaceous chondrites (C-Type) may be good targets [1,9]
 - LL up to 5% metal, of which 50-220 ppm is precious
 - Other chondrites up to 20% metal
 - May be rubble piles
 - Separation by magnetic raking may be possible
 - Non-metallic content can be used for reaction mass on return flight or volatiles for in-space activities
- · Problems
 - Probably require local processing

Other Products [10]

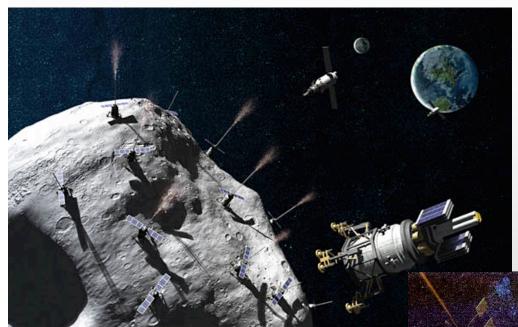
- Large scale space development requires volatiles: water, C, N, etc.
 - May be current market for ComSat propellant, ISS water, etc.
- Many NEOs have ample quantities of volatiles
 - Extinct comets, ~8% of NEOs [11], are largely water with dry exterior.
 - Carbonaceous condrites have ample volatiles
- Kluck suggests drilling through dry exterior and injecting fluid [10].
- Others have proposed baking volatiles out with a solar oven.

Regolith and Rotation

- Large NEOs are expected to have a thick layer of impactgenerated regolith similar to the Moon.
- Small NEOs may not, because
 - Impact velocities are the same, but gravitation attraction is much less so most of impact fragments will escape.
 - Photo-thermal (YORP) effects can induce rapid rotation which can throw loose material off the main body
 - The same effects can cause also slow rotation rates
 - Note that rotational dynamics are such that NEO rotation rate changes. Thus, for small NEOs and some propulsion methods, one might want to choose those with low rotation rates.

Return Transportation [7]

- Delta-v to LEO (Low Earth Orbit)
 - Some NEOs
 - < 5 km/s outbound delta-v
 - ~ 2 km/s inbound to LEO, can be lower
 - For comparison: 6.3 km/s to lunar surface [6]
- Use asteroid material for return reaction mass
 - Mass drivers, rotary launchers
 - Thermal concentrators
 - May not work well with metallic asteroids
- Use materials from one NEO to propel another
- Solar sails

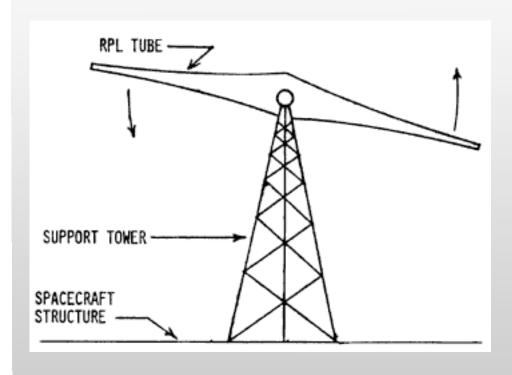


Mass Driver [8]

 Electromagnetic buckets throw regolith

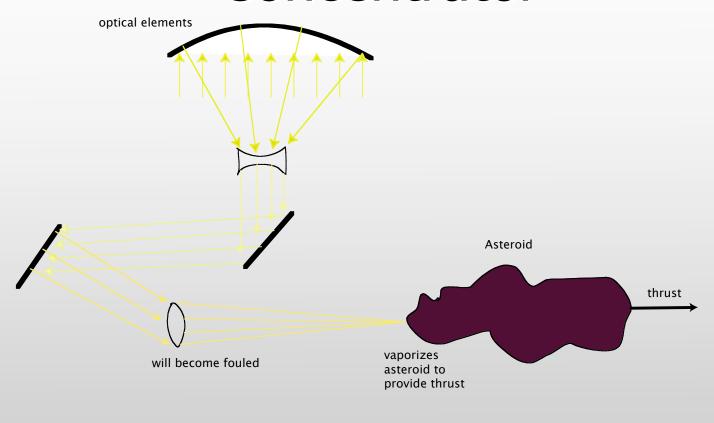
 Tech similar to maglev trains

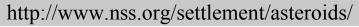
- A few hundred m/s demonstrated
- · Km/s achievable

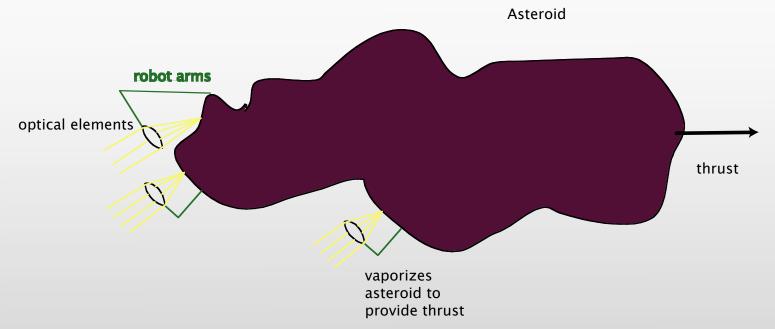


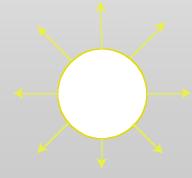
Rotary Launcher

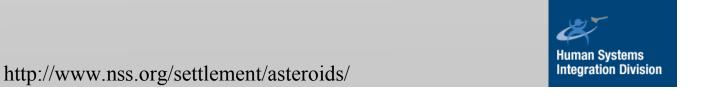
- Feed material into tube
- Unprocessed regolith would be ideal
 - May degrade tube quickly




Free Flying Thermal Concentrator





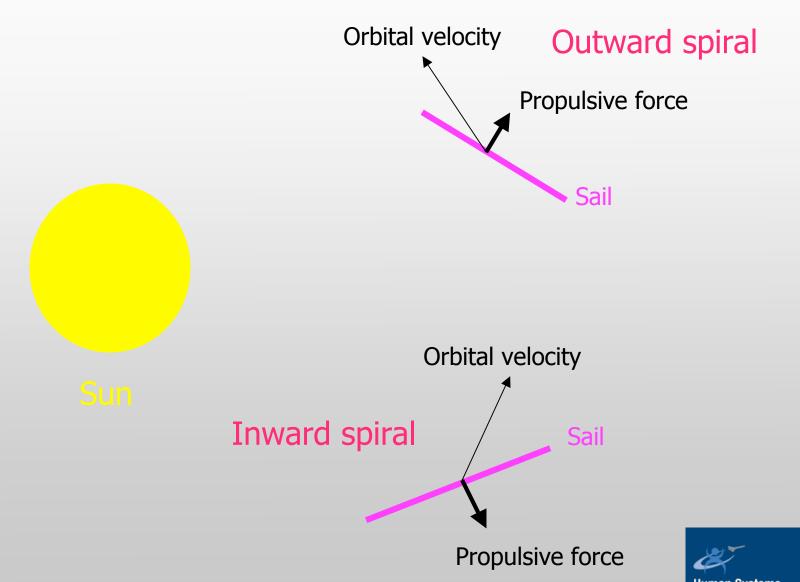


Attached Thermal Concentrator

Use Another NEO's Materials

- Problems with using NEO's own material
 - Use up what we want
 - Thermal vaporization may not work well on metallic asteroids as metals conduct heat well.
 - Metallic asteroids may have little regolith due to ductility.
 - Small asteroids may have little regolith due to low gravity and rotation.
- So use another NEO's materials [4]
 - Use mass driver or rotary launcher to send a stream of small particles to impact the target asteroid
 - Need NEO with suitable orbital elements and ample regolith to provide a source of the particles
 - Smaller NEOs more likely to have suitable orbital elements
 - · Large NEOs more likely to have ample regolith
 - Insensitive to target asteroid materials, rotation rate
 - Very poorly explored, but promising

Solar Sailing 1



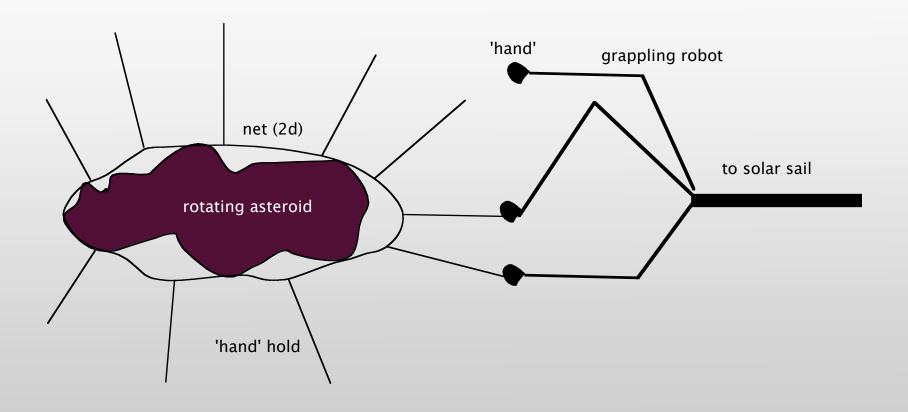
Solar Sailing 2

Integration Division

http://www.nss.org/settlement/asteroids/

Solar Sail 3 [5]

- Characteristic acceleration of 0.25 mm/s²
 produces up to ~0.5 km/s delta-v per month
- To return a 0.4m diameter metallic asteroid (500kg) sail-material-only mass is:
 - Ground manufacture 174kg (5.27g/m², 182m side)
 - Space manufacture 33kg (1.17 g/m², 170m side)
- How attach to spinning/tumbling asteroid?
 - Find slow rotators?



Solar Sail 4

LEO-Earth

· Aerobrake

- Ok for small quantities (precious metals)
- Atmospheric chemistry limits use for bulk materials (iron, steel, etc.)
 - Unless airships work [12]

Vehicle

- Reusuable -- must relaunch
- Fabricated in space from extra-terrestrial materials to be delivered

Floating to Orbit [12]

- Airships (JP Aerospace)
 - Experimentalists
 - Vehicles
 - Ground to 40 km
 - Floating base at 40 km
 - Orbital airship constructed at base
 - Km scale
 - Floats to 60 km
 - Low thrust engines
 - 1-5 days to get to orbit
 - High drag return
 - Materials delivery easier

Business Issues

- Financing and business plan
 - It may not make sense to try to develop dollar/euro quantities, too many unknowns
 - A parameterized mathematical model of the business system might be a real contribution
 - Costs of development, operations
 - Include all the components, mining, transportation to/from LEO
 - Price of metals as a function of asteroidal supply
 - Effect of an in-space market for volatiles
- Make a legal argument that consuming NEOs does not violate existing space law.
 - If this is impossible, perhaps suggest an appropriate legal regime for UN adoption

Summary

- · Asteroid metals may have high value on Earth
 - NEO water, nitrogen, carbon may be valuable in space
- Large vs Small asteroid has no killer trade
 - This project: do the detailed trade study
- Transportation to LEO is major problem
 - In some ways easier than from the Moon
 - Multiple potential solutions
- LEO->Earth transport challenging

References (abbreviated)

- [1] Jeffrey Kargel, "Asteroid: Sources of Precious Metals," http://www.outofthecradel.net/WordPress/wp-content/uploads/srn_v3n12.pdf
- [2] John Lewis , Mining the Sky
- [3] David L. Rabinowitz, "Are Main-Belt Asteroids a Sufficient Source for the Earth-Approaching Asteroids? Part II." Icarus, V127 N1:33-54, May 1997.
- [4] C. E. Singer, "Collisional Orbital Change of Asteroidal Materials," Space Manufacturing 3, 1979.
- [5] Al Globus, "AsterAnts," http://alglobus.net/NASAwork/papers/AsterAnts/paper.html
- [6] M. J. Sonter, "The Technical and Economic Feasibility of Mining the Near-Earth Asteroids" http://www.nss.org/settlement/asteroids/sonter.html

References 2 (abbreviated)

- [7] Alan J. Willoughby, "Adroitly Avoiding Asteroids-Clobber Coax or Consume" http://www.nss.org/resources/library/planetarydefense/1995-AdroitlyAvoidingAsteroids-ClobberCoaxOrConsume.pdf
- [8] Brian O'Leary "Mass Driver Retrievals of Earth-Approaching Asteroids," Space Manufacturing Facilities 2: Space Colonies, pp. 157-168
- [9] David Kluck "Near-Earth Extraterrestrial Resources," Space Manufacturing Facilities 3, pp. 97-108
- [10] David Kluck "Exploitatin of Space Oases," Space Manufacturing Facilities 10, pp. 136-156
- [11] DeMeo and Binzel "Comets in the near-Earth object population," Icarus, V 194, issue 2, April 2008, pp436-449
- [12] John Powell, Floating to Space: The Airship to Orbit Program

