
On the Symbolic Computation of the Hardest
Configurations of the RUSH HOUR Game ?

Sébastien Collette??, Jean-François Raskin? ? ? and Frédéric Servais†

Université Libre de Bruxelles

Abstract. RUSH HOUR is a sliding block game where blocks represent cars
stuck in a traffic jam on a 6 × 6 board. The goal of the game is to allow one
of the cars (the target car) to exit this traffic jam by moving the other cars out
of its way. In this paper, we study the problem of finding difficult initial config-
urations for this game. An initial configuration is difficult if the number of car
moves necessary to exit the target car is high. To solve the problem, we model the
game in propositional logic and we apply symbolic model-checking techniques
to study the huge graph of configurations that underlies the game. On the pos-
itive side, we show that this huge graph (containing 3.6 · 1010 vertices) can be
completely analyzed using symbolic model-checking techniques with reasonable
computing resources. We have classified every possible initial configuration of
the game according to the length of its shortest solution. On the negative side,
we prove a general theorem that shows some limits of symbolic model-checking
methods for board games. This result explains why some natural modeling of
board games leads to the explosion of the size of symbolic data-structures.

1 Introduction

RUSH HOUR is a commercial sliding blocks puzzle. Pieces representing cars and trucks
are placed on a 6 × 6 square board. The game starts by placing the vehicles according
to an initial configuration as shown in Fig.1(a). The goal of the game is to get the red
car to the board exit square, as shown in Fig.1(b), by moving the other vehicles out of
its way. Cars and trucks take up two and three board squares, respectively. In an initial
configuration, each car is positioned either vertically or horizontally and cannot steer
from that direction during the game, i.e. each vehicle stays on its initial row or column,
respectively. As a consequence, the target car must be facing the exit from the begin-
ning. The commercial game provides 40 cards describing initial board configurations,
with various number of cars. They are ranked in four levels: beginner, intermediate,
advanced and expert.

The motivation of this paper is to find the hardest initial board configurations of
the game. We consider that a configuration is hard if the minimal number of moves
necessary to exit the red car is high. This problem is challenging for two reasons. First,
the number of possible initial configurations of the game is huge: around 3.610 config-
urations for 6 × 6 board. Second, finding the minimal length of a solution to a single
? Supported by the FRFC project “Centre Fédéré en Vérification” funded by the Belgian Na-

tional Science Fundation (FNRS) under grant nr 2.4530.02
?? Aspirant du F.N.R.S.

? ? ? CS, Université Libre de Bruxelles, Belgium
† Department of Computer & Decision Engineering, CoDE, Université Libre de Bruxelles, Bel-

gium

ExitRED

C

E

A

B

D

ExitRED

C

E

A

B

D

Exit15

6

1

16

5

13

2

3

4

14

17

2418

a.
Initial configuration

b.
Winning configuration

c.
Hardest initial

Rush Hour configuration

Fig. 1. RUSH HOUR

initial configuration is already a hard problem. Indeed, RUSH HOUR algorithmic com-
plexity was first studied by G. W. Flake and E. B. Baum in [1]. Their work inspired
a more general sliding blocks complexity proof technique by R. A. Hearn and E. D.
Demaine in [2]. These works show that the problem of deciding if an initial configura-
tion is solvable for a generalized version of RUSH HOUR with arbitrary board size, is
PSPACE-COMPLETE. This implies that there is no polynomial time algorithm to find a
solution (unless P=PSPACE) and the length of the shortest solution of hard initial con-
figurations grows exponentially with the board size n (provided that P 6= NP and NP 6=
PSPACE).

In this paper, we present an elegant solution to compute the hardest configurations
of the RUSH HOUR game. This solution relies on the propositional modeling of the
(huge) graph of configurations that underlies the game and on the implicit exploration
of this graph using symbolic model-checking techniques.

Symbolic model-checking techniques have been developed since the early nineties
by the computer aided verification research community and have shown successful in
verifying logical properties of complex hardware circuits. Symbolic model-checking
techniques are useful to explore very large graphs (with 1020 states for example, see
[8]) and to compute properties of the paths in those graphs. The graphs are represented
implicitely using symbolic data structure such as Binary Decision Diagrams (BDDs)
[4].

The contributions of this paper are the following. First, we show that symbolic
model-checking techniques can be used successfully to analyze the entire configura-
tion space of the 6 × 6 RUSH HOUR game with reasonable computational resources.
Symbolic model-checking techniques allow computing the hardest configurations of the
game. Second, we show that, unfortunately, the most natural way of modeling the game
into propositional logic leads to the construction of symbolic data-structures whose
size explodes. We prove that this phenomenon is not limited to the symbolic analysis
of RUSH HOUR but will occur for any board game. Indeed, we show that the symbolic
representation of simple constraints like “A position of the board can only hold one
piece” requires BDDs whose size is exponential in the problem size. To avoid this phe-
nomenon, we propose a dual modeling of RUSH HOUR which leads to more manage-
able symbolic data-structures. This modeling can be straigthforwardly translated into
the input language of NUSMV [6], a state of the art symbolic model-checking tool.
This second modeling allows to successfully apply symbolic model checking methods
and to classify the entire set of configurations of the game according to the length of its
minimal solution. This shows that the choice of modeling is crucial for the successful
application of symbolic model checking techniques. The application of these techniques
to other games, like chess or checkers, should be studied. Third, we show that the tech-

niques proposed here can not only be used to compute hard initial configurations but
are also useful to analyze interesting structural properties of the game.

The rest of this paper is organized as follows. In Section 2, we formalize the prob-
lem, present a general breadth first search algorithm and an estimation of the computing
resources (time and memory) a classic explicit implementation would require. In Sec-
tion 3, we recall the notion of Binary Decision Diagram and present a symbolic imple-
mentation of the algorithm. In Section 4, we propose a first modeling of the game into
propositional logic, report on the explosion of the BDD for this modeling and we de-
velop a theoretical argument which explains why our first modeling leads to explosion
in BDD size. In Section 5, we come up with a dual modeling of the game that takes
into account the theoretical result of the previous section. In Section 6, we report on
the success of the second modeling and present some interesting results on the hardest
initial configurations of the game.

2 Formalization of the problem

In this section, we show how the RUSH HOUR hardest configurations problem can be
solved by a simple backward graph exploration equivalent to a (one-player) retrograde
analysis. The possible configurations of the cars on the board define the vertices of the
graph and valid moves between configurations define the edges of the graph. After pre-
senting this conceptually simple solution, we evaluate the cost of traversing the graph
of configurations with an explicit algorithm that operates at the level of vertices of the
graph (treats each vertex individually).

2.1 The hardest configurations

Let G = (V,E) be a finite directed graph: V is the set of vertices and E ⊆ V × V is
the set of edges. Let v ∈ V and U ⊆ V . A path from v to U is a sequence of vertices
ρ = v1v2 . . . vn such that v1 = v, vn ∈ U and ∀i·1 ≤ i < n·(vi, vi+1) ∈ E. The length
of the path ρ = v1v2 . . . vn, noted |ρ|, is n − 1. The set of paths from v to U in G is
noted PathG(v, U). The distance from v to U is equal to Min{|ρ| | ρ ∈ PathG(v, U)} if
PathG(v, U) is non empty and equal to +∞ otherwise, this value is noted DistG(v, U).

Let us now consider a graph, GRH = (VRH , ERH), whose vertices represent
the valid configurations of RUSH HOUR (board configurations without collision) and
the edges the valid transitions between those configurations. Let us denote the set
of winning configurations as W . A configuration v ∈ VRH is of index n ∈ N if
DistGRH

(v,W) = n. Our goal is to compute the set of configurations of the largest
index n.

A classical breadth first search algorithm can be applied. Starting from the set of the
winning configurations, we successively compute the set of configurations of index n
until reaching an empty set. The last non-empty set contains the hardest configurations
of the game. In the sequel we name this algorithm retrograde analysis in analogy with
the two-player game analysis method.

We are now equipped to compute in GRH all the configurations that can reach a
winning configurations and their index. The set of configurations of index k is noted
Ck and it is computed inductively as:

C0 = W;R = W;
for each v ∈ (Ci−1) do for i > 0

for each w with (w, v) ∈ ERH and w /∈ R do
add v into Ci and into R

Note that if Ci = ∅ then Cj = ∅ for all j ≥ i. So our algorithm will start from C0 and
compute the sets Ci’s until we get an empty set.

2.2 Explicit implementation
Solving this problem with classical retrograde analysis is theoretically feasible. The
challenge is to deal with the huge state space: 3.6 · 1010 valid configurations.

The breath first search algorithm requires in this case a mapping between each con-
figuration and a bit telling wether or not it has been visited before. A clever indexing
scheme is not enough to make the map fit into the computer’s limited memory, since it
requires at least 4.5 GB (3.6 · 1010 bits). However, partitioning the problem to make it
fit is straightforward. Since the vertical cars cannot leave their respective column and
horizontal cars cannot steer from their respective line, the number of cars and trucks for
each line is an invariant of transitions. Fixing these numbers defines a partition of our
problem. We can solve each of these partitions independently of each other.

These partitions do fit easily into memory. Indeed, for a line with 1 car there are
5 possible positions, with 1 truck there are 4 possible positions, for 2 cars there are
6 possible positions, for a line with 1 car followed by a truck there are 4 positions.
Let consider one of these partitions and let ni be the number of possible positions for
the i-th line and mi the number of possible positions for the i-th column. We have
1 ≤ ni,mi ≤ 6, thus there are at most 612 = 2 · 109 possible configurations in a
partition. We need only one bit telling if the configuration has been visited or not, so we
need about 2 · 109 bits of memory which is about 270 MB. A closer look at the possible
configurations of a partition would show a smaller memory requirement. For example,
we do not need to include in the map the winning configurations nor configurations
with more than 17 cars (since the board has 36 squares).

This takes care of the first obstacle: fitting the problem into the limited physical
memory of a standard computer. However this is only half the solution. We broke down
the problem into 612 = 2·109 subproblems since there are 6 possible configurations of a
line or column (no car, 1 car, 2 cars, 1 truck, 1 car followed by a truck, 1 truck followed
by a car) and there are 6 lines and 6 columns. We now must solve these subproblems.

For each of these partitions we must generate the set of winning configurations.
Then, for each of these winning configurations, we compute the configurations we can
reach in one step, update the map accordingly and keep track of the newly reached
configurations. Once all winning configurations have been treated, we apply the same
operations to the set of newly reached configurations iteratively, until reaching an empty
set. The tricky part that we do not tackle here is generating in an efficient manner the
set of winning configurations of a partition.

This method has to treat the 3.6 · 1010 configurations. According to preliminary
experiments, this can be achieved in about 20 hours.

This section showed that we can use a classical retrograde analysis algorithm, but it
needs a significant amount of computing resources. This also gives us a rough idea of
expected performance to compare our results with.

3 Symbolic Implementation
In this section, we turn the explicit algorithm of previous section, whose basic opera-
tions treat vertices individually, into a symbolic algorithm whose basic operations treat
set of vertices instead. To implement such an algorithm, we need a data structure to
manipulates set of configurations efficiently. We present such a data structure and then
we give our symbolic algorithm.

3.1 Symbolic data structure

Reduced Ordered Binary Decision Diagrams (ROBDD), introduced by R. Bryant [4] in
1986, are data structures that canonically represent boolean functions as direct acyclic
graphs. Equivalently they are canonical representation of set of valuations that can be
exponentially smaller than the sets it represents. This data structure has found tremen-
dous success in verification of the logic of hardware circuits. So ROBDD’s are natural
candidates to symbolically represent the sets that we have to handle in the algorithm of
next section.

As an illustration, the set of valid configurations containing 3.6 · 1010 configura-
tions is represented with a BDD containing 10 Million nodes in our second modelling
(see section 5). This is 3600 configurations per node. Furthermore, as we will see, the
operations are performed on the compressed representation without decompression.

ROBDD’s are essentially binary decision trees where the sequence of variables as-
sociated with the nodes of any path follows a given global order and where common
subtrees have been shared across the tree. They provide computation of operations with
interesting complexity.

More precisely, a binary decision diagram, or BDD, is a rooted acyclic graph with
two terminal nodes of out-degree zero labeled 0 or 1 and a set of variable nodes of
out-degree two. This is illustrated in Figure 2 where the dotted lines represent the low
branches, i.e. variable is 0, while the solid lines represent the high branches. A BDD is
ordered, OBDD, if for any path the sequence of variables associated with the nodes of
this path follows a given global order. A BDD node is not unique if another of its nodes
has the same variable name and low and high successors. Moreover we say that a BDD
node is a redundant test if it has identical low and high successors. Finally an OBDD is
said to be reduced, ROBDD, if all its nodes are unique and are not redundant tests.

0

z

1

z

y

=>
0 1

z

y

x

yy

x

=>
0 1

z

y

x

Fig. 2. BDD for the formula z ∧ (x ∨ y). Removal of non-unique node followed by removal of
redundant test. The rightmost BDD is the canonical ROBDD for the ordering x < y < z, both
leftmost are OBDDs.

Low complexities of important operations is what makes ROBDD’s attractive for
verification methods and our problem. The central property of ROBDD’s is that, given
a variable ordering, they canonically represent Boolean functions. As a consequence
tautology, satisfiability and equivalence are done in constant time. Let A and B be
two BDDs, |A| and |B| are their respective size, i.e. their number of nodes. Reduction
algorithms run in O(|A|). Exhibiting a value that satisfies the function can be done in
O(n) , where n is the number of variables. The SAT-count algorithm must output the
number of assignments that satisfy the function, it has a running time of O(|A|). Union
and intersection (conjunction and disjunction) algorithms have running time of O(|A| ·

|B|). The complement implemented with a tree traversal has a running time of O(|A|).
Universal and existential quantification are done in O(|A|2). Finally the Pre operator,
extensively used in verification techniques, consists of n existential quantification and
thus has a running time of O(|A|2n), diverse methods have been developed to make it
as efficient as possible [5].

The complexity of the operations described above depends on the size of the BDD
which may be exponentially smaller than the set it represents, but it may also vary
between a linear and an exponential range depending on the ordering of the variables.
It is therefore crucial to find a good ordering. However, finding the optimal ordering
or even improving it has been proved to be a NP-COMPLETE problem. Thus efficient
heuristics have been studied to tackle this problem.

While BDD have been introduced for Boolean formulas, this structure can easily be
extended to finite integer domains through a Boolean encoding of the bounded integer
variables. For efficiency reasons, the Boolean variables that encode an integer variable
will be gathered in the variables ordering of the BDD. In the following, we will use
BDD over finite integer domain, since it is the structure used in NUSMVand other
verification tools, and when considering x we will directly refer to that variable in the
BDD and not to the binary variables that encode it.

3.2 Symbolic algorithm

Let GRH = (VRH , ERH) be the graph of the game defined above, and let X =
{x1, . . . , xk} be a set of bounded integer variables representing the system (e.g. the
position and direction of each car). To each vertex of GRH corresponds a valuation of
these variables. To a valuation may correspond a vertex of GRH , provided the valuation
defines a valid configuration.

Given a propositional formula φ, we note [[φ]] the set of valuations that satisfy φ. For
example, if φ ≡ x1 ⇒ x2, then [[φ]] is the set of valuations that maps the pair (x1, x2)
to a pair in {(0, 0), (0, 1), (1, 1)}.

A propositional formula φ over the variables x1, . . . , xk defines (via the set [[φ]])
a set of vertices or, equivalently, a set of configurations of the game. For any set of
configurations, U ⊆ VRH , considered as a set of valuations, there is a propositional
formula φU such that U =[[φU]]. We note φW the proposition defining the winning
configurations. In the same way if X ′ = {x′1, . . . , x′k} is a set of variables representing
the game configuration after one transition, there is a propositional formula, φE over
{x1, . . . , xk, x′1, . . . , x

′
k} such that ERH =[[φE]].

Given a set U of vertices in GRH , we define the set of one-step predecessors of U
as

Pre(U) = {v ∈ VRH |∃u ∈ U : (v, u) ∈ ERH} (1)

If U is defined by propositional formula φ over X ′, i.e. U =[[φ(X ′)]], then Pre(U) is
represented by the following propositional formula1 over X:

∃X ′ : φE(X, X ′) ∧ φ(X ′) (2)

So we have:

Pre([[φ(X ′)]]) =[[∃X ′ : φE(X, X ′) ∧ φ(X ′)]] (3)
1 The existential quantification is a shorthand for the disjunction over all variables over all their

finite set of possible values.

We can now symbolically apply the following algorithm:

C0 =[[φW]]

Ci = Pre(Ci−1) \
⋃

0≤j≤i−1

Cj for i > 0 (4)

All these sets can be represented by BDDs and all these operations can be directly
applied on these BDDs.

4 First propositional model
We present in this section a first modeling of RUSH HOUR in propositional logic: we
define φW and φE . We show that this first solution is not satisfactory and we give a
mathematical argument that explains the phenomenon. This mathematical argument is
general and has applications in the study of the symbolic analysis of other board games.

4.1 Formalization
Let n and m be two fixed parameters of the specification, n being the size of the board
and m the number of cars. For the sake of readability, we make here the hypothesis
that all vehicles have a length of 2, the modeling for vehicles of length 2 and 3 can
be obtained from this one in straigthforward manner. Let the pair of variables (xi, yi)
denote the cartesian coordinates of the upper-left square occupied by the i-th car, (1, 1)
being the lower-left corner of the board. Let the variable hi indicate the orientation of
the vehicle, i.e. hi is 1 if the i-th car is horizontal and 0 if it is vertical. The target car
uses index 1. We note X = {x1, y1, h1, ..., xm, ym, hm} the set of the system variables
and X ′ = {x′1, y′1, h′1, ..., x′m, y′m, h′m} the set of variables describing the configuration
after one transition, this will be useful to specify the evolution of the system.

The set of all possible configurations is S = ({1, . . . , n}2 × {0, 1})m. We specify
3 relations on S: the invariant of the system Invar ⊆ S, which denotes the legal
configurations, the transition relation between configurations Trans ⊆ S × S, which
does not check collision and Win ⊆ S the set of configuration with the target car
on the exit square. We have: φW (X) = Win(X) ∧ Invar(X) and φE(X, X ′) =
Trans(X, X ′) ∧ Invar(X ′)

To specify those relations we use propositional formulas over finite integer domains.

Invariant Proposition (5) states that cars are fully on the board, (6) states that cars do
not overlap. The Invar relation is the conjunction of (5) and (6). [[Invar]] is the set of
all valid states. ∧

1≤i≤m

(hi < xi + hi ≤ n) ∧ ((1− hi) < yi ≤ n) (5)

∧
1≤i,j≤m

i 6=j

(xi >xj +hj) ∨ (xj >xi+hi) ∨ (yi >yj +(1−hj)) ∨ (yj >yi+(1−hi)) (6)

In the same manner, we have propositional formulas for the set of winning config-
urations and for the transition relation. We omit them here, but we will give another
complete formalization of RUSH HOUR in section 5.

Having formalized the RUSH HOUR rules in such a way that for any couple (m,n)
we obtain a Boolean propositional specification that describes the game, we can apply
our algorithm.

cars 4x4 5x5 6x6
2 123 233 368
3 1237 3918 9490
4 7334 44209 172583
5 24227 321114 2153132
6 44209 1520760 N/A
7 50081 N/A N/A
8 30762 N/A N/A
9 1 N/A N/A

Table 1. Number of nodes in the Invar BDD relatively to board sizes and number of cars.

4.2 Results of first implementation

We ran our specification for board sizes n ranging from 4 to 6. For each board size the
number of cars m ranged from 2 to the maximum our system memory could handle.
As the number of cars increases the Invar BDD size explodes. This can be observed
in table 1. We only report on the Invar BDD, since the Win and Trans BDD sizes do
not explode and are thus not relevant here.

The explosion in the memory consumption limited us to the exploration of boards
of sizes 5 and 6, with a number of cars smaller than 6 and 5 respectively. More complex
systems cannot be handled with this approach.

It is a fundamental BDD property that its size increases with the number of inter-
variable dependencies. This is the reason why the Invar BDD size explodes. As men-
tioned above, the purpose of this BDD is to validate car positions against collisions.
This puts in interdependency all car positions, since each car position must be checked
against all others.

This first negative experiments motivates the next section where we show that board
games are intrinsically difficult to model with ROBDD’s.

4.3 Limitation of ROBDD-based methods for board games

In this section, we abstract the collision problem to linear boards filled with tokens. We
exhibit a lower bound on the size of the ROBDD that detects a collision on this linear
board. We obtain a two-dimension result as a direct corollary.

An assignment of a set of tokens modelled by variables in X = {x1, . . . , xm} on
the board of size n is a function v : {x1, . . . , xm} → {1, . . . , n}. There is no collision
iff this function is injective. This is formalized by this propositional formula over finite
integer domain:

φcoll =
∧

1≤i,j≤m

i 6= j → (xi 6= xj) (7)

Lower bound results for ROBDDs are generally based on the concept of fooling
set. Fooling sets were introduced by Sedgewick for VLSI and then applied by Bryant
to ROBDD [3]. We adapt this notion here for finite integer domains.

Let X = {x1, . . . , xm} be the set of variables whose domain of values is {1, . . . , n}.

Definition 1. An input assignment is a function v : X → {1, . . . , n}. Given (L,R) a
partition of X . We call a left (right) input assignment any function l : L → {1, . . . , n}

(r : R → {1, . . . , n}). We denote by l · r the input assignment defined by l and r on
X . We say that an OBDD is compatible with a partition (L,R) iff all variables of L
precede all variables of R in this OBDD variable ordering.

Before defining the notion of fooling set, we need an additional notion. Let V =
{v | v : X → {1, . . . , n}} be the set of valuations for variables in X . A function
f : V → {0, 1} partitions the valuations as making the function true or false. We
compactly note the type of such a function by f : [X → {1, . . . , n}] → {0, 1}.

Definition 2. Let (L,R) be a partition of X and f be a function such that f : [X →
{1, . . . , n}] → {0, 1}. A fooling set F for f over L is a set of left assignments such
that: for any l, l′ ∈ F, l 6= l′, there exists a right assignment r with f(l · r) 6= f(l′ · r).
Such a right assignment is said to distinguish between l and l′.

Lemma 1. Given a partition (L,R) over X , a function f : [X → {1, . . . , n}] →
{0, 1} and a fooling set F for f over L, then any OBDD compatible with (L,R) has
more than #F nodes.

Proof. For any two distinct left assignments, l and l′, of F there exists, by definition of
F , a right assignment r that distinguish them, i.e. such that f(l ·r) = 0 and f(l′ ·r) = 1.
It follows that l and l′ must lead to two different “intermediate” nodes in the OBDD and
thus that there is at least as many nodes as there are elements in F .

We now prove a lower bound on the size of any OBDD that detects the collision of
tokens on a linear board.

Theorem 1. Let f : [X → {1, . . . , n}] → {0, 1} such that f(v) = 1 iff v |= φcoll,
where φcoll is defined in (7). Let A be an ROBDD over the set of variables X =
{x1, x2, . . . , xm} representing f . A has at least Cm−1

n nodes.

Proof. Let N be the set of subsets of m − 1 values from {1, . . . , n} and let X1 =
{x1, . . . , xm−1} and X2 = {xm}. To each N ∈ N we associate one bijection fN :
X1 → N . We noteF this set of functions.F is a fooling set for f over X1: let l1, l2 ∈ F
with l1 6= l2. By construction of F , we know that codom(l1) 6= codom(l2), and let n1

be a value such that n1 ∈ codom(l1) and n1 /∈ codom(l2). Let r : X2 → {1, . . . , n}
be an injective function such that codom(r) ∩ codom(l1) = n1 and codom(r) ∩
codom(l2) = φ. We have f(l1 · r) = 0 and f(l2 · r) = 1. Applying lemma 1 fin-
ishes the proof since N has Cm−1

n elements.

Since a two-dimension board is equivalent to a linear board with n2 squares, we
have as a corollary:

Corollary 1. Let A be a BDD over the position variables X = {x1, y1, x2, y2, ..., xm, ym}
for a two-dimension board of size n with m tokens. If, for every 1 ≤ i ≤ m the variables
{xi, yi} are gathered in the BDD variable ordering, then A has at least Cm−1

n2 nodes.

Note that this result is fundamentally connected to the chosen encoding of the prob-
lem. The token positions are encoded in a cartesian-like board coordinates style. Ap-
plying this result to board games we obtain a lower bound on any ROBDD representing
the collision of pieces on a chess board or on draughts board with the afore mentioned
encoding. The lower bounds in table 2 suggests this technique is not suitable to explore
chess and droughts with more than 5 to 6 pieces (additional complexity will be brought
in with the complex rules of these games).

of pieces Chess Draughts American checkers RUSH HOUR Invar BDD size (observed)
2 64 49 32 368
3 2.016 1176 496 9.490
4 41.664 18.424 4960 172.583
5 635.380 211.876 35.960 2,1M
6 7.6M 1.9M 201.376 N/A
7 75M 14M 906.192 N/A
8 620M 86M 3.4M N/A

Table 2. Lower bounds on the size of the ROBDDs detecting pieces collisions for chess, draughts
and american checkers board.

A dual encoding is to use a boolean variable for every square of the board that
indicates if the square is occupied or not. For board games with more complex tokens,
like american checkers or chess, an integer, that indicates which kind of pieces occupied
the board if one, is required.

Using this dual encoding, Baldamus et al. explored the possibility to solve american
checkers with ROBDD[7]. They observed an explosion in the size of ROBDD prevent-
ing them to solve american checkers for boards with size greater than 4× 4. American
checkers is the simplest game considered here. However, the number of legal positions
is estimated to be 1018.

5 Dual propositional model

In the light of the previous section, we propose now a dual encoding of the RUSH HOUR
board which limits the explosion of the size of the symbolic structure. Because vehicles
take more than one square, we work on a line and column level, instead of on a square
level as in [7].

We have shown that interdependencies between the variables lead to huge ROBDDs.
Here, we try to limit these interdependencies using a specific property of RUSH HOUR:
two horizontal cars on different lines can never collide. Similarly, vertical cars cannot
collide with other vertical cars that are not on the same column. This is the basic idea
behind our second model. Again, for the sake of readability, the model below is limited
to vehicle of size 2. Our actual implementation is general, it takes into account vehicles
of size 2 and 3.

Let n be the size of the board. On each column and each line we have at most
k = bn/2c cars. Let hi,j = (oh

i,j , p
h
i,j), 1 ≤ i ≤ n and 1 ≤ j ≤ k represents the j-th

horizontal car of the i-th row, such that this car is on the board if oh
i,j = 1 and out of the

board if oh
i,j = 0. If on the board, its leftmost square is on the ph

i,j square (from the left)
of the i-th row. Similarly, let vi,j = (ov

i,j , p
v
i,j) , 1 ≤ i ≤ n and 1 ≤ j ≤ k represents

the j-th vertical car of the i-th column, such that this car is on the board if ov
i,j = 1 and

out of the board if ov
i,j = 0 and its upper square is on the pv

i,j square (starting from the
bottom) of the i-th column. We have 0 ≤ pv

i,j , p
v
i,j < n. Let (o′hi,j , p

′h
i,j) and (ov

i,j , p
v
i,j),

for 1 ≤ i ≤ n and 1 ≤ j ≤ k, describe the configuration after a transition.

Invariant Proposition (8) states that cars on the same line, column, do not overlap and
(9) that any horizontal car does not collide with any vertical car. The Invar relation is
the conjunction of (8) and (9).

∧
d∈{h,v}

1≤i≤n,1≤j,j′≤k

(od
i,j = 1 ∧ od

i,j′ = 1 ∧ j < j′) → pd
i,j < pd

i,j′ − 1 (8)

∧
1≤i,i′≤n
1≤j,j′≤k

 (oh
i,j = 1 ∧ ov

i′,j′ = 1)
→(

(ph
i,j ≤ i′ − 2) ∨ (ph

i,j > i′) ∨ (pv
i′,j′ ≤ i− 2) ∨ (pv

i′,j′ > i)
)
 (9)

Transition Proposition (10) states that only one car is moving during one transition.
Proposition (11) states that vehicles on the board stay on the board, and vehicles out
of the board stay out of the board. Finally, proposition (12) states that cars move one
square at a time. The transition relation is the conjunction of these propositions:∧

d,d′∈{h,v}
1≤i,i′≤n,1≤j,j′≤k

pd
i,j 6= p′di,j → pd′

i′,j′ = p′d
′

i′,j′ (10)

∧
d∈{h,v}

1≤i≤n,1≤j≤k

od
i,j = o′di,j (11)

∧
d∈{h,v}

1≤i≤n,1≤j≤k

|pd
i,j − p′di,j | ≤ 1 (12)

Winning configuration One of the car of the exit square row is on the board and posi-
tioned on the exit square. Let e be the number of the exit square row, we have:∨

1≤j≤k

[(pd
e,j = n− 1) ∧ (od

e,j = 1)]

6 Results: RUSH HOUR hardest configuration

Contrary to the first encoding, the second encoding gives rise to manageable symbolic
data-structures. Using NUSMV, we were able to analyze the entire configuration space
of RUSH HOUR . Here are some representative results of our analysis.

Hardest configuration The hardest configuration of the RUSH HOUR game is given
in Figure 1c and it requires 93 steps to reach a winning configuration. From that ini-
tial configuration 24132 configurations can be reached. This gives a good idea of the
difficulty of this configuration: please give it a try.

Besides finding the hardest configuration, our analysis has classified every solvable
according to the length of its minimal solution. Table 3 presents the number of config-
urations for the greatest indexes. We learn there are 1010 winning configurations and
2.98 ·1010 solvable configurations, thus, about 7 billions of valid configurations have no
solution, while about 19 billion non-winning configurations have one. The vast majority
of the latter are very easy (shortest solution is very short).

Our symbolic solution can also be used to isolate, what we think are, the most
interesting configurations of the game. We say that one configuration dominates another

Index 93 92 91 90 89 88 87 86 85
configurations 1 6 14 26 47 80 123 172 223

dominating configurations 1 0 0 2 2 2 1 3 6
Table 3. Number of configurations in the furthest frontiers

if the latter is reachable from the former and the index of the former is greater than the
index of the latter. We present in Table 3 for each index the number of configurations
that are not dominated.

Performance The results were obtained on an Intel(R) Xeon(TM) CPU 3.06GHz and
our symbolic algorithm used up to 1.5GB. It took about 10 hours to complete the total
exploration of RUSH HOUR . Since there are about 3.6 ·1010 valid configurations this is
about 106 configurations each second. While the running time is comparable to the ex-
plicit implementation shown in section 2.2, we stress that the symbolic method is more
generic (standard data structure, generic algorithms), while the explicit implementation
had to be conceived for the RUSH HOUR game. Moreover, at the end of the computa-
tion, we keep the whole structure in memory. This allows us to perform various kinds of
queries easily, for instance we can retrieve all hard configurations without trucks, with
exactly 3 cars, etc.

These results should encourage to study more deeply the application of symbolic
methods to other games such as chess or checkers.

References

1. G. W. Flake and E. B. Baum, RUSH HOUR is PSPACE-complete, or Why you should gener-
ously tip parking lot attendants , in Theoretical Computer Science, 270(1-2), 895-911, 2002.

2. R. A. Hearn and E. D. Demaine, PSPACE-Completeness of Sliding-Block Puzzles and Other
Problems through the Nondeterministic Constraint Logic Model of Computation, to appear in
2004. http://arxiv.org/abs/cs.CC/0205005

3. R. E. Bryant, On the Complexity of VLSI Implementations and Graph Representations of
Boolean Functions with Application to Integer Multiplication, in IEEE Transactions on Com-
puters 40(2), 205-213, 1991.

4. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans. Com-
put., C-35(8), 1986.

5. C. Meinel, T. TheobaldAlgorithms and Data Structures in VLSI Design: OBDD - Foundations
and Applications, Springer-Verlag, 1998.

6. A. Cimatti et al, NuSMV 2: An OpenSource Tool for Symbolic Model Checking, In Proceeding
of International Conference on Computer-Aided Verification, 2002.

7. M. Baldamus, Can American Checkers be Solved by Means of Symbolic Model Checking?, in
Workshop on Formal Methods Elsewhere, Pisa, Italy, 2000.

8. J. R. Burch et al., Symbolic Model Checking: 1020 States and Beyond, in Proceedings of the
Fifth Annual IEEE Symposium on Logic in Computer Science, 1-33, 1990.

9. G. J. Holzmann, SPIN Model Checker, The: Primer and Reference Manual, Addison Wesley
Professional, 2004.

