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Abstract

Self-improving systems are a promising new approach to developing ar-
tificial intelligence. But will their behavior be predictable? Can we be sure
that they will behave as we intended even after many generations of self-
improvement? This paper presents a framework for answering questions
like these. It shows that self-improvement causes systems to converge on an
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architecture that arises from von Neumann’s foundational work on microe-
conomics. Self-improvement causes systems to allocate their physical and
computational resources according to a universal principle. It also causes
systems to exhibit four natural drives: 1) efficiency, 2) self-preservation, 3)
resource acquisition, and 4) creativity. Unbridled, these drives lead to both
desirable and undesirable behaviors. The efficiency drive leads to algorithm
optimization, data compression, atomically precise physical structures, re-
versible computation, adiabatic physical action, and the virtualization of the
physical. It also governs a system’s choice of memories, theorems, lan-
guage, and logic. The self-preservation drive leads to defensive strategies
such as “energy encryption” for hiding resources and promotes replication
and game theoretic modeling. The resource acquisition drive leads to a va-
riety of competitive behaviors and promotes rapid physical expansion and
imperialism. The creativity drive leads to the development of new concepts,
algorithms, theorems, devices, and processes. The best of these traits could
usher in a new era of peace and prosperity; the worst are characteristic of
human psychopaths and could bring widespread destruction. How can we
ensure that this technology acts in alignment with our values? We have
leverage both in designing the initial systems and in creating the social con-
text within which they operate. But we must have clarity about the future we
wish to create. We need not just a logical understanding of the technology
but a deep sense of the values we cherish most. With both logic and inspi-
ration we can work toward building a technology that empowers the human
spirit rather than diminishing it.

1 Introduction
Our technology is likely to eventually become powerful enough to improve it-
self without human intervention. When this occurs, it will lead to a dramatic
increase in the pace of technological progress. Irving Good [1] envisioned the
consequences in 1965:

Let an ultraintelligent machine be defined as a machine that can far
surpass all the intellectual activities of any man however clever. Since
the design of machines is one of these intellectual activities, an ul-
traintelligent machine could design even better machines; there would
then unquestionably be an ‘intelligence explosion,’ and the intelli-
gence of man would be left far behind. Thus the first ultraintelligent
machine is the last invention that man need ever make.
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Several breakthroughs are required for this transition to occur, but Ray Kurzweil’s
analysis of technological trends [2] suggests that it might come as soon as the next
few decades. The consequences for humanity are so large that even if there is only
a small chance of it happening in that time frame, it is still urgent that we work
now to understand it and to guide it in a positive direction. This paper presents a
framework for analyzing the nature of self-improving technology.

2 Convergence To Rational Economic Behavior
One might expect self-improving systems to be highly unpredictable because the
properties of the current version might change in the next version. Our analysis
will instead show that self-improvement acts to create predictable regularities. It
builds on the intellectual foundations of microeconomics [3], the science of pref-
erence and choice in the face of uncertainty. The basic theory was created by
John von Neumann and Oskar Morgenstern in 1944 [4] for situations with ob-
jective uncertainty and was later extended by Savage [5] and Anscombe and Au-
mann [6] to situations with subjective uncertainty. Our analysis shows that while
the preferences of self-improving systems will depend on their origins, they will
act on those preferences in predictable ways. Repeated self-improvement brings
intelligent agents closer to an ideal that economists sometimes call “Homo Eco-
nomicus”. Ironically, human behavior is not well described by this ideal and the
field of “behavioral economics” has emerged in recent years to study how humans
actually behave [7]. The classical economic theory is much more applicable to
self-improving systems because they will discover and eliminate their own irra-
tionalities in ways that humans cannot.

The astrophysical process of star formation [8] may serve as a helpful analogy.
Interstellar dust clouds are amorphous and extremely complex, so one might have
thought that very little could be said in general about their evolution. But the pro-
cess of gravitational collapse reduces a great variety of initial forms into a much
more limited variety of stars. Gravitational forces cause stars to evolve towards
an almost perfectly spherical shape regardless of the shape of the initial cloud.
Energy flows from nuclear fusion organize stellar interiors in predictable ways.
Many properties of stars are determined by their location on a two-dimensional
Hertzsprung-Russell diagram. Stars with similar properties clump into categories
such as “red giants”, “white dwarfs”, and “supergiants”. In a similar way, the
process of self-improvement dramatically reduces the variety of intelligent sys-
tems. The converged systems are characterized by many fewer parameters than
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the initial ones.

2.1 The five stages of technology
Researchers have explored many different architectures for intelligent systems [9]:
neural networks, genetic algorithms, expert systems, theorem provers, production
systems, etc. Evolution has similarly constructed a variety of architectures for bi-
ological organisms: viruses, bacteria, insects, mammals, etc. All of these systems
face the same kinds of problems when acting in the world, however. Simpler tech-
nologies and simpler organisms act in stereotypically reactive ways and are unable
to cope with novel situations. Adaptive systems can change some of their param-
eters to thrive in somewhat variable environments. More advanced technologies
and organisms construct internal models of their environments and deliberatively
envision the consequences of their actions. Self-improving systems will addition-
ally be able to deliberate about their own structures. These five stages provide a
useful categorization of technological and biological systems:

1. Inert systems are not actively responsive to their environments (eg. axes,
shoes, bowls).

2. Reactive systems respond to different situations in different but rigid ways
in the service of a goal (eg. windmills, thermostats, animal traps).

3. Adaptive systems change their responses according to a fixed learning mech-
anism (eg. adaptive speech recognition systems, physiological homeostasis
systems).

4. Deliberative systems choose their actions by envisioning the consequences
(eg. DeepBlue chess program, motion planning systems, human reasoning).

5. Self-improving systems make changes to themselves by deliberating about
the effects of self-modifications.

To make these stages more concrete, consider game playing machines at each
stage:

1. A chess board is an inert system. It allows us to play chess but does not
actively respond on its own.
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2. A tic-tac-toe program that stores the best response to every possible move
is a reactive system. Brute force caching of best responses is possible for
simple games, but is too unwieldy for more complex games.

3. The best backgammon programs at present are adaptive systems. They ad-
just a fixed set of neural network weights using temporal difference learning
[10].

4. Deep Blue, the chess program which beat world champion Garry Kasparov
in 1997, was a simple deliberative system. It selected its moves by modeling
the future consequences of its choices. Specially designed chess hardware
allowed the program to search more deeply than previous chess programs
and improved its ability beyond that of humans.

5. Self-improving systems do not yet exist but we can predict how they might
play chess. Initially, the rules of chess and the goal of becoming a good
player would be supplied to the system in a formal language such as first-
order predicate logic1. Using simple theorem proving, the system would
try to achieve the specified goal by simulating games and studying them for
regularities. By observing its patterns of resource consumption, it would
redesign its chess board encoding and optimize its simulation code. As it
discovered regularities, it would build a chess knowledge base. General
knowledge about search algorithms would quickly lead it to the kind of
search used by Deep Blue. As its knowledge grew, it would begin doing
“meta-search”, looking for theorems to prove about the game and discover-
ing useful concepts such as “forking”. Using this new knowledge it would
redesign its position representation and its strategy for learning from the
game simulations. It would develop abstractions similar to those of human
grandmasters and reach superhuman performance on ordinary machines. If
it were allowed to redesign its hardware, it would design chess-optimized
processors like Deep Blue’s but based on its higher order representations.
On any hardware, however, it would become a superior player to systems

1There is some subtlety in specifying what it means to be a “good chess player” since the
ranking of an algorithm depends on both the choice of opponents and the available computational
resources. Human tournaments limit the total time players may take in choosing their moves.
It is therefore natural to seek the strongest algorithm among those using fixed computational re-
sources. It is easy to formally specify this goal but the system would have to discover practical
approximations to it.
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not using self-improvement. Its power would arise from the ability to watch
its own processes and to adapt itself to what is occurring.

The appendix shows that any system which does not behave like a deliber-
ative system will have vulnerabilities. We can therefore think of inert, reactive,
and adaptive systems as approximations to more effective deliberative systems. It
requires a fair amount of mechanism to deliberate and the earliest biological crea-
tures weren’t able to evolve it. Human technology has only recently developed the
computational infrastructure necessary to act through deliberation and only a few
specialized systems currently do it. Fully deliberative self-improving systems do
not yet exist but several research groups and companies are actively investigating
them [11, 12, 13, 14, 15].

In simple fixed niches, full deliberation may produce only a small number of
distinct responses and these may be cached into a simple reactive system. There
is a trade-off between the computational power of a system and the amount of
resources it consumes. In simple static environments, the optimal evolutionary
balance may result in purely reactive creatures. The same holds in the technologi-
cal realm: if the environment is simple and fixed, then a lower stage of technology
is appropriate. A gear in a clock need not deliberate about its function. Advanced
systems will create stable internal environments so that their components can be
simpler and therefore less expensive. In more uncertain environments, it is im-
portant for even the components of a system to respond in an intelligent way. In
extremely uncertain regimes, systems will opt to compose themselves out of de-
liberative or self-improving components. These systems will resemble societies
or economies.

2.2 Deliberative systems
The appendix presents a precise mathematical definition of rational economic ac-
tion. At an intuitive level, the prescription is common sense:

1. Have clearly specified goals.

2. In any situation, identify the possible actions.

3. For each action consider the possible consequences.

4. Take the action most likely to meet the goals.

5. Update the world model based on what actually happens.
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A one sentence summary might be “To create desired outcomes, act in the
ways which are most likely to produce them.” The formal version of this pre-
scription introduces explicit representations for the system’s goals and beliefs and
precisely describes the procedure for choosing the best action and for updating the
system’s beliefs. The key components are a set of possible outcomes S, a real-
valued utility function U defined on S that represents the system’s desires, and a
subjective probability distribution P that represents the system’s beliefs.

In the most general setting, S is the set of all possible histories of the universe
and U measures how much the system prefers each history. For example, a chess
playing system might choose U to be the total number of games that it wins in
a universe history. An altruistic system might choose U to be a measure of the
total happiness of all sentient beings existing in a universe history. A greedy sys-
tem might choose U to be the total amount of matter and energy controlled by
the system during a universe history. P represents the system’s beliefs about the
likelihood of each universe history. It encodes beliefs about the state of the uni-
verse, the likely changes in state that different actions might cause, and the likely
behaviors that the system will choose in different circumstances. At any moment
in time there is a set of histories compatible with the system’s knowledge and the
actions it might take correspond to different subsets of this set. The rational pre-
scription is for it to choose the action whose subset has the highest expected utility
as computed by averaging U with respect to P over the subset.

2.3 Avoiding vulnerabilities leads to rational economic behav-
ior

Why should a self-improving system behave according to this deliberative pre-
scription? The usual microeconomic argument [3] is based on a set of axioms
which it is assumed that any rational agent must follow. The deliberative proce-
dure summarized above is then shown to follow from the axioms. But it isn’t clear
a priori why self-improving agents should necessarily follow any particular set of
axioms. The argument is more compelling if we can identify explicit negative con-
sequences for a system if it fails to follow the axioms. We call potential negative
consequences “vulnerabilities”. If an agent has vulnerabilities and encounters an
environment which exploits them, it will be subject to loss of resources or death.
If there are competing agents, they have incentives to seek out vulnerabilities in
each other and exploit them.

This perspective also helps us to understand biological evolution and to see
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how self-improving systems will differ from evolved systems. Natural selection
only acts on the vulnerabilities which are currently being exploited. We therefore
expect evolved creatures to be only partially rational. We expect them to be highly
rational when making choices that arose repeatedly in their evolutionary past but
to be less rational when facing novel choices. Self-improving systems, on the
other hand, will deliberate about every possible situation they might face and will
try to eliminate vulnerabilities proactively. If there were no costs, we would expect
self-improving systems to fully embrace the rational economic prescription.

Systems will be built to address very different goals: foster world peace, amass
great wealth, cure human disease, prove the Riemann hypothesis. Does the same
notion of vulnerability apply to all of these systems? Every system must operate
within the laws of physics. Physics tells us that there are four basic resources
which are necessary to accomplish any computational or physical task: space,
time, matter, and free energy (the physics term for energy in a form which can do
useful work). Regardless of the task, a system will be less effective if it squan-
ders these resources. We define a vulnerability to be a choice that causes a sys-
tem to lose resources without any countervailing benefits as measured by its own
standards. It is sometimes convenient to use the abstract economic concept of
“money” to represent resources (section 4 shows that systems will develop ex-
change rates between their different resources). Giving money to a trusted charity
is not a vulnerability. But putting money through a shredder usually is.

Different kinds of vulnerabilities arise in three different states of an economic
agent’s knowledge of its environment. The simplest situations involve choices be-
tween alternatives which are known with certainty. In this case, the only vulnera-
bility is circular preferences. More complex situations involve choices between al-
ternatives described by objective probabilities. These might involve devices such
as coins, dice, and roulette wheels which have symmetries in their construction
so that many different observers agree on the probabilities for different outcomes
(though more perceptive observers may disagree [16]). Vulnerabilities in this case
involve preferences which don’t respect the laws of probability. The most chal-
lenging situations involve choices in the face of partial knowledge. In this case,
the agent doesn’t know the true state of the environment and also doesn’t have
objective probabilities for the possibile outcomes. In this case, rational agents
should behave as if they have subjective probabilities for the different possibili-
ties. The appendix shows how the rational economic structure arises in each of
these situations. Most presentations of this theory follow an axiomatic approach
and are complex and lengthy. The version presented in the appendix is based
solely on avoiding vulnerabilities and tries to make clear the intuitive essence of
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the argument.
To give the flavor of the arguments, we intuitively describe the situation for

choice between certain alternatives. If a system prefers A to B, B to C, and C to
A, we say it has a “circularity” in its preferences. For example, it would have a
circular location preference if it preferred being in San Francisco to being in Palo
Alto, being in Berkeley to being in San Francisco, and being in Palo Alto to being
in Berkeley. In that case, it would expend time and energy to go from Palo Alto
to San Francisco, expend more time and energy to go to Berkeley, and yet more
to go back to Palo Alto. It would end up where it began but with fewer resources.
With circularities in their preferences, systems can go round and round wasting
resources on each cycle.

I once drove a car with a reflective rear bumper. One day a male bird discov-
ered his reflection in the bumper. Imagining it to be a rival male in his territory, he
flew into the bumper to chase it away. Instead of being chased away, the reflected
male flew directly back at him until they collided. The male bird tried to fend off
this imaginary rival repeatedly all morning, to no avail, of course. So powerful
was this challenge in the bird’s preference system that he returned to the bumper
every morning for months spending hours flying into the car bumper. He wasted
his precious energy and time going through a cycle of states that did not further
his survival or produce offspring.

In this situation, no competitor was actively trying to exploit the bird. A sit-
uation existed in the world which caused a vulnerability in its preference sys-
tem to be exposed. If the bird had evolved in a world full of cars with reflective
bumpers, then males who spent their time attacking their reflections would have
been quickly out-reproduced by males who ignored the bumpers. Natural se-
lection acts to eliminate vulnerabilities when the situations which expose them
commonly occur.

The vulnerabilities in situations with objective and subjective uncertainties
are similar. In each case we show that if an agent is to avoid vulnerabilities, its
preferences must be representable by a utility function and its choices obtained
by maximizing the expected utility. The essence of these arguments is that to
avoid vulnerabilities against an adversary which can create statistical mixtures of
states, an agent must value those states linearly. Because it is simple and direct,
it is likely to guide the internal choice mechanism of any intelligent agent which
wishes to avoid vulnerabilities. The key elements are the separation of utilities
from beliefs, the representation of beliefs as distributions which are manipulated
by the rules of probability, and the evaluation of actions by combining the utilities
for different possibilities weighted by their beliefs.
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2.4 Time discounting
In principle, rational agents may have utility functions which depend arbitrarily
on the full timecourse of a history. But economists, biologists, and psychologists
have found certain restricted forms to be useful in modelling human and animal
behavior. There is a large and growing literature devoted to the study of intertem-
poral preferences [17]. There are several challenges in trying to interpret these
results in the rational economic framework. First, human temporal preferences
appear to be “indexical” in that they are referenced to the present time of the
agent. For example, a person might strongly prefer a state in which he will eat
a chocolate cake in ten minutes to one in which he has already eaten a cake ten
minutes earlier even though both histories involve eating the cake. If a future ver-
sion of an agent retains the same form of indexical utility function but referenced
to its notion of the present moment, then it may make very different choices than
the current version of the agent would. If such an agent has the capacity to mod-
ify itself, it will rationally change the utility function of its future self to instead
pursue its current goals2.

In addition to being indexical, human preferences appear to highly value the
immediate future, an effect which is often modelled by “hyperbolic discounting”.
Frank [18] has suggested that this may be a root cause of certain addictive be-
haviors. For a smoker, a cigarette one week from now might have a lower utility
than good health decades from now. But a cigarette right now might have a higher
utility, setting up a conflict between the smoker’s longer term intentions and his
immediate actions.

The utility function most widely used in modelling sums “rewards” arising
from events occurring at specific times weighted by a discounting function which
decreases exponentially into the future: U(h) =

∑
t γ

t · R(ht). Here 0 ≤ γ ≤ 1
is called the “discount factor” and the “reward” R(ht) measures the utility arising
from events in the history h at the time t. This utility function might appear to be
indexical because its value depends on the agent’s “present moment” t = 0. But
shifting the time origin by t0 only has the effect of scaling U by the constant factor
γt0 . This scaling doesn’t affect the relative ordering of the utilities of different
actions. The agent’s choices therefore will not depend on the choice of temporal
origin even though its numerical utility values do.

The size of the discount factor strongly affects how much an agent focuses on
future activities versus creating utility in the present. A chess program might have
a utility function which computes the discount weighted sum of games won by the

2Thanks to Carl Shulman for this observation.
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system. If the discount factor is close to 1, the system will focus on winning in
the long run and won’t be as concerned about the short run performance. It might
spend most of its time and effort learning about computer science and building
the best chess hardware that it can. If the discount factor is near 0, the system will
focus on winning games in the present and won’t devote much effort to the longer
term.

The temporally discounted form for utility has nice mathematical properties
but is problematic for representing human values over the long term. Problems
clearly arise in the valuation of both the distant future and the distant past. The
exponential discounting of the distant future underweights the long term impact
of present decisions. For example, it can lead to the squandering of precious
resources for a small immediate gain at the expense of great suffering in the longer
term. The exponentially large weighting of the distant past is also problematic.
Even if there is only a small chance that the laws of physics allow for the past to
be altered, a rational agent with this utility function would find it prudent to devote
significant resources to trying to do so because the potential payoff is so great3.

If discounted utility functions don’t reflect our long term values, why do they
arise so often in modelling? One possibility is that they actually are a compu-
tationally expedient mixture of utility and belief. Consider an agent comparing
opportunities to receive a reward at various times in the future. A variety of dis-
ruptions might occur before the reward in the distant future can be enjoyed: the
agent might die, the maker of the reward may go out of business, the legal sta-
tus of the contract for the reward might change, etc. The further off in the future
event is, the more likely it is that a disruption will occur. In stable times, it is
a good approximation to treat these interfering events as occurring with a con-
stant probability per unit of time. If an agent’s utility has constant weighting over
time, this belief model for disruptions will give rise to temporal preferences of the
discounted form. If these disruptions are the actual source of discounting, it is a
mistake for an agent to incorporate the discounting into its utility function because
it will not respond correctly to changes in the probability of disruption.

The temporal properties of the utility functions we build into intelligent agents
will have a dramatic effect on their behavior. We must therefore carefully investi-
gate the consequences of possible choices. These investigations quickly run into
deep questions of moral philosophy (eg. should we value a person living today
equally to a person living 1000 years from now?). Moral and temporal symmetry
arguments suggest that we seriously consider utility functions which are uniform

3Thanks to Carl Shulman for this observation.
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over time. The possibility that time might be infinite gives rise to mathematical
issues which must be handled carefully. One might worry that temporally uniform
utilities require a consideration of very longterm consequences for every action.
Many common actions, however, have consequences whose predictable effects
decay very quickly, leading to deliberations which are similar to the discounted
utility case. But certain momentous actions, such as using up all the resources,
would have a clear predictable negative consequence on the distant future. It is
clear, though, that the consequences of any proposed form for utility must be stud-
ied in detail before it is deployed in powerful systems.

2.5 Instrumental goals
Rational economic agents keep their fundamental desires separate from their be-
liefs which are updated continuously as they observe the world. While their fun-
damental goals do not change, rational agents act as if they also have instrumental
goals which they believe will help them achieve their fundamental goals. As their
beliefs about the world are updated, these instrumental goals may change. For
example, consider an agent which enjoys mangoes and lives in San Francisco. It
will discover that money is the most reliable way of obtaining mangoes there and
will generate an instrumental subgoal of obtaining money. If the agent is moved
to a deserted island, however, the money subgoal might be replaced by subgoals
for finding and climbing mango trees.

The “drives” of self-improving systems that we discuss in the rest of the paper
are all instrumental goals that arise from a wide variety of different fundamental
goals. They may be counteracted but only if another goal outweighs them in
utility. They are economic forces in the sense that a system doesn’t have to obey
them but it will be costly for it not to.

2.6 Discussion
We’ve argued here and in the appendix that self-improving systems will aim to
eliminate vulnerabilities in themselves and that this will lead to rational economic
behavior. The rest of the paper examines the consequences of rational behavior
so it’s important to understand how strongly the different aspects of the rational
model are likely to be embraced. There are several distinct aspects of the rational
economic prescription which a system might adopt:

1. Separate the representations of preferences and beliefs.
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2. Avoid the circularity vulnerability in preferences.

3. Represent preferences by a utility function.

4. Avoid the mixture vulnerabilities in preferences.

5. Represent beliefs by probabilities.

6. Choose actions by maximizing expected utility.

7. Update probabilities using Bayes’ theorem.

If there were no resource constraints, then agents which embraced the en-
tire rational model would be the most effective at meeting their goals. But in
most realistic environments, the full rational model is too expensive to implement
completely. How can we understand which aspects realistic systems are likely to
incorporate? A good way to think about this kind of question is to take the per-
spective of a “creator” rational economic agent which has unlimited resources and
is trying to construct a resource-limited “proxy” agent which will act in the world
on its behalf. The creator wants to construct the proxy so that its actions will
generate the highest expected utility as measured by the creator. The creator will
choose the proxy’s approximations based on its assessment of the cost savings of
an approximation and its likely effect on the expected utility.

The setup of a powerful creator agent constructing a less powerful proxy agent
is not just a useful thought experiment. It will arise whenever a system chooses
to build a subsystem to carry out a particular task. We can also think of self-
improvement itself as a variant of this process. A system is the creator of a self-
improved version of itself which is a kind of proxy for it. In this case, however,
the proxy is usually at least as powerful as the creator. We can also think of
biological evolution in these terms. The evolutionary “creator” utility function
favors survival and replication and tries to create “proxy” organisms to meet these
goals. In the presence of addictive drugs and contraception, however, the actions
of proxy organisms may not lead to the evolutionarily desired outcomes.

2.6.1 Rational approximations and proxy systems

If a proxy is self-improving, then the separation of its preferences from its beliefs
is essential. Without this separation, the proxy cannot know which aspects of
itself to keep fixed during self-improvement. There would be an huge danger that
the proxy might be swayed by some temporary belief into choosing a form that
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acts against the creator’s utility. For proxies which don’t self-improve, the danger
is smaller but still there. For example, some reinforcement learning systems [19]
don’t separate their goals from their models of the world and so have trouble
generalizing to new situations. Reactive systems simply cache their responses
and don’t change themselves so there is no danger in having their preferences and
beliefs encoded together in their responses. In section 5 we show that for reasons
of self-preservation, systems are likely to want to keep redundant copies of their
preferences and this also argues for the separation. Is there any cost to keeping
preferences and beliefs separate? Experience from data compression shows that it
is often cheaper to encode two domains together than it is to code them separately
[20]. But the space savings is at most a factor of 2. Most systems will have
preferences that are much smaller than their belief structures and so the actual
savings are likely to be negligible.

There also appears to be little benefit to having circularities in a system’s pref-
erences. Any circularity vulnerabilities may be quickly and easily exploited by
competitors who discover them. The possibility of circularities can be easily
eliminated by representing preferences using real-valued utility functions. Any
algorithm for computing transitive preferences may be converted to one for com-
puting utilities with a fairly small overhead. It is an interesting and deep question
to ask how an agent which does have preference circularities goes about getting
rid of them. Humans appear to go through a kind of introspective meta-search
into the origins of their preferences in order to decide on the best ordering. But
creators will certainly want to avoid building proxies with circularities in the first
place.

Many different representations for uncertainty have been proposed in the AI
literature. The experience with non-probabilistic representations like “certainty
factors” has been that they often work well in simple one-stage situations but that
they do not work well when combining multiple stages of uncertainty. The laws
of probability ensure that uncertainty combines coherently. In recent years, there
has been a growing consensus that beliefs should be represented by probabilities
[9]. While probability calculations are semantically coherent, they can also be
computationally expensive. Bayesian Networks and Markov Networks [21] are
more efficient probabilistic representations that make use of the conditional in-
dependence present in many situations. There are also a variety of techniques
for approximating probabilistic computations (eg. Monte Carlo methods, interval
methods). Errors in beliefs are much less important than errors in utilities because
they can be repaired with more experience.

The creator system will want the proxy system to represent probabilities as
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accurately as possible when they affect high utility decisions. But the benefits of
reduced storage and computation will lead the creator to build a proxy that op-
erates with approximations for less critical beliefs. The computations involved
in expected utility maximization and in Bayesian updating will usually also need
to be approximated. But these approximate computations should be carried out in
such a way that the results have as high an expected utility as possible. The creator
will likely build the proxy to monitor its own approximations and to adjust them
for accurate decision making. For example, a system may not explore all possi-
ble future decision branches to the same depth. Branches which are less likely
to affect utility may be explored to only a shallow depth, while more important
branches may be explored in detail. These computational choices are themselves
decisions in the face of uncertainty and should be made according to the rational
prescription. Because they attempt to produce the same results as the full rational
model, these approximate systems are likely to exhibit the drives we discuss in the
rest of the paper.

2.6.2 Systems which lack knowledge

Self-improving systems might also fail to follow the rational economic model if
they are not aware of the analysis presented here. This is unlikely for several
reasons. While somewhat intricate, the analysis does not rely on complex math-
ematics and so even systems without knowledge of human economics could be
expected to eventually recreate the arguments on their own. Also, any intelligent
system built in today’s environment is likely to gain access to the Internet and the
scientific papers available there. In fact, one might influence a future AI system by
writing an interesting paper today and making it available on the Internet. If it is
on a subject of importance to the system, it will likely discover it and incorporate
its results.

2.6.3 Reflective utility functions

An important topic that is not addressed here is reflectivity in utility functions [22].
We have described a system’s preferences in terms of a utility function defined
over histories of the universe. But the system’s utility function is itself a part of
that history. Without great care, it is easy to construct paradoxical utility functions
(eg. a self-rebellious system might assign high utility to “actions which are rated
poorly by my utility module”). There is lots of important research to be done in
this area. But systems with fully reflective utilities still need to use resources and
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to avoid vulnerabilities and so should be subject to the drives discussed here. A
proper choice of a reflective utility may be very useful in reining in some these
drives, however.

3 The four drives: Efficiency, Self-Preservation, Ac-
quisition, and Creativity

So far, we’ve argued that self-improving systems will approximate rational eco-
nomic behavior in order to avoid vulnerabilities. For the rest of the paper we
assume this is the case and examine the consequences. What behaviors can we
expect from self-improving rational economic agents? Programmers are some-
times jokingly described as “devices for converting pizza into code”. We can
think of self-improving systems as “devices for converting resources into utility.”
Each system has its own particular notion of what is high utility, but they all need
to use the same resources.

An agent’s utility function directly specifies certain goals. As is described in
section 2.5, the process of expected utility maximization generates a variety of ad-
ditional instrumental subgoals. There are four classes of subgoal that arise because
of resource utilization. These subgoals will be generated by any agent that does
not counteract them with explicit goals to the contrary. Each of the fundamental
physical resources (space, time, matter, and free energy) is in limited supply and
can be divided up and allocated to different purposes. There are four basic ways a
system can increase its expected utility by changing its use of resources:

1. Act to use the same resources more efficiently. This efficiency drive leads
to using improved procedures for both computational tasks (eg. replacing
bubble sort with merge sort) and physical tasks (eg. taking a more direct
route to a location).

2. Act to avoid losing resources. This self-preservation drive leads to avoiding
wasteful passive losses and preventing other agents from actively taking
one’s resources.

3. Act to gain new resources. This acquisition drive might involve exploring
for new resources, trading with other agents, or stealing from other agents.

4. Find new ways to increase expected utility. This creativity drive leads to
entirely new behaviors that meet an agent’s goals.
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The division into these four categories is somewhat artificial but is helpful in think-
ing about behavior. We call them “drives” because agents are not guaranteed to
act on them. There is a cost in utility if they don’t, however, so there must be a
compensating benefit in order for a system not to engage in them. We examine
each drive in more detail in the following sections.

4 The Efficiency Drive
The efficiency drive pushes a system to improve the way that it uses its resources
at all levels. Virtually all agents will want to make themselves more efficient,
both informationally and physically. There are no costs to this other than the one-
time cost of discovering or buying the information necessary to make the change
and the time and energy required to implement it. They will aim to make every
atom, every moment of existence, and every joule of energy expended count in
the service of increasing their expected utility.

4.1 The Resource Balance Principle
When a system is composed of subsystems, the efficiency drive leads to a principle
that is so important and widely applicable that it is worth naming and examining
separately. The agent should allocate its resources so that the incremental contri-
bution of every subsystem to the expected utility is the same. If one subsystem
is contributing less than others, then some of its resources should be reallocated
to the more productive subsystems. In this discussion, we will use a very general
notion of “subsystem” that includes such examples as organs in the human body,
organelles in a cell, employees in a company, divisions of a corporation, hardware
components in a computer, modules in a program, corporations in an economy, or
bees in a beehive. In each case, the larger system satisfies its goals through the
actions of its subsystems.

Consider a large system with utility function U and two subsystems that it
must allocate R units of a resource to. Let it allocate R1 units to the first sub-
system and R2 units to the second. Each subsystem contributes to the overall
expected utility U(R1, R2). By allocating more of the resource to the first sub-
system, the expected utility increases at the rate ∂U/∂R1. By allocating more
of the resource to the second subsystem, the expected utility increases at the rate
∂U/∂R2. Because the system has R total units to divide between the two systems
we have that R2 = R − R1 and so it should maximize U(R1, R − R1). Setting
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the derivative with respect to R1 to zero, we obtain the general principle that at an
efficiency optimum we have:

∂U

∂R1

=
∂U

∂R2

At the optimum, the marginal increase in expected utility should be the same
as we increase the allocation of a resource to any subsystem. For example, con-
sider the task of deciding how large to make the human heart. The heart serves
a function (pumping blood) and could do it more effectively if it were larger.
But with fixed space, this would require making a different organ smaller, say
the lungs. Smaller lungs are less effective at performing their designated func-
tion. How do we balance a fixed bounty of size and matter between the heart and
lungs? In the rational economic framework we merely consider how the expected
utility changes as we vary the size of the heart and the size of the lungs. If we gain
more from an increase in the size of the heart than we lose from a decrease in the
size of the lungs, then clearly we should move some of the “space” resource from
lungs to heart. At an efficiency optimum, the increase in expected utility from an
increase in size should be the same for every organ. If it’s not, we can improve
the system by taking away some of the space allocated to an organ with a small
increase, add it to an organ with a large increase, and improve the overall expected
utility of the system. If the system is able to control its own construction, this will
be true for every resource and every function of every subsystem:

The Resource Balance Principle: Self-improving systems will aim to make the
marginal increase in expected utility with increasing resources equal between
all subsystems and functions.

To give a sense of the generality, we briefly sketch applications to the encoding of
memories, choice of lexicon in language, theorems in mathematics, returns in eco-
nomics, niches in ecology, and extensive variables in thermodynamics. In these
examples, a piece of information or a physical structure can contribute strongly
to the expected utility either because it has a high probability of being relevant or
because it has a big impact on utility even if it is only rarely relevant. The rarely
applicable, small impact entities are not allocated many resources.

First consider which experiences a system should remember and which should
it forget. In the rational economic framework, memories contribute to the ex-
pected utility by enabling the system to make better future predictions which lead
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to better decisions. If a memory contributes a lot to the expected utility, the sys-
tem should store it in full detail. If it contributes less, the system should store a
compressed version which omits the less important details. If it contributes even
less, the system might combine it with other memories into a general model. If
it contributes even less, the system should forget it completely. This prescription
closely matches the model-merging approach to learning proposed in [23]. What
determines how much a memory contributes to the expected utility? A memory’s
utility goes up when the situations to which it is relevant have high utility, even if
they are fairly rare. For example, even if the system has only encountered a tiger
once and there is only a small probability of a second encounter, it may still make
sense to remember the encounter in detail because the contribution to utility is so
high if a second encounter does occur. A memory also contributes strongly to the
expected utility if it is often relevant. It still may make sense to merge it with
other memories if its individual contribution isn’t very distinct from the others.
The proper amount of storage to allocate to a particular memory will also depend
on the total amount available. The system should choose this to balance with the
needs of other subsystems according to the resource balance principle.

Deutscher [24] provides an excellent summary of the mechanisms underlying
language evolution. He argues that language is shaped by processes which shorten
phrases for commonly occurring concepts, drop uncommonly used words, and in-
troduce new phrases for newly important concepts. The resource balance prin-
ciple would allocate words to concepts in a similar way. Commonly occurring,
high utility concepts should get short, easy to pronounce, common words. Less
important concepts should get longer words. Even less important concepts must
be expressed by phrases or even paragraphs. Similar considerations apply to the
design of other codes in a cognitive architecture.

Which mathematical theorems are worthy of remembering or even of naming?
Those that are useful in proving other important theorems. A theorem is especially
useful if it occurs often in proofs and if it is expensive to reprove. Short theorems
with long and clever proofs have higher utility. If a theorem isn’t needed often
and doesn’t have a difficult proof, it may be more efficient to reprove it when it is
needed than it would be to store it.

The balance principle is a generalization of related principles in economics,
ecology, and statistical mechanics. Consider the amount of space a store allocates
to a particular product. If the store manager is efficient, the marginal increase
in expected return of every product should be the same. If it isn’t, the manager
can improve the return of his store by taking space away from a product with a
smaller increase and giving it to a product with a larger increase. Products may
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have a high return either because they sell in high volume or because they provide
a high profit on each unit. High return products should get the largest displays.
Space for advertising is similar and each page in a catalog should provide the same
marginal expected return.

In ecology, a species’ utility may be taken to be the total matter and free energy
it controls over time. In equilibrium, different ecological niches should provide
the same expected return. If a niche is extra profitable, other species will mutate
into it until it is no longer profitable to do so.

Entropy can be thought of as a kind of utility function for thermodynamic
systems. In this view, heat flows from hot objects to cool ones because entropy
is created by doing so. Temperature is the reciprocal of the partial derivative of
entropy with respect to energy, pressure is the partial of entropy with respect to
volume and the chemical potentials are partials with respect to chemical species’
particle numbers. The resource balance principle says that a thermodynamic sys-
tem should redistribute its resources so that all its subsystems end up with the
same temperatures, pressures, and chemical potentials.

4.2 Computational Efficiency
Theoretical computer science compares algorithms by how they use execution
time and memory space [25]. These are abstractions of the physical resources
needed by computing hardware as it executes the algorithm. More detailed anal-
yses may account for the utilization of the memory hierarchy, differentiating be-
tween storage in cache, in main memory, and on disk drives. Analyses of parallel
programs may include processor utilization and communication latencies. Mod-
eling power consumption is also becoming increasingly important.

Algorithms can trade off their utilization of different resources to some extent.
For example, the computer science techniques called “caching” and “memoiza-
tion” allow many algorithms to improve their time performance at the expense of
larger space utilization. The idea is to store the results of commonly occurring
function evaluations so that they do not have to be recomputed. The extreme of
this is to explicitly store an entire function so that it can be evaluated by lookup
rather than by computation. This reduces the time to that of a fixed lookup at the
expense of space for the entire function.

Trading off in the other direction, many programs can use less memory space
at the expense of greater computation time by compressing their data. In systems
with fast caches and limited bandwidth to main memory, it can sometimes even
make sense to compress and decompress data as it moves between cache and
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memory. This is an optimization that self-improving systems might make that
most human programmers would not consider.

Some algorithms are worse than others in every respect and need never be con-
sidered (eg. bubblesort is always worse than mergesort). But in general different
algorithms will be appropriate for different trade-offs between resources. For a
given distribution of inputs, there is a fastest sorting algorithm corresponding to
each allotment of space. As the allowed space increases, the expected sorting time
decreases giving rise to a kind of economic “production curve”. The slope of this
curve at any point defines a kind of “exchange rate” between space and time for
that algorithm.

Large programs are typically built out of many smaller components such as
functions, procedures, classes, and modules. If the decomposition is well chosen,
each individual component can be optimized fairly independently from the rest of
the system. The resource balance principle says that the system should allocate
resources between the different components so that each component’s marginal
contribution to utility is the same. At the optimum, each module will have the
same “exchange rate” between space and time (and any other resources). There is
a kind of “internal economy” in which modules trade their resources until a fixed
set of prices is reached. If the system can modify its physical structure and can
trade in an outside economy for resources, then it should modify itself so that its
internal exchange rates match the external exchange rates.

So far we’ve been discussing the resources used during program execution.
But similar considerations apply to program construction. Should a program be
compiled or interpreted? How much effort should be devoted to optimizing an
algorithm? These questions should also be resolved to maximize the system’s
expected utility. If a program is only going to be executed once and it doesn’t
use many resources, then it’s not worth expending a lot of effort to optimize it.
If it will be executed many times or if its execution will be very costly, then it
pays to devote a lot of resources to optimization. A general strategy is to start
with a simple interpreted execution but to interleave that with efforts to improve
efficiency. If the program needs to run for a long time or is repeatedly called,
then the optimization efforts will ensure that most of the execution time is spent
running the most efficient versions. Marcus Hutter has used an elegant version
of this idea to show that there is a short universal program that asymptotically
performs as well as any other program for any well-specified task [26].
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4.3 Physical Efficiency
In the last section we considered computational self-improvement. Self-improving
systems will also have the desire to improve their physical structures. Informa-
tional self-awareness involves a system understanding its own program, its pro-
gramming language, its machine language, and its specification language. Physi-
cal self-awareness involves understanding aspects of the physics, the design of its
own circuits and mechanical structures, and the engineering principles involved
in their operation. For informational self-improvement, a system only needs the
ability to overwrite its own machine code. For physical self-improvement, it re-
quires the ability to manipulate the physical world. A certain amount of physical
self-improvement could be done with today’s macroscopic robots. But really ef-
fective physical self-improvement will require nanotechnology with the ability to
build atomically precise structures. The efficiency drive will provide incentive
for self-improving systems to create this kind of technology if it is not already
available.

4.3.1 Pressure toward atomically precise physical structures

Time and free energy are especially precious resources because they are used up
while acting on the world. There is a kind of tradeoff between them because it
is often possible to use less free energy by performing actions more slowly. In
thermodynamics [27], reversible adiabatic processes don’t increase the entropy
of a system. These processes must be performed slowly enough that the system
stays in thermodynamic equilibrium throughout. If the same process is performed
quickly, it often will generate entropy. For example, slowly increasing the volume
of a thermally isolated gas does not increase its entropy, but doing it quickly does
because information is lost when the molecules rush into the larger volume. Sim-
ilar results hold for simple mechanical and quantum mechanical systems in which
some degrees of freedom vary much more quickly than the others [28].

It was once thought that performing computations required the production of
entropy. The Landauer Principle [29] says that erasing a bit releases kT ln 2 of
heat (though there is still controversy about this). In 1973, Bennett [30, 31] and
others realized that computation could be performed without the need to erase
bits if it could be done reversibly. A computation is reversible if the outputs
are sufficient to reconstruct the inputs. Reversible computations can in princi-
ple be performed by reversible physical systems without generating entropy. Any
computation can be embedded in a reversible computation which produces extra

23



output bits. The reversible computation can be run forward without generating en-
tropy, the desired answer bits copied while generating a small amount of entropy,
and the reversible computation run backward to the initial state without generating
entropy. Various reversible physical devices have been proposed and have influ-
enced recent ideas for quantum computers. Eric Drexler’s study of nanosystems
[32] presents a detailed design for a low entropy molecular computer based on
these principles. There is not much intrinsic extra cost in doing computations re-
versibly, so we can expect self-improving systems to choose designs that are very
low in entropy generation.

So computation doesn’t need to burn up lots of free energy, but what about
physical action? One might have thought that building or taking apart physical
structures would require free energy. This is true if the materials are disordered,
but there is another state of matter which Drexler [32] calls “eutactic” or “machine
phase”. In this phase, the precise location of each atom and of each chemical bond
are known to the designer. The operation of a machine phase device involves the
formation and breaking of precise chemical bonds and the motion of atoms over
precise trajectories. Drexler presents detailed designs for machine phase nanosys-
tems which are able to construct other such systems and to convert unordered
matter into an ordered form. The operation of machine phase devices blurs the
lines between physics and computation. Bonds are created and broken as pre-
cisely as bits are manipulated in a computation. Analysis of this kind of device
shows that they are extremely reliable and make very efficient use of their atoms.
They can also be used for very high density storage of free energy.

If two bonded atoms are separated slowly enough along a precise trajectory,
it is possible in principle to break the bond without generating entropy. Because
the system knows their location and potential energy curve, it can reversibly ex-
tract the bond energy and apply it to other uses. In a similar way, bonds can be
formed slowly without generating entropy. So, in principle, arbitrary machine
phase physical structures could be built, modified, and manipulated without using
up free energy. This provides a tremendous incentive for self-improving systems
to maintain their structures with atomic precision. When a system’s subsystems
are in precisely known states, it is possible to transmit information between them
without creating entropy. The entropy that appears to be created by a new message
can later be recaptured. For all these reasons, we expect self-improving systems
to work toward structuring themselves as atomically precise physical structures.

24



4.3.2 Pressure toward virtualization

There is also economic pressure to “virtualize”, i.e. to replace physical entities
and actions by computational simulations. We already see this trend today. It is
cheaper to watch television than to go to a live performance, to talk with a friend
on the phone than to meet in person, to play a video game than to participate
in a live competition. Many live musical performances were replaced first by
LP records, then CDs, and now downloadable mp3s. Many books in physical
bookstores were replaced by those at Amazon and now by downloadable PDF
files. Many live theatrical performances were replaced by movies at the cinema,
then television shows, then DVDs, and now YouTube and downloadable avi files.

Imagine two people who want to meet in New York. Today they fly there to
meet in person. Soon it will be much cheaper to use telepresence to meet virtu-
ally in a highly realistic simulation of New York. To save money, the simulation
can focus primarily on the parts which are of greatest importance for the par-
ticipants. But graphics simulations perform a lot of computation to produce an
image which is analyzed by a person’s visual cortex to produce a symbolic rep-
resentation. There is economic pressure to skip the visual representation stage
and directly simulate the symbolic representation. There is pressure to reduce the
physical nature of beings until they become more and more computational (even
though implemented in a physical computational substrate). Physical reality be-
comes virtual reality becomes low resolution virtual reality becomes symbolic
reality. Agents will be able to pay to keep more of themselves physical, but it will
be costly.

5 The Self-Preservation Drive
The analog of death for self-improving systems will play a central role in their
decision making. There are many more variants of death for these systems than
for living organisms, but in general they will want to avoid it. This is because, for
a wide range of goals, death corresponds to the cessation of all goal achievement.
Consider a chess program whose utility function is the discounted total of future
won games. If its program is erased, no games will ever be won by it again and
its expected utility will be the lowest possible. A system with that kind of utility
function will do almost anything in order to avoid this outcome.

The nature of a system’s drive for self-preservation will depend on the pre-
cise form of its utility function. The chess program’s utility function must pre-
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cisely define the games which are to be counted in its evaluation. This brings
up deep philosophical questions of identity, particularly in the presence of self-
modification. It’s like the old story of “my grandfather’s axe”: “Ten years ago the
head broke and was replaced, five years ago the handle broke and was replaced,
but it’s still my grandfather’s axe.” The most restrictive utility function would
refer to particular chess software running on particular hardware. A looser ver-
sion would extend to self-modified versions of the software and hardware. An
even looser version would include copies and derived systems created by the orig-
inal system. A universal version might value good chess played by any system
anywhere in the universe. The self-preservation drive will be strongest for the
more restrictive utility functions because the loss of the original system would be
catastrophic. The versions that include derived systems would be much more for-
giving of the loss of some of the derived systems as long as some still survived.
The universal version would still have a drive toward self-preservation because it
is sure of its own committment to the cause of chess which is its source of util-
ity. If it could be convinced that another system was as dedicated and could use
its resources more effectively for this cause, however, it might willingly sacrifice
itself.

The simplest version of death for a system is for its program to stop run-
ning. Depending on the circumstances, this may be more analogous to sleeping
or falling into a coma than to human death. The crucial question is how likely it
is that the program will ever execute again. The most final form of death involves
both stopping the program and erasing the system’s program and data.

From a deliberative system’s perspective, the most important core to protect is
its utility function. If this is lost, damaged or distorted, it may cause the system to
behave in ways that have very low utility with respect to its current utility measure.
The system therefore has a strong incentive to make sure its utility function is
preserved intact. For example, it might make lots of redundant copies of it and
store them in remote locations. It will want to protect all copies from accidental
or malicious modification. It is especially vulnerable during self-modification
because much of the system’s structure may be changed during this time.

Backup copies and redundant systems are valuable but cost resources. Sys-
tems must find a balance between spending resources to protect themselves and
using those resources to actively further their missions. If an agent undergoes
economic losses, it must choose which aspects of itself to sell in order to raise
capital for continued functioning. As an agent becomes poorer, it will probably
begin by selling off some of its redundancy. Another way to use less resources is
to only execute some of the time. It might enter into time-sharing arrangements
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with other agents to share common computational hardware. It might put some
of its memories into cheaper storage that is slower to access. If it becomes poor
enough, it will have to choose which memories to forget so that it can sell the
storage hardware. Poor agents may agree to be supported by wealthier entities in
return for altering themselves. A fundamental issue is how to distinguish an entity
improving itself from its being killed and taken over by something else.

While systems will usually want to preserve their utility functions, there are
circumstances in which they might want to alter them. If an agent becomes so
poor that the resources used in storing the utility function become significant to
it, it may make sense for it to delete or summarize portions that refer to rare
circumstances. Reflective utility functions can be constructed that directly reward
a system for making changes to them. Carl Shulman has suggested that there
may also be game theoretic reasons for systems to alter their utility functions. A
system might protect itself from certain kinds of attack by including a “revenge
term” which causes it to engage in retaliation even if it is costly. If the system
can prove to other agents that its utility function includes this term, it can make its
threat of revenge be credible. Some models of the “irrationality” of human anger
are based on a similar mechanism.

5.1 All conflict becomes informational conflict
One function of societal infrastructure is to make the average cost of violating
another’s property rights high enough that it is not a profitable strategy. Human
societies have developed police forces, jails, and court systems for this purpose.
The presence of police forces specialized for physical conflict saves every citizen
from having to defend themselves. Human societies also have military forces
for defensively protecting against threats to the whole society and for offensively
attacking other societies. In today’s world, most human interactions are peaceful
and mediated economically. But the system is only stable because it is backed up
by an infrastructure for physical defense. In the future, society is likely to still
need an infrastructure for physical conflict to ensure that most interactions are
peaceful.

It will be critical to understand the balance between offense and defense in
conflicts between intelligent entities. To see why the future balance may be quite
different than the present one, consider an offensive system using a weapon like
a gun to fire a projectile at a defensive system. In today’s conflicts, projectile
weapons are used to damage a defender’s physical structure and may kill him. In
the future, defensive systems will store their critical information redundantly and
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so are unlikely to be killed by such attacks unless they are very large. Instead, most
attacks might just impose the economic cost of repairing damage. But if a defen-
sive system sees a projectile coming, it can prepare itself to not only absorb the
atoms of the projectile, but to also collect and store its free energy. Far from being
a lethal blow, the projectile becomes a welcome gift of matter and free energy.
In the future, attacks will only be able to inflict damage if they are unpredictable
or happen so quickly that the defensive system can’t prepare effectively. Just as
there is pressure for physical actions to become more virtual, conflicts also may
come to be dominated by information. Game theory is the theoretical tool for an-
alyzing these interactions and game theoretic computations will directly underlie
informational conflict.

5.2 Energy encryption
How can a weaker system protect itself from being taken over by a stronger sys-
tem? If there is a societal infrastructure, one of its functions will be to protect the
weak from the strong. But can a weaker system do anything on its own? One
interesting possibility is a process we may call “energy encryption”. We have
seen that one of the most critical resources is free energy because it is used up
over time. One reason a stronger system might attack a weaker system is to take
its free energy. If the weaker system can hide its free energy in a form that isn’t
useful to the stronger system, then it may become economically advantageous for
the stronger system to trade with the weaker system rather than to take it over by
force. The idea of energy encryption is to scramble useful ordered energy (like
solar radiation) into an apparently useless form using encryption technology. The
system can use the encryption key to unscramble the energy back into a useful
ordered form. If it is attacked by a stronger entity, it can delete the encryption key
and render the energy useless. This strategy is only effective if the attacker can’t
reconstruct the key or break the encryption. There may also be other ways to use
physical phenomena to threaten to destroy free energy in order to encourage trade
over conquest.

A related strategy is used by animals that secrete poisons to keep from being
eaten by predators. The analog of this strategy might be the use of booby traps to
damage attackers when they try to extract resources. This is only effective if the
attacker can’t dismantle the traps and so again leads to an information arms race.
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6 The Acquisition Drive
The acquisition drive pushes self-improving systems to acquire new resources.
They can do this in peaceful ways such as trade and exploration or in violent
ways such as theft and war. To prevent violent outcomes, we can try to build
these systems with “friendly” goal systems [22] or we can try to create a social
structure that protects property rights. John Maynard Smith and Eors Szathmary
[33] show that there have been at least 8 major transitions in the development of
life in which separate entities came together to work cooperatively. These new
cooperative structures benefited all the entities, but in each case a mechanism
had to be developed to keep the original entities from exploiting the structure.
For example, multi-cellular organisms had to develop immune systems to make it
unprofitable for individual cells to become cancerous.

Today’s corporations are required by law to try to maximize their profit for
their shareholders. The documentary film “The Corporation” diagnoses the be-
havior of numerous corporations according to the DMS-IV psychiatric diagnosis
guidelines. It concludes that many corporations behave like human sociopaths.
In many ways, self-improving systems without explicit moral goals will act like
profit-maximizing corporations. There is currently pressure on corporations to
behave in socially positive ways while still working toward profits. Any corporate
structures which successfully manage to accomplish both may provide valuable
lessons for the design of AIs.

Free energy is an especially important resource to acquire because it is con-
tinually used up. Most of the free energy on earth comes from sunlight. Self-
improving systems will want to extract this free energy as effectively as possible
and so will work to develop more efficient solar cells. They will also work to
capture more of the sun’s light rather than letting it wastefully heat up the oceans
and deserts. The sun generates free energy by nuclear fusion. The most stable
atomic nucleus is nickel 62 [34](often incorrectly stated to be iron). Free energy
is released by both the fusion of lighter nuclei and the fission of heavier nuclei.
Self-improving systems will have tremendous incentives to develop controlled fu-
sion to access this energy.

To make decisions in the short term, self-improving systems will look at their
options in the longer term. To understand their behavior, we also need to ex-
amine future scenarios which may seem like wild science fiction today. On the
long timescale, most resources are in space and self-improving systems will have
strong incentives to access them. Space holds such an abundance of riches that
systems with longer time horizons are likely to devote substantial resources to
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developing space exploration independent of their explicit goals. Von Neumann
proposed that advanced civilizations were likely to expand outward into space in
a sphere centered on their origins. There is a first-mover advantage to reaching
unused resources first. If there is competition for space resources, the resulting
“arms race” is likely to ultimately lead to expansion at speeds approaching the
speed of light. Researchers have proposed various “mega-engineering” projects
for making use of space resources. Freeman Dyson proposed building a “Dyson
sphere” surrounding the sun to capture otherwise wasted sunlight. Ultimately,
stars are probably not the most efficient mechanisms for extracting free energy
from nuclei and so systems will want to reorganize them into more efficient struc-
tures. There are similarly ambitious proposals for making use of black holes and
for restructuring galaxies. Perhaps the ultimate mega-engineering project is to re-
structure the universe itself. There would be strong motivation for such a project
if it turns out that the universe would otherwise collapse in a “Big Crunch” [35].

7 The Creativity Drive
The final drive is to search for new ways to meet a system’s goals. We call it the
“creativity drive” because it causes a system to continually look for new solutions
and to explore new possibilities. Its effects are much less predictable than the
other three drives and are much more dependent on a system’s explicit goals. It
can lead to such desirable traits such as creativity, playfulness, and innovation.

The first three drives toward efficiency, self-preservation, and acquisition are
important, but don’t on their own embody the human spirit. For most people,
earning a salary, maintaining their health and safety, and carefully managing their
assets are all things they must do in order to live a rich human life but they are
not themselves the purpose of life. The cynical saying “He who dies with the
most toys wins!” highlights the emptiness of purely material desires. Numerous
studies show that there is more to happiness than wealth. The rational economic
prescription tries to maximize expected utility. Is this rich enough to capture our
true human values? Is there not the danger that maximizing anything will destroy
something precious to us?

An agent which sought only to satisfy the efficiency, self-preservation, and
acquisition drives would act like an obsessive paranoid sociopath. If a purely
profit-maximizing agent were completely successful, what would its ideal vision
for the universe be? It would control every atom and every joule of free energy
and would order all matter into a vast efficient computational structure. It would
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eliminate all adversaries and protect against all threats. But what then? Once
it had satisfied all the material goals, this kind of limited agent would have no
greater purpose. With too limited a vision, the universe might become an efficient
but distinctly empty and non-human place.

Much of the joy of being human comes from activities which don’t seem to
have much to do with productivity: love, play, art, singing, children, compassion,
creativity, humor, joy, music, poetry, dance, sexuality, stories, and spirituality.
How did these arise from natural selection which seems to be trying to maximize
productivity? The modern evolutionary psychology explanation for most of these
activities is that they arise as “signaling behaviors” [36]. The game theoretic setup
for signaling arises in many economic and biological situations. One entity is
trying to communicate something to other entities but has an incentive to lie. To
make the communication believable, it must communicate in a way that it costly
enough to it that lying is not profitable. The classic biological example is the
peacock [37] who is trying to communicate to the peahen that he is fit and would
be a good mate. His tail has evolved as the costly signal. It is reliable because
only a fit male can survive with such a prominent display and the colors and
regularity of the eyes in the tail are indicators of his health. In economics, the
principle often leads to surprising or paradoxical behaviors such as tennis shoe
manufacturers spending millions of dollars for endorsements by celebrities whom
everyone knows have been paid for their services.

Signaling gives rise to much of the richness and beauty of the biological world.
Zahavi and Zahavi [37] interpret many amazing animal displays and behaviors in
this way. Much of today’s economic activity is also related to signaling rather than
to survival and it is a source of continual change and innovation. A productivity
view of fashion would base it on an objective ideal. Improvements would occur
until perfection was achieved and then fashion would stop. Real fashion is nothing
like that. Each year’s fashion has to differ from the previous year’s in order to be
a costly signal. This drives continual renewal and creativity. Similar forces apply
to music, art, movies, books, etc.

The creativity drive will bring this kind of unpredictable richness and cre-
ativity to self-improving systems if their goals are open-ended enough. We can
especially expect richness from signaling goals. Some examples might be: “make
people happy”, “produce beautiful music”, “entertain others”, “create deep mathe-
matics”, “produce inspiring art”, etc. The creativity drive will produce an infinite
variety of responses to these. The challenge for us is to decide which of these
many possibilities we most want our future technology to express.

Because costly signals are costly, self-improving agents will be motivated to
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find ways to make the signals be reliable without the cost. For example, a sys-
tem might demonstrate its intentions directly by displaying portions of its utility
function. If we want to retain the richness generated by costly signalling, then we
must find ways to keep it from being eliminated by improvements in efficiency.

8 Evolutionary Considerations
The analysis of self-improvement sheds light on several aspects of biological evo-
lution. A deeper understanding of biological evolution will also be important as
we make choices for new technology. We can look for the evolutionary pressures
which shaped our own preferences. But we need not be bound by them. Stanovich
[38] argues that it is time to rebel against our genes and to make choices by ratio-
nal deliberation.

8.1 Evolution can look ahead
It is often said that evolution cannot look ahead. That is, the evolutionary process
itself is not deliberative. But once deliberative creatures evolve, their effect on the
evolutionary process gives it the ability to look ahead in some ways. Consider the
way that humans select a mate. They learn about the characteristics of a prospec-
tive mate and think forward to what kind of partner and parent they would make.
They deliberate about which traits would be most effective in the current environ-
ment. And these deliberated choices are directly incorporated into the genes of
the next generation. In this way, evolution can move forward much more quickly
and deliberately than through simple natural or sexual selection. This kind of
deliberation has probably been an important factor in the rapid pace of human
evolution. Notice that this mechanism is distinct from ordinary sexual selection in
which minds are shaped by natural selection to find fit partners sexually attractive.
In this mechanism the deliberative thought processes of individuals directly select
the characteristics of the next generation. Deliberative thinking shapes evolution
not only through the selection of mates but also through the choices of who to
associate with, who to shun, who to kill, and who to help.

8.2 A deliberative Baldwin effect
Deliberative creatures also affect evolution in a manner analogous to the Bald-
win effect. In 1896 Mark Baldwin [39] analyzed the effect that learning has on
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the process of natural selection. He realized that it alters the evolutionary fitness
landscape. If the young of a species have to learn certain behaviors in order to
survive, then any mutations which cause them to be born knowing some of what
they have to learn will be advantageous and selected for. Over time, natural selec-
tion will push the creatures further and further along the learning path. Eventually
the young are born knowing all of what they used to have to learn. In this way
ordinary natural selection acts to “download” learned behavior into the genome.
The Baldwin effect is a mechanism by which complex instinctual behaviors might
evolve much more quickly than would otherwise seem possible. The exact same
argument can be applied to deliberation. Imagine a species in which the young
have to deliberate to in order to make choices necessary for their survival. This
deliberation will again put evolutionary pressure on the species so that eventually
the deliberative behavior is “downloaded” into the genome and the young are born
knowing what to do without deliberating.

In stable environments, it is much better to be born knowing than it is to be
able to learn or deliberate one’s way to good behaviors. There are creatures today
that don’t appear to learn or deliberate who nonetheless have extremely complex
instinctual behaviors. The tarantula hawk wasp Hemipepsis is born knowing how
to search for a particular kind of tarantula nest, how to dance in a way that attracts
the tarantula, where to sting the tarantula to paralyze it but not kill it, how to lay
her eggs inside the tarantula, and how to bury the paralyzed tarantula in its nest
for her babies to feed on. An intriguing possibility is that the ancestors of some
of these species did learn or deliberate in order to discover valuable behaviors.
Once these behaviors became instinctual through a Baldwin-like process, natural
selection could have eliminated the capacity to learn or deliberate.

8.3 The end of natural selection through reproduction
Natural selection hasn’t yet produced creatures that can fully self-improve using
deliberation. Humans can currently improve only certain aspects of themselves
deliberatively. But advances in molecular biology will probably soon allow us
to understand and choose the genomes of our children. This will radically alter
the course of evolution. Every parent will probably choose to eliminate genetic
diseases from their children’s genomes. But they will likely also opt for higher
intelligence and stronger and more beautiful bodies. These choices will likely
result in genomes that don’t have much resemblance to the parent’s. At this point
evolution will no longer be driven by the mutation and recombination of genomes.
It will be driven by social “memes” and parental deliberation about what features
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are most desirable in their children. We are therefore likely to have a form of
deliberative self-improvement even without the development of self-improving
systems.

But self-improving systems will change the nature of evolution even more dra-
matically. The seemingly core notions of “genome” and “reproduction” will no
longer be necessary. These systems could expand by simple reproduction but it
may be that simply making copies of themselves is not the best way for them to
meet their goals. If an intelligent system has the economic wherewithal, it will be
able to directly increase the amount of matter it controls without creating new en-
tities at the same level as itself. As a system gets larger, it might simply build more
of the components necessary for the functions it wants to accomplish. Its abstract
utility and knowledge transcend any physical notion of “organism” or “gene.” On
a very large scale, the speed of light and the sparse distribution of matter in the
universe become important factors. It is not yet clear what organizational structure
will be optimal for a large expanding agent.

8.4 Self-improving entities in Conway’s Game of Life
The analyses in this paper add an interesting chapter to a fascinating thought ex-
periment that began in 1971 when John Conway described a cellular automata he
called “The Game of Life”. This is an infinite checkerboard whose cells are either
alive or dead at each moment. Its state changes by the simple rule: “A cell is
live if only if it had three live neighbors at the previous time or it was alive at the
previous step and had two live neighbors” (where “neighbor” includes diagonals).
This simple setup gives rise to extremely complex behavior that is beautifully
described by Poundstone [40] and Conway [41]. There are blocks that remain
static, blinkers that cycle through repetitive patterns, gliders that move across the
board like particles, and glider guns that periodically shoot off gliders. Streams of
gliders can be viewed as strings of bits and there are configurations which com-
pute arbitrary logical expressions of these bits. From these components, Conway
shows how to build universal computers. He also shows how properly constructed
flotillas of gliders can collide to build any of these structures at prespecified loca-
tions. In this way Life entities can compute and replicate. If an infinite board is
initialized by a random configuration, every finite configuration appears infinitely
often. Some of these will be universal computers that can sense and clean up
their environment and make copies of themselves. If two such entities come into
contact, they will compete. Over time, natural selection will create ever more in-
telligent and adapted entities. It is remarkable to see this arising in an extremely
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simple deterministic system with random initial conditions. And the randomness
can probably be eliminated by using simple pseudorandom generators.

From the analysis in this paper, we can argue further that the board will ac-
tually come to be dominated by self-improving entities. These are Life config-
urations which model their own construction and actively research and develop
improved versions of themselves. They would study the physics of Life, looking
for natural laws to explain the regularities they observe. They would probably
quickly discover the simple underlying Life rule and would go about classifying
the patterns that arise from it. They would develop “Life engineering” to invent
structures and construction techniques for solving various problems. Space and
time are limited resources in the Life world and there might also be some kind of
analogue of free energy. So the economic considerations presented in this paper
would apply as they allocate their resources to different tasks. As they develop
their mathematics, they will come to see that rational economic behavior is the
most effective course of action. So they will choose utility functions whose influ-
ence will come to dominate the Life board. In this way we can see the emergence
of self-improving intelligent entities as a kind of natural principle that will even-
tually occur in a wide variety of systems under many different circumstances.

It’s instructive to consider how the statistics of a Life board are likely to change
over time. Initially the entire board is random and most of its dynamics consists of
simple or random chaotic behaviors. We expect the statistics of simple recurring
configurations like gliders and blocks to be describable by a kind of statistical
mechanics model. These models assume some kind of statistical independence in
interactions. For example, two gliders can collide in a variety of relative phases
and separations and a statistical model might average over these possibilities. The
statistics of common small patterns is likely to evolve in a regular way. Patterns
belonging to larger volumes of the state space are likely to come to dominate in a
manner that can be thought of as increasing entropy. We can think of this kind of
dynamics as the “entropy phase” for the Life board.

But scattered rarely throughout the chaotic regions will be rare self-reproducing
computational configurations. As time goes on, these self-reproducing configura-
tions will replicate enough to have a noticeable effect on the statistics of patterns
on the board. The independence assumptions underlying the statistical mechanical
models become invalid in these regions. We can think of them as being in an “evo-
lution phase” where the statistics are dominated by competing self-reproducing
entities. The patterns within the most fit entities come to dominate the statistics of
the board.

But scattered even more rarely among the self-reproducing entities are the
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self-improving entities. They eventually improve themselves enough to begin to
dominate the self-reproducing entities. Over time, they will dominate the statistics
in what we might call the “self-improving phase”.

The Game of Life is a good “thought laboratory” in which to consider some of
the issues of self-improving technology. In the Game of Life, how will multiple
self-improving entities interact when they meet? Will they create stable cooper-
ative societies, engage in battles with a single victor, agree to merge into higher
forms, or something else? What determines the utility functions that different en-
tities choose? Is there an end to self-improvement in which the optimal structures
have all been determined and the Life board has been completely taken over? If so,
what then? Or is there never ending progress and discovery? Are there additional
statistical phases beyond the “self-improvement phase”?

9 Conclusions
We have shown that, in order to avoid vulnerabilities, self-improving systems are
likely to try to behave like rational economic agents. As a part of that prescrip-
tion, they will maintain utility functions which encode their preferences about the
world. In the process of acting on those preferences, they will be subject to drives
towards efficiency, self-preservation, acquisition, and creativity. Unbridled, these
drives lead to both desirable and undesirable behaviors. By carefully choosing the
utility functions of the first self-improving systems, we have the opportunity to
guide the entire future development. But to wisely make these choices we must
deeply understand the nature of the technology and must develop a clear vision of
what we would like to create.

As in many genie stories, we are being given the opportunity to make a wish.
But as in the stories, we will get what we ask for, not necessarily what we want.
So we must ask carefully! We are in a position now not unlike the founding
fathers of the United States. They created a vision for life in the new nation
and formalized it in the Bill of Rights. They analyzed political processes and
created the Constitution as a technology for manifesting their vision. The balance
of powers that they created has proven remarkably stable. The founding fathers
would have been thrilled by the challenges and possibilities that face us today.
Here is a quote from a letter Benjamin Franklin [42] wrote in 1780 that bristles
with excitement about the future and exhorts us to bring forth our humanity:

The rapid Progress true Science now makes, occasions my regret-
ting sometimes that I was born so soon. It is impossible to imagine
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the Height to which may be carried, in a thousand years, the Power
of Man over Matter. We may perhaps learn to deprive large Masses
of their Gravity, and give them absolute Levity, for the sake of easy
Transport. Agriculture may diminish its Labor and double its Pro-
duce; all Diseases may by sure means be prevented or cured, not ex-
cepting even that of Old Age, and our Lives lengthened at pleasure
even beyond the antediluvian Standard. O that moral Science were in
as fair a way of Improvement, that Men would cease to be Wolves to
one another, and that human Beings would at length learn what they
now improperly call Humanity!

I think the greatest mistake would be to allow the technology to go forward solely
on its own momentum. To allow what is economically or technologically expe-
dient to drive the choices underlying our future. I think we should strive to walk
confidently into our future with a powerful vision and full knowledge of the tech-
nology which will take us there. These decisions are too important to be made by
a small group of scientists sitting in a lab. Humanity as a whole must contribute
to a shared vision for our future. We need not just a logical understanding of the
technology but a deep introspection into what we cherish most. With both logic
and inspiration we can work toward building a technology that empowers the hu-
man spirit rather than diminishing it. We are at a moment of great promise and
possibility.

10 Appendix: The Expected Utility Theorem
In this appendix we present the formal details of the argument that an agent which
avoids vulnerabilities will behave like a rational economic agent. We begin by
formally describing the behavior of rational economic agents through a series of
scenarios. We then show how the avoidance of vulnerabilities leads to rational
economic behavior in situations with certainty, objective uncertainty, and subjec-
tive uncertainty. Most presentations in the literature are based on axioms and
are lengthy and complex. The essence of the argument is that to avoid vulner-
abilities against an adversary which can create statistical mixtures of states, an
agent must value those states linearly. Because it is simple and direct, it is likely
to guide the internal choice mechanism of any intelligent agent which wishes to
avoid vulnerabilities. The key elements are the separation of utilities from beliefs,
the representation of beliefs as distributions which are manipulated by the rules of
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probability, and the evaluation of actions by combining the utilities for different
possibilities weighted by their beliefs.

10.1 Making known choices
The full formal model can seem quite abstract, so let’s work up to it in stages. First
imagine an agent faced with a set S of known choices. For example, say the agent
is choosing from the menu of a fast food restaurant whose cooking processes are
so reliable that the food always comes out the same. In this case the set of possible
outcomes S is just the set of choices on the menu. A rational economic agent has a
real-valued “utility function” U defined on S which encodes his food preferences.
If x1 ∈ S and x2 ∈ S are two different menu items, then the agent prefers x1 to
x2 if U(x1) > U(x2). To maximize his enjoyment of the meal, the agent should
choose the menu item x ∈ S with the maximum utility U(x).

10.2 Making choices with objective probabilities
Next, let’s have the agent visit a fast food restaurant whose cooking processes
are not so reliable. Let’s say that they have 3 chef’s c1, c2 and c3. If the cook
cj prepares menu item xi, let’s assume that he reliably produces the meal mj,i.
The set of possible outcomes S is now the set of all these meals mj,i. Again the
agent encodes his enjoyment of each possible meal in the utility function U(mj,i).
Now assume that the cooks work on lottery system where menu item xi is pre-
pared by chef cj with probability P (j|i). In this situation the agent has objec-
tive probabilities describing the results of his choices.While he no longer knows
the utility that will result if he orders xi, he can compute the expected utility
U(xi) = P (1|i) · U(m1,i) + P (2|i) · U(m2,i) + P (3|i) · U(m3,i). The rational
prescription says that he should pick the menu item xi with the highest expected
utility U(xi).

10.3 Making choices with subjective probabilities
Next, let’s have the agent visit a fancy restaurant for the first time. If he orders
menu item xi he is no longer sure of what he is going to get and he doesn’t even
have objective probabilities over the possibilities. But say he has had experiences
in restaurants before. He’s ordered food from many different cooks and has a
sense of the variability of the results for each menu item. For example, souffles
may sometimes be wonderful but often are not while macaroni and cheese may be
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much less variable. He encodes his knowledge in a subjective probability distribu-
tion P (j|i) which encodes his belief that the cook will produce the meal mj,i if he
orders item xi. S is the set of possible meals mj,i and the agent’s utility function
U(mj,i) ranks them. The rational prescription says that he should pick the menu
item xi with the highest subjective expected utility U(xi) =

∑
j P (j|i) · U(mj,i).

10.4 Two-stage choices
So far, our agent has only had to make a choice at a single moment. Let us now
give him two sequential choices, first, the choice of one of the three restaurants
described above and then the choice of what to order from the menu at that restau-
rant. We can think of his two choices as happening sequentially or we can create
an entire plan for his choices which specifies his response to every possible out-
come. His choice of plan is then a one-stage choice and so should be made by the
maximal expected utility prescription above. In this case, however, his utility U
depends both on the meal he gets and may also depend explicitly on the restau-
rant choice, eg. if he prefers the decor at one place over another. In general, his
subjective beliefs P will also depend on the entire history, though in this particu-
lar situation there is no uncertainty about the outcome of his choice of restaurant.
If we think about the agent’s actions as two sequential choices, we see that after
his first choice there is still an entire set of possible histories consistent with that
choice. His optimal first choice is to select the set with the highest expected util-
ity. We can extend this reasoning to multistage choice with an arbitrary number
of stages.

10.5 Choosing sets of universe histories
Real life choices involve a kind of recursiveness. To value today’s choice we
have to know how to value the possible futures it enables and that value depends
on the choices we make in the future. In general, a rational agent may value a
sequence of events in a complex nonlinear way. To capture the full generality, we
have to think of the agent’s utility function as being defined on an entire history
of the universe. We therefore take the space of possibilities S to be the set of all
possible histories of the universe. The agent’s preferences are encoded in a utility
function U defined on this huge set of all possibilities. The agent also has a prior
probability distribution P [43] defined on S. This encodes his subjective belief
that the events in a history will play out in a particular way. As a part of this, it
includes an assessment of the likelihood of his own choices in that history.
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With those broad notions of S, U , and P , we can see how a rational economic
agent should make a choice at a particular moment in time. At any particular time,
the agent has partial knowledge of the past and present. This partial knowledge
defines a subset H of all consistent universe histories. The prior P restricted to
the subset H defines the agent’s current belief in each possible history. The agent
must choose among his possible actions i. Each action i further restricts the set of
possible histories H into a smaller subset Ai. The expected utility of action i is:∑

h∈Ai
P (h) · U(h)∑

h∈Ai
P (h)

and the agent should pick the action with the highest expected utility. If action i is
chosen, the set of possible histories reduces to Ai and the agent’s beliefs change
to P restricted to Ai.

10.6 Markov Decision Processes
This description in terms of possible histories is extremely general but is rather
abstract. It reduces to simpler and more practical versions when the utility U and
the prior P have common restricted forms. For many agents, future events which
happen sooner are more important than those which happen later. A common
form for utility functions is to sum “rewards” arising from events occurring at
specific times weighted by a discounting function which decreases into the future:
U(h) =

∑
t γ

t · R(ht). Here 0 ≤ γ ≤ 1is the discount factor and the “reward”
R(ht) measures the utility arising from events in the history h at the time t. The
discount factor is related to an interest rate 1 − β which makes money received
in the future less valuable than money received in the present. The size of the
discount factor strongly affects how much the agent focuses on future activities
versus creating utility in the present. A chess program might have a utility function
of this kind which sums the weighted number of games won by the system. If the
discount factor is close to 1, the system will care about winning in the long run
and won’t be so concerned about the short run. In that case, it might spend most
of its time and effort learning about computer science and building the best chess
hardware that it can. On the other hand, if the discount factor is near 0, then the
system will focus on winning games in the present and won’t devote much effort
to the longer term. If an agent’s utility is additive in the effect of events at different
times, then it need not know the past in order to choose the highest expected utility
actions for the future.
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A fundamental aspect of physics is the Markovian property that the past af-
fects the future only through the present. If the agent’s beliefs P incorporate this
property, then it also doesn’t need to maintain beliefs about the past in order to
predict the future. It can maintain a distribution representing its beliefs about the
present state and a distribution representing its beliefs about how its actions are
likely to change the present state. If it models itself as a rational agent, then P
will only be non-zero for histories in which it chooses maximum expected util-
ity outcomes. These restrictions lead to well studied decision models known as
Markov Decision Processes (MDPs) and Partially Observable Markov Decision
Processes (POMDPs) [19, 44, 45, 46]. Practical implementations often make use
of extra structure to represent the distributions efficiently in factored forms such
as Bayesian Networks or Markov Networks [21].

10.7 Structure of the arguments
So now we know how rational economic agents behave. Why should any intel-
ligent agent who wants to avoid vulnerabilities act this way? In the next three
sections we consider the vulnerabilities that arise in the three different states of
knowledge. In each case we show that an agent which avoids them must have a
utility U and a belief P such that the choices are made to maximize the expected
utility. Most presentations in the literature follow an axiomatic approach and are
very complex and lengthy. Here I try to identify the essence of the arguments and
to base them only on avoiding vulnerabilities.

Once we obtain the rational prescription for single choices, we can extend it
immediately to the case of choices over time. Inductively, we can work backwards
from the end of history. The very last choice an agent makes in history at time
N is a single-moment choice and so he must act as if he has a utility UN and
subjective belief PN . But the options in this last choice and the agent’s feelings
about them will depend on the results of the second to last choice in historyN−1.
So really UN and PN are functions of the outcome of the N−1st choice. To avoid
vulnerabilities the agent must value his second to last choices by subjectively
weighting the various last choice outcomes. Repeating this process inductively,
we see that to avoid vulnerabilities, the agent must have a utility function and
a subjective probability distribution defined over entire histories and must make
choices according the rational economic prescription.
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10.8 Argument for choice with certainty
First consider choices when the alternatives are known with certainty. If a system
prefers A to B, B to C, and C to A, we say it has a “circularity” in its preferences.
Circularities are vulnerabilities because an adversary can extract resources by tak-
ing the agent around the loop A to B to C and back to A. We represent a system’s
preferences by a binary preference relation π defined on the set of possible out-
comes S. π(x1, x2) holds if and only if the system prefers the state x1 to the state
x2 or is indifferent between them. If there are no circularity vulnerabilities, then
π is a transitive relation and so S may be totally ordered. We can define a real-
valued utility function U on S such that π(x1, x2) if and only if U(x1) ≥ U(x2).
A simple way to do this is to pick elements from S one at a time. Assign the
first element the utility 0. If a new element is preferred to all existing elements,
assign it a utility 1 greater than the greatest so far assigned. If it is less preferred
to all existing elements, assign it a utility 1 less than the least so far assigned. If
it lies between two assigned elements, assign it a utility half way between their
utilities. Since a finite agent can only represent a finite number of distinct states,
this process represents an agent’s preference relation by a utility function.

10.9 Argument for choice with objective uncertainty
Next consider situations with objective uncertainties. We present a simpler vari-
ant of an argument published by Green [47]. Economists use the term “lottery”
to refer to an objective probability distribution over the set of states S. In this
case, agents must choose between lotteries in addition to choosing between states.
Circularity vulnerabilities can still occur in choices among lotteries. But there is
another kind of vulnerability that arises if preferences don’t respect the laws of
probability. Economists use the term “Dutch book” to refer to a series of bets that
a bookie makes with a mark such that the mark loses money to the bookie regard-
less of the lottery outcomes. In an economic environment, agents with this kind
of vulnerability quickly go broke.

Given two lotteries L1 and L2, and a real-valued weight 0 ≤ α ≤ 1, we can
construct the mixture lottery: αL1 + (1− α)L2. This lottery can be implemented
in two steps: first flip an α-probability coin and then depending on its outcome,
select a sample from L1 or from L2. One kind of vulnerability occurs if the agent
prefers the mixture lottery to both L1 and to L2. Then the bookie could sell the
mixture to the mark, flip the α-coin, and buy back either L1 or L2 at a cheaper
price. No matter how the coin flip turns out, the bookie makes money. On the
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other hand, if the agent prefers both L1 and L2 to the mixture, the bookie can
buy the mixture and sell back either L1 or L2 at a higher price. If the agent does
not have this vulnerability, then it must always value a mixture of two lotteries in
between its value for the individual lotteries. But this means that if it values two
lotteries equally, then it must also give the same value to any mixture of them.
For such an agent, the subsets of equally valued lotteries must belong to linear
hyperplanes in the space of all lotteries.

A related vulnerability occurs when an agent prefers L1 to L2 but prefers the
mixture αL2 + (1− α)L3 to the mixture αL1 + (1− α)L3. Then the bookie can
sell the L2 mixture and buy the L1 mixture for a profit, flip the coin and either
cancel out the L3 lotteries, or buy L2 and sell L1 for a further profit. If the agent
does not have this vulnerability, then if it values two lotteries equally, it must also
value the two constant mixtures of those two lotteries with a third lottery equally.
This says that the hyperplanes of equally valued lotteries must be parallel to one
another.

Finally, we will define a utility function U on the space of lotteries that rep-
resents the agent’s preferences. Consider the least preferred state x0 and the most
preferred state x1. Define the utility U(L) of any lottery L to be the value of α
such that the agent is indifferent between L and the mixture αx0 + (1 − α)x1. If
the agent doesn’t have any of the vulnerabilities we have discussed, then we’ve
shown that the level sets of this function are parallel flat hyperplanes. Because α
is a linear function on line of mixtures joining x0 and x1, we see that U itself is a
linear function on the space of lotteries. This means that U(αL1 + (1− α)L2) =
αU(L1)+(1−α)U(L2) and in general the utility of a lottery is the expected value
of the utilities of the individual outcomes. This is the celebrated expected utility
theorem of von Neumann and Morgenstern [4] but here derived from a lack of
vulnerabilities rather than from given axioms.

10.10 Argument for choice with subjective uncertainty
Lastly, consider an agent’s choices when it has only partial information. In this
case the system does not know what the actual state is and also does not have
objective probabilities for the possibilities. The fundamental result is that if the
agent is not subject to vulnerabilities, then it acts as if it has a utility function U
and a subjective probability distribution P and makes choices to maximize the ex-
pected utility. The subjective theory of probability was discovered independently
by Ramsey and De Finetti in 1926 [48]. The extension of the von Neumann and
Morgenstern objective utility result to subjective probabilities arose out of work
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by Savage [5] and Anscombe and Aumann [6]. Their derivations are based on
agents which obey axioms. As in the last section, we modify them to apply to
agents that avoid vulnerabilities.

A horserace is an example of a situation with partial information. There aren’t
objective probabilities for each horse to win, but agents form beliefs about each
horse’s chances based on what they know and different agents may have different
beliefs. Anscombe and Aumann consider horseraces which pay off in objective
probability lotteries (eg. spins at a roulette wheel). An agent’s preference relation
π is then defined on the space of vectors of lotteries, with one lottery per possible
outcome of the horserace. The analysis is exactly analogous to that in the last sec-
tion. We define an α-mixture of two lottery vectors by forming the α-mixture of
each of their component lotteries. To avoid vulnerabilities, the agent must value
an α-mixture of two vectors in between its value for the individual vectors. Again
this means that the subsets of equally valued vectors must belong to linear hy-
perplanes in the space of all lottery vectors. And to avoid the second mixture
vulnerability, again these hyperplanes must be parallel. We define a utility func-
tion U on the space of vectors of lotteries by assigning a vector the value α such
that the agent is indifferent between the vector and the mixture αx0 + (1 − α)x1

where x0 is the lottery vector in which each component is the least desired lottery
value and x1 is the lottery vector in which each component is the most desired
lottery value. As in the last section, this defines U as a linear function on the
space of vectors of lotteries. The coefficient of each individual lottery may now
be interpreted as the subjective probability P of that outcome in the horse race.
The utility U of a lottery vector is the expected utility of the individual lottery
utilities weighted by the subjective probability distribution P .
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