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Abstract

While conditional cash transfers targeted at women have been persuasively shown to
improve human development outcomes in some developing countries, it is unclear how
important the conditionalities themselves have been. Understanding conditionalities is
especially important because they imply administrative costs and hurdles that stand as
a barrier to the creation of cash transfer programs in lower income developing countries.
This paper analyzes the nutritional impacts of South Africa’s unconditional Child Sup-
port Grant (CSG) in which cash grants are made to child caregivers (mostly women)
with no strings attached. Taking advantage of a slow program roll-out that created
exogenous variation in the extent of CSG treatment received by beneficiaries, this pa-
per utilizes continuous treatment methods to estimate the impact of these transfers on
child nutrition as measured by child’s height-for-age. Large dosages of CSG treatment
early in life are shown to significantly boost child height. These estimated height gains
in turn suggest large adult earnings increases for treated children and a discounted rate
of return on CSG payments of some 50%.
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Despite improvements over the last two decades, child malnutrition remains a serious

health problem in developing countries, and is the main contributor to child mortality (World

Bank, 2006). For those that survive, early childhood malnutrition contributes to the inter-

generational transmission of poverty. In a striking study of Ecuadorian children, Paxson

and Schady (2007) show that by age 5, children who were likely inadequately nourished

have already fallen well behind the cognitive development of their better nourished peers.

Assuming that these disparities persist, the malnourished children will likely do less well in

school, accumulate less human capital and enjoy lower adult earnings than their peers. We

would expect that their own children would in turn repeat this inequitable cycle.

In an effort to break this intergenerational transmission of poverty (poverty which “lays

its own eggs,” in the words of an informant quoted in the Chronic Poverty Research Centre

(2004)), some middle income countries have adopted cash transfer programs designed to

bolster the nutrition, health and education of the children of poor families. At first glance,

reliance on cash transfers to achieve these goals may seem somewhat surprising in light of

the earlier debate about whether nutrition responds at all to income increases amongst poor

families. For example, Behrman and Deolalikar (1987) find an income elasticity close to zero

for a sample of families in south India. While other studies find a positive elasticity, the

issue is far from solved.1

There are, however, several critical differences between the new generation of cash transfer

programs and the market-generated income difference used to identify nutritional elasticities

in the earlier literature. Mexico’s Progresa program (now Oportunidades), the best known

of these cash transfer programs, has two key design features that may mediate its nutritional

impacts.2 First, cash transfers are conditional on the household meeting certain required

behaviors: Older children must attend school; and, younger children must visit clinics for

regular medical check-ups and nutritional monitoring (where among other things they are

given nutritional supplements).

In addition to these conditionalities, Progresa cash transfers are also assigned to women.

Unlike market driven income increases which may have been generated by increases in returns

to assets owned by men, these targeted cash transfers have been designed to bolster the

bargaining power of women with the idea of giving more weight to their preferences which

1For example, see the studies by Subramanian and Deaton (1996), Bouis and Haddad (1992) and Behrman,
Rosenzweig and Foster (1994). Haddad, Alderman, Appleton, Song and Yohannes (2003) provides a review
of the literature over the last 20 years.

2Other Latin American cash transfer programs include the Bolsa Escola program in Brazil (Arends-
Kuenning, Fava, Kassouf and de Almeida, 2005), the Social Protection Network program in Nicaragua
(Maluccio and Flores, 2005) and PRAF in Honduras (Glewwe and Olinto, 2005).



are presumed to be more child-centric.3

While much of the impact evaluation literature on Progresa has focussed on schooling

outcomes, there is evidence that Progresa has boosted child nutritional status (Behrman

and Hoddinott, 2005). However, because Progresa transfers were conditional (and included

in-kind nutritional supplements), it is not clear whether these findings indicate a non-zero

income elasticity of nutrition, or simply the impact of transfer conditionality. Unpacking the

reasons behind this response is of more than academic interest. Aid agencies have noted that

the heavy administrative burdens implied by transfer conditionality limit the ability of lower

income African economies to implement programs modeled on Progresa. Given that it is

precisely these economies where malnutrition is most severe, understanding the importance

of costly conditionality is important.4

This paper aims to contribute to knowledge in this area by studying the impact of the

South African Child Support Grant (CSG), which was first rolled out in 1998. Like Progresa

and its sister programs in Latin America, CSG cash transfers are targeted at women. Unlike

those programs, CSG transfers are unconditional, and come with no strings attached, nor

with any in-kind transfers.5 Analysis of this program thus promises a sharper look at the

income elasticity of nutrition, at least in the context of income increases targeted at women.

However, in comparison to the Progresa program, evaluation of the CSG presents a

particular methodological challenge. By randomly selecting rural areas to receive the cash

transfer treatment, Progresa quickly became a showpiece for impact evaluation. In contrast,

the CSG was a rolled out as a single, national program, depriving analysts of purposefully

randomized treatment and control groups. Alternative methods are thus needed to estimate

the impact of the South African CSG.

One method would be to follow the current literature and use matching methods to

evaluate CSG support as a binary treatment. Statistical problems aside, this approach would

3A number of the key studies on the income elasticity of nutrition drew on data generated as part of the
International Food Policy Research Institute (IFPRI) commercialization of agriculture studies. In most cases,
the IFPRI studies concerned communities where technological and other changes enhanced returns to male-
owned assets, raising the issue as to whether low estimated nutritional elasticities represented immutable
family preferences or simply a re-weighting of child nutrition unfriendly male preferences (see the discussion
in the summary volume by von Braun and Kennedy (1994).

4On the basis of their ex ante analysis, Kakwani, Soares and Son (2005) suggest that without school
attendance conditionalities, cash transfers in Africa will not increase school attendance. They do not,
however, speak to the question of the necessity of conditionalities to boost nutrition.

5In a recent paper, Araujo and Schady (2006) evaluate the impact of an unconditional cash transfer
program in Ecuador. However, unlike the CSG, program administrators in Ecuador did emphasize the
importance of school enrollment when beneficiaries signed up for the program leading some households to
believe that enrollment requirements existed.
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overlook the fact that extent of CSG treatment (the ‘dosage’) varies significantly across the

treated population. During the nutritionally critical first 36 months of life (which will be the

focus of the analysis here), some children received CSG support nearly 100% of the time,

while others received only a month or two of support. The nutritional impact of the latter

is likely negligible, while the impact of the former could be substantial. The analysis here

will thus use variation in the extent of treatment to identify the impact of the CSG.

While the continuous treatment estimator of Hirano and Imbens (2004) opens the door

to this kind of analysis of the extent of treatment among the treated, it still requires strong

orthogonality assumptions. The critical statistical identification assumption is that extent

of treatment is unrelated to unobserved factors that themselves affect child health and nu-

trition. While this assumption may seem hard to sustain for a voluntary program that had

a single national eligibility date, we show how information on effective program rollout can

be used to derive a caregiver “eagerness”6 measure that can be used to control for otherwise

unobservable, and confounding, characteristics. Conditional on eagerness and other covari-

ates, we argue that exposure to the CSG depends (randomly) on the interaction between the

child’s birthdate and the effective program roll-out for the child’s locational and temporal

cohort.

Exploiting this eagerness variable, our analysis of the impacts of early-life CSG as a

continuous treatment case uncovers economically and statistically significant effects for large

dosages of CSG support. These estimates show that effects are insignificant for children who

received CSG support for less than 50% of their 36 month window. These results are robust

to the inclusion of cluster variables (village fixed-effects) meant to control for differences in

the supply of health-related public goods and other locational differences. We also show that

there is no independent time trend in child health that might confound our results.

Finally, in an effort to get an understanding of the possible economic value of these nutri-

tional gains, we project forward in time using best estimates from the literature concerning

the impact of adult height on wages. Adaptation of these estimates to the South African

reality suggest that the present value of early CSG support is 1.5 to 2 times as large as the

direct cost of that support. These findings in no way imply that there are not further gains

from CSG support later in childhood. Indeed, these results suggest that such further gains

are quite likely. However, within the confines of this study, we have not been able to estimate

their magnitude.

The remainder of this paper is organized as follows. Section 1 provides background

6An eager caregiver is one who enrolls her child early in the CSG program relative to other caregivers in
the same time and place.
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description of the South Africa Child Support Grant. Section 2 presents descriptive statistics

on the program, discussing key measures and identification strategies that are available.

Section 4 presents the methods and results from using continuous treatment effects. Section

5 attempts to infer the lifetime economic value of the nutritional impact identified in Section

4, and Section 6 concludes the paper.

1 The South African child support grant

The South African system of state welfare transfers changed little in terms of its basic struc-

ture up to the 1990s. The system remained dominated by means-tested, non-contributory old

age pensions and disability pensions with discrimination between different racially defined

population groups in terms of access to the grants and the levels of benefits. Substan-

tial progress was, however, made during the early 1990s in removing racial discrimination

from these two programs. This equalization resulted in increased access and real benefit

levels for Africans and reduced real levels of benefits for white pensioners. Fiscal costs ex-

panded significantly. Despite its apartheid past, South Africa now possesses a substantial

system of state provided, cash social assistance with wide coverage of the population, most

notably of the formerly disenfranchised African majority. This important role of cash so-

cial assistance is fairly exceptional compared to most other middle-income countries (see

Lund, 1993; Lund, 2001; Van der Berg, 1997; Case and Deaton, 1997).

The reforms of the early 1990s did not extend to the third most important component of

state transfer payments, namely State Maintenance Grants (SMGs). These grants, payable

in the form of parent and child grants were means-tested benefits payable to a natural

parent who could not, for a number of reasons, rely on the support of the second parent.

If the second parent was alive, it was necessary to apply for a private maintenance order

through the courts and only if this failed (or the amount awarded was very low) was the

child eligible for the grant. This bureaucratic hurdle in conjunction with very low awareness

of the grant was effective in excluding many eligible children from accessing the grant. In

1990, only 0.2% of African children were in receipt of the SMG, while 1.5% of white children,

4.0% of Indian children and 4.8% of Coloured children received benefits (Kruger, 1998). It

became apparent in the mid-1990’s that providing equal access to the SMG would have

severe fiscal implications given poverty levels and household structures, with simulations

based on household survey data predicting a more than twenty-fold increase in expenditures

(Haarman and Haarman, 1998).
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In December of 1995, the new democratic government of South Africa established the

Lund Committee to evaluate the existing system of state support and to explore new al-

ternative policy options targeting children and families. In 1998 the Child Support Grant

(CSG) replaced the existing SMG. The benefit was initially limited to children under seven

(unlike the SMG which covered children up to age 18). In proposing the CSG, the Lund

Committee emphasized that the grant must “follow the child”, meaning that the benefit

should be independent of the child’s family structure. This approach represented a move

from a family-based benefit to a child-focused one. Legally, however, the grant must be paid

over to an adult and it is the intention that the person to whom the grant is paid is the

“primary care giver” of the child for whom the benefit is intended. In cases where the appli-

cant is not the biological parent of the child, a sworn affidavit from the parents or guardians

is required to confirm that the applicant is indeed the primary care giver. In practice, the

designation of the primary care giver as the grant recipient has effectively targeted women.

In the data used here, 98% of designated primary care givers are female.

When the Child Support Grant (CSG) was introduced it was intended to cover the poorest

30% of children and was means-tested, i.e. the child had to be residing in a household with a

household income below a certain threshold. The threshold was set at R800 (approximately

US$110) for children living in urban areas and at R1100 (US$150) for those living in rural

areas or in informal settlements. In 1999, due to a low take-up rate, the Department of

Welfare altered the income test from a household based measure to one which considered

only the income of the primary caregiver plus that of his/her spouse (net of other state

transfers). The means test has remained unchanged in nominal terms since 1998, despite

the fact that the Consumer Price Index rose 40% between April 1998 and September 2004.

Despite this increasingly strigent means test, about half of age-eligible children were in receipt

of the grant by this latter date.7

The government has increased the age limit for eligibility in recent years. In April 2003

the age limit was raised to nine years old and a year later this was increased to eleven years.

In April 2005 the age limit was raised to fourteen. The amount granted has also changed

since 1998 and the increases have outstripped inflation. While the initial monthly benefit

was R100 in 1998, it is currently R180. During the time of the survey which we discuss,

the monthly benefit was R170 which equates to approximately to US$25 using the market

exchange rate (or, PPP US$50).

7In September 2004 there were slightly over 7 million children aged 0 to 6 in South Africa. Administrative
data from the Department of Social Development indicates that 3.54 million of them were receiving the CSG.
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2 The KwaZulu-Natal data and the measurement of

nutrition

The data for this study comes from the KwaZulu-Natal Income Dynamics Study (KIDS).8

The KwaZulu-Natal province is home to approximately 20 percent of South Africa’s popula-

tion of 40 million and was formed in 1994 by combining the former Zulu homeland with the

old Natal province. Although KwaZulu-Natal is not the poorest province in South Africa, it

arguably has the highest incidence of deprivation in terms of access to services and perceived

well-being (Klasen, 1997; Leibbrandt and Woolard, 1999). KwaZulu-Natal is also home to

most of South Africa’s ethnically Indian people who constitute 12 percent of the province’s

population. Africans comprise about 85 percent of the province’s population, with people of

European descent (largely British) comprising most of the remainder.

As explained in greater detail by May, Agüero, Carter and Timaeus (2007), respondents

to the KIDS study were first interviewed in 1993 as part of a nationwide living standards

survey. In 1998, study reinterviewed households from the 1993 survey that were located in

the KwaZulu-Natal province. A third round of surveys was undertaken in 2004. While the

1993 survey constructed households based on the residents of randomly selected dwellings,

the 1998 and 2004 studies focused on reinterviewing designated ‘core people’ from the 1993

surveys. A household member was designated as a Core person if s/he satisfied any of the

following criteria:

• A self-declared head of household (from 1993).

• Spouse/partner of self-declared head of household (from 1993).

• Lived in a three generation household and all of the following were true: Child, child-

in-law, or niece/nephew of self-declared head at least 30 years old have at least one

child living in household.

• Spouse/partner of person satisfying criterion.

Thus all heads of households and spouses of heads are automatically included and in

some three-generation households, adult children of household heads are included. The

2004 survey was able to interview at least one core person from 71 percent of the original

1993 households. In addition, children of core people who had had their own children and

8The KIDS data set can be downloaded from http://sds.ukzn.ac.za.
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established new, separate residences were also interviewed in 2004. The analysis to follow will

consider children resident with core people as well as grandchildren of core people now living

separately. Note that children who are resident with core people includes grandchildren of

the cores whose parents have not established independent residences.

2.1 Height as an ex post indicator of early childhood nutrition

The CSG program issues monthly payments to the care givers of eligible children. Evaluating

the impact of such payment flows requires an indicator whose ex post, measurable value

reflects the cumulative effects of those flows. School attainment, or amount learned are

the kind of after the fact observable stock measures whose values reflect earlier inflows of

educational inputs. Similarly, a child’s height-for-age z-score (HAZ) can serve as an ex post

indicator of nutritional inputs, especially for inputs received during the first three years of

life.9

Stunting, or short height relative to standards established for healthy populations, is

an indicator of long-term malnutrition. Stunting is an indicator of past growth failure. It

is associated with a number of long-term factors, including chronic insufficient protein and

energy intake, frequent infection, sustained inappropriate feeding practices and poverty. In

children under 3 years of age, the effects of these long-term factors may not be reversible

(UNICEF, 1998, p. 21-23). Put differently, children under 3 are particularly vulnerable to

nutritional shortfalls, and the impacts of poor nutrition during the first three years of life

are likely to leave a permanent mark on the child’s z-score. We should thus be able to ex

post evaluate the nutritional impact of the CSG by looking at the impact of CSG payments

received during the child’s 0-3 years of age “window of nutritional vulnerability.”

While z-scores offer a promising way to examine the impact of income transfers on nu-

trition, there are two important differences between z-scores and the household food use or

individual food ingestion measures used in much of the nutritional elasticity literature. First,

behavioral changes potentially induced by income increases (e.g., the purchase of more food)

may not increase height if the child’s body is unable to process or effectively use additional

nutrients. Thus, a failure to find a response of HAZ to an income increase could either

reflect the lack of a behavioral response (i.e., the household purchased no more food), or the

inability of individuals to physically transform increased nutritional inputs into improved

9Z-scores (z) are defined as z = h−h̄
σh

where h is height, h̄ and σh are, respectively, the mean and standard
deviation of height given the age. See Behrman and Deolalikar (1988) and Strauss and Thomas (2008) for
reviews of the role of height on children’s nutrition.
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nutritional status.10

A second difference between a HAZ and food use or intake measures of nutrition concerns

the likely extent of measurement error. HAZ simply requires measurement of child height

and age. In contrast, measurement error is an important factor when measuring food con-

sumption because in most cases the data is collected retrospectively and the most informed

person about food purchases is not always present to answer the survey questions (Strauss

and Thomas, 1998).11 Failure to find significant nutritional elasticities in studies that use

food use or intake measures could thus be a problem of noisy data.

While HAZ measures are not free of such errors (Behrman and Deolalikar, 1988), the data

used here come from a survey where measures of height were taken at least twice and should

therefore be quite reliable. As described in the KIDS fieldworker manual (available from the

data website), a child’s height was taken twice and the enumerators needed to compare both

measures to make sure there the difference never exceed 0.5cm. In Table 1 we show that

the mean absolute difference of the two measures is 0.015. The median difference is zero for

all cases and only two children have measures that differ in more than 0.5cm. In addition,

whenever possible, the child’s age was taken from the child’s public health card. These

procedures support the idea that measuring nutrition using HAZ is subject to a minimal

level of measurement errors.

Before turning to the analysis, one final comment is warranted. While the analysis here

will attempt to measure the impact of CSG support received during the critical first three

years of the child’s life, this analytical choice does not mean that CSG support outside this

three year window is unimportant. Indeed, it might be quite critical. However, it is the

likely irreversibility of early nutritional effects that make it more likely that we can with

greater confidence and accuracy measure the impact of the CSG using only information on

early treatment.

10Nutritionists discuss how many nutrients the human body can absorb from food compared to preformed
nutrients (i.e., fortified foods or pharmaceutical supplements). For example, Penniston and Tanumihardjo
(2006) discuss the case of vitamin A (or β-carotene) where the absorbtion rate is 70-90% from preformed
vitamin A but only between 20-50% from regular food. For the latter, the rate of absorbtion depends on
dietary and non dietary factors.

11In addition, in many studies, the constructed variable is not “nutrient intake” but rather “nutrients
available” as acknowledge by Subramanian and Deaton (1996) among others. The main problem here is
that a non negligible part of the purchased (or cooked) food is lost or wasted, leading to an overstatement
of intake. Also, obtaining nutrient availability from food consumption is more complicated for items such as
food away from home, affecting especially households with higher income or those in urban areas. Finally,
this transformation also is affected by issues such as the quality of the food purchased (Behrman and
Deolalikar, 1988). Food quality is rarely included in household surveys.
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Table 1: Average differences in children’s height measures, by year of birth and gender

Year of birth Boys Girls All children

1997 .023 .008 .016
1998 .011 .031 .021
1999 .015 .019 .017
2000 .018 .013 .015
2001 .011 .013 .012
2002 .014 .011 .013
2003 .016 .011 .013

All years .015 .016 .015

Note: Absolute differences are expressed in centimeters.
Source: Author’s calculations using KIDS dataset.

2.2 Descriptive statistics

Table 2 presents descriptive statistics regarding children, their caregivers and the child sup-

port grant using the KIDS data. Reported in Table 2 are data on all age-eligible children.

Children are grouped according to whether or not they received CSG support during the

critical 3 year window from birth to 36 months of age. Had the CSG program been experi-

mentally rolled out as was Mexico’s Progresa program (see Behrman and Hoddinott, 2005),

then evaluation of treatment effects by comparing the treated and the not-treated would

be relatively simple. However, the South African CSG was not implemented with an ex-

perimental design. As shown in the table, non-treated children can be grouped into three

categories: those that received child support grant only after they were 3 years old (321

children, column 4); those who had applied for CSG support, but who had their applications

rejected or had not yet received benefits by the time of the survey (154 children, column 5);

and, those for whom CSG applications were never made (886 children, column 6).

The latter group of non-applicants is clearly suspect as an adequate control group given

that the CSG is a means-tested program. As can be seen, household per-capita expenditures

are 40% higher on average for this group compared to all other groupings in the table.
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However, the other two groups of non-treated children appear more promising as a com-

parator group around which to build an analysis. Household expenditures are quite sim-

ilar between these groups and treated children. Indeed, other studies (see for example

Angrist, 1998) have used rejected applicants as relevant control group.12

Looking at Table 2, the descriptive statistics hint at what such a comparison might

reveal. Child z-scores are higher for treated children (-0.84) versus the beneficiary and

applicant groups of non-treated children (-0.91 and -1.08, respectively). However, a closer

look at the data reveal that fewer than 10 of the 154 non-beneficiary applicants are actually

rejected applicants. The others are still in process and are perhaps better described as

tardy applicants. As reported in Table 2, the average caregiver for this group of children

delayed application by nearly 1450 days after her child became eligible. Note that this

figure is nearly four-times higher than the average delay for beneficiary children. A similar

observation applies to beneficiary children who did not receive CSG support during the first

three years of their lives.

While the height-for-age z-scores for applicant and non-treated beneficiary children are

lower than those for treated children, it is unclear whether this difference is the result of

the CSG treatment received by the latter, or whether the long delay in application by the

non-beneficiary applicant signals something about the caregivers of the former group (e.g.,

their preferences, family organization or childrearing skills). This observation questions the

adequacy of these individuals as a control group for the purposes of impact analysis. An

alternative approach is to exploit the variation in the extent of treatment to identify the

impact of CSG cash transfers.

3 Continuous treatment impact evaluation strategy

It is common in the program evaluation literature to measure the treatment as a binary

variable (see for example Blundell and Costa-Dias, 2002; Imbens, 2004; Heckman, Ichimura

and Todd, 1998).13 This approach makes sense when there is a randomized design in which

all treated individuals or villages receive the same treatment or dosage. However, the lack

12The key idea idea here is that the selection is based on observables. The information used to select
candidates allows the researcher to identify the set of covariates that explain participation in a “program”.

13Given the available panel data, another option would be to use anthropometric measures from earlier
rounds of the KIDS data to underwrite a difference-in difference analysis. Unfortunately, there are only 87
beneficiary children for whom we have anthropometric data in both 1998 and 2004, and 323 non-beneficiary
children. Making matters worse, children in this panel sub-sample are by definition older and very few of
them (only 4) received any CSG support during the critical first three years of their lives.
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of a randomized design in the CSG means that selection into treatment is not random

and that that the dosage received by the treated is not uniform. A conventional binary

treatment approach would identically classify all treated beneficiaries, despite the fact that

some children have received CSG support for nearly 100% of their life under 36 months,

while others have received benefits for a small fraction of their lives.

As the descriptive statistics in Table 2 show, the extent of treatment received by children

varies substantially among the treated group. Splitting the treated around the median

treatment level, we see that the low treatment group has averaged 18% of their early life

covered by CSG support, whereas the average treatment level is 61% for the high treatment

group. One might expect that the cumulative impact of CSG support for the latter group

should be larger, and indeed, the z-scores for this group are -0.75, as compared to -0.93 for

the low treatment cohort. Treating these two groups as the same, as a binary approach

would do, thus seems likely to understate the potential effect of full CSG treatment.14

While there are solid analytical reasons for exploiting the duration of treatment, there can

be no presumption that variation in treatment level has been randomly generated. Returning

again to Table 2, we see that that while per-capita expenditures levels are quite similar

for households with high versus low levels of treatment, the application delay between the

groups is large. While not surprising, we must again worry whether the z-score difference

between children in these households reflects differences in the extent of treatment per se,

or differences in household attitudes and preferences.

3.1 CSG rollout and caregiver eagerness

There are at least two forces at work shaping the application delay for any child. The first

is the characteristics of the child’s caregiver and the family environment. The second is the

effective rollout of the program in the child’s community relative to the child’s birth/CSG

eligibility date.

While the CSG program was announced nationally in mid-1998, it took time for informa-

tion on the program to filter down to all communities. The average delay in application was

initially high, dropping off to a lower level as the program became better known (Case, Hose-

good and Lund, 2003). While the program was not purposefully rolled out differently across

communities (unlike the Brazilian Bolsa Escola program discussed by Arends-Kuenning et al.

(2005)), we might anticipate that the program uptake might have been quicker in urban and

14In fact when binary methods were used we were not able to identify a significant treatment effect of the
CSG (full results are available upon request from the authors).
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less-isolated rural areas.

These observations suggest that a better indicator of latent caregiver characteristics might

be not the gross delay in CSG application, but deviation from the average delay for children

in the same age and locational cohort. Figure 1 displays the results of such an analysis. The

horizontal axis displays the date the child became eligible for the CSG grant (measured as

number of days since the 1998 creation of the program). An eligibility date of zero means

that the child was already born (and under age 7) when the program was announced. An

eligibility date of 1500 means that the child was born 1500 days after the program was

created. Projected onto the figure are the actual data points for treated children in the

KIDS dataset.

The vertical axis in Figure 1 shows the delay in application. The non-parametric fit

(displayed as a solid line) shows that as expected, average application delay dropped off

sharply as eligibility date increased. For children immediately eligible for the program when

it was announced, it took an average 1500 days (roughly 4 years) before caregivers applied

for the grant. By the time of the survey in 2004, newly born children were on average being

enrolled in the program in less than a year.

However, this very short application delay of the youngest children likely understates the

eventual application delay as there were younger children yet to be enrolled at the date of

the survey. To control for this problem, a quadratic OLS fit of the application delay was

done using only data on children born two years or more before the survey date (those data

points to the left of the vertical line in Figure 1). This two year cut-off is consistent with the

study by Case et al. (2003) who show that by 2002, the CSG take-up rate for an age cohort

leveled off at 40% within two years of birth (recall that the CSG program was originally

designed to service 30% of the population). Cohort enrollment rates are somewhat higher

in the KIDS data. By the survey date in the second quarter of 2004, roughly 60% of the

cohorts born in 1998, 1999, 2000, and 2001 had applied for the CSG. The take-up rate for

the 2002 cohort was slightly lower at 55%.

These parametric estimates (which allowed the relationship to differ between urban and

rural areas) indicate that the application delay levels off at about 255 days in both urban

and rural areas. This long-run expected application delay level is estimated to have been

reached 1.5 years earlier in urban areas than in rural areas. Figure 1 illustrates the expected

application delay for children in urban areas (the dashed line), as well as the horizontal long-

run expected delay line. The expected delay in rural areas is nearly parallel to the urban

line, but shifted to the northeast.
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Figure 1: Standardized Eagerness
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Using these estimates, an expected application delay was calculated for each child in the

KIDS data set based on their date and location of birth.15 An eagerness variable, defined as

the percent deviation in application for a child compared to the average delay expected for

the child’s age and locational cohort, was then calculated for each child. Positive eagerness

values mean extra-eager, early applicant caregivers, while negative values indicate less-eager

or tardy applicant caregivers.

Table 2 reports information on these standardized eagerness measures. As can be seen,

non-treated children come from less eager families than do treated children. The average

treated child has an eagerness score of 29% (i.e., they applied 29% earlier than the average

of their cohort). CSG beneficiaries who did not receive any CSG treatment during the first

three years of life applied with the near normal delay on average (-3% eagerness), whereas

the applicant group that had not yet received any CSG payments by the survey date are

shown to be tardy, with an average eagerness score of -40%.

15Children born after the date when eagerness fell to its minimum value were assigned the asymptotic
eagerness value as their expected application delay.
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These eagerness figures thus suggest that the non-treated, potential control groups are

different than the beneficiary group. It also suggests that the eagerness measure can be used

control for latent caregiver and family characteristics.16 Using this idea, we will devise an

identification strategy built around the notion that conditional on eagerness, the extent of

CSG treatment should be random (related only to the accidents of birth time and location)

and hence orthogonal to the expected effect of the treatment.

3.2 Testing for cohort effects

Before turning to the impact analysis of the CSG, this section explores the reliability of the

proposed identification strategy. Conditional on eagerness (as well as other family and child

characteristics), the use of program roll-out to generate variation in treatment implies that

children born in later cohorts will be more likely to have more extensive treatment. Children

in the lowest tercile of the treament distribution were, in 2004, 2.5 years older on average

than children in the highest treatment tercile. While this is a rather modest difference (i.e.,

the cohorts are not very far apart in age), there could still be concerns that the later birth

cohort may be systematically better off irrespective of the CSG. For example, an overall

improvement in the living standards of South African households, for reasons unrelated to

the roll-out of the CSG, could lead us to an overestimation of the role of the CSG. The later

cohorts might also have enjoyed better access to clinics and other health facilities, creating

a spurious correlation between treatment and other nutrition-promoting interventions. In

this section we address this issue by both testing for trends in the z-scores of CSG ineligible

children and looking at data on trends in the quality of heath care.

To test for these cohort effects, Figure 2 graphs the estimated trend between z-score and

child age at the time of the KIDS 2004 survey for two sets of children whose reported family

per capita expenditures make it unlikely that they meet the means test for the CSG. The solid

line plots the OLS relationship between z-score and age for all ineligible children. The dashed

line illustrates the same relationship for the poorest 40% of CSG-ineligible children. This

latter group, whose living standards hover just above the CSG eligibility level is arguably a

better indicator for trends that may have affected CSG-eligible children.

As can be appreciated visually in Figure 2, there is a very slight downward trend (older

children have lower for both subsets of children who are ineligible for the CSG. Table 3

displays the estimated regression coefficients used to generate Figure 2. In column (1) we

16In a simple regression analysis of z-scores, the coefficient of the eagerness is positive and highly significant
even in the presence of other covariates, including CSG treatment.
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consider all non-eligible children and show that the apparent negative relationship is not

statistically significant. Adding a quadratic term for the child’s age, as in column (2), does

not alter our conclusion.

Columns (3) and (4) of the table show the results when we focus this exercise on the

bottom 40% of ineligible children. The data points projected onto Figure 2 are those for this

poorer subset of CSG-ineligible children. Once again, the analysis does not support the idea

that there was a significant improvement in the health status of children from later cohorts

in the non-eligible sample. While the estimated slope is downward sloping, its magnitude

is so slight that even if it were significant, it would imply only 0.2 percentage independent

increase in z-score between children in upper tercile of the treatment distribution as compared

to those in the lowest tercile of the treatment distribution. As the next section shows, the

estimated CSG treatment effect is an order of magnitude larger than this amount. This

positive estimated effect of the CSG on HAZ is thus unlikely to be driven by confounding

factors affecting recent cohorts of South African children.

Figure 2: Trends in Height-for-Age: CSG ineligible children
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The KIDS data provide a second window to explore the possibility of a cohort effect

that improves child health and height independently of the CSG. The KIDS 2004 survey

included a community questionnaire in which local leaders were asked their perceptions

about the quality of local services in both 1999 and 2004. Table 4, organized as a transition
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Table 3: Age effects in Height-for-Age for non-eligible children

Model: All non-eligible Bottom 40%
(1) (2) (3) (4)

Age in days (x100) -0.025 0.187 -0.018 -0.014
(0.030) (0.139) (0.045) (0.199)

Age squared -0.004 -0.000
(0.003) (0.004)

Observations 886 886 392 392

Note: Robust standard errors in parenthesis. The bottom
40% corresponds to children in the bottom 40% of ineligible
households based on per capita expenditure.
Source: Author’s calculations using KIDS dataset.

matrix, with 1999 perceptions defining the rows and 2004 perceptions the columns, shows

a preponderance of stasis (the bolded main diagonal of the matrix) or even deterioration

in the perceived quality of local health services. While there are a few communities where

services may have improved (the upper triangle of the transition matrix), these data suggest if

anything, that later cohorts of children may have had access to poorer quality health services.

Given that these communities have been hit hard by increasing numbers HIV/AIDS-related

illnesses and deaths, this apparent deterioration in health services may be the result of a

health care system that has been overwhelmed by these new demands.

The community questionnaire also asked respondents to identify the main improvements

in their communities since 1999. Corroborating the evidence that health services have not

been generally improving over the period of the CSG grant, only 6% of communities identi-

fied hospitals and clinics as the most improved service since 1999, and another 4.7% and 6.4%

listed them as the second and third most improved service. These numbers are much lower

than for primary school (27.3%, 21.5% and 4.8%, respectively) and for the supply of electric-

ity (12.1%, 20.0% and 12.7%, respectively). While these issues deserve further attention, at

a descriptive level at least the evidence suggests if anything that complementary health care

services have deteriorated for children in the later birth cohorts who have received higher

levels of CSG support.
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Table 4: Distribution of the perceptions about hospitals and clinics services: 1999 and 2004

2004
1999 V. unhappy Unhappy Neutral Happy V. happy

Very unhappy 40.0 10.0 20.0 10.0 20.0
(10 communities)

Unhappy 0.0 54.6 18.2 27.3 0.0
(11 communities)

Neutral 33.3 33.3 16.7 16.7 0.0
(6 communities)

Happy 34.8 43.5 4.4 17.4 0.0
(23 communities)

Very happy 50.0 50.0 0.0 0.0 0.0
(2 communities)

Source: Author’s calculations using KIDS dataset (community questionnaire).
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4 Continuous treatment estimates of the impact of the

CSG on nutrition

In this section we evaluate the impact of the CSG when the treatment is defined as a

continuous variable using an estimator proposed by by Hirano and Imbens (2004).17 As

discussed above, we achieve identification of program effects by exploiting variation of treat-

ment amongst the subset of treated children. As with a binary treatment analysis, the key

identifying assumption is that conditional on observables (including eagerness), variation in

treatment status is the result of random factors related to child age and program roll-out.

4.1 Identification strategy

The intuition behind the Hirano and Imbens estimator is most easily explained with the

empirical example used by these authors. In their study, Hirano and Imbens (2004) use

their continuous treatment estimator to evaluate the impact of lottery winnings on labor

supply of the “treated” population of lottery winners. The treatment dosage (size of lottery

winnings) is clearly randomly distributed amongst lottery winners, satisfying a general un-

confoundedness condition that treatment dosage is orthogonal to the outcomes of interest

(e.g., leisure-seeking individuals were no more likely to receive large winnings than were

those who wanted lottery winnings to start a new business and work more hours). When

this unconfoundness assumption is fulfilled, identification of treatment effects should be rela-

tively straightforward and credible. However, in the empirical analysis of Hirano and Imbens

(2004), the random distribution of treatment is disrupted by non-random survey response

problems (their completed sample is biased towards winners of smaller lottery prizes). Their

key contribution is to show how to integrate other covariates into the analysis when the

observed treatment is not purely randomly distributed.

Formally, consider a random sample of individuals indexed by i where i = 1, . . . , N . Let

d ∈ D denote the dosage (in our case, the extent of CSG treatment during the child’s first

36 months of life). For each i there is a set of potential outcomes, Yi(d), which capture

i’s response to a dose. In our case, Yi(d) is the treated child’s HAZ score. When the dose

is binary then D = {0, 1}, but for the purpose of our paper we consider the continuous

treatment case where D lies in the interval [d0, d1]. For each unit i we observe a set of

covariates Xi, the level of the treatment received, Di ∈ [d0, d1], and the corresponding

17Alternative approaches for non-binary treatment include Imbens (2000) for categorical treatments. See
also Behrman, Cheng and Todd (2004).
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outcome Yi = Yi(Di).
18

Let the average dose-response function at d be described by µ(d) = E[Yi(d)]. We are

interested in estimating the average gain on height-for-age from receiving the CSG for a

fraction d of the window compared to a smaller reference dose, d̃. Thus, our impact measure

of interest is:

θ(d) = µ(d)− µ(d̃) = E[Yi(d)]− E[Yi(d̃)] d̃, d ∈ D. (1)

To keep the notation simple, we will drop the i subscript until the estimation section. The

key assumption of the method suggested by Hirano and Imbens (2004) is a generalization

of the unconfoundedness assumption found in the binary treatment literature. The central

idea is that after adjusting for differences in a set covariates X all biases in the comparison

and treatment groups are removed. The authors capture this assumption as follows (p. 74):

Assumption 1 (Gen. Weak Unconfoundedness) Y (d)⊥D|X ∀d ∈ D.

In other words, conditioning on the covariates the extent of treatment is random, uncon-

founded with any unobserved factors that might effect the extent of treatment (and out-

comes)

While this unconfoundedness assumption is obviously met in the case of the lottery

winnings studied by Hirano and Imbens (2004), our key identification assumption here is

that conditional on eagerness (and other observable characteristics), the extent of early

life CSG treatment or dosage is random, depending only on the child birthdate and local

program roll-out. Unless childbirth decisions were postponed by more ardent caregivers (in

anticipation of the CSG), this assumption should be met. Such postponement is exceedingly

unlikely, however, as the program was announced in mid-1998 and in principal available to

all eligible children at that date. Put differently, anyone with immediate knowledge of the

program would have been positioned to benefit from it immediately and would have had no

incentive to postpone childbearing.

Following Hirano and Imbens, the next step is to define the “generalized propensity score”

or GPS.

Definition 1 (Generalized Propensity Score) Let r(d, x) be the conditional density of

the treatment given the covariates:

18With continuous treatment several restrictions apply to the probability space. See Hirano and Imbens
(2004) for details.
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r(d, x) = fD|X(d, x)

Then the generalized propensity score is R = r(D, X).

Like in the standard (binary) propensity score, the GPS has the property that within strata

with the same value of the conditional density r(d,X), the probability that D = d does not

depend on the value of the covariates X. The authors use the GPS to show that, when using

the weak unconfoundedness assumption, the assignment to treatment is unconfounded given

the GPS. That is, for every d, we have fD(d|r(d, x), Y (d)) = fD(d|r(d, X)). 19

The estimation of θ(d) requires computing two functions. First, let β(d, r) = E[Y |D =

d,R = r] be the conditional expectation of the outcome as a function of the treatment level

D and the score R (note that both variables are scalars.) The dose response function at a

particular level of the treatment is the average of the conditional expectation over the GPS

at the particular level of treatment. This is given by µ(d) = E[β(d, r(d,X))] = E[Y (d)].

Once µ(d) is computed, we can obtain our estimate for θ(d) as defined above.20

4.2 Impact estimation

To estimate θ(d) for all d ∈ D we use a two-stage approach as follows. In the first stage we

assume a normal distribution for the treatment given the covariates:

Di|Xi ∼ N(ψ′Xi, σ
2)

where the parameters ψ and σ2 are estimated by maximum likelihood. This allows us to

estimate the GPS as

R̂i =
1√

2πσ̂2
exp

(− 1

2σ̂2
(Di − ψ̂′Xi)

2
)

In the second stage we use a flexible function for β(d, r). As suggested by Hirano and

Imbens (2004) we use a quadratic approximation

β(Di, Ri) = E[Yi|Di, Ri] = α0 + α1Di + α2D
2
i + α3Ri + α4R

2
i + α5DiRi

19See theorem 1 in Hirano and Imbens (2004).
20As the authors note, the averaging is over the score evaluated at the treatment level of interest, r(d, X)

and not over the GPS R = r(D, X). Theorem 2 in Hirano and Imbens (2004) formally demonstrates the
relation between β(d, r) and µ(d). It also shows that β(d, r) = E[Y (d)|r(d,X) = r]
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The set of parameters α = (α0, . . . , α5) can be estimated using ordinary least squares.

Given the estimated parameters we can compute the average potential outcome at the treat-

ment level d

µ̂(d) = E[Ŷ (d)] =
1

N

N∑
i=1

(α̂0 + α̂1 · di + α̂2 · d2
i + α̂3 · r̂(d,Xi)+ α̂4 · r̂(d, Xi)

2 + α̂5 · di · r̂(d,Xi))

We can compute µ̂(d) for all levels of d. To estimate θ̂(d), the gains in Y from receiving

a dose of d compared to a dose of d̃, we proceed as follows

θ̂(d) = µ̂(d)− µ̂(d̃) ∀d ∈ D

The authors suggest computing the confidence intervals for the estimates using bootstrap

methods.

4.3 Econometric results

As described in the prior section, our strategy to satisfy the weak unconfoundedness orthog-

onality assumption is to include in the set of covariates a reliable indicator (eagerness) of the

family preferences and values that usually remains unobserved and confound casual analy-

sis. Conditional on these variables, including the “eagerness” to apply for the CSG, should

remove most any bias that results from estimating impacts by comparing across different

treatment levels.

Table 5 shows the estimates of the first and second stages of our core impact evaluation

model. The first-stage estimates indicate the importance the eagerness variable has on

explaining the treatment dose. Other covariates include the age, education, sex, marital

status and employment status of the child’s caregiver. The model also includes interaction

terms between eagerness and caregiver sex and marital status.21 While most of these variables

have intuitive signs (children of younger, better educated, female caregivers are more likely

to have larger CSG coverage), the individual coefficients are not significant at conventional

levels.

21As can be seen in Table 6 below, the raw data are unbalanced in terms of caregiver sex and marital
status. Compared to children with high and low levels of treatment, children receiving intermediate levels
of treatment are more likely to have male cargiver and less likely to have a married caregiver. In an effort
to capture these interactions, the binary variables for caregiver sex and marital status were interacted with
eagerness with the expectation that the interaction terms would carry a negative coefficient.
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Table 5: First and Second stages of GPS estimation

Core Model Secondary Model
Variable coefficient s.e. coefficient s.e.

First Stage: Maximum likelihood estimates
Eagerness 0.003 0.0003 0.002 0.0004
Boy (=1) -0.01 0.02 -0.01 0.026
Caregiver’s age -0.001 0.001 -0.004 0.001
Caregiver’ educ. -0.004 0.003 -0.006 0.004
Cargiver married (=1) -0.03 0.03 -0.03 0.03
Married × Eager -0.0005 0.001 -0.001 0.001
Caregiver’s sex -0.005 0.03 -0.003 0.03
Sex × Eager -0.001 0.001 -0.0003 0.001
Caregiver works (=1) 0.002 0.02 -0.02 0.03
Village fixed effects No Yes

Second Stage: OLS estimates
α0 -0.84 0.40 -0.72 0.62
α1 0.85 1.61 0.40 1.64
α2 -177 164 -120 141
α3 -0.58 0.63 -0.69 0.81
α4 3.91 29 14.84 30
α5 1.1 0.63 0.85 0.57

s.e.: Standard errors.
Source: Author’s calculations using KIDS dataset.
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4.3.1 Balance of the Core Model

Table 6 allows us to explore whether or not the GPS balances the characteristics of the

observations in the different ranges of the treatment variable. The analysis here builds on

the suggestions of Hirano and Imbens who propose a natural extension of the concept of

balance as developed by Rosenbaum and Rubins (1993) for the binary treatment case. The

first three columns of Table 6 test whether the mean value of the covariates are the same for

the observations in the three different treatment terciles. For example, the first cell of the

table tests whether the mean eagerness of those who receive low treatment amounts (0-39

percent of their window) is different from those that did not receive low treatment. As can

be seen, low treatment children come from families that are 51 percentage points less eager

than the families of children who received higher treatment levels. Overall, the raw data is

fairly well balanced along most dimensions except eagerness and the marital status and sex

of the caregiver. Of the twenty-one possible comparisons between treatment groups, five are

statistically different from zero, indicating no random allocation of treatment.22

The second set of three columns in Table 6 explore whether the covariates are better

balanced once we condition on the estimated GPS. Again we follow the suggestion of Hirano

and Imbens on how to test balance in the continuous treatment case. For each treatment

tercile, we first calculate the estimated probability that each observation might have received

the median treatment level for the tercile. In other words, letting dt denote the median

treatment level received in tercile t, we calculate r(dt, Xi) for each observation. For example,

for the lowest treatment tercile, we calculate r(23%, Xi), where 23% is the median treatment

level for those who actually received low levels of treatment.

Continuing with the example of the lowest treatment tercile, we then separate the ob-

servations up into the five quintiles defined by r(23%, Xi). For each of these GPS quintile

blocks, we then test whether the means of the covariates for the observations that actu-

ally received low treatment is different from the means for those that did not receive low

treatment. Note that if GPS successfully balanced the covariates, we should expect low and

not-low treatment groups to look similar once we block or condition on the GPS.

As can be seen in the second group of columns in Table 6, the GPS score improves

the balance of the data as now only three of the twenty-one comparisons are statistically

significant. Differences in eagerness values between treatment groups are now less than a

third of their magnitude in the raw data, and only one of the differences remains statistically

22The data are not balanced across treatment terciles in terms of child age in 2004 as would be expected
given the rollout pattern of the CSG.
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Table 6: T -tests for Equality of Means between Treatment Groups

Raw Data Data Adjusted by GPS
Treatment Terciles Treatment Terciles

Low Medium High Low Medium High
[0-39%] [39-68%] [58-100%] [0-39%] [39-68%] [58-100%]

Eagerness -50.87* -10.93* 60.55* -9.04 -3.52 26.42*
Boy -0.05 0.00 0.05 -0.02 0.04 0.04
Caregiver’s age 1.85 -1.00 -0.83 5.47* -0.97 -2.09
Caregiver’ educ. -0.71 0.49 0.21 -0.64 0.83 -0.55
Cargiver married (=1) 0.07 -0.13* 0.06 0.11 -0.14 0.14
Caregiver’s sex 0.03 -0.05* 0.02 0.04 -0.06* 0.04
Caregiver works (=1) -0.08 0.06 0.02 -0.08 0.08 -0.01

Note: * denotes significance at 10%.
Source: Author’s calculations using KIDS dataset.

significant (in the balanced data, high treatment children come from more eager families than

do the children in the lower treatment terciles). Also none of the other covariates exhibit

significantly different means across treatment groups.23

4.3.2 Estimated Continuous Treatment Effects

Given that our GPS procedure systemaically improves the balance of eagerness and other

characteristics across treatment groups, we turn now to examine the quantitative implications

of our estimates. As Hirano and Imbens (2004) argue, the parameters of the second-stage

estimate in Table 5 do not have a direct meaning, so whether the treatment has a statistically

significant impact on the outcome cannot be inferred directly from those parameters.

To evaluate CSG treatment effects, we estimate θ(d) over the d = [0.01, 1.00] interval

depicted in figure 3. Here the baseline against which we compare all treatment levels is set

at reference level d̃ = 0.01. We thus compare the gains on HAZ from receiving the CSG for

different proportions of the window of nutritional opportunity against receiving a “small”

23The balanced data exhibit greater differences in age amongst the treatment cohorts than does the raw
data. This result is expected as we achieve balance along the dimension of eagerness by effectively comparing
equally eager parents whose children were born in different age cohorts. That is, we are using the rollout
process to create the random variation in treatment that we need to identify the effect of a program that is
in part also driven by self-selection based on parental eagerness. As discussed in the prior section, there is
no evidence of an independent cohort effect on child health that would invalidate this assumption.
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dose.

Figure 3 shows on the right axis a non-parametric estimate of the distribution of CSG

treatment in the KIDS data (shown as the red or dotted line). The peak of the distribution

is close to receiving treatment for three-quarters of the windows and decreases quickly after

that. The solid line (measured on the left axis) is our estimates for θ(d) for different values

of d measured in the horizontal axis.

These points estimates show that for treatments covering less than 20% of the window

we find no gains. The gains are at a maximum when the treatment covers around three-

fourths of the nutritional window. A child receiving treatment for two-thirds of the windows,

on average, has 0.20 more HAZ than a child with a treatment covered for only 1% of the

window. This gain is statistically significant as the 90% confidence interval estimate excludes

zero. The portion of the impact curve for for which we can reject the hypothesis of zero

impact are demarcated with rectangles. The decline of the gains on HAZ after a dosage of

80% cannot be interpreted as an indicator that treatment is less effective after that level,

since this decline coincides with a growth of the width of the interval estimator provoked by

a small number of dosage levels beyond that point (as shown by the treatment distribution

function).

4.4 Robustness check using only temporal rollout variation to

identify CSG impact

Identification of our core continuous treatment model depends on the assumptions that nei-

ther birthdate nor birth location directly influence a child’s HAZ. While there is ample

evidence that there is no independent birthdate or cohort effect, we might worry that there

is an independent spatial pattern (e.g., urban communities with earlier rollout may indepen-

dently have higher z-scores). While it is a bit hard to know what to expect in this regard

given spatial structure of the South Africa, we check the robustness of our results by re-

estimating our model after effectively including a set of cluster (village) fixed effects in the

first stage GPS regression. Given that the KIDS data come from 72 clusters, this is clearly

a statistically expensive and conservative approach.

The results from this robustness check are shown in Table 5 and the estimated treatment

effect is shown as the dashed line in Figure 3. As can be seen, the impact of exposure to

the CSG from these estimates parallel the core model estimates. However, the estimated

impacts are statistically significant at the 10% level over a slightly smaller treatment range

(the 90% interval excludes zero for dosages ranging from 54% to 68%).
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Figure 3: Gains in Height-for-Age from Child Support Grant
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5 From cash transfer flows to human capital stocks

The nutrition of young children is of importance not only because of concern over their

immediate welfare, but also because nutrition in this formative stage of life is widely perceived

to have substantial, persistent impact on their physical and mental development. This in turn

affects their school success and later labor market productivity. Yamauchi (2008), using also

the data from KIDS, finds that siblings with improved height-for-age z-scores significantly

start school at an earlier age, have higher grade attainment, lower grade repetition, and

better learning performance in the early stage of schooling. Improving the nutritional status

of malnourished infants and small children may, therefore, have important payoffs over the

long term (e.g., Behrman and Hoddinott, 2005; Maluccio, Hoddinott, Behrman, Martorell

and Quisumbing, 2009). In this section we try to quantify the gains in height-for-age (z-

scores) found in the previous section in terms of adult wages. We then use these monetary

figures to calculate private to CSG payments.

Consider the case of a male child who is treated before age 1 and receives CSG benefits for

two-thirds of the first three years of life. The gains in the child’s z-score would be estimated

to be around 0.40.24 To compute the gains in height for an adult we assume that as an

adult, this child will have a z-score 0.4 higher than the current average male between 25-35

years of age. This assumption is consistent with the evidence that early childhood height

losses and gains are irreversible, leading to a permanent change in the child’s position in the

height distribution.25

Using data from the 1998 wave of KIDS we obtained the z-score of adult males age 25-35,

as well as their average monthly wage earnings. The average z-score for this adult group is

-0.68, and a z-score gain of 0.2 translates into a 1.8 cm., or 1.1%, gain in adult height.26

A number of authors have examined the impact of adult height on wages. In the context

of lower income countries, adult height is seen to be an indicator of a broad array of human

capabilities, including health, cognitive development and work capacity.27 The study by

Thomas and Strauss (1997) takes a particularly careful look at the relation between wages

and health in Brazil. Controlling for achieved levels of eduction, they report for urban males

24Our estimates transforming z-scores to children’s height do not vary by gender.
25This assumption is consistent with the conventional pediatric wisdom that a child’s height (z-score) at

age 2 is an excellent predictor of adult height (z-score.)
26Recall that z-scores (z) are defined as z = h−h̄

σh
where h is height, h̄ and σh are, respectively, the mean

and standard deviation of height given the age. Changes in height are computed by ∆h = σh∆z.
27In contrast, work on developed country (such as Postelwaite, Persico and Silverman (2004)) interpret

greater adult as an indicator of higher status or other social processes that boost adult earnings.
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an elasticity of wages with respect to height of 2.43 to 3.36. Using these elasticities, the gains

in monthly South African wages from an increment in height of 1.1% would be between R67

to R92. Note that these calculations ignore any general equilibrium effects that would occur

from having a better nourished adult population.28 While it would be good to have similar

elasticity estimates specifically for South Africa, we use the Thomas and Strauss estimate

as a way to arrive at a rough evaluation of the benefits of the increased height generated by

the CSG.

To compute the returns to the CSG payments, we calculate the present discounted value

of a monthly flow of R62 (and R92) from age 25 to 65. Note that this calculation assumes

that the individual is fully employed throughout this time period. At an annual real discount

rate of 5% it yields a discounted present value of R3,896 (R5,380) at birth. Given the cost

of 20 months of the CSG (20 × R170), our calculations show a Benefit-Cost ratio between

1.6 and 2.2. Note that a benefit-cost ratio of 1.0 would imply a real rate of return of 5%.

A ratio in excess in 1.0 implies a real return in excess of this rate. If we more adjust our

calculation and more conservatively assume individuals are unemployed 33 percent of the

time (with unemployment spells randomly distributed across the life cycle), then the benefit

figures are cut by a third, and the estimated benefit-cost ratios fall to between 1.06 and 1.48.

While these numbers need to be treated with extreme caution, and are at best only in-

dicative of the order of magnitude of the long-term gains that might be anticipated from

the CSG, there are several reasons why these impressive returns to the CSG may be conser-

vative. First, this simple analysis ignores the impact that z-scores can have on educational

attainment and progress. Second, we did not include the potential gains from receiving the

grant after the window of opportunity (from age three to fourteen).

In addition to understanding the height wage elasticity in South Africa itself, future

efforts to evaluate the impact of cash transfer flows on the future value of human capital

might look more closely at how wages and earnings evolve over the life-cycle. The analysis

here has simply assumed that wage gains are once and for all and persist over the life

cycle. In addition, the simple calculations here have not considered the horrific drop in life

expectancy that HIV/AIDS has brought to South Africa. The effects of this pandemic on

the labor market has yet to be fully understood.

28In principal, these general equilibrium effects could be negative (if returns diminish to increasingly
plentiful human capital), or positive (if returns to human capital increase once the labor market becomes
sufficiently dense in better nourished, and better educated workers).
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6 Conclusions

Cash transfer programs have taken on an increasingly important role in the anti-poverty

programs of middle income countries. While a number of these programs have been mod-

eled on Mexico’s Progresa program (e.g., those in Brazil, Honduras and Nicaragua), South

Africa’s Child Support Grant (CSG) has followed its own logic. Implemented at the same

time as Progresa in 1998, the CSG targets child support payments to children’s caregivers

(almost exclusively women). Unlike Progresa, receipt of the CSG is not conditional on partic-

ular child behavior (school attendance and regular medical check-ups). Indeed as originally

implemented, the CSG was limited to children under seven years of age.

In this context, this paper has shown that these targeted, unconditional CSG payments

have bolstered early childhood nutrition as signalled by child height-for-age. While it is

of course possible that conditioning CSG payments on, say, medical check-ups would have

further increased program effects, we do find robust effects even in the absence of such

conditioning. In contrast to the literature on the elasticity of nutrition with respect to

income, income and nutrition appear to be more tightly wedded in the case of CSG payments,

perhaps because the income increases are assigned to women.

While income transfers such as those of the CSG or the Progresa program in Mexico

should help immediately redress contemporaneous poverty, the deeper question is whether

they help facilitate a longer-term (inter-generational) pathway from poverty. One way that

they might contribute to this goal is by enhancing the durable human capital stock of the

next generation. Augmenting our estimates of the nutritional effects of the CSG with best

estimates from the literature on the elasticity of wages with respect to adult height, we cal-

culate that the discounted present value of increased future earnings are perhaps 50% higher

than the cost of early-life CSG support. While these estimates are crude, first attempts,

they do point us toward the sort of longer term analysis needed to determine when short

term cash transfers translate into the long run asset increases needed to sustainably reduce

poverty in the future.

30



References

Angrist, Joshua D. (1998), ‘Estimating the labor market impact of voluntary military service
using social security data on military applicants’, Econometrica 66(2), 249–288.

Araujo, Maria Caridad and Norbert Schady (2006), Cash transfers, conditions, school en-
rollment, and child work: Evidence from a randomized experiment in Ecuador, Policy
Research Working Paper 3930, The World Bank.

Arends-Kuenning, Mary, Ana Fava, Ana Lucia Kassouf and Alexandre de Almeida (2005),
The impact of school quality and school incentive programs on childrens schooling and
work in Brazil, Working paper, University of Illinois.

Behrman, Jere, Mark Rosenzweig and Andrew D. Foster (1994), The dynamics of agricultural
production and the calorie-income relationship, Mimeo, University of Pennsylvania.

Behrman, Jere R and Anil B Deolalikar (1987), ‘Will developing country nutrition im-
prove with income? a case study for rural south India’, Journal of Political Economy
95(3), 492–507.

Behrman, Jere R and Anil B Deolalikar (1988), Health and nutrition, in H.Chenery and
T.Srinivasan, eds, ‘Handbook of Development Economics’, Vol. I, North-Holland, Am-
sterdam, pp. 631–711.

Behrman, Jere R. and John Hoddinott (2005), ‘Programme evaluation with unobserved
heterogeneity and selective implementation: The Mexican “PROGRESA” impact on
child nutrition’, Oxford Bulletin of Economics and Statistics 67(4), 547–569.

Behrman, Jere R., Yingmei Cheng and Petra E. Todd (2004), ‘Evaluating preschool programs
when length of exposure to the program varies: A nonparametric approach’, The Review
of Economics and Statistics 86(1), 108–132.

Blundell, Richard and Monica Costa-Dias (2002), Alternative approaches to evaluation in
empirical microeconomics, Cemmap Working Papers 10/02, Institute of Fiscal Studies,
London.

Bouis, Howarth E. and Lawrence J. Haddad (1992), ‘Are estimates of calorie-income elas-
ticities too high?: A recalibration of the plausible range’, Journal of Development Eco-
nomics 39(2), 333–364.

Case, Anne and Angus Deaton (1997), Large cash transfers to the elderly in South Africa,
Discussion Paper 176, Princeton University.

Case, Anne, V. Hosegood and Frances Lund (2003), The reach of the South African Child
Support Grant: Evidence from KwaZulu-natal, Working Paper 38, CSDS.

31



Chronic Poverty Research Centre (2004), Chronic poverty report 2004-2005, Technical re-
port, Chronic Poverty Research Centre.

Glewwe, Paul and Pedro Olinto (2005), Evaluating of the impact of conditional cash transfers
of schooling: An experimental analysis of Honduras PRAF program, Mimeo, University
of Minnesota.

Haarman, Claudia and Dirk Haarman (1998), ‘A contribution towards a new family support
system in South Africa’, Report for the Lund Committee on Child and Family Support.

Haddad, Lawrence, Harold Alderman, Simon Appleton, Lina Song and Yisehac Yohannes
(2003), ‘Reducing child malnutrition: How far does income growth take us?’, World
Bank Economic Review 17(1), 107–131.

Heckman, James J, Hidehiko Ichimura and Petra E Todd (1998), ‘Matching as an economet-
ric evaluation estimator: Evidence from evaluating a job training programme’, Review
of Economic Studies 64(4), 605–54.

Hirano, Keisuke and Guido W Imbens (2004), The propensity score with continuous treat-
ments, in A.Gelman and X.-L.Meng, eds, ‘Applied Bayesian Modeling and Causal In-
ference from Incomplete-Data Perspectives’, Wiley, New York, pp. 73–84.

Imbens, Guido (2000), ‘The role of the propensity score in estimating dose-response func-
tions’, Biometrika 87(3), 706–710.

Imbens, Guido W. (2004), ‘Nonparametric estimation of average treatment effects under
exogeneity: A review’, The Review of Economics and Statistics 86(1), 4–29.

Kakwani, N., F. Soares and H. Son (2005), Conditional cash transfers in africa, Working
Paper 9, UNDP International Poverty Centre.

Klasen, S. (1997), ‘Poverty, inequality and deprivation in South Africa: An analysis of the
1993 saldru survey’, Social Indicator Research 41, 51–94.

Kruger, John (1998), From single parents to poor children: Refocusing South Africa’s trans-
fers to poor households with children, in ‘ISSA’s 2nd International Research Conference
on Social Security’.

Leibbrandt, M. and I. Woolard (1999), ‘A comparison of poverty in South Africa’s nine
provinces’, Development Southern Africa 16(1), 37–54.

Lund, F (1993), ‘State social benefits in South Africa’, International Social Security Review
46(1), 5–23.

Lund, Frances (2001), Child support grant, Mimeo, University of Natal.

32



Maluccio, John A. and Rafael Flores (2005), Impact evaluation of a conditional cash trans-
fer program. the Nicaraguan Red de Protección Social, Research Report 141, IFPRI,
Washington D.C.

Maluccio, John, John Hoddinott, Jere R. Behrman, Reynaldo Martorell and Agnes R.
Quisumbing (2009), ‘The impact of nutrition during early childhood on education among
Guatemalan adults’, Economic Journal .
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