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If p is a prime number, N a positive integer prime to p, and k an integer, then
we let S†k(N) denote the space of overconvergent p-adic cuspforms with coefficients
in Cp (of some radius of overconvergence) of weight k on Γ1(N) (see [10, chap. I]
for the definition of overconvergent modular forms). In [4, prop. 4.3], Coleman

proves that if k ≥ 2, then the differential operator θk−1 =
(
q
d

dq

)k−1

induces a

transformation from S†−(k−2) to S†k. If f is a weight k normalized Hecke eigenform
lying in the image of θk−1, then one sees that the Up eigenvalue of f is divisible by
pk−1, and so f has slope at least k − 1 ([4, lem. 6.3]).

Suppose that f is actually a normalized classical eigenform on Γ1(N) ∩ Γ0(p).
It follows by Atkin-Lehner theory [1] and the fact that f has slope at least k − 1
that f has slope exactly k − 1, and that f is one of the twin oldforms attached to
an ordinary classical form g on Γ1(N).

Conversely, suppose that g is a classical normalized Hecke eigenform of weight k
on Γ1(N), defined over Qp, which is ordinary at p. Then g gives rise to two oldforms
(a pair of twins) on Γ1(N)∩Γ0(p), one of slope zero and one of slope k−1, which we
may think of as overconvergent Hecke eigenforms on Γ1(N). Denote the slope k−1
twin by f . In [4, §7], Coleman discusses the question as to whether or not f is in
the image of θk−1. He shows that if g is a CM modular form, then f is in the image
of θk−1. In fact, if g is attached to the (k − 1)st power of a Grössencharacter ψ,
then f is obtained by applying θk−1 to a slope zero p-adic modular form of weight
−(k − 2) attached to the (1 − k)th power of ψ [4, prop. 7.1]. Coleman also asks
whether there are any non-CM forms in the image of θk−1 [4, remark 2, p. 232].

Continue to suppose that g is a a normalized classical eigenform. The Fourier
coefficients span a finite extension E of Q. Let ℘ range over the primes of E
lying over p. Each prime ℘ gives an embedding of E into Qp (well-defined up to
conjugation in Qp). Let g℘ denote g regarded as a modular form over Qp (well-
defined up to algebraic conjugacy in Qp) in this way. If g℘ is ordinary, then as
above we may form its slope k − 1 twin, which we denote f℘.

The aim of this article is to state a certain analogue in p-adic Hodge theory of
the variational Hodge conjecture [12], and to explain how it implies the following
conjecture.

Conjecture (0.1). Let g be a classical Hecke eigenform on Γ1(N), let E be the
finite extension of Q generated by the Fourier coefficients of g, and let ℘ run over
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all the prime ideals of E lying over p. Suppose that each g℘ is ordinary, and that
f℘ lies in the image of θk−1 for every prime ℘. Then g is a CM eigenform.

Whether or not it is reasonable to weaken conjecture (0.1) by asking only that
g℘ be ordinary and f℘ be in the image of θk−1 for one prime ℘ is something on
which the author is undecided for the moment.

In section 1, after making some preliminary observations valid for all weights,
we prove conjecture (0.1) in the case that the weight k equals two. In this case,
we appeal directly to the Serre-Tate theory of deformations of abelian varieties in
characteristic p [15, 19] and Tate’s theorem on morphisms of p-divisible groups in
mixed characteristic [24, thm. 4].

In section 2, we state our p-adic variational Hodge conjecture (conjecture (2.2))
and elaborate on some aspects of it. In particular, proposition (2.7) gives a useful
alternative formulation of the conjecture, in terms of motives with good reduction
modulo p.

In section 3 we explain how conjecture (2.2) implies conjecture (0.1) for arbitrary
weights k ≥ 2. For this we will depend heavily on the existence of the motive
attached to a Hecke eigenform [21].

That conjecture (0.1) would be implied by an appropriate conjecture on algebraic
cycles was noticed independently by B. Mazur. The author first observed the
relation between conjectures (0.1) and (2.2) some time in 1997. He would like to
thank M. Kisin for encouraging him to write up this account of his observation, as
well as B. Conrad and S. Bloch for helpful conversations.

1. preliminaries, and the case of weight two eigenforms

Let us fix a choice of an algebraic closure Qp of Qp, and let Cp denote the p-adic
completion of Qp. If E is any finite extension of Q then Gal(Qp/Qp) acts on the
set of embeddings of E into Qp, and the orbits correspond to primes ℘ of E lying
over p.

If g is a classical normalized Hecke eigenform of weight at least two on Γ1(N)
and if E is the finite extension of Q in Q generated by the q-expansion coefficients
of g, then there is attached to g a representation ρg : Gal(Q/Q) → GL2(E ⊗Q Qp)
[6]. Write E ⊗Q Qp

∼−→
∏

℘|pE℘, where the product ranges over the primes ℘ of E
lying over p, and E℘ denotes the ℘-adic completion of E. There is a corresponding
factorization ρg

∼−→
∏

℘|p ρg,℘. The representation ρg,℘ reflects the properties of g
regarded as a p-adic modular form via the embedding E → Qp corresponding to
℘. As in the introduction, we let g℘ denote g regarded as a p-adic modular form in
this way.

If f is any p-adic normalized Hecke eigenform of some weight on Γ1(N) with
coefficients in Cp, we may attach to f a Galois representation ρf : Gal(Q/Q) →
GL2(Cp). (See [10, §III.5] and [14, thm. II] for the construction of these represen-
tations. The first reference treats the case p > 7, and the second, the case p > 2 (in
the more general context of p-adic Hilbert modular forms). We will only need the
existence of these representations in the ordinary case, for p-adic modular forms
on GL2/Q, and in this case a modification of the methods of [13] can also be used
to construct the necessary representations when p = 2. One can also modify the
set-up of the argument of [14, §1] so that it treats the case p = 2. If the reader
prefers, they may assume that p is odd for the remainder of the paper.)
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Now suppose as above that g is a classical eigenform on Γ1(N), that ℘ is a
prime lying over p in the coefficient field E of g, and that g℘ is ordinary. As in
the introduction let f℘ denote the slope k − 1 oldform on Γ0(p) ∩ Γ1(N) attached
to g℘. Then f℘ is a p-adic Hecke eigenform, and we have an equality of Galois
representations

ρf℘ = ρg,℘.

Suppose that f℘ lies in the image of θk−1. Let F℘ be the weight −(k− 2) overcon-
vergent form satisfying θk−1F℘ = f℘. Then since f℘ has slope k − 1, we see that
F℘ must be ordinary.

The Galois representations ρf,℘ and ρF,℘ are related by the equation

(1.1) ρf,℘ = χk−1ρF,℘

(where χ denotes the p-adic cyclotomic character).
The following proposition was also observed independently by Gouvea and Kisin.

It is the characteristic zero analogue of Serre’s observation concerning mod p Galois
representations and companion forms [11, thm. 13.8].

Proposition (1.2). Suppose that the classical eigenform g on Γ1(N) satisfies the
hypothesis of conjecture (0.1). Then the Galois representation ρg, when restricted
to an inertia group at p in Gal(Q/Q), splits as the direct sum of the trivial character
and the character χk−1.

Proof. It suffices to prove this for each factor ρg,℘ = ρf℘
of ρg. Since ρf℘

is the
Galois representation attached to an ordinary p-adic modular form of weight k,
when restricted to inertia at p it becomes a reducible representation, which is an
extension of the trivial character by the character χk−1 (as was proved for classical
forms by Deligne in an unpublished letter to Serre; see [14, prop. 2.3] for a published
proof, in the more general context of p-adic Hilbert modular forms). Similarly, ρF℘

becomes an extension of the trivial character by χ−(k−1), when restricted to an
inertia group at p. Equation (1.1) shows that ρf℘

thus also restricts to an extension
of the character χk−1 by the trivial character. Since k 6= 1, so that χk−1 is distinct
from the trivial character, these two descriptions of ρf℘

as an extension prove the
proposition. �

We now prove conjecture (0.1) in the case of weight two.

Theorem (1.3). Let N be a positive integer, p a prime not dividing N , g a classical
normalized Hecke eigenform of weight two on Γ1(N), and E the finite extension of
Q generated by the coefficients of g. Suppose that for every prime ℘ of E lying
over p, the form g℘ is ordinary, and the slope one form f℘ lies in the image of
θ : S†0(N) → S†2(N). Then g is a CM form on Γ1(N).

Proof. Since we are in the case k = 2, the modular form g determines an abelian
variety factor A of the Jacobian of X1(N) defined over Q, of dimension equal to
the degree of E over Q, and equipped with an embedding E → End(A)⊗Z Q.

Let Tp(A) denote the p-adic Tate module of A, and write Vp(A) = Tp(A)⊗Zp
Qp.

Then Vp(A) is a naturally a two-dimensional E-vector space, and as a representa-
tion of Gal(Q/Q), is isomorphic to ρg. Proposition (1.2) implies that we have the
isomorphism

(1.4) Vp(A) ∼−→ E ⊗Q Qp ⊕ E ⊗Q Qp(1)
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after restricting to an inertia group at p. Replacing A by an isogenous abelian
variety if necessary, we may assume that the ring of integers OE of E acts on A as a
ring of endomorphisms, and that the isomorphism (1.4) arises from an isomorphism

(1.5) Tp(A) ∼−→ OE ⊗Z Zp ⊕OE ⊗Z Zp(1)

after restricting to an inertia group at p.
Let A[p∞] denote the p-divisible group of A. Then the isomorphism (1.5) yields

a splitting

(1.6) A[p∞] ∼−→ OE ⊗Z (Qp/Zp)⊕OE ⊗Z Ĝm

after restricting the p-divisible group A[p∞] to the maximal unramified extension
of Qp.

The abelian variety A has good reduction at p, since p is prime to N . Let A
denote the Néron model of A over W (Fp). Tate’s theorem [24, thm. 4] implies that
the factorization (1.6) induces an analogous splitting of the the p-divisible group
A[p∞] of A:

A[p∞] ∼−→ OE ⊗Z (Qp/Zp)⊕OE ⊗Z Ĝm.

Thus A is the canonical lift of its special fibre A0 [19, proof of thm. V.3.3], and is
endowed with an OE-linear endomorphism F lifting the Frobenius endomorphism
of the special fibre.

The morphism F is not given by an element of OE , since its kernel is entirely
contained in (indeed, is equal to the p-torsion subgroup of) Ĝm ⊗Z OE . Thus
OE [F ] is a commutative Z-algebra of endomorphisms of A of rank equal to twice
the dimension of A.

If OE [F ] is an integral domain, then A is endowed with endomorphisms by an
order in a field of twice its dimension, and so is a CM abelian variety. Consequently
[23, prop. 1.6] implies that g is a CM modular form.

If OE [F ] is not an integral domain, then we may use it to cut out a proper
abelian subvariety B of A which is closed under the action of OE . Then this abelian
subvariety has CM (since [E : Q] = dim(A) > dim(B)), and again we conclude that
g is a CM form [23, prop. 1.6]. This completes the proof of the theorem. �

2. the p-adic variational hodge conjecture

In order to state our conjecture in p-adic Hodge theory, we introduce some
notation. Let k be a perfect field in characteristic p, let W denote the Witt ring of
k, and let K denote the fraction field of W .

Let X be a smooth proper W -scheme, and let Z0 be a codimension n-cycle in
the special fibre X0 of X . (Let us remark that we will always take our cycles
to have coefficients in Q, thus avoiding any problems with torsion.) Correspond-
ing to Z0 is a cycle class c0 in the crystalline cohomology group H2n

crys(X0,K) :=
H2n

crys(X0,OX0/W )⊗W K. Let X denote the generic fibre of X , which is a smooth
and proper K-scheme. The comparison between crystalline and de Rham cohomol-
ogy [2] yields an isomorphism

(2.1) H2n
crys(X0,K) ∼−→ H2n

dR(X,K).
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Suppose that Z0 is the specialization of a cycle Z on X. The cycle class c of Z lies
in the nth filtered piece of H2n

dR(X,K) (where the filtration on this vector space is
of course the Hodge filtration), and under the isomorphism (2.1), c0 is identified
with c. (See [9] for the construction of cycle classes in crystalline cohomology, and
a proof of this last claim.) We conjecture that the converse is true.

Conjecture (2.2). Suppose that Z0 is a codimension n cycle on the special fibre
X0 of the smooth proper W -scheme X , such that under the isomorphism (2.1) the
class c0 lies in the nth filtered piece of H2n

dR(X,K). Then there is a cycle Z on X
which specializes to Z0.

This conjecture is an obvious p-adic analogue of the variational Hodge conjecture
discussed in [12].

Remark (2.3) (a) Conjecture (2.2) is known in the case when n = 1 [3, thm. 3.8].
The method of proof is analogous to that used by Kodaira and Spencer to prove
the classical Lefschetz (1, 1)-theorem [17].

(b) Conjecture (2.2) is also known in the special case when X is the product of
abelian varieties A and B, and Z0 is the graph of a morphism between the special
fibres A0 and B0 [3, thm. 3.15]. (As the proof of this result makes clear, this
is a crystalline incarnation of the Serre-Tate deformation theory of morphisms of
abelian varieties.)

Remark (2.4) We will elaborate on conjecture (2.2) in the particular case when
Z0 is a correspondence between the special fibres X0 and Y0 of two smooth proper
W -schemes X and Y. That is, Z0 is a cycle on the product X0×Y0, of codimension
n+ dim(X0), say.

The Künneth formula and Poincaré duality together show that

H2(dimX0+n)
crys (X0 × Y0,K)

= ⊕iH
2(dimX0+n)−i
crys (X0,K)⊗Hi

crys(Y0,K)

= ⊕i Hom(Hi−2n
crys (X0,K),Hi

crys(Y0,K)),

and the cycle class c(Z0) decomposes as a direct sum c(Z0) = ⊕ici(Z0), where each

ci(Z0) ∈ Hom(Hi−2n
crys (X0,K),Hi

crys(Y0,K))

is the map on cohomology induced by the correspondence Z0. In particular, if Z0

is the graph Γf of a morphism f : Y0 → X0 of k-schemes (so that n = 0), then each
ci(Γf ) is the map on degree i cohomology induced by f .

Let X and Y denote the generic fibres of X and Y respectively. The Künneth
formula and Poincaré duality are equally valid for the de Rham cohomology ofX×Y
(regarded as filtered K-vector spaces), and are respected by the isomorphism (2.1).
Hence we see that c(Z0) lies in the (dimX + n)th piece of the Hodge filtration on
H

2(dimX+n)
dR (X × Y,K) if and only if each ci(Z0) is of degree n with respect to the

Hodge filtration on its source and target. In particular, if Z0 = Γf , we see that the
hypothesis of conjecture (2.2) is satisfied for c(Γf ) if and only if the maps induced
by f on cohomology respect the Hodge filtration on their source and target.

It is useful (indeed, crucial for the applications to conjecture (0.1)) to observe
that conjecture (2.2) has a reformulation as a statement generalizing remark (2.4) to
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the context of motives (statement (ii) of proposition (2.7) below). We now explain
this.

We work in the setting of homological equivalence motives (also called Grothen-
dieck motives) over K admitting good reduction over the ring W . It is not our
intention to attempt to expound a complete theory of such objects. We recall as
much as we need of this theory in order to explain the statement for motives that
we need in order to deduce conjecture (0.1) from conjecture (0.2). We refer to
[16, 18, 22] for a more detailed discussions of motives, and to [9, rem. B.3.8] for a
discussion of motives over K with good reduction over W .

A homological equivalence motive M over K is a triple (X,π, n) consisting of a
smooth proper K-scheme X, a correspondence π from X to itself, and an integer
n. The correspondence π is required to induce an idempotent endomorphism of
the total cohomology of X. (As to what cohomology theory we are using, see the
following remark.) The motive M = (X,π, n) is to be thought of as the nth Tate
twist of the image of π acting on the total cohomology of n. In particular, we define
the total cohomology of M to be equal to be the graded vector space obtained as
the nth Tate twist of the kernel of the total cohomology of X. We say that M has
good reduction over W if X admits an extension to a smooth proper W -scheme X ,

Remark (2.5) We can use any of a number of cohomology theories and obtain
the same notion of motive: for example, Q`-adic étale cohomology of X for any
prime `, or the de Rham cohomology of X. To see that these do give the same
notion of motive, one uses the comparison isomorphisms afforded by the existence
of topological singular cohomology on X (together with the Lefschetz principle).
Note that these comparison isomorphisms are compatible with the action of corre-
spondences.

We can also use cohomology theories attached to the special fibre of X ; for
example Q`-adic étale cohomology (for ` 6= p), or crystalline cohomology. To see
that these give the same notion of motive, one uses the proper base change and local
acyclicity of smooth morphisms to compare Q`-adic cohomology on the generic and
special fibres of X (assuming ` 6= p), and the comparison isomorphism (2.1) between
the de Rham cohomology of the general fibre and the crystalline cohomology of the
special fibre of X . Although it is redundant for the purposes of this remark, one
also has the p-adic comparison isomorphism between p-adic étale cohomology of
the geometric generic fibre and the crystalline cohomology of the special fibre [7,
thm. 5.6].

In the case that the cohomology theory that we use is computed on the special
fibre of X, we should also note that the correspondence π can be specialized to this
special fibre, and thus induces an endomorphism on cohomology in this case also.
Furthermore, the comparison isomorphisms between cohomology on the generic and
special fibres of X are compatible with respect to specialization and the action of
correspondences.

If M = (X,π, n) is a homological equivalence motive over K, admitting good
reduction over W , then we define the special fibre M0 of M to be the homological
equivalence motive over k given by the triple (X0, π0, n) (here π0 is the specialization
of the correspondence π to the special fibre X0 of the smooth proper X which
extends X). Although X may not be uniquely determined, the motive M0 is well-
defined up to isomorphism in the category of homological equivalence motives over
k. (If X ′ is another smooth proper W -scheme extending X, then the graph of the
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identity in the generic fibre of X × X ′ specializes to a correspondence from X0 to
X ′

0 which induces an isomorphism on cohomology.)
If M is a homological equivalence motive over K, admitting good reduction

over W , we define H∗
w.a.(M,K) to be the crystalline cohomology of the special fi-

bre H∗
crys(M0,K), equipped with the filtration induced by the Hodge filtration on

H∗
dR(M,K) and the isomorphism (2.1). (The subscript w.a. is for weakly admis-

sible, and is justified by the fact that H∗
w.a.(M,K), equipped with its Frobenius

endomorphism and filtration, is a weakly admissible filtered φ-module in the sense
of [8, §4.4]; this follows from the comparison theorem of [7, thm. 5.6], together with
[8, prop. 5.4.2 (i)].)

Now suppose given a pair of homological equivalence motives M and M ′ over K,
both having good reduction over W . Let Z0 be a morphism from the special fibre
M0 of M to the special fibre M ′

0 of the motive M ′. Then Z0 induces a morphism

c∗0(Z0) : H∗
crys(M0) → H∗

crys(M
′
0),

and hence a morphism

(2.6) c∗0(Z0) : H∗
w.a.(M0) → H∗

w.a.(M
′
0),

which respects the Frobenius endomorphisms of these filtered φ-modules, but which
may not respect their filtrations.

If Z0 is the specialization of a morphism Z : M → M ′, then (2.6) certainly
will respect the filtrations. The following proposition discusses the converse of this
statement.

Proposition (2.7). Conjecture (2.2) is equivalent to the following statement:
If Z0 : M0 → M ′

0 is a morphism between the special fibres of two homological
equivalence motives M and M ′ over K, both of which admit good reduction over
W , for which the morphism (2.6) respects the filtrations on its source and target,
then there is a morphism of motives over K, Z : M →M ′, which specializes to Z0.

Proof. Let us suppose first that the given statement holds, and see that conjec-
ture (2.2) follows. For this, it suffices to note that if X is a smooth proper variety
over W , then giving a codimension n cycle on the special (respectively, the generic)
fibre of X is the same as giving a morphism of the special (respectively, the generic)
fibre of the motive Q(−n) to the motive of X0 (respectively, the motive of X). (Re-
call that Q(−n) denotes the motive given by the triple (SpecK, id,−n).)

Now suppose that conjecture (2.2) holds. Let Z0 : M0 → M ′
0 be a morphism of

the special fibres of the motives M and M ′, and suppose that the morphism (2.6)
preserves the filtrations on its source and target. Suppose that M = (X, p,m) and
M ′ = (Y, q, n), and let X and Y be extensions of X and Y respectively to smooth
proper schemes over W . By definition, there is a correspondence U0 on X0×Y0, of
codimension n−m+dim(X0), such that q0 ◦U0 and U0 ◦p0 are both homologically
equivalent to U0, and such that Z0 is induced by the correspondence U0. The
assumption that (2.6) preserves the filtrations on its source and target is equivalent
(as the discussion of remark (2.4) shows) to the assumption that c(U0) lies in the
(n−m+ dim(X0))th piece of the Hodge filtration of H2(n−m+dim(X0))

dR (X × Y,K).
Conjecture (2.2) implies that there is a cycle U on X × Y specializing to U0. Now
take Z : M →M ′ to be the morphism induced by the correspondence U . �
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Let us fix a motive M over K, admitting good reduction over W . Let σ denote
the canonical Frobenius automorphism of K. Then we may pull-back M along σ to
obtain the motive Mσ over K, which again admits good reduction over W (since σ
restricts to an automorphism of W ). There is a natural morphism from the special
fibre of Mσ to the special fibre of M , given by the relative Frobenius morphism.

Lemma 2.8. Let M be a homological equivalence motive over K, which admits
good reduction over W . The morphism Hi

w.a.(M
σ,K) → Hi

w.a.(M,K) induced by
the relative Frobenius map Mσ

0 → M0 respects the filtrations on its source and
target if and only if the same is true of the canonical Frobenius endomorphism of
Hi

w.a.(X,K).

Proof. This follows by the usual comparison between relative and absolute Frobe-
nius. For notational simplicity we treat the case when M is the motive corre-
sponding to the generic fibre of a smooth proper W scheme X . The general case
follows from this. The Frobenius endomorphism on Hi

w.a.(X,K) is determined by
the isomorphism Hi

w.a.(X,K) ∼= Hi
crys(X0,K), and the endomorphism of the latter

cohomology group induced by the absolute Frobenius endomorphism of X0. This
absolute Frobenius endomorphism can be factored as the composite

X0

FX0/k−→ X (p)
0

∼−→ X0,

where the second arrow is the base-change of the isomorphism k
∼−→ k given

by absolute Frobenius. Thus we can think of the Frobenius endomorphism φ of
Hi

w.a.(X,K) as being the composite of the map (of K-vector spaces; it will generally
not respect the filtrations on its source and target) Hi

w.a.(X
(σ),K) → Hi

w.a.(X,K)
induced by the relative Frobenius FX0/k and the isomorphism Hi

w.a.(X,K) →
Hi

w.a.(X
(σ),K) determined by the isomorphism X(σ) ∼−→ X obtained by base-

changing the automorphism σ of K, which is σ-linear and which does preserve the
filtrations. It follows that φ preserves Hodge filtrations if and only if the same is
true of the K-linear endomorphism induced by the relative Frobenius of X0. The
lemma follows from this discussion. �

3. higher weight forms.

In this section we explain how conjecture (2.2) implies conjecture (0.1) for mod-
ular forms of arbitrary weight k ≥ 2.

Theorem (3.1). Let N be a positive integer, p a prime not dividing N , g a classical
normalized Hecke eigenform of weight k ≥ 2 on Γ1(N), and E the finite extension
of Q generated by the coefficients of g. Suppose that for every prime ℘ of E lying
over p, the form g℘ is ordinary, and the slope k − 1 form f℘ lies in the image of
θ : S†−(k−2)(N) → S†k(N). Then conjecture (2.2) implies that g is a CM form on
Γ1(N).

Proof. Scholl [21] explains how to attach to g a homological equivalence motive
M defined over Q equipped with an action of E which makes it of rank two over
E, having good reduction modulo p (when regarded as a motive over the fraction
field Qp of Zp = W (Fp)), and whose associated p-adic Galois representation is
exactly ρg.
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The crystalline comparison theorem [7, thm. 5.6] shows that the restriction of
ρg to a decomposition group at p is a crystalline Galois representation (in the sense
of [8, 5.1.4]), and that H∗

w.a.(M) is the crystalline Dieudonné-module of ρg. The
graded pieces of the Hodge filtration of H∗

w.a.(M) are supported in degrees zero and
k − 1, and each is free of rank one over E ⊗Q Qp.

Proposition (1.2) shows that the restriction of ρg to an inertia group at p splits as
a direct sum of two distinct characters (the trivial character and χk−1). It follows
that H∗

w.a.(M) also splits as a direct sum

H∗
w.a. = H0 ⊕Hk−1,

with each of H0, Hk−1 free of rank one over E⊗Q Qp, such that Hodge filtration of
H0 (respectively, of Hk−1) is supported in degree zero (respectively, degree k − 1).

As a corollary, we see that the Frobenius endomorphism ofH∗
w.a(M) must respect

the Hodge filtration of H∗
w.a.(M). Lemma (2.8) then implies that the graph of

the Frobenius endomorphism of M0 preserves the Hodge filtration on H∗
w.a.(M).

Assuming that conjecture (2.2) holds, we find (by appealing to the equivalent form
of it given by proposition (2.7)) that there is a morphism Z of M which lifts the
Frobenius endomorphism of M0. This morphism (that is, the underlying cycle that
gives rise to it) is defined a priori only over Qp, but can in fact be assumed to be
defined over some finite extension L of Q, since M is defined over Q, and since
specializing cycles preserves their homological equivalence class.

To complete the argument, it is convenient to work with a field of coefficients
(rather than the ring of coefficients E ⊗Q Qp). Corresponding to the factorization
E ⊗Q Qp

∼−→
∏

℘|pE℘, we have factorizations ρg
∼−→

∏
℘|p ρg,℘ and H∗

w.a.(M) ∼−→∏
℘|pH

∗
w.a.(M)℘. For each ℘, the weakly admissible moduleH∗

w.a.(M)℘ corresponds
via the crystalline comparison theorem to the restriction of ρg,℘ to the decompo-
sition group at p, and for each ℘ we also have an isomorphism H∗

w.a.(M)℘
∼−→

H0,℘ ⊕Hk−1,℘.
Now the morphism Z of M over L induces an endomorphism of each ρg,℘ re-

stricted to Gal(Q/L). We claim that this endomorphism is non-scalar. For if it were
scalar, then (again by applying the crystalline comparison theorem) we would see
that the Frobenius endomorphism of H∗

w.a.(M)℘ would be scalar. But this is not
possible, because the Frobenius endomorphism must act on H0,℘ with slope zero
and on Hk−1,℘ with slope k − 1 (since each of these filtered φ-modules is weakly
admissible). (This is a particularly transparent case of [5, thm 3.1].)

We conclude that each ρg,℘ is not absolutely irreducible when restricted to
Gal(Q/L), since the endomorphism induced by Z will have at least one one-
dimensional eigenspace defined over E℘ (since it is non-scalar) and this will be a
Gal(Q/L)-closed subspace of ρg,℘. It follows from [20, prop. 4.4, thm. 4.5] that
g is a CM modular form. (An examination of the arguments shows that [20,
prop. 4.4] remains true if one replaces “irreducible” with “absolutely irreducible”
in its statement.) This shows that conjecture (2.2) implies conjecture (0.1) for
arbitrary weights k ≥ 2. �

Note that the proof of theorem (1.3) is really just a specialization of this ar-
gument to the case of k = 2, taking advantage of remark (2.3) (b) to know that
the relevant case of conjecture (2.2) is satisfied, and using the structure theory of
the p-divisible groups of abelian varieties and [24, thm. 4] to replace the general
comparison theorem.
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