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One of the themes of Naor’s research is the Ribe program
that seeks to develop the close analogy between the
geometry of Banach spaces, and the geometry of metric
spaces.
Of course, every Banach space (X , ‖‖X ) is also a metric
space (X ,dX ) if one uses the metric dX (x , y) := ‖x − y‖X .
But the metric space (X ,dX ) loses much of the “linear”
structure of the original Banach space (X , ‖‖X ).
For instance, the Banach space has an addition operation
+ : X × X → X , while the metric space is not obviously
equipped with one.
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Remarkably, the “nonlinear” metric space (X ,dX ) still
“remembers” pretty much all of the “linear” Banach space
structure!

For instance, it is not difficult to show (cf. the Mazur-Ulam
theorem, 1932) that if (X , ‖‖X ), (Y , ‖‖Y ) are two Banach
spaces whose metric spaces (X ,dX ), (Y ,dY ) are
isometric, then the isometry is affine, and
(X , ‖‖X ), (Y , ‖‖Y ) are isomorphic as Banach spaces.
A deeper fact is Ribe’s theorem from 1976: if
(X , ‖‖X ), (Y , ‖‖Y ) are two Banach spaces whose metric
spaces (X ,dX ), (X ,dY ) are uniformly homeomorphic (i.e.,
there is a homomorphism f : X → Y such that f , f−1 are
uniformly continuous), then (X , ‖‖X ), (Y , ‖‖Y ) are locally
representable in each other (every finite-dimensional
subspace of X is equivalent to one of Y and vice versa,
with constants independent of the dimension).
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Because of Ribe’s theorem, we know that any property of a
Banach space (X , ‖‖X ) which is “essentially
finite-dimensional” in the sense that it is preserved by local
bi-representability, can in principle be expressed purely in
terms of the structure of the underlying metric space
(X ,dX ) (up to uniform homeomorphisms). However, the
known proofs of Ribe’s theorem do not give a satisfactory
way to make such expressions explicit.
In 1985, Bourgain proposed the Ribe program to firstly
locate “good” metric descriptions of as many “essentially
finite-dimensional” properties of Banach spaces as
possible; and then to use these descriptions to generalise
the theory of these properties to wider classes of metric
spaces than those arising from Banach spaces. Thus, this
program would extend the “linear” theory of Banach
spaces to the “nonlinear” setting of metric spaces.
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For instance, an important invariant of a Banach space
(X , ‖‖X ) is its Radamacher type. We say that X has
Radamacher type p if there is a randomised triangle
inequality

E‖
n∑

i=1

εixi‖X ≤ Cp(
n∑

i=1

‖xi‖pX )
1/p

for all elements x1, . . . , xn ∈ X and some constant Cp,
where ε1, . . . , εn ∈ {−1,+1} are independent Bernoulli
random variables of mean zero.
As a key example, Lp(R) is of Radamacher type min(p,2)
and no better (which implies for instance that the spaces
Lp(R), p ≤ 2 are all inequivalent).
This sort of type information is very useful for many
applications in high dimensional geometry, analysis, and
probability.
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It is easy to check that two Banach spaces that are locally
representable in each other have the same Radamacher
type. Thus, by Ribe’s theorem, it should be possible to
express the Radamacher type of a Banach space (X , ‖‖X )
purely in terms of the metric space (X ,dX ) in a manner
which is preserved by uniform homeomorphisms. But
how?
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One can show that the property of a Banach space
(X , ‖‖X ) having Radamacher type p is equivalent to an
estimate of the form

EdX (f (ε), f (−ε))p ≤ Cp

n∑
i=1

EdX (f (ε), f (πiε))
p (1)

for some Cp and any linear map f : {−1,+1}n → X , where
ε = (ε1, . . . , εn) is a uniform random variable on {−1,+1}n
and πi : {−1,+1}n → {−1,+1}n is the reflection across
the εi = 0 hyperplane (i.e., it replaces εi with −εi ).
In 1969, Enflo made the bold proposal to extend this notion
to arbitrary metric spaces by dropping the requirement of
linearity. Thus, let us say that a metric space (X ,d) has
Enflo type p if (1) holds for some Cp and all maps
f : {−1,+1}n → X . Slight variants of Enflo type were also
later proposed by Gromov in 1983 and by
Bourgain-Milman-Wolfson in 1986.
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It is obvious that if a Banach space has Enflo type p, it also
has Radamacher type p.
Enflo asked the converse question of whether every
Banach space of Radamacher type p is also of Enflo type
p, which would be a satisfactory completion of the Ribe
program for the concept of Radamacher type. This
remains open, although thanks to the works of
Bourgain-Milman-Wolfson and Pisier in 1986 we know that
such spaces at least have Enflo type p − ε for any ε > 0.
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Fully resolving Enflo’s problem has been quite difficult, but Naor
has obtained several partial results towards this problem:

In 2002, Naor and Schechtman solved Enflo’s problem
under the additional hypothesis that X is a UMD
(unconditional martingale difference) Banach space.
In 2007 Mendel and Naor were able to solve a variant of
Enflo’s problem for “scaled Enflo type” - a concept which is
also purely metric in nature, though less useful than Enflo
type for applications.
In 2008, Mendel and Naor solved the analogue of Enflo’s
problem for the complementary notion of Radamacher
cotype (which is well adapted to study Lp type spaces for
p ≥ 2 rather than p ≤ 2).
In 2012 Hytonen and Naor also solved Enflo’s problem for
Banach lattices.

These arguments use non-trivial estimates from harmonic
analysis, such as Riesz transform inequalities.
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We have focused the first part of Ribe’s program - finding
descriptions of Banach space concepts, such as
Radamacher type, that are valid for arbitrary metric
spaces. Now we turn to the second part of Ribe’s program
- finding analogues of Banach space theorems that hold for
arbitrary metric spaces.
Naor has several results of this nature regarding metric
notions of type and cotype, but we will now look at some of
his other work in this area, regarding nonlinear versions of
Dvoretzky’s theorem.
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In 1961, Dvoretzky solved a conjecture of Grothendieck by
establishing

Dvoretzky’s theorem
Let k be a natural number and D > 1. If the dimension n of a
normed vector space (V , ‖‖V ) is sufficiently large depending on
k and D, then V has a k -dimensional subspace W which
embeds into a Hilbert space H with distortion D (thus there is a
linear map T : W → H with A‖x‖V ≤ ‖Tx‖H ≤ DA‖x‖V for all
x ∈W and some A > 0).

Roughly speaking, any large Banach space contains a large
subspace that is approximately Euclidean in nature. The
modern proof of this theorem is probabilistic in nature; after
suitable normalisation, a random subspace of the space V will
work.
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Inspired by the Ribe program, in 1986 Bourgain-Figiel-Milman
established an analogous theorem for (finite) metric spaces:

Nonlinear Dvoretzky’s theorem
Let k be a natural number and D > 1. If the cardinality n of a
metric space (X ,d) is sufficiently large depending on k and D,
then X has a subset Y of cardinality k which embeds into a
Hilbert space H with distortion D (thus there is a map
T : Y → H with Ad(x , y) ≤ ‖Tx − Ty‖H ≤ DAd(x , y) for all
x , y ∈ Y and some A > 0).

It is then natural to ask for the optimal dependence of
parameters for n, k ,D. That is to say: given a size n and a
distortion D, what is the largest size k for which one can
guarantee a subset Y that embeds into Hilbert space with the
given distortion?
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After work of Mendel-Naor (2007), Naor-T. (2010), Mendel-Naor
(2013), we now have a satisfactory answer to this question:

Quantitative nonlinear Dvoretzky’s theorem

Let 0 < ε < 1, and let (X ,d) be a metric space of cardinality n.
Then there is a subset Y of X of cardinality n1−ε that embeds
into Hilbert space with distortion O(1/ε).

The dependence of constants here is basically optimal. There
is also a continuous variant of this result, where one works with
infinite metric spaces and uses Hausdorff dimension in place of
cardinality. The result is proven by randomly “fragmenting” the
space X to extract a Cantor-like subset Y .
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In fact, the proof method gives something stronger; the
subset Y not only embeds into a Hilbert space, but the
metric on this space is comparable to a very simple type of
metric dY known as an ultrametric, in which the triangle
inequality dY (x , z) ≤ dY (x , y) + dY (y , z) is upgraded to
dY (x , z) ≤ max(dY (x , y),dY (y , z)).
Indeed, nowadays the nonlinear Dvoretzky theorem can be
viewed as a corollary of a more powerful statement of
Mendel and Naor known as the ultrametric skeleton
theorem.
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The ultrametric skeleton theorem has a number of further
applications in analysis, probability, and theoretical computer
science. For instance, it gave a new proof of the difficult
majorising measures theorem of Talagrand that computes (up
to constants) the expected value of the supremum of a
Gaussian process.
Here is a theoretical computer science application, due to
Mendel and Naor:

Approximate distance oracles

If 0 < ε < 1, then any metric space (X ,d) of cardinality n can
be preprocessed in time O(n2) to yield a data structure of size
O(n1+ε), such that the distance between any two points in X
can be computed in O(1) time using this data structure up to a
multiplicative error of O(1/ε).
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Another application of metric embedding results to
theoretical computer science comes from the work of Naor
and his coauthors on the embeddability properties of the
Heisenberg group

H =

1 R R
0 1 R
0 0 1

 ,

endowed with the Carnot-Carathéodory metric.
The Heisenberg group arose first in quantum mechanics,
and since played an important role in harmonic analysis,
several complex variables, and ergodic theory.
It is the simplest non-trivial example of a nilpotent Lie group
- a continuous group that just barely fails to be Euclidean.
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In contrast to the Euclidean metric, the
Carnot-Carathéodory metric is anisotropic.

For instance, the distance between

1 x z
0 1 y
0 0 1

 and the

identity matrix is comparable to |x |+ |y |+ |z|1/2, in
contrast with the Euclidean (Frobenius) distance of√
|x |2 + |y |2 + |z|2.
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In 1996, Semmes observed (as a corollary of a 1989
differentiation theorem of Pansu) that it was impossible to
embed the Heisenberg group H into a Hilbert space with
bounded distortion.
However, finite subsets of H can of course still be
embedded. For example, one can try to embed the lattice
points BR of a ball of radius R in H into a Hilbert space, or
in a Euclidean space.
By work of Lee-Naor (2006), Naor-Neiman (2012),
Austin-Naor-Tessera (2013), and Naor-Lafforgue (2014)
(see also T. (2019)), a satisfactory understanding of the
embedding problem was obtained.
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For instance, the optimal distortion for embedding BR into
a Hilbert space is now known to comparable to

√
logR for

large R.
The lower bound is established from a certain variant of an
isopemetric inequality on the Heisenberg group; the upper
bound follows from some general metric embedding
theorems of Assuoad (1983).
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In 2014, Naor and Young used these Heisenberg isoperimetric
inequalities to give a new result on the sparsest cut problem in
theoretical computer science:

Sparsest cut problem

Suppose one is given a graph G = (V ,E). What is the minimal
value of the quantity

#{(v1, v2) ∈ V1 × V2 : {v1, v2} ∈ E}
(#V1)(#V2)

where V = V1 ] V2 ranges over non-trivial partitions of the
vertex set V?

Informally, one wants to break a given graph into two
non-empty pieces while cutting as few edges as possible (in a
relative sense). This problem is known to be NP-hard (even to
approximate), and is related to deep open problems in
theoretical computer science such as the Unique Games
Conjecture.
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While the sparsest cut problem is difficult to solve, Goemans
and Linial proposed a semidefinite relaxation of the problem
which can be computed (to o(1) precision) in polynomial time.
To motivate this relaxation, let us first state a weighted
generalisation of the sparsest cut problem:

Weighted sparsest cut problem

Suppose one is given non-negative weights cij ,dij for
i , j = 1, . . . ,n. What is the minimal value of the quantity∑n

i=1
∑n

j=1 cij |vi − vj |2∑n
i=1

∑n
j=1 dij |vi − vj |2

where v1, . . . , vn takes values in {0,1} and the denominator is
non-zero?

The original sparsest cut problem corresponds to the special
case when dij = 1 and cij are the coefficients of the adjacency
matrix of the graph.
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One can relax this problem by letting v1, . . . , vn take values in a
Hilbert space rather than in {0,1}, but imposing a negative type
condition:

Relaxed sparsest cut problem
Suppose one is given non-negative weights cij ,dij for
i , j = 1, . . . ,n. What is the minimal value of the quantity∑n

i=1
∑n

j=1 cij‖vi − vj‖2∑n
i=1

∑n
j=1 dij‖vi − vj‖2

where v1, . . . , vn takes values in a Hilbert space and obeys the
negative type condition ‖vi − vj‖2 ≤ ‖vi − vk‖2 + ‖vk − vj‖2 for
all i , j , k?
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The relaxed sparsest cut problem can be solved (with o(1)
precision) in polynomial time using the technique of
semidefinite programming (the problem is equivalent to a
convex optimization problem involving semidefinite
matrices).
Unfortunately the solution to the relaxed sparsest cut
problem can be lower than the solution to the weighted
sparsest cut. The ratio between the two is known as the
integrality gap for this relaxation.
Goemans and Linial conjectured that this gap was
bounded, but this was unfortunately disproven by Khot and
Vishnoi in 2015.
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In 2008, Arora-Lee-Naor showed that the integrablity gap
is at most log1/2+o(1) n, making this algorithm the most
accurate polynomial time algorithm currently known for the
sparsest cut problem.
In 2014, Naor-Young used isoperimetric inequalities for the
(five-dimensional) Heisenberg group to show that the
integrality gap is also at least c log1/2 n for some c > 0.
(The connection, roughly speaking, comes from the fact
that the Carnot-Carathéodory metric on the Heisenberg
group is of negative type.)
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Now we turn to one last result of Naor, in which Hilbert space
methods were used to solve a classical problem in probability.

Given a random variable X on the real line with density
function f , its entropy is defined by the formula

Ent(X ) := −
∫

R
f (x) log f (x) dx .

In the 1940s, Shannon essentially established the
inequality

Ent(
X1 + X2√

2
) ≥ Ent(X )

whenever X1,X2 were independent copies of X (assuming
of course that the entropy is well-defined). (A detailed
proof was first given by Stam in 1959.)
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Iterating Shannon’s inequality, one can conclude that the
entropies

Ent(
X1 + · · ·+ Xn√

n
)

were monotone increasing in n, as long as n was restricted
to be a power of 2.
In 1978, Lieb conjectured that this monotonicity held for all
n. (Note that this is consistent with the central limit
theorem, since the normal distribution maximises the
entropy amongst all distributions of a given variance.)
This could not be established by Shannon’s methods, and
the first solution was given in an influential paper of
Artstein, Ball, Barthe, and Naor in 2004.
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The argument of Artstein-Ball-Barthe-Naor uses several
ingredients that are now standard in the literature.

The first step is to replace the “logarithmic” expression
Ent(X ) =

∫
R f log f with a more tractable “quadratic”

expression, namely the Fisher information J(X ) :=
∫

R
(f ′)2

f .
The relationship between the two was observed by de
Bruijn and by Bakry-Emery in the 1980s; basically, the
Fisher information is the rate of increase in the entropy
when one applies the Ornstein-Uhlenbeck process.
From this relationship and the fundamental theorem of
calculus, one can deduce the monotonicity of Shannon
entropy from an analogous monotonicity for Fisher
information.
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One can express the Fisher information of random variables
such as X1 + · · ·+ Xi−1 + · · ·+ Xi+1 + · · ·+ Xn in terms of
various “quadratic” integrals on Rn, involving a function gi that
does not depend on the xi coordinate, but has mean zero when
integrated against a product measure f n dx (the distribution
function of (X1, . . . ,Xn). The claim then boils down to the
following basic application of Hilbert space geometry:

Improved triangle inequality

Let g1, . . . ,gn be functions in L2(f n dx), with each gi of mean
zero and independent of the xi variable. Then

‖g1+ · · ·+gn‖2L2(fn dx) ≤ (n−1)(‖g1‖2L2(f n dx)+ · · ·+‖gn‖2L2(f n dx)).

Note that the triangle inequality and Cauchy-Schwarz would
give this inequality but with the n − 1 factor worsened to n. The
crucial improvement to n − 1 comes from the different
invariance properties of each of the g1, . . . ,gn which give a tiny
bit of “orthogonality” between the g1, . . . ,gn.
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Thanks for listening!
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