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Intreduction.

Tf S is a set of natural numbers, then the diviser graph on § is

alrz {a,b} where a,b €8 and either alb or bja. Ler £(n)
not: the length of the longest simple path in the divisor graph on

:2,...,n}. For example, the sequence

26, 13, 1, 25, 5, 15, 30, 10, 20, 4, 16, 8, 24, 12, 6,
18, 9, 27, 3, 21, 7, 14, 28, 2, 22, 11

liows that F{30) > 26. (With a little reflection about the “hard to
e' numbers 11, 22, 13, 26, 17, 1%, 23, and 29 one can see that

It is the object of this paper to show that £(n) = o(n), thus
sclving a question recently put by ¥, Hegyviri. The proof makes
trinsic use of an asymptotic formula for the function ¢(x,y;z), the
itber of natural numbers up to x cemposed solely of primes in the
nterval (z,y}. This formula was established by Friedlander [4]) and is
1id when 1log x/log z is bounded. Our proof that £{(a) = o(n) does
ot demonstrate the existence of an explicit function ©{(n) with

n)/n + 0 and f£(n) < 8(n) fér all n. To do so by the method of
his paper would require an extension of the range of Friedlander's

heorem so that log x/log z is allowed to tend to = at some explicit

dce. While this is perhaps not so difficult te do, we do not undertake

This paper will not appear elsewhere.
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Concerning lower bounds for f{n), A.D. Pollington [6] has Tecent]y

shown that
1/2
(1.1 £{n) > u- exp {-(log n loglog w) " "}

for ail large n.

Hpow consider the graph on the vertices {1,2,...,n} such that
{a,b> is an edge if and only if the least common multiple fa,b} < g,
If gf{n) is the length of the longest simple path in this graph, t;en
clearly g(n) > f{n). We actually prove the "stronger" result that
g(n) = o(n). The word stronger appears in guotation marks, because it
is not immediately clear that g(z) - £(n} is unbounded Var even if there
is any n for which g(n} > f(n). If there are such values of n, it
may be an interesting computaticnal problem to find t‘r_le first one.

In Erdos, Freud, Hegyvdri [3}, the fallowing two Tesults are proved,
There is some permutation Bqrlgsene of the natural numbers such that for
each 1 > 3,

1

A 1/2 .
I [ai,ai+1] < exp {e¢ (log 1) 7 loglog i}

(1.2)

where ¢ is a positive constant. Also, for any permutatien a,a,,...
of the natural numbers, ‘

. 1 1
(1.3) lim sup 7 [ai,ai+1] ?—W .

The authors conjecture that {lj:- [ai’ai+l]} is unbounded for any permuta-
tion L DPRR of the natural numbers, a strengthening of (1.3).

Cur principal result immediately gives the Erdos, Freud, Hegyvari
conjecture., Indeed, if A1s8gy s is a permutation of the natural num-
bers and if

1 =
K [ai’ai+1] <B for 1i=1,2,...

for some integer B, then for all n, each of I ERRETL is less than
Bn. Thus g(Bn) > n for all n, contradicting g{n} = o(n).

Similarly, the result (1.2) gives the lower bound

/2

gln) > n- exp {-c (log n)l toglog n}
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is almost as strong as what Pollington's result (1.}) implies for

preliminaries.

In the introduetion the function P{x,y,2}, the number of natural
sp to x composed solely of the primes in the interval {z,v},

croduced. This function generalizes the function Y(x,y) = ¥{(x,y,1)

e function (x,z) = P(x,%,z).

+ has been known since 1930 that there is a continuous function
on [0,#] that is identically 1 on [0,1] and tends strictly and
sonically to O on [1,=) gsuch that for fixed u,

. 1/u .o
win,x / y v oplwix .

de Bruijn {2] showed that

P(x,v) - p(log x/log y)=

cently extended by H. Majer.
:The function ®(x,z) represents the number of uncancelled elements

tha sieve of Eratostenes on the interval [1l,x] after sifting with

o{x,z) - x 0 (1 - 1) -
p<z P eYlog z

X
L)

~ 1is Euler's constant, Removing the restriction
= g {log x), we have the following result of de Bruijn [1]. There

continuous function of{v) on {(1,») such that

1im w(v)} = e !
y-rm
X
@{x,2z) ~ w(log x/log =) Tog 7 as z >

formly for x > zl+E for any € > 0 fixed.
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In [4], Friedlander worked out the necessary details to combine boty
(2.1) and (2.4) into one theorem. He defined a function olu,v), con-

tinuous where u # 1, v # 1, such that

X

X
log =z )

¥(x,y,2) = alu,v) + o

2 3
(2.5) leog” z

u = log xflog y , v = log x/log z ,

uniformly for 1 + e<u <v <M for any fixed e > 0O,M. Moreover,

Friedlander showed that for fixed u » 0,

(2.6} lim o(u,v) = e Tp(u) .
V=

Since olu,v) is continucus where neither u nor v 1is 1, (2.6) can
be made uniformly true on compact sets of the variable u that do not
contain 1.

Although stated in the technical forms needed in section 3, Propo-
sitions 1, 2, and 3 are really not very deep. Proposition 1 essentially
states that for each 8 > 0, there is an £ > 0 such that of the iIntegers

up to n none of whose primes exceed na, at least half have a divisor

> nl—s all of whose primes exceed n°. Propositlon 2 essentially states
that for each & > 0 there is an € » 0 such that almost all of the
integers up to n have a divisor > nl_5 all of whose primes exceed 1n°.

Finally, Proposition 3 essentially states that for each & > O there is
an € > 0 such that almost all integers up to n are not divieible by

1-¢

. 3§
a number > n all of whose primes exceed n°.

Proposition 1. Suppose 1 >8>0 >0 are fixed. Then there is an
e’ > 0 such that for each e, 0 < ¢ < e', there is an n o= no(ﬁ,u,e)
with the following property. Yor each n zn, if 1= a; < a, <.,

are the integers all of whose primes come from (ue,na], then
1 §
I B 5
#2yn " 71

o
for any y, n” <y < n.
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f. Since e T = 56146, from (2.6) and (2.3) there is an ' with
¢! < min {.01,a} such that if

&
Vi?—1,1+e'<u<~,

3 o{u,v)

| v

{.53)o(u0) and w(v) > .33 .

spose 0 < e < e'. By (2.3) we have

w(t,na,ne} = g{u,v) £ + 0 ¢ t )
£ 2 €
log n log" n
1
armly for n6+66 < t < un. Thus there is an n, = nl(G,a,e) such
tif n > n, then
3 § = log t t
8) e,n” 0% > (52 oy ——

log n~ log n

We wish to extend the domain of validity of (2.8) for also those

: - ! : s d-€ 3
values of t with n" € <t < n6+GE First note that if n £t <n,

b(e,0% 0% = ole,n%) - w(GEy S
log n~ logn

niformly. Thus by (2.7), there is an n, = nz(ﬁ,a,s) such that if

> n,, we have the Inequality (2.8) for 2k <t f_ns. {(Noté that
=1 in this range.)
1
n(5 <t < n6+6€ . Then .

sien®,0%) > gle,0%) - (¢ - w(e,n’)

- 6y L as
= e(t,n7) ) {pl

n <ps<t

> o(t,n®) -t § %
n6<p§p
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= cp(t,ns) - t{loglog t - loglog n6 + 0fe” log t))
1<p(t,nE) -t log {1+ e") + O(te log t)
> o(t,n%) - t log (1.01) + o(ce 18 &y |

by the prime number theorem. Since Ep(t,ne) ~ w{log t/log nE)tllog ng,

by (2.7) there is an n, = n3(6,e) such that if n > n,, we have (2.8)

' [
for n& <t < n6+6€ . (Note that p(log tfleg n ) <1 4n this range,)
We conclude that if 0 < e < ¢' and n > m, = max {ﬂl,nz,ﬂ3}, then
(2.8} holds for all t with n%% < ¢ < n.

We are nearly ready to consider the sum in the proposition, but
first we must estimate the starting point a e - Let . B = B(S,e,y,n)
be defined by [2yn "]

-B

a e, Toym .
{2yn 7]
Then B < e and by (2.5), B+ ¢ as n -+ = uniformly in y satisfying
the hypothesis of the proposition and for each fixed 6, e.

By partial summation we have

IoEd I = 1 4oy’ ey

- —a -
i>2yat Y ym ”<aifj i ya B<aiiy +

It

§ -B &
#yon®n®) - Lz gm0
yn
(2.9}

¥
+ X ue,n® 0% + owly,n®,n%)
82
yn t

1

y

A 6 L _y
J L ¥(e,n”,0de + 0 (20,
yn

by (2.5). Assuming 0 < € < e' and n > n,, we have by (2.8)
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Yy Yy
I ""\12' QJ(t,nﬂ,nE)dt > ——L('SZ)E J' % p(__g_lo ts)dt

yn_ﬂ t log n yn_B log n

. $
, (.52)y p{log y/lop n ) le -];dt
€ t
log n -B
yn

= (.52 8/e)y p{log yflog nﬁ) .

sy (2.9) there is an n. = ns(s,a,e) > n, such that if =n > ng

5 L1 > (SDy pllog y/log o)
e —E d
i>2yn

ally, by (2.1) there is an n = n (§,0,8) > ng such that if n > ng,

I & >3 wly,n) .

sition 2, Given 1 > 6, a > 0, there is an €’ > 0 with the follow-
ng property. If 0 < e < €', there is an o, o= no(a,o.,e) such that if

and 1 = b.‘{ < b2 <... are the integers all of whose primes

Z I[J(-.Bt'l:',ne) < on .

i<2nl_Es .

We shall take &' < 1/2, Then bi does not exceed the i~th
, 5o that
all n > n. Let

hE(m) = Z a logp= z log p .
a a
p® [l pIm

<n€ <nE
P Pt
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where p denotes primes. Then

n

T h_(m 3 5 =1 log p
£ a

m=1 p<nE a>l p

= z 3—135—}-+0(u)

E
p<n

en lag n + O{n)

for amy €. Thus there is an nz(a) such that if =n > nz(e), then

‘nE(m) < 2en logn .

[ ss

[

Thus for n > nz(e),

(2.11) ) 1<3En

men

hE(‘J'-)Z}TG logn

et e' = &xf9, For o i“3(5:7°‘); we have

IRENTZ

an .

Let & < e ¢ e' be arbitrary, let no(G,ot,e) = max {nl,nz,nB}, and let

n>n. . From {2,10) we have

Lo wEee®) < ) P09
i

b '~’-nl_5}r:2 b.4<n men
! r- Bt 1572
plﬂ;*ping mfe © <n
<4 ) 1
ot 6/4<m_<_n
h (m) -
o/e [ <nl §/2
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< nl—ﬁ/ll + Z 1
m<n

hg (m) >} 8 logn

wﬁere. for the last estimate we use (2.11) and (2.12).

roposition 3. Given 1 > §, o > 0, there is an €' with § > e’ > ¢
gch that for each €, 0 < e < e', there is an n, = no(ﬁ,ot,e) with

e foilowing property. For every a > ., we have

1
ol
Pl
2

n1_€<1)in

p|D spon®

fiere p denotes primes.

pof . For & < 1 - §, we have the sum in the propesition equal to

n
t‘p(n,nﬁ) - —-il—_—- cp(nl_g,ns} + [ iz (p(t,nﬁ)dt

nt " nl—e t
ety ¢ L 1
T 8§ log n J 1oe © de + 06,9 (log W
el
- E 1
=g ol +0, G

oi_: som= v Dbetween (1 - e)/§ and 1/8 Inclusive. Thus if e is
fficiently small and n > no(G,u,e), then the inequality in the propo-

tion holds.

The principal result.

heorem, If LRV "mg(n) is the leongest sequence of distinct inte—
ets from {1,2,...,n} such that for each v = 1,Z,...,g(n) - 1 we have

o] £m, then g(n) = aln).
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Proof. Let k be an arbitrary, but fixed positive integer. Suppose

T TR S is a path that realizes g{n). Let

1=60>51>...>6k>0

be constants where 61""'51( will be specified shortly. Let dl(m)
denote the largest divisor of m all of whose primes come from
(naﬂ’,nt"q'"l] for & =1,...,k and let Da(m) = dl(m)dz(m)...d'g(m).
Let DU(m) = 1.

To specify 61,...,6k, suppose 1 < 2 < k and 61""’62—1 have
alresdy been chosen. Let 6;& be the bound guaranteed by Proposition 3
with § = 6§, , and o= 37K et €; , be the bound guaranteed by
Proposition 1 with § = 62'_1, a = 65‘. Finaily, 13{:{ EZ,E. be the bound
guaranteed by Proposition 2 with & = 6L~1’ o =3 . Then we define

s 1

8y = omin {ey paey 10778

There is a bound o such that i1f n > T then Propositions 1, 2, and
3 hold with the above choices of parameters for each- & =1,...,k. We
also choose n, so that nol > 3k. For the remainder of the proof,
we assume that n > n,-

Ve now examine the consecutive values dl(ml) yes .,dl(mg(n)) . Say
this sequence changes value u - 1 times, so there are u values,
perhaps with repeats. This defines a partition of the sequence
ml""’mg(n) into u blocks. If o, 1s in the i-th block, we write
il(mv) =1, d(i) = dl(mv)'

In the i-th block of consecutive mu's, say the value dZ(mv)
changes wu(i) - 1 times, so there are u(l) not necessarily distinct
values of dz(mv) in this block. This then defines a partiticn of the
i-th block into u(i) sub-blocks. If o is in the i-th block, j-th
sub-block, we write iz(m“) =i, 4{i,3) = dy(m ).

W? then use changes in the value of dB(mu) to further refine the
partition, etc. By the &-th level, we have defined numbers in the u-
family, in the i-family, and in the d-family, where u-numbers give the
number of blocks in a particular subdivision, i-numbers refer to parti-
cular blocks, and d-numbers give the divisors of the mv's which define

the next subdivision.




In computing an upper bound for g(a), there are certain types of

es of ml,...,mg( 3 that cannot be conveniently handled by the prin-
4l argument and so are separated off and estnnated by other arguments.
: i 1- Gfl.
ese are the m ~ for which Dﬂ.—l{m\)) >n
1,....k.

By Troposition 3, our choice of 61""’61( and our choice of n,
1-8§

or iﬂ.<mv) =1 for some

umber of m <0 with D (m) > o 1s legs than 3—kn. There—
the number of m with D (m ) > n1 61 for some £ =1,...,k
ess than k- 3hkn < 27 n,

How consider the m for which il(mv) = 1. These are all divi-

e by d(1) . We have chosen &, so that by Proposition 2, the

1 is less than 3_kn. Thus -@ssume

> 1, so that d4{1)
d(1y 1is less than n

or which il{m\J) =1 4is less than 3‘kn.

. But then the number of m. < n divisible

< B—kn. We conclude that the number of

We now consider the m which i (n Y =1 forsome L= 2,...,k

O
v
A(m\)) > 1 for some A < &. Conslder those values of v where

Ppupfmy) # Dy g Ong)

€58 ATe Vi, ..,V Let 1y, be the least pesitive number such
i

"

v

D, (m Y # D (m )
2 vi+ui L. vi+ui+1
= 1,..+.,t. BSo the sets {mv +l""’m\)i+uj_} are precisely the
af v, where i (m ) = 1 and il(mv) > 1 for some A < &. Thus
umber of such m, is exactly E ;.
i=1 1

» estimate this sum, we first get am upper bound on t. From

8
, there is a prime power p ]m with p > n -1 and P ,l'm\)_u

here is a prime power |m\)+l with q » nﬁg,..l and qblm . Thus,

\H—le mwl] or qmv“mv’mv+1] )

e

<
[mv, \J+13 n, we have
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1-8g-3

nin {m\l’m\H-l} <n .
1-3
Therefore t < 2n -1
Suppose 1 = bl < b2 <... are the integers all of whose primes
§
exceed n %. Then
t
[
Iow< LR
i=1 bE{DL(mvi+l);i=l,...,t}
L 8 §
2 ) wgmeh < ] I
i=1 i i<2n1h62"'1 i
< 3—kn

by Proposition 2. Therefor
some & = 1,...,k is less
Let .{n) denote the

and iﬂ.(mv) > 1 for each

e, the number of m, with. iﬂ.(mv) =1 for

-k =l

than k-3 ™m < 2 "n.

set of v =1,...,g(n) with Dl—l(mv) <n

'
l-—61

& = 1,...,k. OQur goal now is to estimate

8
#.5n) . Given a mumber D =211 of whose primes exceed n"q’"l, let

id

1l

U, (3)

i

i

ui(D)

Jm): v EKn), by () = D}

U, (m

We now obtain an upper bound for uﬂ'(D). Say v € .Kn), DE—l(m\;) =D

acz - ; i i
and & JI!‘J) d(ll,...,lg). We wmay assume Dn(mv—l) # Dg(m\;)‘ Since

a
X

iﬂ. > 1, we have Dﬂ.—lcm\;——l) =D and d£(mv_1) = d(ll,...,llul,ll—l),
Lot 2 s + . .
so that ?;“.nv-l) # dﬁ'(m\,) Since [mu_l,m\,] <mn, we have
1-8
min {m m}<n L

Now the number of m<n

1-§
which 1§ at most n “’/D.

(3.2}

v=1'"v
1-68

Therefore,

1-6
uﬁ'(D) < 2n E‘J'D .

-

-8 EA
[ - LI T
with D, ,(m) =D is $(—F—n ),




'
1_62

»

e that if Dl 1(mv) =D for some v € Z(n), then D < n
i 1 - hand

&
n/D > n ¥ | We clearly have

: §
#8(n) < ) G
DE{Dk(m Y :vEE(n) }

v
how that for each 2 = 0,1,...,k, we have
#.o(n) < 2*7k 3 n
DE{Da(mv):vEJKn)}

induction on &.

“show (3.3) we use

k. Suppose now 1 <

i-k

#.&(n) z

{A

L gk

2 <k and (3,3) is true for £,

) _
DE{Di(mv):vﬁéxn)}

We have already seen {3.3)
Then

8
WG h

n 52) .

z dl(m’ﬂ
DE{Da_l(m“):vEQKn)} ‘dEUE(D)

denote the integers all of whose primes come
Thus the inner sum in (3.4) is at most

UL‘_'(D) n &

5 s §
L 2y = IWanLE By
1 g B _Zl Vg 1

It

§
‘P(%,n £_1) - E

ia

8
N D B T S
1

5

8
'&b (%, n E-»-l) - z

A

1 6.
7 ¥Gn & h

3.2) and Proposition 1. Thus from (3.4) we have

nm



8
# o) < 2217 V&, Y

)
DE(D, | (m ) :vEL(n) }

This then establishes (3.3) for each £ = 0,1,...,k.
Gsing (3.3) with & = 0, we have -

k k.

- & -
#E @) <2 VG, 0 9 <2,

DE{DO(mvgzveixn)}

since Do(m) =] for any m and _60 = 1. We thus have for all large

n taat

g(n} < 2- E_kn + F&(n) <3+ Z—kn .

Since k is arbitrary, this shows that g{n) = o(n), completing the

proof of the theorem.

Remark. An examination of the proof reveals that we have actually shown
a bit more. Namely, we have shown that for each € > 0, there iz a § > ¢
and an o such that if = z o, and ml,mz,...,mh(n) is the longest

sequence of distinct numbers from f1,2,...,n} such that each

1+8

] 2n , then hf{r) < en.

[mv EeE |
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