ON THE LONGEST SIMPLE PATH IN THE DIVISOR GRAPH

Carl Pomerance²
Department of Mathematics
University of Georgia
Athens, Georgia 30602

Dedicated to Paul Erdos on his seventieth birthday.

1. Introduction.

If S is a set of natural numbers, then the divisor graph on S is the graph whose vertices are the numbers in S and whose edges are the pairs $\{a,b\}$ where $a,b \in S$ and either a|b or b|a. Let f(n) denote the length of the longest simple path in the divisor graph on $\{1,2,\ldots,n\}$. For example, the sequence

shows that $f(30) \ge 26$. (With a little reflection about the "bard to use" numbers 11, 22, 13, 26, 17, 19, 23, and 29 one can see that f(30) = 26.)

It is the object of this paper to show that f(n) = o(n), thus resolving a question recently put by N. Hegyvári. The proof makes intrinsic use of an asymptotic formula for the function $\psi(x,y,z)$, the number of natural numbers up to x composed solely of primes in the interval (z,y). This formula was established by Friedlander [4] and is valid when $\log x/\log z$ is bounded. Our proof that f(n) = o(n) does not demonstrate the existence of an explicit function $\theta(n)$ with $\theta(n)/n \to 0$ and $f(n) \le \theta(n)$ for all n. To do so by the method of this paper would require an extension of the range of Friedlander's theorem so that $\log x/\log z$ is allowed to tend to ∞ at some explicit pace. While this is perhaps not so difficult to do, we do not undertake this exercise here.

 $^{^{}m l}$ This paper will not appear elsewhere.

 $rac{2}{ ext{Research supported in part by an NSF grant.}}$

Concerning lower bounds for f(n), A.D. Pollington [6] has recently shown that

$$f(n) \ge n \cdot \exp \left\{-(\log n \log \log n)^{1/2}\right\}$$

for all large n.

Now consider the graph on the vertices $\{1,2,\ldots,n\}$ such that $\{a,b\}$ is an edge if and only if the least common multiple $[a,b] \leq n$. If g(n) is the length of the longest simple path in this graph, then clearly $g(n) \geq f(n)$. We actually prove the "stronger" result that g(n) = o(n). The word stronger appears in quotation marks, because it is not immediately clear that g(n) = f(n) is unbounded or even if there is any n for which g(n) > f(n). If there are such values of n, it may be an interesting computational problem to find the first one.

In Erdős, Freud, Hegyvári [3], the following two results are proved. There is some permutation a_1, a_2, \ldots of the natural numbers such that for each $i \geq 3$,

(1.2)
$$\frac{1}{i} [a_1, a_{i+1}] < \exp \{c (\log i)^{1/2} \log i\}$$

where c is a positive constant. Also, for any permutation a_1, a_2, \ldots of the natural numbers,

(1.3)
$$\lim \sup \frac{1}{i} \left[a_{i}, a_{i+1} \right] \ge \frac{1}{1 - \log 2}.$$

The authors conjecture that $\{\frac{1}{i} [a_i, a_{i+1}]\}$ is unbounded for any permutation a_1, a_2, \ldots of the natural numbers, a strengthening of (1.3).

Our principal result immediately gives the Erdős, Freud, Hegyvári conjecture. Indeed, if a_1, a_2, \ldots is a permutation of the natural numbers and if

$$\frac{1}{i}$$
 [a_i,a_{i+1}] < B for i = 1,2,...

for some integer B, then for all n, each of $a_1, ..., a_n$ is less than Bn. Thus $g(Bn) \ge n$ for all n, contradicting g(n) = o(n).

Similarly, the result (1.2) gives the lower bound

$$g(n) > n \cdot \exp \left\{-c \left(\log n\right)^{1/2} \log \log n\right\}$$

which is almost as strong as what Pollington's result (1.1) implies for g(n) .

₈₂. Preliminaries.

In the introduction the function $\psi(x,y,z)$, the number of natural numbers up to x composed solely of the primes in the interval (z,y], was introduced. This function generalizes the function $\psi(x,y) = \psi(x,y,1)$ and the function $\phi(x,z) = \psi(x,x,z)$.

It has been known since 1930 that there is a continuous function on $[0,\infty]$ that is identically 1 on [0,1] and tends strictly and monotonically to 0 on $[1,\infty]$ such that for fixed u,

$$\psi(x,x^{1/u}) \sim \rho(u)x$$
.

later, de Bruijn [2] showed that

$$\psi(x,y) = \rho(\log x/\log y)x$$

uniformly for a certain large region in the x, y plane and this region was recently extended by H. Maier.

The function $\phi(x,z)$ represents the number of uncancelled elements in the sieve of Eratostenes on the interval [1,x] after sifting with the primes up to z. The fundamental lemma of Brun's sieve (cf. Halberstam and Richert [5], Theorem 2.5) implies that if $\log z = o(\log x)$, then

(2.2)
$$\varphi(x,z) - x \prod_{p < z} (1 - \frac{1}{p}) - \frac{x}{e^{\gamma} \log z},$$

where γ is Euler's constant. Removing the restriction $\log z = o$ (log x), we have the following result of de Bruijn [1]. There is a continuous function $\omega(v)$ on $(1,\infty)$ such that

(2.3)
$$\lim_{V\to\infty} \omega(v) = e^{-Y}$$

and

(2.4)
$$\varphi(x,z) \sim \omega(\log x/\log z) \frac{x}{\log z} \quad \text{as} \quad z \to \infty$$

uniformly for $x > z^{1+\epsilon}$ for any $\epsilon > 0$ fixed.

In [4], Friedlander worked out the necessary details to combine both (2.1) and (2.4) into one theorem. He defined a function $\sigma(u,v)$, continuous where $u \neq 1$, $v \neq 1$, such that

(2.5)
$$\psi(x,y,z) = \sigma(u,v) \frac{x}{\log z} + 0(\frac{x}{\log^2 z}),$$

$$u = \log x/\log y, \quad v = \log x/\log z,$$

uniformly for $1 + \varepsilon \le u < v \le M$ for any fixed $\varepsilon > 0, M$. Moreover, Friedlander showed that for fixed u > 0,

(2.6)
$$\lim_{\mathbf{v}\to\infty} \sigma(\mathbf{u},\mathbf{v}) = e^{-\gamma} \rho(\mathbf{u}) .$$

Since $\sigma(u,v)$ is continuous where neither u nor v is 1, (2.6) can be made uniformly true on compact sets of the variable u that do not contain 1.

Although stated in the technical forms needed in section 3, Propositions 1, 2, and 3 are really not very deep. Proposition 1 essentially states that for each $\delta > 0$, there is an $\varepsilon > 0$ such that of the integers up to n none of whose primes exceed n^{δ} , at least half have a divisor $> n^{1-\varepsilon}$ all of whose primes exceed n^{ε} . Proposition 2 essentially states that for each $\delta > 0$ there is an $\varepsilon > 0$ such that almost all of the integers up to n have a divisor $> n^{1-\delta}$ all of whose primes exceed n^{ε} . Finally, Proposition 3 essentially states that for each $\delta > 0$ there is an $\varepsilon > 0$ such that almost all integers up to n are not divisible by a number $> n^{1-\varepsilon}$ all of whose primes exceed n^{δ} .

<u>Proposition 1.</u> Suppose $1 \geq \delta > \alpha > 0$ are fixed. Then there is an $\epsilon' > 0$ such that for each ϵ , $0 < \epsilon \leq \epsilon'$, there is an $n_o = n_o(\delta, \alpha, \epsilon)$ with the following property. For each $n \geq n_o$, if $1 = a_1 < a_2 < \dots$ are the integers all of whose primes come from $(n^{\epsilon}, n^{\delta}]$, then

$$\sum_{i>2yn^{-\varepsilon}} \left[\frac{y}{a_i}\right] > \frac{1}{2} \psi(y, n^{\delta})$$

for any y, $n^{\alpha} \le y \le n$.

proof. Since $e^{-\gamma} \doteq .56146$, from (2.6) and (2.3) there is an ϵ' with $0 < \epsilon' < \min \{.01, \alpha\}$ such that if

$$v \ge \frac{\alpha}{\epsilon'} - 1$$
 , $1 + \epsilon' \le u \le \frac{1}{\delta}$,

rhen

$$\sigma(\mathbf{u},\mathbf{v}) \geq (.53)\rho(\mathbf{u}) \quad \text{and} \quad \omega(\mathbf{v}) \geq .53.$$

Suppose $0 < \epsilon < \epsilon'$. By (2.5) we have

$$\psi(t, n^{\delta}, n^{\epsilon}) = \sigma(u, v) \frac{t}{\log n^{\epsilon}} + 0 \left(\frac{t}{\log^2 n^{\epsilon}}\right)$$

uniformly for $n^{\delta+\delta\epsilon^1} \le t \le n$. Thus there is an $n_1 = n_1(\delta,\alpha,\epsilon)$ such that if $n \ge n_1$, then

(2.8)
$$\psi(t, n^{\delta}, n^{\epsilon}) > (.52) \rho(\frac{\log t}{\log n^{\delta}}) \frac{t}{\log n^{\epsilon}}.$$

We wish to extend the domain of validity of (2.8) for also those values of t with $n^{\alpha-\epsilon} \leq t < n^{\delta+\delta\epsilon}$. First note that if $n^{\alpha-\epsilon} \leq t \leq n^{\delta}$, then

$$\psi(t, n^{\delta}, n^{\epsilon}) = \phi(t, n^{\epsilon}) \sim \omega(\frac{\log t}{\log n^{\epsilon}}) \frac{t}{\log n^{\epsilon}}$$

uniformly. Thus by (2.7), there is an $n_2 = n_2(\delta,\alpha,\epsilon)$ such that if $n \ge n_2$, we have the inequality (2.8) for $n^{\alpha-\epsilon} \le t \le n^{\delta}$. (Note that $\rho(\log t/\log n^{\delta}) = 1$ in this range.)

Now assume $n^{\delta} < t < n^{\delta + \delta \epsilon^{\dagger}}$. Then

$$\begin{split} \psi(t,n^{\delta},n^{\epsilon}) & \geq \phi(t,n^{\epsilon}) - (t - \psi(t,n^{\delta})) \\ &= \phi(t,n^{\epsilon}) - \sum_{n^{\delta}$$

$$= \varphi(t, n^{\varepsilon}) - t(\log\log t - \log\log n^{\delta} + 0(e^{-\sqrt{\log t}}))$$

$$\geq \varphi(t, n^{\varepsilon}) - t \log (1 + \varepsilon') + 0(te^{-\sqrt{\log t}})$$

$$\geq \varphi(t, n^{\varepsilon}) - t \log (1.01) + 0(te^{-\sqrt{\log t}}),$$

by the prime number theorem. Since $\phi(t,n^{\epsilon}) \sim \omega(\log t/\log n^{\epsilon})t/\log n^{\epsilon}$, by (2.7) there is an $n_3 = n_3(\delta,\epsilon)$ such that if $n \geq n_3$, we have (2.8) for $n^{\delta} < t < n^{\delta+\delta\epsilon}$. (Note that $\rho(\log t/\log n^{\delta}) < 1$ in this range.)

We conclude that if $0 < \epsilon \le \epsilon'$ and $n \ge n_4 = \max\{n_1, n_2, n_3\}$, then (2.8) holds for all t with $n^{\alpha - \epsilon} \le t \le n$.

We are nearly ready to consider the sum in the proposition, but first we must estimate the starting point a . Let $\beta=\beta(\delta,\epsilon,y,n)$ be defined by

$$a = yn^{-\beta}.$$

Then $\beta < \epsilon$ and by (2.5), $\beta \to \epsilon$ as $n \to \infty$ uniformly in y satisfying the hypothesis of the proposition and for each fixed δ , ϵ .

By partial summation we have

$$\sum_{i>2yn^{-\epsilon}} \left[\frac{y}{a_i}\right] = \sum_{yn^{-\beta} < a_i \le y} \left[\frac{y}{a_i}\right] = \sum_{yn^{-\beta} < a_i \le y} \frac{y}{a_i} + O(\psi(y, n^{\delta}, n^{\epsilon}))$$

$$= \psi(y, n^{\delta}, n^{\epsilon}) - \frac{y}{yn^{-\beta}} \psi(yn^{-\beta}, n^{\delta}, n^{\epsilon})$$

$$+ \int_{yn^{-\beta}}^{y} \frac{y}{t^2} \psi(t, n^{\delta}, n^{\epsilon}) dt + O(\psi(y, n^{\delta}, n^{\epsilon}))$$

$$= \int_{yn^{-\beta}}^{y} \frac{y}{t^2} \psi(t, n^{\delta}, n^{\epsilon}) dt + O(\frac{y}{\log n}) ,$$

by (2.5). Assuming $0 < \epsilon \le \epsilon^{\dagger}$ and $n \ge n_4$, we have by (2.8)

$$\int_{yn^{-\beta}}^{y} \frac{y}{t^{2}} \psi(t, n^{\delta}, n^{\epsilon}) dt > \frac{(.52)y}{\log n^{\epsilon}} \int_{yn^{-\beta}}^{y} \frac{1}{t} \rho(\frac{\log t}{\log n^{\delta}}) dt$$

$$> \frac{(.52)y \rho(\log y/\log n^{\delta})}{\log n^{\epsilon}} \int_{yn^{-\beta}}^{y} \frac{1}{t} dt$$

$$= (.52 \beta/\epsilon)y \rho(\log y/\log n^{\delta}).$$

Thus by (2.9) there is an $n_5 = n_5(\delta, \alpha, \epsilon) \ge n_4$ such that if $n \ge n_5$ then

$$\sum_{i>2yn^{-\epsilon}} \left[\frac{y}{a_i}\right] > (.51)y \rho(\log y/\log n^{\delta})$$

Finally, by (2.1) there is an $n_0 = n_0(\delta,\alpha,\epsilon) \ge n_5$ such that if $n \ge n_0$, then

$$\sum_{i>2\sqrt{n}^{-\epsilon}} \left[\frac{y}{a_i}\right] > \frac{1}{2} \psi(y, n^{\delta}) .$$

<u>Proposition 2.</u> Given $1 \ge \delta$, $\alpha > 0$, there is an $\epsilon' > 0$ with the following property. If $0 < \epsilon \le \epsilon'$, there is an $n_o = n_o(\delta, \alpha, \epsilon)$ such that if $n \ge n_o$ and $1 = b_1 < b_2 < \ldots$ are the integers all of whose primes exceed n^ϵ , then

$$\sum_{1 < 2n^{1-\delta}} \psi(\frac{n}{b_1}, n^{\epsilon}) < \alpha n.$$

<u>Proof.</u> We shall take $\epsilon' < 1/2$. Then b_i does not exceed the i-th prime above $n^{1/2}$, so that

(2.10)
$$b_{[2n^{1-\delta}]} < n^{1-\frac{1}{2}\delta}$$

for all $n \ge n_1$. Let

$$\begin{array}{lll} h_{\epsilon}(\mathfrak{m}) \; = \; \sum_{p} \; a \; \log \; p \; = \; \sum_{p} \; \log \; p \quad \text{,} \\ & \; p^{a} \, \big|_{\mathfrak{m}} & \; p^{a} \, \big|_{\mathfrak{m}} \\ & \; p^{\leq n}^{\epsilon} & \; p^{\leq n}^{\epsilon} \end{array}$$

where p denotes primes. Then

$$\sum_{m=1}^{n} h_{\varepsilon}(m) = \sum_{p \le n} \sum_{\epsilon} \frac{n}{a} \log p$$

$$= \sum_{p \le n} \frac{n \log p}{p} + O(n)$$

$$= \varepsilon n \log n + O(n)$$

for any ϵ . Thus there is an $n_2(\epsilon)$ such that if $n \geq n_2(\epsilon)$, then

$$\sum_{m=1}^{n} h_{\epsilon}(m) < 2 \epsilon n \log n.$$

Thus for $n \geq n_2(\epsilon)$,

(2.11)
$$\sum_{\substack{m \leq n \\ h_{\epsilon}(m) \geq \frac{1}{4} \delta \log n}} 1 < \frac{8\epsilon}{\delta} n .$$

Let $\varepsilon' = \delta \alpha/9$. For $n \ge n_3(\delta, \alpha)$, we have

(2.12)
$$n^{1-\delta/4} < \frac{1}{9} \alpha n$$
.

Let $0 < \epsilon \le \epsilon'$ be arbitrary, let $n_0(\delta,\alpha,\epsilon) = \max\{n_1,n_2,n_3\}$, and let $n \ge n_0$. From (2.10) we have

$$\sum_{i<2n} 1-\delta \stackrel{\psi(\frac{n}{b}, n^{\epsilon})}{i} \leq \sum_{\substack{b_i < n}} 1-\delta/2 \stackrel{\psi(\frac{n}{b}, n^{\epsilon})}{i}, n^{\epsilon}$$

$$= \sum_{\substack{b_1 < n}} \sum_{\substack{1-\delta/2 \\ p \mid \ell > p \leq n^{\epsilon}}} 1 = \sum_{\substack{m \leq n \\ n \mid \epsilon}} 1$$

$$\frac{\leq n^{1-\delta/4} + \sum_{\substack{n^{1-\delta/4} < m \leq n \\ m/e \\ \leq n}} 1}{n^{1-\delta/4} < m \leq n}$$

$$\leq n^{1-\delta/4} + \sum_{\substack{m \leq n \\ \epsilon(m) > l_4 \delta \log n}} 1$$

$$< \frac{1}{q} \alpha n + \frac{8\alpha}{q} n = \alpha n ,$$

where for the last estimate we use (2.11) and (2.12).

<u>proposition 3.</u> Given $1 > \delta$, $\alpha > 0$, there is an ϵ' with $\delta > \epsilon' > 0$ such that for each ϵ , $0 < \epsilon \le \epsilon'$, there is an $n_0 = n_0(\delta, \alpha, \epsilon)$ with the following property. For every $n \ge n_0$, we have

$$\sum_{\substack{n^{1-\epsilon} < \underline{D} \leq n \\ p \mid D \to p > n^{\delta}}} \frac{1}{\overline{D}} < \alpha$$

where p denotes primes.

Proof. For $\varepsilon < 1 - \delta$, we have the sum in the proposition equal to

$$\frac{1}{n} \varphi(n, n^{\delta}) - \frac{1}{n^{1-\varepsilon}} \varphi(n^{1-\varepsilon}, n^{\delta}) + \int_{n^{1-\varepsilon}}^{n} \frac{1}{t^{2}} \varphi(t, n^{\delta}) dt$$

$$= \frac{\omega(v)}{\delta \log n} \int_{n^{1-\varepsilon}}^{n} \frac{1}{t} dt + O_{\delta, \varepsilon} \left(\frac{1}{\log n}\right)$$

$$= \frac{\varepsilon}{\delta} \omega(v) + O_{\delta, \varepsilon} \left(\frac{1}{\log n}\right)$$

for some v between $(1-\epsilon)/\delta$ and $1/\delta$ inclusive. Thus if ϵ is sufficiently small and $n \geq n_o(\delta,\alpha,\epsilon)$, then the inequality in the proposition holds.

53. The principal result.

Theorem. If $m_1, m_2, \ldots, m_{g(n)}$ is the longest sequence of distinct integers from $\{1, 2, \ldots, n\}$ such that for each $v = 1, 2, \ldots, g(n) - 1$ we have $[m_v, m_{v+1}] \le n$, then g(n) = o(n).

<u>Proof.</u> Let k be an arbitrary, but fixed positive integer. Suppose $m_1, m_2, \dots, m_{g(n)}$ is a path that realizes g(n). Let

$$1 = \delta_0 > \delta_1 > \dots > \delta_k > 0$$

be constants where δ_1,\ldots,δ_k will be specified shortly. Let $d_{\ell}(m)$ denote the largest divisor of m all of whose primes come from $(n^{\delta_{\ell}},n^{\frac{\delta_{\ell}}{\ell}-1}]$ for $\ell=1,\ldots,k$ and let $D_{\ell}(m)=d_{\ell}(m)d_{\ell}(m)\ldots d_{\ell}(m)$. Let $D_{\ell}(m)=1$.

To specify δ_1,\ldots,δ_k , suppose $1\leq \ell\leq k$ and $\delta_1,\ldots,\delta_{\ell-1}$ have already been chosen. Let δ_ℓ be the bound guaranteed by Proposition 3 with $\delta=\delta_{\ell-1}$ and $\alpha=3^{-k}$. Let $\epsilon_{1,\ell}$ be the bound guaranteed by Proposition 1 with $\delta=\delta_{\ell-1}$, $\alpha=\delta_\ell$. Finally, let $\epsilon_{2,\ell}$ be the bound guaranteed by Proposition 2 with $\delta=\delta_{\ell-1}$, $\alpha=3^{-k}$. Then we define

$$\delta_{\ell} = \min \left\{ \epsilon_{1,\ell}, \epsilon_{2,\ell}, \frac{1}{2}, \delta_{\ell-1} \right\}$$
.

There is a bound n_o such that if $n \ge n_o$ then Propositions 1, 2, and 3 hold with the above choices of parameters for each $\ell=1,\ldots,k$. We also choose n_o so that $n_o^{\delta_1} > 3^k$. For the remainder of the proof, we assume that $n \ge n_o$.

We now examine the consecutive values $d_1(m_1), \ldots, d_1(m_{g(n)})$. Say this sequence changes value u-1 times, so there are u values, perhaps with repeats. This defines a partition of the sequence $m_1, \ldots, m_{g(n)}$ into u blocks. If m_v is in the i-th block, we write $i_1(m_v) = i$, $d(i) = d_1(m_v)$.

In the i-th block of consecutive m_{ν} 's, say the value $d_2(m_{\nu})$ changes u(i)-1 times, so there are u(i) not necessarily distinct values of $d_2(m_{\nu})$ in this block. This then defines a partition of the i-th block into u(i) sub-blocks. If m_{ν} is in the i-th block, j-th sub-block, we write $i_2(m_{\nu})=j$, $d(i,j)=d_2(m_{\nu})$.

We then use changes in the value of $d_3(m_{\gamma})$ to further refine the partition, etc. By the L-th level, we have defined numbers in the u-family, in the i-family, and in the d-family, where u-numbers give the number of blocks in a particular subdivision, i-numbers refer to particular blocks, and d-numbers give the divisors of the m_{γ} 's which define the next subdivision.

In computing an upper bound for g(n), there are certain types of values of $m_1, \ldots, m_{g(n)}$ that cannot be conveniently handled by the principal argument and so are separated off and estimated by other arguments. These are the m_V for which $D_{\ell-1}(m_V) > n^{1-\delta \frac{1}{\ell}}$ or $i_{\ell}(m_V) = 1$ for some $\ell=1,\ldots,k$.

By Proposition 3, our choice of δ_1,\ldots,δ_k and our choice of n, the number of $m \le n$ with $D_{\ell-1}(m) > n^{1-\delta \ell}$ is less than $3^{-k}n$. Therefore, the number of m with $D_{\ell-1}(m_{\nu}) > n^{1-\delta \ell}$ for some $\ell=1,\ldots,k$ is less than $k \cdot 3^{-k}n < 2^{-k}n$.

Now consider the m_V for which $i_1(m_V)=1$. These are all divisible by d(1). We have chosen δ_1 so that by Proposition 2, the number of $m \le n$ with $d_1(m)=1$ is less than $3^{-k}n$. Thus assume d(1)>1, so that $d(1)>n^{-1}$. But then the number of $m \le n$ divisible by d(1) is less than $n^{1-\delta_1}<3^{-k}n$. We conclude that the number of for which $i_1(m_V)=1$ is less than $3^{-k}n$.

We now consider the m_V for which $i_{\ell}(m_{V}) = 1$ for some $\ell = 2,...,k$ and $i_{\ell}(m_{V}) > 1$ for some $\ell < \ell$. Consider those values of ν where

$$D_{\ell-1}(m_{\nu}) \neq D_{\ell-1}(m_{\nu+1}).$$

Say these are $v_1,\dots,v_{ t t}$. Let $\mu_{ t i}$ be the least positive number such that

$$D_{\ell}(m_{\nu_{\mathbf{i}}+\mu_{\mathbf{i}}}) \neq D_{\ell}(m_{\nu_{\mathbf{i}}+\mu_{\mathbf{i}}+1})$$

for i = 1,...,t. So the sets $\{m_{\nu_1+1},\ldots,m_{\nu_1+\mu_1}\}$ are precisely the blocks of m_{ν} where $i_{\underline{i}}(m_{\nu})=1$ and $i_{\lambda}(m_{\nu})>1$ for some $\lambda<\ell$. Thus the number of such m_{ν} is exactly $\sum_{i=1}^{t}\mu_{i}$.

To estimate this sum, we first get an upper bound on t. From (3.1), there is a prime power $p^a|_{\mathfrak{m}_{v+1}}$ with $p>n^{\delta_{\ell}-1}$ and $q^b|_{\mathfrak{m}_{v+1}}$ or there is a prime power $q^b|_{\mathfrak{m}_{v+1}}$ with $q>n^{\delta_{\ell}-1}$ and $q^b|_{\mathfrak{m}}$. Thus, either

$$\operatorname{pm}_{\vee+1} \left| \left[\operatorname{m}_{\vee}, \operatorname{m}_{\vee+1} \right] \right. \text{ or } \left. \operatorname{qm}_{\vee} \right| \left[\operatorname{m}_{\vee}, \operatorname{m}_{\vee+1} \right] \right. .$$

Since $[m_{v}, m_{v+1}] \leq n$, we have

$$\min \{m_{v}, m_{v+1}\} < n^{1-\delta_{\ell-1}}$$
.

Therefore $t < 2n^{1-\delta}l-1$.

Suppose $1 = b_1 < b_2 < ...$ are the integers all of whose primes exceed $n^{\delta_{\ell}}$. Then

$$\sum_{i=1}^{t} \mu_{i} \leq \sum_{b \in \{D_{\ell}(m_{\nu_{i}+1}): i=1,\dots,t\}} \psi(\frac{n}{b}, n^{\delta_{\ell}})$$

$$\leq \sum_{i=1}^{t} \psi(\frac{n}{b_{i}}, n^{\delta_{\ell}}) \leq \sum_{1 \leq 2n} 1 - \delta_{\ell-1} \psi(\frac{n}{b_{i}}, n^{\delta_{\ell}})$$

$$\leq 3^{-k} n$$

by Proposition 2. Therefore, the number of m, with $i_{k}(m_{v})=1$ for some $\ell=1,\ldots,k$ is less than $k\cdot 3^{-k}n\leq 2^{-k}n$.

Let $\mathcal{L}(n)$ denote the set of $\nu=1,\ldots,g(n)$ with $D_{\ell-1}(m_{\nu})\leq n^{1-\delta_{\ell}^{\ell}}$ and $i_{\ell}(m_{\nu})>1$ for each $\ell=1,\ldots,k$. Our goal now is to estimate $\#\mathcal{L}(n)$. Given a number D all of whose primes exceed $n^{\delta_{\ell}-1}$, let

$$\begin{split} \mathbf{U}_{\ell}(\mathbf{D}) &= \{\mathbf{d}_{\ell}(\mathbf{m}_{\mathbf{V}}) \colon \quad \mathbf{v} \in \mathcal{L}(\mathbf{n}) \,, \, \, \mathbf{D}_{\ell-1}(\mathbf{m}_{\mathbf{V}}) \, = \, \mathbf{D} \} \\ \\ \mathbf{u}_{\ell}(\mathbf{D}) &= \# \, \, \mathbf{U}_{\ell}(\mathbf{D}) \, \, . \end{split}$$

We now obtain an upper bound for $u_{\ell}(D)$. Say $v \in \mathcal{L}(n)$, $D_{\ell-1}(m_{v}) = D$ and $d_{\ell}(m_{v}) = d(i_{1}, \ldots, i_{\ell})$. We may assume $D_{\ell}(m_{v-1}) \neq D_{\ell}(m_{v})$. Since $i_{\ell} > 1$, we have $D_{\ell-1}(m_{v-1}) = D$ and $d_{\ell}(m_{v-1}) = d(i_{1}, \ldots, i_{\ell-1}, i_{\ell}-1)$, so that $d_{\ell}(m_{v-1}) \neq d_{\ell}(m_{v})$. Since $[m_{v-1}, m_{v}] \leq n$, we have

$$\min~\{m_{\nu-1},m_{\nu}\}~\leq~n^{1-\delta_{\ell}}~.$$

Now the number of $m \leq n^{1-\delta_{\ell}}$ with $D_{\ell-1}(m) = D$ is $\psi(\frac{n^{1-\delta_{\ell}}}{D}, n^{\delta_{\ell}-1})$, which is at most $n^{1-\delta_{\ell}}/D$. Therefore,

(3.2)
$$u_{\ell}(D) \leq 2n^{1-\delta_{\ell}}/D$$
.

Note that if $D_{\ell-1}(m_{\nu})=D$ for some $\nu\in \mathscr{L}(n)$, then $D\leq n^{1-\delta_{\ell}'}$, so that $n/D\geq n^{\delta_{\ell}'}$. We clearly have

$$\#\mathscr{L}(n) \leq \sum_{D \in \{D_{k}(\mathfrak{m}_{N}) : \nu \in \mathscr{L}(n)\}} \psi(\frac{n}{D}, n^{\delta}k) .$$

we now show that for each l = 0,1,...,k, we have

$$\text{$\#\mathscr{Y}(n)$} \leq 2^{\ell-k} \sum_{D \in \{D_{\ell}(m_{\nu}) : \nu \in \mathscr{L}(n)\}} \psi(\frac{n}{D}, n^{\delta_{\ell}}) .$$

To show (3.3) we use induction on ℓ . We have already seen (3.3) for $\ell=k$. Suppose now $1\leq \ell\leq k$ and (3.3) is true for ℓ . Then

$$(3.4) \qquad = 2^{2-k} \sum_{D \in \{D_{\ell}(m_{\nu}) : \nu \in \mathcal{E}(n)\}} \psi(\frac{n}{D}, n^{\delta_{\ell}})$$

$$= 2^{2-k} \sum_{D \in \{D_{\ell-1}(m_{\nu}) : \nu \in \mathcal{E}(n)\}} \sum_{d \in U_{\ell}(D)} \psi(\frac{n}{Dd}, n^{\delta_{\ell}}).$$

Let $1 = a_1 < a_2 < \dots$ denote the integers all of whose primes come from $(n^{\delta} \ell, n^{\delta} \ell^{-1}]$. Thus the inner sum in (3.4) is at most

$$\frac{\mathbf{u}_{\ell_{\mathbf{n}}}(\mathbf{D})}{\sum_{\mathbf{i}=1}^{n}} \psi(\frac{\mathbf{n}}{\mathbf{D}\mathbf{a}_{\mathbf{i}}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}}}) = \sum_{\mathbf{i}=1}^{\infty} \psi(\frac{\mathbf{n}}{\mathbf{D}\mathbf{a}_{\mathbf{i}}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}}}) - \sum_{\mathbf{i}>\mathbf{u}_{\ell_{\mathbf{i}}}(\mathbf{D})} \psi(\frac{\mathbf{n}}{\mathbf{D}\mathbf{a}_{\mathbf{i}}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}}})$$

$$= \psi(\frac{\mathbf{n}}{\mathbf{D}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}-1}}) - \sum_{\mathbf{i}>\mathbf{2n}} \psi(\frac{\mathbf{n}}{\mathbf{D}\mathbf{a}_{\mathbf{i}}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}}})$$

$$\leq \psi(\frac{\mathbf{n}}{\mathbf{D}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}-1}}) - \sum_{\mathbf{i}>\mathbf{2n}} 1 - \delta_{\ell_{\ell_{\mathbf{i}}}/\mathbf{D}} \psi(\frac{\mathbf{n}}{\mathbf{D}\mathbf{a}_{\mathbf{i}}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}}})$$

$$= \psi(\frac{\mathbf{n}}{\mathbf{D}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}-1}}) - \sum_{\mathbf{i}>\mathbf{2n}} 1 - \delta_{\ell_{\ell_{\mathbf{i}}}/\mathbf{D}} \frac{\mathbf{n}^{\delta_{\ell_{\mathbf{i}}}}}{\mathbf{n}^{\delta_{\ell_{\mathbf{i}}}}}$$

$$< \frac{1}{2} \psi(\frac{\mathbf{n}}{\mathbf{D}}, \mathbf{n}^{\delta_{\ell_{\mathbf{i}}-1}})$$

by (3.2) and Proposition 1. Thus from (3.4) we have

$$\# \mathscr{L}(\mathfrak{n}) \, \leq \, 2^{\ell-1-k} \, \sum_{\mathfrak{D} \in \{\mathfrak{D}_{\varrho,-1}(\mathfrak{m}_{\mathfrak{V}}) \, : \, \mathfrak{V} \in \mathscr{L}(\mathfrak{n}) \, \}} \psi(\tfrac{\mathfrak{n}}{\mathfrak{D}} \, , \, \mathfrak{n}^{\delta \varrho - 1}) \ .$$

This then establishes (3.3) for each $\ell = 0,1,...,k$. Using (3.3) with $\ell = 0$, we have

$$\# \mathcal{L}(n) \leq 2^{-k} \sum_{D \in \{D_{\widehat{D}}(m_{N}) : v \in \mathcal{L}(n)\}} \psi(\frac{n}{D}, n^{\delta_{\widehat{D}}}) \leq 2^{-k} n \quad ,$$

since $D_0(m)=1$ for any m and $\delta_0=1$. We thus have for all large n that

$$g(n) \le 2 \cdot 2^{-k} n + \# \mathcal{J}(n) \le 3 \cdot 2^{-k} n$$
.

Since k is arbitrary, this shows that g(n) = o(n), completing the proof of the theorem.

Remark. An examination of the proof reveals that we have actually shown a bit more. Namely, we have shown that for each $\varepsilon > 0$, there is a $\delta > 0$ and an n_0 such that if $n \geq n_0$ and $m_1, m_2, \ldots, m_{h(n)}$ is the longest sequence of distinct numbers from $\{1, 2, \ldots, n\}$ such that each $[m_{\nu}, m_{\nu+1}] \leq n^{1+\delta}$, then $h(n) < \varepsilon n$.

References

- N.G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Nederl. Akad. Wetensch. Proc. 53, 803 - 812 = Indag. Math. 12, 247-256 (1950).
- N.G. de Bruijn, On the number of positive integers ≤ x and free of prime factors > y, Neder1. Akad. Wetensch. Proc. Ser. A 54, 50-60 (1951).
- P. Erdös, R. Freud, and N. Hegyvári, Arithmetical properties of permutations of integers, Acta Math. Acad. Sci. Hung., to appear.
- J.B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc. 3rd Ser. 33, 565-576 (1976).
- H. Halberstam and H.-E. Richert, <u>Sieve</u> <u>Methods</u>, Academic Press, London (1974).
- A.D. Pollington, There is a long simple path in the divisor graph, preprint.