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The amazing number π

This text accompanies an address given

at the celebration to replace the lost

tombstone of Ludolph van Ceulen at the

Pieterskerk (St. Peter’s Church) in Leiden on

the fifth of July, 2000. It honours the partic-

ular achievements of Ludolph as well as the

long and important tradition of intellectual

inquiry associated with understanding the

number π and numbers generally.

The history of π parallels virtually the en-

tire history of Mathematics. At times it

has been of central interest and at times

the interest has been quite peripheral (no

pun intended). Certainly Lindemann’s

proof of the transcendence of π was one of

the highlights of nineteenth century math-

ematics and stands as one of the semi-

nal achievements of the millennium (very

loosely this result says that π is not an easy

number). One of the low points was the

Indiana State legislature’s attempt to leg-

islate a value of π in 1897; an attempt as

plausible as repealing the law of gravity.

Why π?

The amount of human ingenuity that has

gone into understanding the nature of π

and computing its digits is quite phenom-

enal and begs the question “why π?”. Af-

ter all there are more numbers than one

can reasonably contemplate that could get

a similar treatment. And π is just one

of the very infinite firmament of num-

bers. Part of the answer is historical. It is

the earliest and the most naturally occur-

ring hard number (technically, hard means

transcendental which means not the so-

lution of a simple equation). Even the

choice of label ‘transcendental’ gives it

something of a mystical aura.

What is pi? First and foremost it is

a number, between 3 and 4 (3.14159. . .).

It arises in any computations involving

circles: the area of a circle of radius 1

or equivalently, though not obviously, the

perimeter of a circle of radius 1/2. The

nomenclature π is presumably the Greek

letter ‘p’ in periphery. The most basic

properties of π were understood in the pe-

riod of classical Greek mathematics by the

time of the death of Archimedes in 212 BC.

Ruler and compass

The Greek notion of number was quite dif-

ferent from ours, so the Greek numbers

were our whole numbers: 1, 2, 3. . . In

Greek geometry the essential idea was not

number but continuous magnitude, e.g.

line segments. It was based on the no-

tion of multiplicity of units and, in this

Bill No. 246, 1897. State of Indiana

“Be it enacted by the General Assembly of

the State of Indiana: It has been found

that the circular area is to the quadrant of

the circumference, as the area of an equi-

lateral rectangle is to the square on one

side.”
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sense, numbers that existed were num-

bers that could be drawn with just an un-

marked ruler and compass. The rules

allowed for starting with a fixed length

of 1 and seeing what could be construct-

ed with straight edge and compass alone.

(Our current notion is much more based

on counting.) The question of whether π

is a constructible magnitude had been ex-

plicitly raised as a question by the sixth

century BC and the time of the Pythagore-

ans. Unfortunately π is not constructible,

though a proof of this would not be avail-

able for several thousand years. In this

context there isn’t a more basic question

than “is π a number?" Of course, our more

modern notion of number embraces the

Greek notion of constructible and doesn’t

depend on construction. The existence of

π as a number given by an infinite (albeit

unknown) decimal expansion poses little

problem.

Very early on the Greeks had hypoth-

esized that π wasn’t constructible, Aristo-

phanes already makes fun of “circle squar-

ers” in his fifth century BC play “The

Birds.”

Lindemann’s proof of the transcen-

dence of π in 1882 settles the issue that π

is not constructible by the Greek rules and

a truly marvelous proof was given a few

years later by Hilbert. Not that this has

stopped cranks from still trying to con-

struct π .

Does this tell us everything we wish

to know about π? No, our ignorance is

still much more profound than our knowl-

edge! For example, the second most nat-

ural hard number is e which is provably

transcendental. But what about π + e?

This embarrassingly easy question is cur-

rently totally intractable (we don’t even

know how to show that π + e is irrational).

The number π is a mathematical apple

and e is a mathematical orange and we

have no idea how to mix them.

The need for π

Why compute the digits of π? Some-

times it is necessary to do so, though hard-

ly ever more than the 6 or so digits that

Archimedes computed several thousand

years ago are needed for physical applica-

tions. Even far fetched computations like

the volume of a spherical universe only

require a few dozen digits. There is al-

so the ‘Everest Hypothesis’ (‘because it’s

there’). Probably the number of people

involved and the effort in time has been

similar in the two quests. A few thou-

sand people have reached the computa-

tional level that requires the carrying of

oxygen — though so far I know of no

π related fatalities. There has been sig-

nificant knowledge accumulated in this

slightly quixotic pursuit. But this knowl-

edge could have been derived from com-

puting a host of other numbers in a variety

of different bases. Once again the answer

to “why π” is largely historical and cultur-

al. These are good but not particularly sci-

entific reasons. Pi was first, pi is hard and

pi has captured the educated imagination.

(Have you ever seen a cartoon about log 2

— a number very similar to π?)

Whatever the personal motivations, π

has been much computed and a surprising

amount has been learnt along the way.

The mathematics involved

In constructing the all star hockey team

of great mathematicians, there seems to

The title page of Lindemann´s proof of the
irrationality of π

Digits of π represented by grey tones

be pretty wide agreement that the front

line consists of Archimedes, Newton, and

Gauss. Both Archimedes and Newton

invented methods for computing π . In

Newton’s case this was an application of

his newly invented calculus. I know of

no such calculation from Gauss though his

exploration of the Arithmetic-Geometric

Mean iteration laid the foundation of the

most successful methods for doing such

calculations. There is less consensus about

who comes next. I might add Hilbert and

Euler next (on defense). Both of these

mathematicians also contribute to the sto-

ry of π . Perhaps von Neumann is in goal

— certainly he is a candidate for the most

versatile and smartest mathematician of

the twentieth century. One of the first cal-

culations done on ENIAC (one of the first

real computers) was the computations of

roughly a thousand digits of π and von

Neumann was part of the team that did

the calculation.

One doesn’t often think of a problem

like this having economic benefits. But as

is often the case with pure mathematics

and curiosity driven research the rewards

can be surprising. Large recent records de-

pend on three things: better algorithms for

π ; larger and faster computers; and an un-

derstanding of how to do arithmetic with

numbers that are billions of digits long

The better algorithms are due to a vari-

ety of people including Ramanujan, Brent,

Salamin, the Chudnovsky brothers and

ourselves (the Borwein brothers, NAW).

Some of the mathematics is both beauti-

ful and subtle. (The Ramanujan type se-

ries listed in the appendix are, for me, of

this nature.)

The better computers are, of course, the

most salient technological advance of the
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second half of the twentieth century.

Understanding arithmetic is an inter-

esting and illuminating story in its own

right. A hundred years ago we knew how

to add and multiply — do it the way we

all learned in school. Now we are not

so certain except that we now know that

the “high school method” is a disaster

for multiplying really big numbers. The

mathematical technology that allows for

multiplying very large numbers togeth-

er is essentially the same as the mathe-

matical technology that allows image pro-

cessing devices like CAT scanners to work

(FFTs). In making the record setting algo-

rithms work, David Bailey tuned the FFT

algorithms in several of the standard im-

plementations and saved the US economy

millions of dollars annually. Most recent

records are set when new computers are

being installed and tested. (Recent records

are more or less how many digits can be

computed in a day — a reasonable amount

of test time on a costly machine.) The com-

putation of π seems to stretch the machine

and there is a history of uncovering subtle

and sometimes not so subtle bugs at this

stage.

Patterns in π

What do the calculations of π reveal and

what does one expect? One expects that

the digits of π should look random — that

roughly one out of each ten digits should

be a 7 et cetera. This appears to be true

at least for the first few hundred billion.

But this is far from a proof — an actu-

al proof of this is way out of the reach

of current mathematics. As is so often

the case in mathematics some of the most

basic questions are some of the most in-

tractable. What mathematicians believe is

that every pattern possible eventually oc-

curs in the digits of π — with a suitable

encoding the Bible is written in entirety in

the digits, as is the New York phone book

and everything else imaginable.

The question of whether there are sub-

tle patterns in the digits is an interesting

one. (Perhaps every billionth digit is a

seven after a while. While unlikely this

is not provably impossible. Or perhaps

π is buried within π in some predictable

way.) Looking for subtle patterns in long

numbers is exactly the kind of problem

one needs to tackle in handling the hu-

man genome (a chromosome is just a large

number written in base 4, at least to a

mathematician). k
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Appendices

I have included two appendices. One is from David H. Bailey, Jonathan M. Borwein, Peter B. Borwein, and Simon Plouffe, “The Quest for Pi,” (June, 1996)
The Mathematical Intelligencer. It is a chronology of the computation of digits of π . The second is taken from: Lennert Berggren, Jonathan M. Borwein
and Peter B. Borwein, Pi: A Source Book, Springer–Verlag 1988. It is a list of significant mathematical formulae related to π . These are reproduced with
permission from Springer–Verlag New York.

The previously mentioned chronology is of the problem of computing all of the initial digits of π . There is also a shorter chronology of computing
just a few very distant bits of π . The record here is 40 trillion and is due to Colin Percival using the methods described in the last reference above. It is
surprising that this is possible at all.
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Appendix Ia. A computational chronology for pi

History of π calculations (pre 20th century)

Babylonians 2000? BCE 1 3.125 (3 1
8 )

Egyptians 2000? BCE 1 3.16045 (4( 8
9 )2)

China 1200? BCE 1 3

Bible (1 Kings 7:23) 550? BCE 1 3

Archimedes 250? BCE 3 3.1418 (ave.)

Hon Han Shu 130 AD 1 3.1622 ( =
√

10 ?)

Ptolemy 150 3 3.14166

Chung Hing 250? 1 3.16227 (
√

10)

Wang Fau 250? 1 3.15555 ( 142
45 )

Liu Hui 263 5 3.14159

Siddhanta 380 3 3.1416

Tsu Ch’ung Chi 480? 7 3.1415926

Aryabhata 499 4 3.14156

Brahmagupta 640? 1 3.162277 ( =
√

10)

Al-Khowarizmi 800 4 3.1416

Fibonacci 1220 3 3.141818

Al-Kashi 1429 14

Otho 1573 6 3.1415929

Viète 1593 9 3.1415926536 (ave.)

Romanus 1593 15

Van Ceulen 1596 20

Van Ceulen 1610 35

Newton 1665 16

Sharp 1699 71

Seki 1700? 10

Kamata 1730? 25

Machin 1706 100

De Lagny 1719 127 (112 correct)

Takebe 1723 41

Matsunaga 1739 50

Vega 1794 140

Rutherford 1824 208 (152 correct)

Strassnitzky and Dase 1844 200

Clausen 1847 248

Lehmann 1853 261

Rutherford 1853 440

Shanks 1874 707 (527 correct)

Appendix Ib.

History of π calculations (20th century)

Ferguson 1946 620

Ferguson Jan. 1947 710

Ferguson and Wrench Sep. 1947 808

Smith and Wrench 1949 1,120

Reitwiesner et al. (ENIAC) 1949 2,037

Nicholson and Jeenel 1954 3,092

Felton 1957 7,480

Genuys Jan. 1958 10,000

Felton May 1958 10,021

Guilloud 1959 16,167

Shanks and Wrench 1961 100,265

Guilloud and Filliatre 1966 250,000

Guilloud and Dichampt 1967 500,000

Guilloud and Bouyer 1973 1,001,250

Miyoshi and Kanada 1981 2,000,036

Guilloud 1982 2,000,050

Tamura 1982 2,097,144

Tamura and Kanada 1982 8,388,576

Kanada, Yoshino and Tamura 1982 16,777,206

Ushiro and Kanada Oct. 1983 10,013,395

Gosper 1985 17,526,200

Bailey Jan. 1986 29,360,111

Kanada and Tamura Sep. 1986 33,554,414

Kanada and Tamura Oct. 1986 67,108,839

Kanada, Tamura, Kubo, et al. Jan. 1987 134,217,700

Kanada and Tamura Jan. 1988 201,326,551

Chudnovskys May 1989 480,000,000

Chudnovskys Jun. 1989 525,229,270

Kanada and Tamura Jul. 1989 536,870,898

Kanada and Tamura Nov. 1989 1,073,741,799

Chudnovskys Aug. 1989 1,011,196,691

Chudnovskys Aug. 1991 2,260,000,000

Chudnovskys May 1994 4,044,000,000

Takahashi and Kanada Jun. 1995 3,221,225,466

Kanada Aug. 1995 4,294,967,286

Kanada Oct. 1995 6,442,450,938

Kanada Jun. 1997 51,539,600,000

Kanada Sep. 1999 206,158,430,000

Appendix II. Selected formulae for pi

Archimedes (ca. 250 BC)

Let a0 := 2
√

3, b0 := 3 and

an+1 :=
2anbn

an + bn
and bn+1 :=

√

an+1bn .

Then an and bn converge linearly to π (with an error O(4−n).)

François Viète (ca. 1579)

2

π

=

√

1

2

√

1

2
+

1

2

√

1

2

√

√

√

√ 1

2
+

1

2

√

1

2
+

1

2

√

1

2
· · ·

John Wallis (ca. 1650)

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · · ·

1 · 3 · 3 · 5 · 5 · 7 · 7 · 9 · · ·

William Brouncker (ca. 1650)

π =
4

1 + 1
2+ 9

2+ 25
2+···

Madhava, James Gregory, Gottfried Wilhelm Leibnitz (1450–1671)

π

4
= 1 −

1

3
+

1

5
−

1

7
+ · · ·
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Isaac Newton (ca. 1666)

π =
3
√

3

4
+ 24

(

2

3 · 23
−

1

5 · 25
−

1

28 · 27
−

1

72 · 29
− · · ·

)

Machin Type Formulae (1706–1776)

π

4
= 4 arctan(

1

5
) − arctan(

1

239
)

π

4
= arctan(

1

2
) + arctan(

1

3
)

π

4
= 2 arctan(

1

2
) − arctan(

1

7
)

π

4
= 2 arctan(

1

3
) + arctan(

1

7
)

Leonard Euler (ca. 1748)

π
2

6
= 1 +

1

22
+

1

32
+

1

42
+

1

52
+ · · ·

π
4

90
= 1 +

1

24
+

1

34
+

1

44
+

1

54
+ · · ·

π
2

6
= 3

∞

∑
m =1

1

m2(2m
m )

Srinivasa Ramanujan (1914)

1

π

=
∞

∑
n=0

(

2n

n

)

3 42n + 5

212n+4
.

1

π

=

√

8

9801

∞

∑
n=0

(4n)!

(n!)4

[1103 + 26390n]

3964n
.

Each additional term of the latter series adds roughly 8 digits.

Louis Comtet (1974)

π
4

90
=

36

17

∞

∑
m=1

1

m4(2m
m )

Eugene Salamin, Richard Brent (1976)

Set a0 = 1, b0 = 1/
√

2 and s0 = 1/2. For k = 1, 2, 3, · · · compute

ak =
ak−1 + bk−1

2

bk =
√

ak−1bk−1

ck = a2
k − b2

k

sk = sk−1 − 2kck

pk =
2a2

k

sk

Then pk converges quadratically to π .

Jonathan Borwein and Peter Borwein (1991)

Set a0 = 1/3 and s0 = (
√

3 − 1)/2. Iterate

rk+1 =
3

1 + 2(1 − s3
k)

1/3

sk+1 =
rk+1 − 1

2

ak+1 = r2
k+1ak − 3k(r2

k+1 − 1)

Then 1/ak converges cubically to π .

[1985] Set a0 = 6 − 4
√

2 and y0 =
√

2 − 1. Iterate

yk+1 =
1−(1−y4

k
)1/4

1+(1−y4
k
)1/4

ak+1 = ak(1 + yk+1)
4
− 22k+3 yk+1(1 + yk+1 + y2

k+1)

Then ak converges quartically to 1/π .

David Chudnovsky and Gregory Chudnovsky (1989)

1

π

=12
∞

∑
n=0

(−1)n (6n)!

(n!)3(3n)!

13591409+n545140134

(6403203)n+1/2
.

Each additional term of the series adds roughly 15 digits.

Jonathan Borwein and Peter Borwein (1989)

1

π

= 12
∞

∑
n=0

(−1)n(6n)!

(n!)3(3n)!

(A + nB)

Cn+1/2

where

A := 212175710912
√

61 + 1657145277365

B := 13773980892672
√

61 + 107578229802750

C := [5280(236674 + 30303
√

61)]3 .

Each additional term of the series adds roughly 31 digits.

[1985] The following is not an identity but is correct to over 42

billion digits:
(

1

105

∞

∑
n=−∞

e
−

n2

1010

)

2 .
= π .

Roy North (1989)

Gregory’s series for π , truncated at 500,000 terms gives to forty

places

4
500,000

∑
k =1

(−1)k−1

2k − 1

= 3.141590653589793240462643383269502884197.

Only the underlined digits are incorrect.

David Bailey, Peter Borwein and Simon Plouffe (1996)

π =
∞

∑
i=0

1

16i

( 4

8i + 1
−

2

8i + 4
−

1

8i + 5
−

1

8i + 6

)


