
Pade Approximations and the Transcendence

of π

Ernie Croot

March 9, 2007

1 Introduction

Lindemann proved the following theorem, which implies that π is transcen-
dental:

Theorem 1 Suppose that α1, ..., αk are non-zero algebraic numbers, and that

β1, ..., βk are distinct algebraic numbers. Then,

α1e
β1 + · · ·+ αke

βk 6= 0.

The reason that this implies that π is transcendental is that if π were
algebraic, then so is iπ, which would mean

0 = eiπ + 1 6= 0.

We will not prove this general result (of Lindemann), but will instead
show only that eα can never equal −1 for any algebraic number α, which
proves π is transcendental because eπi = −1. The proof for the general case
uses similar ideas to this special case.

2 The Proof

2.1 The Idea: Pade Approximations

We begin by recalling the standard proof that e is irrational: Suppose e is
rational. Then, n!e must be an integer for all n sufficiently large; however,

n!e = In +
1

n + 1
+

1

(n + 1)(n + 2)
+

1

(n + 1)(n + 2)(n + 3)
+ · · · ,
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where In is the integer

2n! +
n!

2!
+

n!

3!
+ · · ·+ 1.

It is easy to see that for n sufficiently large, n!e = I + δ, where δ ∈
(0, 1), which contradicts the fact that n!e is an integer; so, e must have been
irrational.

Actually, what this proof gives us is the even stronger fact that there
exists an infinite sequences of integers fn and gn tending to infinity, such
that

fne − gn → 0.

Indeed, just take fn = n! and gn = In. This brings us to the following basic
fact:

Fact. If α is some (possibly complex) number for which there exist sequences
of integers fn, gn → ∞ such that

fnα − gn → 0, and fnα − gn 6= 0,

then α is irrational.1

To show that eα, α is a non-zero rational, is irrational we will find such
fn and gn. First, we begin with the case where α is an integer. If we can
show this, then it follows that for any rational a/b we have ea/b is irrational
(on taking bth powers).

Our sequence of fn’s and gn’s comes from what are called Pade approxi-

mations to ex. Basically, a Pade approximation is a pair of polynomials f(x)
and g(x) such that

ex ∼
f(x)

g(x)

for x near 0.

There are methods for finding such good pairs f and g, and the simplest
is to just use linear algebra. Basically, we try to find f(x) and g(x) of degree
n so that the Taylor expansion of

g(x)ex − f(x)

1The proof is obvious, since if α = a/b were rational, then |a/b − gn/fn| = 0 or is at

least 1/bfn. Multiplying through by fn gives the result.
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about x = 0 begins

c2n+1x
2n+1 + c2n+2x

2n+2 + · · ·

This uniquely determines f and g up to scalar multiples.

Such g and f can be found using the “pade” command in Maple; for
example, Maple gives that in the case where g and f have degree 4,

ex ∼
1 + x

2
+ 3x2

28
+ x3

84
+ x4

1680

1 − x
2

+ 3x2

28
− x3

84
+ x4

1680

.

Notice here that g(x) = f(−x). This follows since if

g(x)ex − f(x)

has order of vanishing 2n + 1 at x = 0, then so does

e−x(g(x)ex − f(x)) = g(x) − e−xf(x).

We want to find a nice form for these approximations, and we begin as
follows: If A(x) is any polynomial of degree m, then

∫ x

0

e−tA(t)dt =

m
∑

j=0

A(j)(0) − e−x

m
∑

j=0

A(j)(x).

An obvious question is whether there are polynomials A(t) = A(t, x) for
which these approximations to e−x coincide with the Pade polynomials f(x)
and g(x) mentioned above. By trying this for a few small cases (small values
of n), one quickly discovers that, yes, in fact letting

A(t, x) =
tn(t − x)n

n!

and letting

f(x) =

2n
∑

j=0

A(j)(x, x), and g(x) = f(−x) =

2n
∑

j=0

A(j)(0, x), (1)
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(the derivatives here are with respect to t), both of which turn out to have
degree n, we find that g(x)/f(x) is the Pade approximation to e−x of degree
n; and so, f(x)/g(x) is the Pade approximation to ex of degree n.

We can prove that this choice of A(t, x) indeed gives Pade approximations
rather easily: We have that

∣

∣

∣

∣

∫ x

0

e−xtn(t − x)n

n!
dx

∣

∣

∣

∣

<
x · xn · xn

n!
=

x2n+1

n!
. (2)

This upper bound guarantees that the integral has order of vanishing at
least 2n + 1 about x = 0, and thus proves that the integral generates Pade
approximations.

Just to check, here is what Maple gives for Pade polynomial approxima-
tions of degree 8 for e−x:

e−x ≈
1 − x

2
+ 7x2

60
− x3

60
+ x4

624
− x5

9360
+ x6

205920
− x7

7207200
+ x8

518918400

1 + x
2

+ 7x2

60
+ x3

60
+ x4

624
+ x5

9360
+ x6

205920
+ x7

7207200
+ x8

518918400

. (3)

Maple also gives

∫ x

0

e−tt8(t − x)8

8!
dt = g(x) − e−xf(x),

where f(x) = g(−x) and

f(x) = x8 + 72x7 + 2520x6 + 55440x5 + 831600x4 + 8648640x3

+60540480x2 + 259459200x + 518918400.

This polynomial f(x) is the same as the polynomial in the denominator in
(3) up to a factor of 518918400 = 16!/8!.

The advantage to working with this integral formula for the Pade ap-
proximations is that it allows us to give easy bounds for how well g(x)/f(x)
approximates e−x, as we will see. Before we do this, however, let us first
verify that the f(x) and g(x) described in (1) are both in Z[x]: When we
sum up A(j)(t, x) over all j = 0, ..., n, we get a bunch of terms of the form
cxi(t − x)j/n!. If we set t = x, then this term is 0 unless j = 0; but, if
j = 0, then we must have taken n or more derivatives to get that term from
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A(t, x), meaning that n! divides c. Similarly, if we set t = 0, then the term
cxi(t − x)j/n! is 0 unless i = 0, which also would mean that n! divides c.
So, all the (non-zero) terms of A(x, x) and A(0, x) have integer coefficients,
which implies that these polynomials belong to Z[x].

Now, from the upper bound (2) we find that letting x be a positive integer
a, we get non-zero integers fn and gn satisfying

|fne
−a − gn| ≤

a2n+1

n!
,

which can be made arbitrarily small by taking n sufficiently large. The fact
that this difference is non-zero also follows from the integral formula:2 If n
even, it is clear that

∫ x

0

e−ttn(t − x)n

n!
dt > 0,

and when n is odd this integral is less than 0.

2.2 The Irrationality of π

The Pade estimates in the previous section for ex hold equally well for purely
imaginary numbers x = iθ, where θ is an integer. In this case, we find that

|e−iθf(iθ) − g(iθ)| ≤
|θ|2n+1

n!
,

where f and g are the degree n Pade approximation polynomials for e−x. Let
us see that g(iθ) is non-zero for all sufficiently large n: We have that g(x) is
a sum of successive derivatives (with respect to t) of A(t, x) = tn(t − x)n/n!
evaluated at 0. Among the terms in this sum there will be only one term
which is not divisible by n, and that term is (−x)n. So,

g(x) ≡ (−x)n (mod n).

Therefore, if n is a large number coprime to an integer θ, we will have that

g(iθ) ≡ (−iθ)n 6≡ 0 (mod n),

2In the next subsection we will give a different argument for why this difference is

nonzero.
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which implies g(iθ) 6= 0. Thus, for infinitely many n, g(iθ) is non-zero. A
similar argument shows that

f(x) ≡ xn (mod n).

So, if eiθ = 1, then for odd n, we find that

eiθf(iθ) − g(iθ) ≡ 2(iθ)n (mod n)

Thus, if n is a large odd number coprime to θ, this will be non-zero, and it
follows that for such n,

eiθf(iθ) − g(iθ) 6= 0.

Notice here that this modulo n argument did not help up out at all as
far as finding good rational approximations to e−x. It was only needed to
show that a certain linear form did not vanish. In the full Lindemann proof
something similar is true: One must show that a certain linear form does not
vanish, and one uses arithmetic properties of (generalized) Pade polynomials
to do this.

Suppose now that θ = π is a rational number. Then, let d be an even
number such that dπ is an integer. Then, the above argument shows that

|f(idπ) − g(idπ)| <
(dπ)2n+1

n!
,

which means that the left-hand-side must be 0 for n sufficiently large, since
it lies in Z[i]. We have reached a a contradiction, and it follows that π is
irrational.

2.3 Taking Stock of What We Have

Comment 1. What made our Pade integral proofs work was the that

fne−a − gn

was small but non-zero. What made this difference small was the fact that
we could divide by n! in our definition of A(t, x). What allowed us to divide
by n! was that A(t, x) had order of vanishing n at t = 0 and t = x.

6



Comment 2. In our proofs we really didn’t need an inequality as strong as

|fne−a − gn| <
a2n+1

n!
.

We could prove our irrationality results even where the right-hand-side is as
large as a2n+1/(n!)1/k, for any fixed positive integer k. So, we have room to
breathe as far as generalizing our result.

Comment 3. By modding out f(x) and g(x) by n for certain n, we were
able to tell that fne−iθ − gn was non-zero. Note that this did not help up to
find these good approximations fn and gn – it was only necessary for showing
that the linear form didn’t vanish.

2.4 Generalized Pade Approximations

We can generalize the integral representation for Pade approximations, to
find approximations at several points x1, ..., xk at once. It turns out that if
m > n ≥ 1 are integers, then we have that for i = 1, ..., k,

exi

∫ xi

0

e−ttm(t − x1)
n(t − x2)

n · · · (t − xk)
n

n!
dx = fi(x1, ..., xk)−exig(x1, ..., xk),

where
fi(x1, ..., xk), g(x1, ..., xk) ∈ Z[x1, ..., xk],

where g is a symmetric polynomial in x1, ..., xk. The integral here is taken
along any path in the complex plane connecting 0 and xi.

Notice here that the polynomial g does not depend on the choice of i.
This is an incredibly useful fact, because it means that we get a simultaneous
approximation

ex1 ≈
f1(x1, ..., xk)

g(x1, ..., xk)
, ... , exk ≈

fk(x1, ..., xk)

g(x1, ..., xk)
,

where all the denominators are the same. Moreover, the fact that g is sym-
metric in x1, ..., xk means that if α1, ..., αk are all the conjugates of some
algebraic number α, then g(α1, ..., αk) is a rational.

Let us see that, indeed, g is symmetric in x1, ..., xk: If we let

A(t, x1, ..., xk) =
tm(t − x1)

n · · · (t − xk)
n

n!
,
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then we note that

g(x1, ..., xk) =

m+kn
∑

j=0

A(j)(0, x1, ..., xk), (4)

where the derivatives here are with respect to t. Since A(t, x1, ..., xk) is
symmetric in x1, ..., xk, it is clear that every term in this sum is too, and it
follows that g is symmetric in x1, ..., xk.

Before closing this subsection, let us see that these polynomials f and g
can be made to satisfy certain congruence restrictions that will later enable
us to show that certain linear forms don’t vanish (as was needed in the proof
that π is irrational). If we expand out the right-hand-side of (4) in powers
of t, we will get something like this:

g(x1, ..., xk) = · · · +
ctr0(t − x1)

r1 · · · (t − xk)
rk

n!

∣

∣

∣

∣

t=0

+ · · · , (5)

where the constant c is divisible by

m!

r0!

n!

r1!
· · ·

n!

rk!
.

This term will evaluate to 0 unless r0 = 0. So,

m!

n!
divides g(x1, ..., xk).

We also have that for certain values of n, g(α1, ..., αk) 6= 0 if α1, ..., αk are
conjugates of some algebraic number: Even though m!/n! divides g(x1, ..., xk),
there is exactly one term which is not divisible by n ·m!/n!, namely the term
where r1 = · · · = rk = n. This term is

m!(−1)k(x1 · · ·xk)
n

n!
. (6)

For roots α1, ..., αk of ukx
k + uk−1x

k−1 + · · ·+ u0 ∈ Z[x], and n is coprime to
uk, let g be the power of n dividing m!/n!. Then, g is the exact power of n
dividing the term (6), and ng+1 divides all other terms of g(α1, ..., αk). Thus,
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ng+1 does not divide g(α1, ..., αk), and it follows that g does not vanish for
such n.

Next, we consider

fi(x1, ..., xk) = · · · +
ctr0(t − x1)

r1 · · · (t − xk)
rk

n!

∣

∣

∣

∣

t=xi

+ · · ·

The only way that this typical term can be non-zero is if ri = 0, which will
mean that c is divisible by n!. Such non-zero terms will have

c

n!
=

m!

r0!

n!

r1!
· · ·

n!

ri−1!

n!

ri+1!
· · ·

n!

rk!
.

So, all but one of these non-zero terms will have coefficient divisible by m or
n; that term is

xm
i (xi − x1)

n · · · (xi − xi−1)
n(xi − xi+1)

n · · · (xi − xk)
n.

So, if we were to choose m and n to both be divisible by a large prime p,
then

fi(x1, ..., xk) ≡ xm
i (xi − x1)

n · · · (xi − xk)
n (mod p).

If we further had x1, ..., xk are conjugates of some algebraic number α, and if
m and n are divisible by the order of the unit group in Z(x1, ..., xk)/p, then,
in fact,

fi(x1, ..., xk) ≡ 1 (mod p). (7)

2.5 The Transcendence of π

As mentioned earilier, it suffices to show that if α is algebraic, then eα is not
−1.

The obvious first thing to try is to directly apply the idea used to show
that eiθ 6= 1: We would get that for certain fn(x), gn(x) ∈ Z[x],

fn(α)e−α − gn(α) ≈ 0, fn(α) − gn(α) 6= 0.

The difficulty now is that fn(α) and gn(α) are not integers (in general), but
are only algebraic numbers.
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An natural approach for how to fix this problem (of having algebraic
numbers, instead of integers) is to somehow add or multiply through by
conjugates of α to produce rationals. But how? Well, it turns out that the
following idea works: To show that eα 6= −1, it suffices to show that

k
∏

i=1

(eαi + 1) 6= 0,

where α1, ..., αk are the conjugates of α.

If we expand this product out we get

1 + (eα1 + · · ·+ eαk) + · · ·+ eα1+···+αk .

We can write this as
β0 + β1e

δ1 + · · ·+ βhe
δh , (8)

where the βi’s are positive integers, and where the δi’s are distinct non-zero
sums of the αi’s; moreover, this sum is symmmetric in the α’s when we write
the δj’s in terms of αi’s.

Now we use a simultaneous Pade approximation to these eδi ’s described
in the previous subsection; so, here our Pade approximations take the form

eδi

∫ δi

0

e−ttm(t − δ1)
n · · · (t − δh)

n

n!
dt = fi(δ1, ..., δh) − eδig(δ1, ..., δh).

So, (8) is approximately

β0 +
h

∑

i=1

βi
fi(δ1, ..., δh)

g(δ1, ..., δh)
. (9)

The quality of this approximation can be determined by bounding the above
integral. It turns out that, applying basic inequalities, we get that (9) differs
from (8) by at most

hB(2D)m+hn+1e2|D|

n!|g(δ1, ..., δh)|

where
D = max

i=1,...,h
|δi|, and B = max

i=1,...,h
|βi|.
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Now suppose that (8) is 0. We know that there is some integer d ≥ 1
such that dng(β1, ..., βh) ∈ Z and dnfi(δ1, .., δh) is an algebraic integer for
all i; moreover, we can arrange that m!/n!|dng(δ1, ..., δh) (recall that m!/n!
divides the polynomial g(x1, ..., xh)). Then, we get that

∣

∣

∣

∣

∣

β0d
ng(δ1, ..., δh) + dn

h
∑

i=1

βifi(δ1, ..., δh)

∣

∣

∣

∣

∣

<
hB(2dD)m+hn+1e2D

n!
. (10)

If we have that m ≈ κn, for some constant κ, then as n → ∞, the
right-hand-side of (10) goes to 0, because n! dominates the numerator (it has
growth nn(1−o(1)), whereas the numerator is only exponential in n).

The left-hand-side of (10) turns out to be an integer, because dng(δ1, ..., δh)
is an integer, and because the remaining sum is symmetric in δ1, ..., δh (it takes
a little work to see that). If we further had that the left-hand-side of (10) is
non-zero, then we would have a contradiction, meaning that eα 6= −1. This
is where those congruence conditions we developed in the previous subsection
come in: We suppose that m and n are divisible by some large prime number
p (determined below), that m!/n! is also divisible by p, and that, further, m
and n are divisible by the order of the unit group of Z(δ1, ..., δh)/p so that,
as in (7),

dnfi(δ1, ..., δh) ≡ dn ≡ 1 (mod p).

In order for this to be possible we need that p does not divide the discriminant
of (x − δ1) · · · (x − δh) (recall that fi(δ1, ..., δh) = (δi − δ1) · · ·). Now, as
p|m!/n!|dng(δ1, ..., δh), we conclude that (after removing the absolute value
symbols) the left-hand-side of (10) is congruent modulo p to

β1 + · · ·+ βh (mod p),

which is clearly non-zero for p large enough.
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