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How informative are treatment effects estimated in one region or time

period for another region or time? In this paper, I derive bounds on the

average treatment effect in a context of interest using experimental evi-

dence from another context. The bounds provide robustness against the

possibility of unobserved treatment effect moderators whose distribution

differs across contexts. Empirically, I use results from an experiment on

returns to cash transfers given to microentrepreneurs in Leon, Mexico

to predict average returns among microentrepreneurs in other Mexican

cities. I show that the benchmark extrapolation method from the liter-

ature yields implausibly precise predictions for other cities considering

the very small experimental sample. Using data from a pair of remedial

education experiments carried out in India, I show the bounds are able

to recover average treatment effects in one location using results from

the other while the benchmark method cannot.

Keywords: external validity, partial identification, sensitivity anal-

ysis.

1. INTRODUCTION

What do causal effects measured in one place tell us about causal effects in another

place or at another time? It is clear that not every finding applies in every context.

Some authors have recently protested against policy recommendations they see as

based on implicit extrapolation from a small number of experiments to a wide va-
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2 GENERALIZING THE RESULTS FROM SOCIAL EXPERIMENTS

riety of dissimilar contexts (Deaton [2010], Deaton and Cartwright [2016], Pritchett

and Sandefur [2013]). Empirically, a growing body of work finds different effects of

identical policies among individuals with the same observed characteristics living in

different contexts (e.g. Allcott [2015], Attanasio, Meghir, and Szekely [2003]). Relevant

unobserved differences between contexts remain, even when considering individuals

with the same observed characteristics.

In this paper, causal effects from one place may be only partially informative about

effects elsewhere. I derive bounds on the average treatment effect in a context of in-

terest using experimental evidence from another context. I use differences in outcome

distributions for individuals with the same characteristics and treatment status in

the original study and in the context of interest to learn about unobserved differences

across contexts.1 Greater differences in outcome distributions generate wider bounds.

The bounds represent a practical solution to the problem of assessing generalizability

of experimental results from one context to another and are easily computed for any

pair of contexts using the software accompanying this paper. They formalize the idea

that the conclusions we can draw about the average treatment effect in the context of

interest and the strength of assumptions required to do so depends on the similarity

between the two contexts.2

I focus on settings where a randomized evaluation of a pilot program has been run

and we wish to know what we can conclude about the effect of the program in an-

other context. The experimental treatment group has access to the program, while

the control group does not. Data are available on characteristics and outcomes of in-

dividuals participating in the experiment. There are also data available on outcomes

and characteristics of individuals in the alternative context, possibly coming from a

separate survey. Since the program is a pilot, individuals in the alternative context

do not have access to the program.3 For each distinct set of characteristics, the distri-

1When we do not have experiments with context-level characteristics we believe are sufficiently
similar to the context of interest, unobserved differences necessarily include differences in context-
level characteristics.

2See Heckman, Moon, Pinto, Savelyev, and Yavitz [2010] and McKenzie and Woodruff [2008] who
assess the external validity of experimental results on the basis of the similarity of the experimental
populations to larger populations of interest.

3The analysis can easily be extended to the case where individuals choose their treatment status
and an experiment denies treatment to a random subset of individuals who would wish to be treated
(see Bitler, Domina, and Hoynes [2014] for an example of such an experiment). It is also possible
to consider the case where individuals in the context of interest choose their treatment status.
In this case, the experimental data can be used to bound the counterfactual expected untreated
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butions of treated and untreated outcomes from the experiment and the distribution

of untreated outcomes from the alternative context are identified.

For each set of characteristics, the bounds I derive on the average treatment effect

in the context of interest are based on the assumption that the distribution of treated

outcomes for a given untreated outcome in the context of interest is consistent with

the experimental results. That is, the conditional distribution in the context of interest

can be generated from one of the possible joint distributions of the potential outcomes

in the experiment.4 This is a relatively weak restriction on the average treatment effect

because the experiment does not rule out any level of dependence between treated

and untreated outcomes.5 Except in extreme cases we expect positive dependence

between treated and untreated outcome levels for any individual, to varying degrees

depending on the nature of the program.

I therefore develop tighter bounds, indexed by the minimum level of dependence

between an individual’s treated and untreated outcomes the researcher is willing to

consider. When treated and untreated outcomes are perfectly dependent, there is only

a single joint distribution of untreated and treated outcomes consistent with the ex-

perimental results.6 As we move away from perfect dependence, different associations

between treated and untreated outcomes become possible. These different associa-

tions produce uncertainty about the average treatment effect in the new context that

is increasing in the difference between the distributions of untreated outcomes in the

experiment and the context of interest. The width of the bounds for a given minimum

dependence level provide a measure of uncertainty about the average treatment ef-

fect. They also allow researchers to assess the assumptions on dependence necessary

to draw specific conclusions about the effect of the program in the context of interest,

outcome among individuals choosing to take the treatment and the expected treated outcome among
individuals who choose not to take the treatment. Alternative assumptions available in the treatment
choice setting, such as first stage monotonicity, may lead to tighter bounds (see, e.g., Kowalski [2016]
who uses first stage monotonicity along with other assumptions). I focus the exposition on settings
where the evaluated policy is a pilot program because it is common in the development literature
and because of its relative simplicity.

4The joint distribution of treated and untreated outcomes is not point-identified because of the
fundamental problem of causal inference: we cannot observe an individual in both the treated and
untreated state at the same time. However the experiment allows us to identify the marginal distri-
butions of the potential outcomes, which place restrictions on their joint distribution.

5The literature on distributions of treatment effects consistent with experimental results generates
similarly wide bounds on functionals of interest (Heckman, Smith, and Clements [1997b], Djebbari
and Smith [2008], Fan and Park [2010], Kim [2014]).

6In the continuous outcome case, each untreated outcome is linked to a single treated outcome.
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such as its ability to exceed a cost-effectiveness threshold.

Computation of the bounds is challenging because it requires solving an infinite-

dimensional optimization problem over the space of possible joint distributions of

treated and untreated outcomes. I address this difficulty when outcomes and charac-

teristics are discrete by deriving an alternative representation of the problem based

on optimal transportation theory (c.f. Galichon [2016], Villani [2009]). I show how

this representation, which I use in estimation and inference, can be solved quickly

using linear programming techniques.

I empirically evaluate the results of my bounding procedure compared to the current

benchmark method for extrapolating treatment effects: Hotz, Imbens, and Mortimer

[2005] (henceforth HIM). HIM assume that the joint distribution of untreated and

treated outcomes for individuals with the same observed characteristics is independent

of context. They also suggest using untreated outcomes for individuals with the same

characteristics to assess generalizability, but within a testing framework. If we reject

independence across contexts of the untreated outcome distributions conditional on

a set of observed characteristics, we conclude that the experiment teaches us nothing

about causal effects in the context of interest. Otherwise, the HIM framework leads

us to conclude that the experiment point-identifies the treatment effect of interest.

I first examine the generalizability of a small experiment investigating the returns

to loosening credit constraints by providing cash transfers to very small-scale en-

trepreneurs in Leon, Mexico in 2006 (McKenzie and Woodruff [2008]). We would like

to know what the large estimated returns (an increase in monthly profits equal to

roughly 40% of the transfer in baseline specifications) in Leon in 2006 tell us about the

average return for microentrepreneurs with the same characteristics in urban Mexico

in 2012 of participating in the transfer program, holding program scale constant. The

distributions of untreated outcomes are fairly similar in the Leon and 2012 urban

Mexico samples7 so the estimated bounds are narrow for a wide range of assump-

tions on dependence between profits with and without the transfer. Accounting for

the unobserved differences between the contexts along with sampling variation in the

small experiment and the national survey leads to wide confidence intervals around

the bounds. Testing equality of control outcome distributions, in contrast, would lead

us to be overconfident in our prediction of the average return, given the test’s lack of

power. Using the HIM method, we would compute a narrower confidence interval on

7The 2012 data are obtained from that year’s microenterprise survey.
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the predicted treatment effect for urban Mexico in 2012 than on the treatment effect

in the original experiment.

Second, to check the predictions against measured average treatment effects, I use

data from randomized evaluations of a remedial education program implemented in

two Indian cities and described in Banerjee, Cole, Duflo, and Linden [2007]. The two

cities’ student populations are sufficiently different that equality of their untreated

outcome distributions is rejected, which in the HIM framework would lead us to

believe we cannot learn anything about the causal effect in one city based on ex-

perimental results from the other. However, I show that if we assume treated and

untreated outcomes are sufficiently dependent, we can exclude a substantial range of

average treatment effects - such as a zero effect - in one city using the results from

the other. The observed causal effects are consistent with predictions based on strong

dependence between the treated and untreated outcomes.

This paper extends the literature on generalizing treatment effects to new contexts

based on invariance assumptions on distributions of untreated and treated outcomes

or treatment effects for individuals with the same observed characteristics (HIM, At-

tanasio et al. [2003], Angrist and Fernández-Val [2013], Angrist and Rokkanen [2015],

Cole and Stuart [2010], Stuart, Cole, Bradshaw, and Leaf [2011], Pearl and Barein-

boim [2014], Flores and Mitnik [2013], Dehejia, Pop-Eleches, and Samii [2015]).8 The

literature on external validity reviewed in Muller [2014] emphasizes the failure of

generalization when there are unobserved variables producing treatment effect het-

erogeneity whose distribution differs across contexts. The methodology developed

here allows for treatment effect heterogeneity due to unobserved variables that play

a role in determining untreated outcomes. In related work, Athey and Imbens [2006]

use outcome distributions for different groups of individuals in the same time pe-

riod to capture unobserved differences across groups when generalizing the linear

difference-in-differences estimator. One of their estimators coincides with mine, with

time playing the role of treatment, under perfect dependence between treated and

untreated outcomes.9

8Meta-analysis is another methodology discussed in the context of external validity (e.g. Vivalt
[2016], Meager [2016]). With a sizable set of studies of the same treatment, meta-analysis can be
used to evaluate the ability of one or more studies’ results to extrapolate to others in the set. When
used to extrapolate to contexts outside the set of studies, meta-analysis generates a point estimate
that assumes individuals with the same characteristics will have the same treatment response.

9My linear-programming-based estimator can also be used to examine sensitivity of estimates
using this estimator to Athey and Imbens [2006]’s assumption of perfect dependence in outcomes
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In moving from a testing framework to an approach based on quantifying assump-

tions required to draw conclusions about causal effects, my paper relates to work by

Altonji, Elder, and Taber [2005] and Altonji, Conley, Elder, and Taber [2013]. Altonji

et al. [2005] and Altonji et al. [2013] move from testing whether observed covariates

related to an outcome are also related to a candidate instrument to providing bounds

on the treatment effect whose width depends on the magnitude of the relationship

between the covariates and the instrument.10 While Altonji et al. [2005] and Altonji

et al. [2013] work within the context of a linear model, my identification analysis

is non-parametric and thus similar in spirit to Kline and Santos [2013]’s analysis of

the sensitivity of conclusions about conditional distributions to missing data. Gerard,

Rokkanen, and Rothe [2015] similarly move away from the McCrary [2008] test for a

manipulated running variable in regression discontinuity designs to provide bounds

on treatment effects.

The rest of the paper is organized as follows. Section 2 describes the intuition behind

the proposed methods by means of a simple example. Section 3 sets up the problem

and notation and describes HIM’s approach formally. In Section 4, I present the

derivation of the bounds. Section 6 presents the empirical results for generalizing from

the 2006 Leon microenterprise experiment to microentrepreneurs in urban locations in

Mexico in 2012. Section 7 investigates using the results from one of the two remedial

education experiments to try to predict the results in the other experiment. Section

8 concludes. All proofs are collected in appendices.

2. INTUITION FOR THE METHODOLOGY: A SIMPLE EXAMPLE

To illustrate the intuition behind the methodological contribution, I begin by laying

out a simple example involving a fictional conditional cash transfer program (CCT)

that incentivizes parents to enroll children in school. Suppose we have obtained exper-

imental results that tell us the CCT program caused a large increase in the enrollment

rate in location e, from 1
3

of all children to 2
3

of all children. We observe only outcomes

and no covariates.

We would like to know what the results from location e tell us about the causal effect

we can expect in location a, where no CCT was implemented. Whereas 1
3

of children

were enrolled without the CCT program in location e, 1
2

of children are enrolled

across time.
10Alternative forms of sensitivity analysis (of unconfoundedness assumptions) are explored in

Imbens [2003] and Rosenbaum [2002].
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without the CCT in location a. How will the difference in the no-CCT enrollment

rates moderate the average treatment effect in location a? The law of total probability

allows us to decompose the average effect of the CCT program in a, denoted ATEa11,

as follows.

ATEa

= P a(enroll w/o CCT)P a(enroll w/CCT | enroll w/o CCT)

+ P a(out of school w/o CCT)P a(enroll w/CCT | out of school w/o CCT)

− P a(enroll w/o CCT)

=
1

2
P a(enroll w/ CCT | enroll w/o CCT)

+
1

2
P a(enroll w/ CCT | out of school w/o CCT)− 1

2

The average treatment effect in a depends on two unknowkn probabilities: (1) the

probability that a child who does not enroll without the CCT would instead enroll

with the CCT and (2) the probability that a child who enrolls in school without the

CCT would also enroll with the CCT. Note that enrollment with and without the

CCT are contemporaneous potential outcomes and thus can never be jointly observed

for any child.

The rationale behind (1), children who do not enroll without the CCT but do

enroll with a CCT, is clear: the program provides cash incentives for parents to enroll

children in school and some parents respond to these incentives. The rationale behind

(2), children who enroll without the CCT but would not enroll with the CCT, is less

straightforward. Attanasio, Meghir, and Santiago [2012] show that CCT programs

can increase wages for children by lowering the supply of child labor. An increased

wage for children works against the enrollment incentives. Some households may be

more sensitive to child wages than they are to enrollment subsidies and would respond

to the CCT by having children work. To maintain the simplicity of this example, I

will refer to forces that cause children who would enroll without the CCT but would

not enroll with the CCT in place as wage effects, although in principle there may be

11Throughout the paper, I will use context-specific superscripts to index quantities conditioned
on context. For example, letting D ∈ {a, e} denote context,

ATEa = E[Y1 − Y0|D = a]

where Y1 and Y0 denote outcomes with and without the CCT program.
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other ways for the CCT to cause children who would otherwise enroll to not enroll.

Figure 1.— Permissible values for P a(enrolled with CCT | enrollment without CCT)

The paper’s key identifying assumption is that the conditional probabilities

{P a(enroll w/ CCT | enroll w/o CCT),

P a(enroll w/ CCT | out of school w/o CCT)}

in a are consistent with the experimental results from e. That is, pairs of conditional

probabilities which cannot be ruled out by the results in e. There are many possible

pairs of conditional enrollment probabilities that are consistent with the experimental

results. The possible pairs are given by the black line in Figure 1. Despite the fact

that a continuum of pairs is possible under consistency with the experimental results,

the assumption has substantial identifying power. Without it, any pair of conditional

probabilities is possible.

To see why a continuum of pairs is possible, note that

P (enroll w/ CCT | enroll w/o CCT)

=
P (enroll w/ CCT & enroll w/o CCT)

P (enroll w/o CCT)
.(1)

Equation 1 makes explicit the fact that P (enroll with CCT | enroll without CCT)
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relies on knowledge a child’s enrollment status with and without the CCT at the

same time, knowledge that is unavailable to us. If a child is in one of the treated

localities, we only observe her enrollment decision with the CCT. If she is in one of

the control localities, we only observe her enrollment decision without the CCT. The

question marks in Table I indicate the unknown fractions of the population of location

e falling into each of the four possible combinations of enrollment decisions with and

without the CCT. The sums across rows and down columns show the information

available from the experiment. The rows of Table I must sum to the control group

results and the columns to the treatment group results.

TABLE I

The joint distribution of enrollment with and without CCT is unknown in
location e

CCT

Out of school Enrolled All Control

No CCT
Out of school ? ? 2

3

Enrolled ? ? 1
3

All Treatment 1
3

2
3

Additional assumptions about the way wage effects of the CCT impact children who

do and don’t enroll without the CCT generate different predictions for the causal effect

of the CCT program in location a. To see this, first consider assuming that there are

no wage effects or wage effects only impact children who do not enroll without the

CCT. Then there are no children who enroll without the CCT but would not enroll

when the CCT is in place. The assumption allows us to fill in all the entries of Table

I, as shown in Table II.12 The probability of enrolling with the CCT if a child is out of

school without the CCT is 1
2
. This is the right endpoint of the line in Figure 1. Under

this “no wage effect” assumption, the increase in the fraction enrolled in location a

is 1
4
.

Now consider another assumption about wage effects: they only impact those who

enroll without the CCT, and they are so strong that all children who would enroll

without the CCT drop out. To match the distribution of control and treated group

12In this binary outcome case the “no wage effect” assumption is analogous to the “no defiers”
assumption, imposed on treatment choice, in the Imbens and Angrist [1994] Local Average Treatment
Effect framework.
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TABLE II

Case 1: No wage effects

CCT

Out of school Enrolled All Control

No CCT
Out of school 1

3
1
3

2
3

Enrolled 0 1
3

1
3

All Treatment 1
3

2
3

outcomes in location e, all children who are out of school without the CCT must

enroll with the CCT. Again, we can fill in the unknown entries of Table I, as shown

in Table III. This case represents the left endpoint of the line in Figure 1. In this

rather unbelievable case, we predict no change in the fraction enrolled in location a.

The case is unbelievable because it seems unlikely that preferences for schooling with

and without the CCT would be negatively correlated.

TABLE III

Case 2: Wage effects only impact those who enroll without the CCT

CCT

Out of school Enrolled All Control

No CCT
Out of school 0 2

3
2
3

Enrolled 1
3

0 1
3

All Treatment 1
3

2
3

Assuming that wage effects impact the same fraction of both groups is somewhat

more believable. To be consistent with the experimental results, this fraction must be
1
3
. The entries of Table I can be filled in as shown in Table IV. The predicted increase

in the fraction employed is 1
6
.

While more believable than assuming that those enrolled with and without the

CCT exchange places when the CCT is in place, assuming that wage effects have the

same impact on both groups is still not very convincing. Intuitively, we believe that

wage effects would have a stronger impact on enrollment decisions for children who

do not enroll without the CCT. Formally, we expect positive dependence between

enrollment with the CCT and enrollment without. In this paper, I follow Heckman
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TABLE IV

Case 3: wage effects impact the same fraction of both groups

CCT

Out of school Enrolled All Control

No CCT
Out of school 2

9
4
9

2
3

Enrolled 1
9

2
9

1
3

All Treatment 1
3

2
3

et al. [1997b] and measure dependence using the rank correlation13 between treated

and untreated outcomes for any individual. The “no wage effects” assumption gen-

erates the maximum possible rank correlation between a child’s enrollment decision

with and without the CCT. The second assumption, that the CCT makes all enrollees

drop out and all dropouts enroll, generates the minimum possible rank correlation.

The third assumption, that wage effects are independent of enrollment status with-

out the CCT, generates a rank correlation of zero. As I have shown, different rank

correlations generate different predictions for the change in enrollment caused by the

CCT in location a.

How close should the rank correlation we use to predict the effect of the CCT on

enrollment in location a be to the maximum possible? I consider two options. First, we

might specify a range of plausible values. In this example, we might be conservative

and consider rank correlations between zero and the maximum possible.14 Then, the

bounds on the enrollment gain in location a are 1
6

and 1
4
. A second option, which

I will emphasize, is to explore the strength of assumptions on dependence required

to draw specific conclusions about the effect of the program. For example, we might

consider what we need to assume about dependence to conclude that the CCT will

have a positive effect on enrollment. With an enrollment rate of 1
2

in location a, a

zero effect of the CCT is only possible when the rank correlation between enrollment

with and without the CCT is the minimum possible. Since this only occurs in the

implausible case where children who enroll without the CCT all drop out with the

CCT, we would feel confident in our conclusion that the CCT will have a positive

effect on enrollment location a.

13The standard Pearson product-moment correlation measures only linear dependence.
14A related approach, pursued in the NBER working paper draft of Heckman et al. [1997b], is to

specify a prior over possible values of the rank correlation.
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Note the key role played by the enrollment rate without the CCT in location a.

If instead of 1
2
, the enrollment rate in location a were 2

3
, choosing a rank correlation

between zero and the maximum possible would produce bounds on the increase in the

enrollment rate of 0 and 1
6
. We would need stronger, but still believable, assumptions

on dependence to predict a positive effect on enrollment.

In the following sections, I generalize the intuition developed here to settings where

we also have information about observed characteristics in the two populations, where

outcomes are non-binary and where our data about locations e and a come from sam-

ples. Observed characteristics can be conditioned on. Non-binary outcomes present

a particular challenge because the lower and upper bound on ATEa are no longer

guaranteed to occur at the endpoints of the multi-dimensional equivalent of Figure 1.

To face this difficulty in estimation, I derive the aforementioned characterization of

the bounds in terms of an optimal transportation problem. Taking sampling into ac-

count, I produce confidence intervals for ATEa robust to the parameter’s being only

bounded when using experimental data from e and data from untreated individuals

in a. Readers primarily interested in applications of the methodology may, however,

wish to skip to the empirical results beginning in Section 6.

3. ECONOMETRIC SETUP

In general, we are interested in the causal effect of a binary treatment T ∈ {0, 1}
on an observable outcome Y ∈ Y ⊆ R. Each individual is associated with two po-

tential outcomes: Y1 ∈ Y is her outcome if she receives treatment and Y0 ∈ Y is her

outcome if she does not. Only one of these two outcomes is ever observed, the other

is hypothetical. The observed outcome Y can be written as:

Y = TY1 + (1− T )Y0.(2)

Because both the observed and hypothetical outcome are defined for each individual

we can define an individual’s treatment effect ∆ ⊆ R:

∆ = Y1 − Y0.

Data come from two contexts, indexed by D ∈ {e, a}. e is the context in which

an experimental evaluation of T was conducted and a is the alternative context of

interest. d-superscripts will index context-specific distributions and their attributes.
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In context e I assume an evaluator assigns T independently of all other random

variables with perfect compliance.15 The probability of assignment to treatment in

context e is bounded away from zero and one.

Assumption 1 Random assignment in context e. 0 < P e(T = 1) < 1. T |D =

e is independent of all other random variables.

Under Assumption 1, we can identify the marginal distribution of untreated out-

comes in e, F e
Y0

(y0):

F e
Y0

(y0) = F e
Y0|T (y0|T = 0) = F e

Y |T (y|T = 0)

where F e
Y |T (y|T = 0) denotes the marginal distribution of Y conditional on the treat-

ment indicator being equal to zero. By the same argument, we can also identify the

marginal distribution of treated outcomes, F e
Y1

(y1). We can similarly identify the av-

erage treatment effect in e:

ATEe = Ee[∆] = Ee[Y1 − Y0] = Ee[Y1]− Ee[Y0]

= Ee[Y1|T = 1]− Ee[Y0|T = 0] = Ee[Y |T = 1]− Ee[Y |T = 0].

As in previous sections, I maintain that all members of the alternative population are

untreated.

Assumption 2 Treatment assignment in context a. T = 0|D = a.

In context a, we can identify the distribution of untreated outcomes:

F a
Y0

(y0) = F a
Y |T (y|T = 0) = F a

Y (y).

In this paper, the object of interest is the average treatment effect in the alterna-

tive context, Ea[∆], which depends on our ability to identify the expectation of the

15Incorporating dependence between T and covariates (conditional random assignment) introduces
no special complications. Additionally, while the analysis can be extended to settings where the
object of interest is the effect of a treatment with imperfect compliance, for the purpose of exposition
the estimands of interest will be intention-to-treat (ITT) effects including any participation decisions.
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counterfactual treated outcome Ea[Y1]:

Ea[∆] = Ea[Y1 − Y0] = Ea[Y |T = 1]− Ea[Y |T = 0] = Ea[Y1]︸ ︷︷ ︸
unknown

−Ea[Y ].

If the treatment effect were constant for all individuals and equal to ∆, Ea[∆] would

simply be equal to Ee[∆]. However, theory rarely implies a constant treatment effect

and we can often reject it empirically (see e.g. Heckman et al. [1997b], Djebbari and

Smith [2008]). In fact, theory usually predicts heterogeneity in treatment response

depending on the individual and her context’s observed and unobserved attributes.16

To demonstrate the role of heterogeneity in observed and unobserved characteristics

on the average treatment effect in a, I introduce some additional notation. Suppose

we observe a vector of covariates X ∈ X ⊆ RdX for each individual. Additionally,

suppose there is a vector of unobserved covariates U ∈ U ⊆ RdU affecting the outcome.

An equivalent representation for the potential outcomes is that treatment status and

covariates combine to produce the outcome through a deterministic function common

across contexts, g : {0, 1}×X ×U → R. In this representation, the potential outcomes

are:

Y0 =g(0, X, U), Y1 = g(1, X, U).

The individual-specific treatment effect is

∆ = Y1 − Y0 = g(1, X, U)− g(0, X, U),

which will in general depend on both X and U . Our target, Ea[∆] can be written as:

ATEa = Ea[Y1 − Y0] =

∫

X

[∫

U
g(1, x, u)− g(0, x, u)dF a

U |X(u|x)

]
dF a

X(x)(3)

=

∫

X

[∫

R2

(y1 − y0) dF a
Y0,Y1|X(y0, y1|x)

]
dF a

X(x)(4)

where F a
U |X(u|x) denotes the joint distribution of observed and unobserved covariates

in population a. F a
U |X(u|x) in general differs from F e

U |X(u|x).

16See e.g. Bitler, Gelbach, and Hoynes [2006].
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3.1. The HIM approach

Within this general setup, I briefly describe HIM’s approach to identifying ATEa.17

HIM assume that the joint distribution of potential outcomes is independent of the

population conditional on the observed covariates:

(Y0, Y1) ⊥⊥ D|X(5)

or equivalently, that all unobserved covariates determining the outcome are indepen-

dent of the context indicator: U ⊥⊥ D|X. It is straightforward to show that (5) implies

Ea[Y1|x] = Ee[Y1|x]. As long as X a ⊆ X e we can identify the average treatment effect

in the population of interest by reweighting the conditional expectation of the treated

outcome from e by the distribution of covariates in a and subtracting the expectation

of the untreated outcome in a:

ATEa =

∫

X
Ee[Y1|x]dF a

X(x)− Ea[Y0].(6)

For (5) to hold, the conditional distributions of untreated outcomes must be the

same in the two populations. Therefore HIM and papers following them have sug-

gested testing equality of the distributions or their moments. Two issues come up

when testing F e
Y0|X(y0|x) = F a

Y0|X(y0|x) and using the result to conclude whether or

not we can generalize results from the experiment to the context of interest. First,

considering the small sample sizes of many social experiments, we will often be under-

powered to reject equality of the conditional outcome distributions (a point raised also

in Flores and Mitnik [2013]). Second, if we do reject the null hypothesis, we must con-

clude that the experiment tells us nothing about ATEa. Suppose we have two alter-

native contexts of interest, a and a′, and we can reject both F e
Y0|X(y0|x) = F a

Y0|X(y0|x)

and F e
Y0|X(y0|x) = F a′

Y0|X(y0|x) but F a
Y0|X(y0|x) is quite similar to F e

Y0|X(y0|x) while

F a′

Y0|X(y0|x) is quite different. It seems inappropriate to conclude that the results from

e are equally (and completely) uninformative in predicting the average treatment ef-

fect in both a and a′. In the following section, I depart from the testing framework

and derive bounds on the average treatment effect in the population of interest as

a function of the differences in the conditional distributions of untreated outcomes

17The treatment in this section is general. Readers interested in an example should consult ap-
pendix (A.1), which uses a parametric linear model for illustration.
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between the population of interest and the experimental population.

4. IDENTIFICATION OF BOUNDS ON ATEA

In this section, I derive bounds on the average treatment effect in context a that

incorporate information about unobservables provided by the conditional untreated

outcome distributions. Formalizing and generalizing the intuition from Section 2, I

begin by deriving bounds imposing only the assumption that F a
Y1|X(y1|x) is consistent

with the experimental results. I then derive bounds on ATEa that impose additional

restrictions on the dependence between treated and untreated outcomes for any indi-

vidual.

4.1. Bounds under consistency with experimental results

Recall that we can already identify Ea[Y0] (simply the expected outcome in the

population of interest). Therefore, what we need to identify Ea[Y1] − Ea[Y0] is the

counterfactual Ea[Y1]. By the law of iterated expectations, the expected value of the

treated outcome in the context of interest can be written as follows:

Ea[Y1] =

∫

X



∫

R

[∫

R
y1dF

a
Y1|Y0,X(y1|y0, x)

]
dF a

Y0|X(y0|x)
︸ ︷︷ ︸

identified


 dF a

X(x)︸ ︷︷ ︸
identified

.(7)

We are missing information on the distribution of treated outcomes that individuals

with a particular untreated outcome would experience in the context of interest. Since

no one is treated in the context of interest, we must turn to the experiment to learn

about this object. I begin by deriving bounds on Ea[Y1|x] which I will use to bound

Ea[Y1 − Y0] by integrating over the distribution of X in a and subtracting Ea[Y0].

4.1.1. Bounds on Ea[Y1|x]

I use the experimental data to provide information about F a
Y1|Y0,X(y1|y0, x) by im-

posing a generalization of the consistency with experimental results assumption de-

scribed in Section 2. I assume F a
Y1|Y0,X(y1|y0, x) is a distribution not ruled out by

the marginal distributions identified in the experiment, F e
Y0|X(y1|x) and F e

Y1|X(y1|x).

FY1|Y0,X(y1|y0, x) is a valid conditional distribution for the marginal distributions
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F e
Y0|X(y0|x) and F e

Y1|X(y1|x) if and only if

FY1|Y0,X(y1|y0, x) = C1(F
e
Y0,X

(y0|x), F e
Y1|X(y1|x)|x)

where C : [0, 1]2 → [0, 1] is a copula function (see appendix C.1 for the definition)

and C1(v, w|x) = ∂C(v,w|x)
∂v

(Nelsen [2006]). Informally, a copula function is a bivariate

CDF where both arguments are defined on the unit interval and which fully deter-

mines a dependence structure between the untreated and treated outcomes in the

experimental population for individuals with the same covariates. A copula func-

tion combined with the marginal distributions of untreated (F e
Y0|X(y0|x)) and treated

outcomes (F e
Y1|X(y1|x)) defines a joint distribution (FY0,Y1|X(y0, y1|x)) consistent with

those marginal distributions. FY1|Y0,X(y1|y0, x) is the conditional distribution associ-

ated with the joint distribution FY0,Y1|X(y0, y1|x). Let C denote the set of valid copula

functions. I express the assumption that F a
Y1|Y0,X(y1|y0, x) is not ruled out by the

experimental marginals formally as follows.

Assumption 3 Consistency with experimental results. The conditional dis-

tribution of treated outcomes in the population of interest is consistent with the ex-

perimental results:

F a
Y1|Y0,X(y1|y0, x) = C1(F

e
Y0|X(y0|x), F e

Y1|X(y1|x)|x)

for some copula function C ∈ C.

A distribution F a
Y1|Y0,X(y1|y0, x) obtained from Assumption 3 is defined only for y0

on the support of F e
Y0|X(y0|x). Therefore, I will also assume that the support of Y0|x

in a is a subset of the support in the experiment.

Assumption 4 Support of Y0|X = x. The support of Y0|X = x in the context of

interest is a subset of the support in the experiment for all values of x in the support

of X in the experiment: Suppa(Y0|X = x) ⊆ Suppe(Y0|X = x) for any x ∈ X e.

Note that it is still possible to obtain identification without Assumption 3 if Y is

bounded, as I discuss in more detail in Section 5.2. I state the following identification

result in terms of observable quantities.
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Lemma 1 Suppose Assumptions 1, 2, 3, 4 and 5 hold. If x ∈ X e,

Ea[Y1|x] ∈
[
min
C∈C

∫

R

(∫

R
y1dC1(F

e
Y |T,X(y|T = 0, x), F e

Y |T,X(y|T = 1, x)|x)

)
dF a

Y |X(y|x),

max
C∈C

∫

R

(∫

R
y1dC1(F

e
Y |T,X(y|T = 0, x), F e

Y |T,X(y|T = 1, x)|x)

)
dF a

Y |X(y|x)

]

and the bounds are sharp.

Proof: See Appendix D.1. Q.E.D.

4.1.2. Discussion of Assumption 3

To make Assumption 3 more concrete, I illustrate two examples of copula functions

and show how they define a joint distribution of potential outcomes FY0,Y1|X(y0, y1|x),

which can in turn be used to define a conditional distribution, and discuss their

relationship to individual-level treatment effects. LetQe
Y0|X(α|x) denote the α-quantile

of Y0|X in the experiment andQe
Y1|X(α|x) the α-quantile of Y1|X. Figures 2 and 3 show

two possible copulas and the joint distributions they define. The arrows in the figures

represent dependence relationships between F e
Y0|X(y0|x) and F e

Y1|X(y1|x) defined by the

copulas. The horizontal arrows in Figure 2 represent the joint distribution Y0, Y1|X in

the experimental population when the treatment preserves individuals’ ranks in the

outcome distributions perfectly. In the example of remedial education in India, the

highest-scoring student without a remedial education teacher assigned to her school

would still be the highest-scoring student with a remedial education teacher assigned.

The crossing arrows in Figure 3 represent the case when the treatment reverses ranks:

the highest scoring student without the treatment would be the lowest-scoring student

without the treatment.

A joint distribution FY0,Y1|X(y0, y1|x) consistent with the experimental marginal

distributions of untreated and treated outcomes also determines the extent of het-

erogeneity in treatment effects for individuals with covariates x. When the treat-

ment perfectly preserves individuals’ ranks in the outcome distributions, treatment

effect heterogeneity due to unobservables is minimized (Cambanis, Simons, and Stout

[1976]). That is, conditional on x, the individual-specific treatment effects ∆ have the

the smallest magnitude possible. In contrast, when the treatment inverts individuals’
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Figure 2.— Perfect positive dependence of F e
Y0|X(y0|x), F e

Y1|X(y1|x)

Control outcomes Treated outcomes


...

Qe
Y0|X(.95|x)

...

Qe
Y0|X(.5|x)

...

Qe
Y0|X(.05|x)

...







...

Qe
Y1|X(.95|x)

...

Qe
Y1|X(.5|x)

...

Qe
Y1|X(.05|x)

...




1

ranks in the outcome distributions, the treatment effects have the largest possible

magnitude.

A sufficient condition for Assumption 3 is that the distribution of the treated out-

comes be the same across populations once we have conditioned on a value of the

control outcome and the observed covariates. Formally:

Y1 ⊥⊥ D|Y0, X or, equivalently, U ⊥⊥ D|Y0, X,(8)

recalling that in conditioning on Y0 = y0 and X = x we are conditioning on a function

of U and X, g(0, u, x), and x itself. Athey and Imbens [2006] also use this assumption

to point identify average treatment effects in their generalized difference-in-differences

model with discrete outcomes.

The condition in (8) is stronger than necessary. While the condition in Equation

(8) states that F a
Y1|Y0,X(y1|y0, x) = F e

Y1|Y0,X(y1|y0, x), Assumption 3 does not require

equality. In terms of the example in Section (2),

{P e(enrolled w/ CCT | enrolled w/o CCT),

P e(enrolled w/ CCT | out of school w/o CCT)}
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Figure 3.— Perfect negative dependence of F e
Y0|X(y0|x), F e

Y1|X(y1|x)

Control outcomes Treated outcomes


...

Qe
Y0|X(.95|x)

...

Qe
Y0|X(.5|x)

...

Qe
Y0|X(.05|x)

...







...

Qe
Y1|X(.95|x)

...

Qe
Y1|X(.5|x)

...

Qe
Y1|X(.05|x)

...




1
is known to be a point on the line in Figure (1). Assumption 3 requires that

{P a(enrolled w/ CCT | enrolled without CCT),

P a(enrolled w/ CCT | out of school w/o CCT)}

also be a point on the line in Figure (1). Equation (8) requires that the two points

be the same. In practice, (8) may be easier to evaluate economically than the more

general Assumption 3.

4.1.3. Bounds on ATEa

Turning now to identification of ATEa, note that the bounds from Lemma 1 are

only defined for values x on the support of X in the experiment. Therefore, to produce

potentially informative bounds on the unconditional expectation Ea[Y1] I assume that

all values x on the support of X in the context of interest are contained in the support

of X in the experiment. Formally, I impose the following.

Assumption 5 Support of X. The support of X in the population of interest is

a subset of the support in the experimental population: X a ⊆ X e.

As in the case of Assumption 4, identification is still possible if Assumption 5 fails
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but Y is bounded. Finally, to ensure that the bounds on ATEa are well-defined, I

require existence of the expectation of Y0 in a.

Assumption 6 Expectation of Y0. Y0 has finite expectation: E [|Y0|] <∞.

Under Assumptions 1, 2, 3, 4, 5, and 6, bounds on the unconditional average treat-

ment can be recovered by weighting the minimal and maximal conditional average

treatment effects by the distribution of covariates in the context of interest as stated

in the following proposition.

Proposition 1 Suppose 1, 2, 3, 4, 5 and 6 hold. Then

ATEa ∈
[∫

X
(min Ea[Y1|x]) dF a

X(x)− Ea[Y ],

∫

X
(max Ea[Y1|x]) dF a

X(x)− Ea[Y ]

]

and the bounds are sharp.

Proof: See Appendix D.2. Q.E.D.

4.2. Bounds with restricted dependence

By considering the full set of possible copulas, we consider copulas that may not

be credible. In particular, the dependence structure shown in Figure 3 is not realistic

in most applications. In the remedial education example, it is clearly unrealistic to

believe that the highest-performing students when no remedial education teacher is

assigned to their school become the lowest-performing when a remedial education

teacher is assigned. Unless remedial education is so effective that a poor-performing

student without treatment becomes the best-performing student, the best-performing

student without treatment’s rank in the outcomes distribution is likely unaffected: she

is not assigned to work with the remedial education teacher and remains the highest-

performing. We typically anticipate some positive dependence between outcomes with

and without treatment for any one individual, with the degree of dependence (and

thus of unobserved treatment effect heterogeneity) depending on the application.

I therefore index copulas by the degree of dependence in the joint distributions of

control and treated outcomes they generate. I use Normalized Spearman’s ρ, defined

below, to measure dependence.
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Definition 1 Normalized Spearman’s ρ. For any two random variables U and

V , Normalized Spearman’s ρ is given by:

ρ(U, V ) =





CovC(R(U),R(V ))
CovM (R(U),R(V ))

if CovC(R(U), R(V )) ≥ 0

− CovC(R(U),R(V ))
CovW (R(U),R(V ))

if CovC(R(U), R(V )) < 0

where R(u) = FU(u) when U is continuously distributed and R(u) = FU (u)+FU (u−)
2

when U takes a finite number of values, and equivalently for V . The notation FU(u−)

denotes P (U < u), and equivalently for V . CovC(R(U), R(V )) refers to the covariance

between R(U) and R(V ) under copula C:

∫ (
R(u)− 1

2

)(
R(v)− 1

2

)
dC(FU(u), FV (v)).

CovM(R(U), R(V )) is the maximum covariance possible between R(U) and R(V )

(comonotonicity: see Appendix C.2):

∫ (
R(u)− 1

2

)(
R(v)− 1

2

)
d (min {FU(u), FV (v)}) .

CovW (R(U), R(V )) is the minimum possible covariance (countermonotonicity: see

Appendix C.3):

∫ (
R(u)− 1

2

)(
R(v)− 1

2

)
d (max {FU(u) + FV (v)− 1, 0}) .

Nešlehová [2007] shows that 12CovC(R(U), R(V )) is equivalent to the standard

definition of Spearman’s ρ found in, e.g., Nelsen [2006]:

ρstandard(U, V ) = 3 (P [(U − U ′)(V − V ′) > 0]− P [(U − U ′)(V − V ′) < 0]) ,

where U ′ and V ′ are distributed independently with the same marginals as U and

V . That is, (U ′, V ′) ∼ FU(u)FV (v). When U and V are continuously distributed,

CovM(R(U), R(V )) = 1/12 and CovW (R(U), R(V )) = −1/12 so that the calcula-

tion is completely standard. However, when U and V take a finite number of values,

|CovM(R(U), R(V ))| or |CovW (R(U), R(V ))| may not equal 1/12 and (Genest and

Nešlehová [2007]). The only difference with the standard calculation is the normal-
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ization in the discrete case.18

I produce bounds on Ea[Y1|x] subject to the restriction that we only consider copula

functions generating dependence greater than a specified level. These are represented

in the following assumption and proposition.

Assumption 7 Restricted dependence between Y0 and Y1. C is an element of

C(ρL), the set of copula functions such that ρe(Y0, Y1|X = x) ≥ ρL where ρL ∈ [−1, 1].

Proposition 2 Suppose Assumptions 1, 2, 3, 4, 5, 6 and 7 hold. Then

Ea[Y1|x] ∈
[

min
C∈C(ρL)

∫

R

(∫

R
y1dC1(F

e
Y |T,X(y|T = 0, x), F e

Y |T,X(y|T = 1, x)|x)

)
dF a

Y |X(y|x),

max
C∈C(ρL)

∫

R

(∫

R
y1dC1(F

e
Y |T,X(y|T = 0, x), F e

Y |T,X(y|T = 1, x)|x)

)
dF a

Y |X(y|x)

]

and

ATEa ∈
[∫

X
(min Ea[Y1|x]) dF a

X(x)− Ea[Y ],

∫

X
(max Ea[Y1|x]) dF a

X(x)− Ea[Y ]

]

Proof: See Appendix D.3. Q.E.D.

Note that imposing ρL = −1 recovers the bounds from Proposition 1. At the op-

posite extreme, C(1) is a singleton and the bounds shrink to a point.19 For interested

readers, appendices A.2 and A.3 provide a discussion of the structure underlying the

choice of ρL within the context of a parametric model.

5. ESTIMATION AND INFERENCE

While the identification results in Section 4 are general, for the purposes of estima-

tion and inference I will consider the case when outcomes and covariates are discrete

or discretized. I will illustrate both possibilities in the empirical work. When outcomes

and covariates are discrete, I will show that the optimization over the restricted space

18An equivalent normalization for Kendall’s τ is described in Genest and Nešlehová [2007].
19The single Ea[Y1] identified when ρL = 1 is identical to Athey and Imbens [2006]’s counterfactual

for the treated group in a generalized difference-in-difference setting with T indexing time rather
than treatment. (8) must also hold when outcomes are discrete.
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of copulas C(ρL) can be represented as the solution to a linear programming problem.

In particular, the bounds on the average treatment effect in context a for individ-

uals with covariates x admit a representation as the solution to a discrete optimal

transportation problem with a non-standard cost function and an additional linear

constraint on dependence (see Villani [2009] for a comprehensive discussion of op-

timal transportation problems. Galichon [2016] provides a review of applications in

economics). Very efficient algorithms are available to solve linear programs (see e.g.

Boyd and Vandenberghe [2004]), so the bounds can be computed quickly using soft-

ware accompanying this paper. The linear programming representation is crucial for

practical estimation and inference because the space of copulas is infinite-dimensional

and, as mentioned in Section 2, the minimizing and maximizing arguments do not lie

at the comonotonic/countermonotonic boundary points of the space.20

A similar representation as a continuous optimal transportation problem exists

with continuous outcomes but there is no analogous tractable method to compute

the solution. It may be possible to represent C(ρL) with a sieve space Cn(ρL), which

would be finite-dimensional and compact, becoming dense as the sample size N →∞.

Exploring this possibility is left to future research. For the purposes of the present

paper, I assume the following.

Assumption 8 Finite support of the potential outcomes and covariates.

(i) Finite support of Y : Y takes finite values in Y = {y1, . . . , yj, . . . , yJ}. (ii) Finite

support of X: X takes finite values in a finite set X = {x1, . . . , xl, . . . , xL}..

5.1. Linear programming representation

To illustrate the linear programming representation, I begin by considering the

case where there are no covariates X. For clarity, I refer to the supports of the

potential outcomes as Y0 = {y01, . . . , y0j, . . . , y0J} and Y1 = {y11, . . . , y1j, . . . , y1J},
but it should be understood that y0j = y1j = yj for any j ∈ {1, . . . , J}. For ρL ∈ [0, 1]

(positive dependence, which I have argued is often most plausible),21 the upper bound

is obtained by solving the following linear programming problem with solution τU(ρL)

(the lower bound, τL(ρL) is obtained by replacing the max operator with min).

20In contrast to the minimizing and maximizing arguments for other problems, such as that of
computing the variance of ∆ as in Cambanis et al. [1976].

21The representation for ρL ∈ [−1, 1] is given in Appendix E.2.
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Proposition 3 Suppose Assumptions 1, 2, 3, 4, 5, 7 and 8 hold and ρL ∈ [0, 1].

Then the upper bound in Proposition 2, τU(ρL), is equivalent to the solution to the

following linear programming problem, expressed in terms of observable quantities.

max
π∈[0,1]J2

J∑

j=1

J∑

k=1

y1kP
a(yj)

P e(yj|T = 0)
πjk −

J∑

j=1

y0jP
a(yj)(9)

subject to

J∑

k=1

πjk = P e(yj|T = 0) ∀j ∈ {1, ..., J}(10)

J∑

j=1

πjk = P e(yk|T = 1) ∀k ∈ {1, ..., J}(11)

ρL + 4
J∑

j=1

J∑

k=1

πjk

(
P e(Y ≤ yj|T = 0) + P e(Y ≤ yj−1|T = 0)− 1

2

)
(12)

×
(
P e(Y ≤ yj|T = 1) + P e(Y ≤ yj−1|T = 1)− 1

2

)

≥ ρL
J∑

j=1

J∑

k=1

[
P e(yj|T = 0)P e(yk|T = 1)

×
(

min {P e(Y ≤ yj|T = 0), P e(Y ≤ yj|T = 1)}

+ min {P e(Y < yj|T = 0), P e(Y < yj|T = 1)}
+ min {P e(Y < yj|T = 0), P e(Y ≤ yj|T = 1)}

+ min {P e(Y ≤ yj|T = 0), P e(Y < yj|T = 1)}
)]

The lower bound in Proposition 2 can be obtained by replacing the max operator with

the min operator in the statement of the problem above.

Proof: See Appendix E.1. Q.E.D.

The choice variables of the linear programming representation are the elements

of the matrix defining a possible joint distribution of Y0 and Y1 in context e, π =

{P (y0j, y1k)}k=1,...,J
j=1,...,J . The second term in the objective function (9) is simply a normal-
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ization so that the value of the objective function of the problem can be interpreted

as Ea[Y1 − Y0]. Constraints (10) and (11) require that the minimizing/maximizing

joint distribution be consistent with the marginal outcome distributions in e. Con-

straint (12) enforces that Normalized Spearman’s ρ (see Definition 1) applied to the

potential outcomes Y0 and Y1 in e may not be below ρL. Together, constraints (10),

(11) and (12) make maximizing over the elements of the joint distribution of Y0 and

Y1 equivalent to maximizing over the restricted space of copulas, C(ρL).

The coefficients on the elements of π are
{

y1kP
a(yj)

P e(yj |T=0)

}k=1,...,J

j=1,...,J
. Together with con-

straint (10), this shows the role of the distributions of untreated outcomes {P a(yj)}j=1,...,J

and {P e(yj|T = 0)}j=1,...,J in determining the bounds. If P a(yj) = P e(yj|T = 0),
Pa(yj)

P e(yj |T=0)
= 1. If this equality applies for all j, constraint (11) implies that the coun-

terfactual Ea[Y1] = Ee[Y1] since

J∑

j=1

J∑

k=1

y1kP (y0j, y1k) =
J∑

k=1

y1k

J∑

j=1

P (y0j, y1k) =
J∑

k=1

y1kP
e(y1k) = Ee[Y1].

The second equality follows from substituting in constraint (11).

All else equal, in order to maximize the objective function, we would like to assign

higher probability to high values on the support of Y (j large) when
Pa(yj)

P e(yj |T=0)
is large

and to low values on the support of Y (j is small) when
Pa(yj)

P e(yj |T=0)
is small. Constraint

(12) limits our ability to do so to a degree we find a priori implausible. For a concrete

example, readers are encouraged to consult Appendix B, which describes one of the

linear programs used in the empirical results.

5.2. Estimation and inference with covariates

Our object of interest is the unconditional average treatment effect in site a shown

in equation 4. For the purposes of estimating ATEa, I produce a single, unconditional

linear program which results from stacking the constraints of the covariate-specific

linear programs from Proposition 3 and using a covariate-weighted objective func-

tion. π is now a vector containing possible elements of the joint distribution of Y0

and Y1 in e conditional on each xl (i.e., [P e(y01, y11|X = x1), . . . P
e(y0j, y1k|X =
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xl), . . . P
e(y0J , y1J |X = xL)]′).22 The objective function is given by

max
π∈[0,1]J2×L

L∑

l=1

J∑

j=1

J∑

k=1

y1k
P a(yj|X = xl)P

a(xl)

P e(yj|X = xl, T = 0)
πjkl −

J∑

j=1

y0jP
a(yj).(13)

Maximization is subject to constraints (10), (11), and (12) for each xl. Let τU(ρL)

now denote the solution to the unconditional problem.

Denote the population joint probability mass function as

p =




p110a

...

pjltd

...

pJL1e




=




P (Y = y1, X = x1, T = 0, D = a)

...

P (Y = yj, X = xl, T = t,D = d)

...

P (Y = yJ , X = xL, T = 1, D = e)




.

Note that τU(ρL) depends on the data through p only. Now consider an arbitrary

vector p̃ ∈ RJ×L×3 satisfying p̃ ≥ 0 and
∑J

j=1

∑L
l=1

∑
td∈{0a,0e,1e} p̃jltd = 1. Abusing

notation somewhat, I denote conditional and marginal probabilities derived from p̃

by indexing the probability measure P with a tilde, i.e.:

P̃ a(xl) =
J∑

j=1

p̃jl0a and P̃ e(yj|X = xl, T = 0) =
p̃jl0e∑J
j=1 p̃jl0e

.

22Note that ρL could in principle be set by the researcher as a function of x. For simplicity, in the
rest of the paper I consider a fixed value for ρL.
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Let φU(p̃; ρL) be the unconditional linear program applied to some p̃.

φU(p̃; ρL) =

max
π ∈ [0, 1]J

2×L,

y ∈ {y1, yJ}



L∑

l=1

J∑

j=1

J∑

k=1

ψ(y1k, ȳ, P̃
e(yj|X = xl, T = 0))P̃ a(yj, xl)πjkl(14)

−
J∑

j=1

y0jP̃
a(yj)

subject to

J∑

j=1

J∑

k=1

πjkl = 1 ∀l ∈ X e

P̃ e(T = 0, xl)
J∑

k=1

πjkl = P̃ e(yj, xl, T = 0) ∀j ∈ {1, ..., J}, xl ∈ X e

P̃ e(T = 1, xl)
J∑

j=1

πjkl = P̃ e(yj, xl, T = 1) ∀k ∈ {1, ..., J}, xl ∈ X e

ρL + 4
J∑

j=1

J∑

k=1

πjkl

(
P̃ e(Y ≤ yj|T = 0, xl) + P̃ e(Y ≤ yj−1|T = 0, xl)− 1

2

)

×
(
P̃ e(Y ≤ yj|T = 1, xl) + P̃ e(Y ≤ yj−1|T = 1, xl)− 1

2

)

≥ ρL
J∑

j=1

J∑

k=1

[
P̃ e(yj|T = 0, xl)P̃

e(yk|T = 1, xl)

×
(

min
{
P̃ e(Y ≤ yj|T = 0, xl), P̃

e(Y ≤ yj|T = 1, xl)
}

+ min
{
P e(Y < yj|T = 0, xl), P̃

e(Y < yj|T = 1, xl)
}

+ min
{
P̃ e(Y < yj|T = 0, xl), P̃

e(Y ≤ yj|T = 1, xl)
}

+ min {P e(Y ≤ yj|T = 0, xl), P
e(Y < yj|T = 1, xl)}

)]

∀xl ∈ X e
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where

J∑

k=1

ψ(y1k, ȳ, P̃
e(yj|X = xl, T = 0))

=





y1k
P̃ e(yj |X=xl,T=0)

if P̃ e(yj|X = xl, T = 0) 6= 0

ȳ otherwise
.

ψ(·) imposes the bounds on the support of Y (y1 and yJ) as the bounds on Ẽa[Y1|Y0 =

yj, X = xl] for xl off the support of P̃ e(x|T = 0) and yj off the support of P̃ e(y|T =

0, X = xl). These are cases where Assumption 5 or 4 do not hold for p̃. 23 Use of the

ψ(·) function makes these assumptions unnecessary.

Let φ : RJ2×L×3 → R2 denote the vector valued function

φ(p; ρL) =
[
φL(p; ρL), φU(p; ρL)

]′
.

I estimate p using the consistent “frequency estimator” p̂ (e.g. Li and Racine [2007]).

Each element of p̂ is given by

p̂jltd =
1

N

N∑

i=1

1{Yi = yj, Xi = xl, Ti = t,Di = d}.

For the purposes of consistent estimation and inference for the bounds, I will assume

that φ(·; ρL) is differentiable at p.24

Assumption 9 Estimation and inference. (i) Sampling. Zi = (Y0i, Y1i, Xi, Di)

for i = 1, . . . , N are i.i.d. (ii) Differentiability of the linear programming repre-

sentations. φ(·; ρL) is differentiable at p. (iii) Finite bounds. τU(ρL) − τL(ρL) <

23Using the bounds of the support follows Manski [1990]. More informative bounds could be
obtained by imposing additional assumptions such as, for example, Monotone Treatment Response
(Manski [1997]).

24Differentiability of φ(p; ρL) at p is required to use the bootstrap to perform inference for τ
(Fang and Santos [2015]), which is crucial since the asymptotic distribution of the bounds cannot
be characterized in closed form. Fang and Santos [2015] show that it is possible to use the bootstrap
under the weaker condition that φ(p; ρL) is directionally differentiable in p. Inference could be
performed if the directional derivative can be consistently estimated. Hong and Li [2016] (in progress)
provides a promising avenue for consistent estimation of the directional derivative by numerical
methods.

As an alternative, in appendix E.4, I provide a simple simulation-based approach to carrying out
Bayesian inference for τ that does not require differentiability of φ(p; ρL) in p.
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∞. (iv) Positive, finite asymptotic variance of
√
N(φ(p̂; ρL) − φ(p; ρL)). [σ2, σ2]′ ≤

∇φ(p; ρL)Σ∇φ(p; ρL)′ ≤ [σ̄2, σ̄2] where σ2 and σ̄2 are positive and finite and

Σ =




p110a (1− p110a) −p110ap210a · · ·

−p110ap210a p210a (1− p210a)
...

. . .



.

Under Assumption 9, consistent estimation of the bounds by φ(p; ρL) follows imme-

diately from the consistency of the frequency estimator and the continuous mapping

theorem. Performing inference is more challenging, since φL(·; ρL) and φU(·; ρL) are

not available in closed form. I propose the following bootstrap procedure to generate

(1− α)-percent confidence intervals for τ(ρL).

1. Generate {Z∗1 , . . . , Z∗N} from p̂.

2. Compute p̂∗ by applying the frequency estimator to {Z∗1 , . . . , Z∗N}
3. Compute [τL(ρL)∗, τU(ρL)∗]′ = φ(p̂∗; ρL).

4. Repeat steps 1-3 B times. Compute σ̂L =
√
N × SD(τL(ρL)∗), σ̂U =

√
N ×

SD(τU(ρL)∗) and %̂ = Cor(τL(ρL)∗, τU(ρL)∗).

5. Form the (1− α)-percent confidence interval for τ(ρL) as

CIα(ρL) =

[
φL(p̂; ρL)− σ̂LcL√

N
, φU(p̂; ρL)− σ̂UcU√

N

]

where [cL, cU ] solve

min
cL,cU

σ̂LcL + σ̂UcU

subject to

P

(
−cL ≤M1, %̂M1 ≤ cU +

√
N(φU(p̂; ρL)− φL(p̂; ρL))

σ̂U
+M2

√
1− %̂2

)

≥ 1− α

P

(
−cL −

√
N(φU(p̂; ρL)− φL(p̂; ρL))

σ̂L
−M2

√
1− %̂2 ≤ %̂M1,M1 ≤ cU

)

≥ 1− α
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and M1 and M2 are independent standard normal random variables (Stoye

[2009]25).

Proposition 4 Suppose Assumptions 1, 2, 3, 7, 8 hold. Let P be the set of distribu-

tions for which Assumption 9 holds. Then, limN→∞ infP∈P,τ(ρL)∈[φL(ρL),φU (ρL)]P (τ(ρL) ∈
CIα(ρL))= 1− α.

Proof: See Appendix E.3. Q.E.D.

In the next sections I move on to apply the theoretical results derived so far in two

empirical examples, contrasting my approach with HIM’s.

6. TRANSFERS TO MEXICAN MICROENTERPRISES

My first application considers the problem of generalizing from a small scale experi-

ment. I argue that HIM’s approach is unreasonably confident in the generalizability of

small experiments while the bounds approach is appropriately cautious. The setting

is McKenzie and Woodruff [2008]’s (henceforth MW) experiment, carried out in 2006

(baseline Oct. 2005) in Leon, Mexico. The experiment was designed to investigate

the returns to measured profits of loosening credit constraints for small scale male

microentrepreneurs by giving the microentrepreneurs transfers. The authors collected

data over the course of five quarterly waves, including the baseline. A treated group

of entrepreneurs was randomly assigned to receive a transfer and, conditional on as-

signment to receive a transfer, randomly assigned a wave in which to receive it. The

transfers were valued at 1,500 pesos (about $140). Half the transfers were randomly

determined to be in-kind, meaning that a member of the survey team accompanied

the entrepreneur to purchase equipment or inputs of his choice. MW found that there

was no difference in treatment effects by type of transfer, so I ignore the distinction

here.

To ensure that the transfers be large relative to each firm’s scale of operation,

MW restricted their initial sample to entrepreneurs with a capital stock valued at

less than 10,000 pesos and no paid employees. Entrepreneurs had to be working

full-time on their firm (35 or more hours per week). They further restricted the

sample to entrepreneurs working in retail between the ages of 22 and 55. In baseline

25Stoye [2009] appendix B provides a method, which I implement, for solving this problem without
simulation.
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specifications, the authors find that the transfers increase average monthly profits by

about 40% of the transfer.

I explore the extent to which we can generalize this striking finding to microen-

trepreneurs with the same characteristics in urban Mexico in 2012. The Leon ex-

periment is uniquely suited to this exercise because the questionnaire used in the

experiment was based on the national microenterprise survey: the Encuesta Nacional

de Micronegocios (ENAMIN). This ensures that variables are measured in approxi-

mately the same way, which has been shown to be important when using information

from one dataset to learn about counterfactual potential outcomes in another - in

this case treated outcomes (see e.g. Heckman, Ichimura, and Todd [1997a], Diaz and

Handa [2006]). I exclude entrepreneurs from the 2012 ENAMIN using the same crite-

ria as MW, additionally requiring that the entrepreneurs be working in urban areas

since ENAMIN also captures entrepreneurs in rural areas. Since sample selection al-

ready chooses a restricted set of individuals, I do not condition on any covariates in

the analysis.26

It is important to note that the thought experiment here is not implementing a

transfer program in the whole country. There would surely be large equilibrium effects

from such a program. Instead, the thought experiment I consider concerns obtain-

ing the weighted average of treatment effects for each entrepreneur in the ENAMIN

sample of participating in a cash transfer program of similar scale to MW’s. Each

entrepreneur’s weight in the average is his inverse sampling probability, provided by

ENAMIN.

I trim profit reports of more than 20,000 pesos in both samples. This trimming keeps

slightly more observations than MW who exploit the panel structure and base their

trimming procedure on percentile changes in reported profits. Since ENAMIN is a

cross-section, I cannot implement the MW procedure. Results are robust to choosing

different values for trimming. After implementing the trimming, I am left with 903

observations from the ENAMIN sample and 207 unique microentrepreneurs from the

experiment.

Figure 4 shows the outcome distributions in ENAMIN and the control group from

the experiment, which provide one key input to computation of the bounds. Since

heaping is a substantial issue in reported profits, particularly in ENAMIN, I first

26The conclusions I draw in this section are not sensitive to the choice of not conditioning on
covariates.
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smooth profits using a kernel density estimator with a Gaussian kernel and a band-

width of 1200 pesos before discretizing to 500 peso (about $50) bins. Figure 4 shows

that the experimental control group and the ENAMIN sample have similar outcome

distributions, although the ENAMIN sample has substantially more very low profit

realizations.

Figure 4.— Distribution of profits: McKenzie and Woodruff [2008] control group
and 2012 ENAMIN

Notes: Author’s calculation based on data from McKenzie and Woodruff [2008] and the 2012
Encuesta Nacional de Micronegocios, using the same sample selection criteria as in McKenzie
and Woodruff [2008]. The distribution of profits is smoothed using a kernel density estimator
with a Gaussian kernel and a bandwidth of 1200 pesos before discretizing to 500 peso bins.

I now explore implications of the differences in the distributions of untreated profits

for what we can learn about the average return to cash transfers for entrepreneurs

in urban Mexico in 2012 using the basis of the findings in MW. Figure 5 shows

bounds (in black) on the average monthly return to providing cash transfers as a

function of the minimum rank correlation between untreated and treated outcomes

allowed, ρL. The bounds shrink to a point when the rank correlation between profits

with and without transfers is the maximum possible. Stoye [2009] 90% confidence

regions (in translucent gray) are computed using 1500 bootstrap replications for each

ρL, clustering at the firm level for the experiment27. The information in the plot is

repeated in Table V.

27This requires replacing the individual-level indicator i with a cluster-level indicator g in As-
sumption 9.
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We can draw two conclusions from the results. First, the overall similarity of the

control outcome distributions yield narrow bounds on the average return to transfers

for male microentrepreneurs in urban Mexico in 2012 for a wide range of possible

dependence between outcomes with and without cash transfers. And, second, the ex-

perimental sample size is sufficiently small that the 90% confidence interval includes a

zero effect on monthly profits at all levels of dependence. We cannot reject a zero effect

because the confidence interval around the bounds takes into account three sources

of uncertainty: 1) the small sample size of the experiment (207 entrepreneurs), 2) the

fact that our information on the distribution of control outcomes in urban Mexico in

2012 also comes from a finite sample (903 entrepreneurs) and 3) the difference in the

distribution of untreated profits, particularly for low profit reports.

Recall that HIM suggest taking into account the differences in the distributions

of untreated outcomes by testing their equality (Hotz et al. [2005]). The small size

of the experimental sample renders us unable to reject equality of the distributions

(the p-value from a Kolmogorov-Smirnov test is 0.865). Having been unable to re-

ject the equality of the untreated outcome distributions due to the small size of the

experimental sample, we would predict the average treated profits for male microen-

trepreneurs in urban Mexico in 2012 to be equal to the average profits for the treated

group measured in the experiment, with the same confidence interval as in the ex-

periment. The confidence interval for the difference in treated and untreated profits

would be smaller because the sample from ENAMIN is larger. In sum, we would be

able to reject a zero effect on transfers, ignoring the existence of differences in the

distributions of control outcomes. I am able to separately quantify the uncertainty

due to the difference in the control outcome distributions and the uncertainty due to

sampling variation, which is particularly important given the small size of the Leon

experiment.28 Considering that the small sample size of the experiment led MW to

be cautious in drawing conclusions from their results in-sample, it seems unintuitive

that we should be able to draw stronger conclusions about the returns in all urban

Mexico.

28I do not take into account the substantial sample attrition that affected the experiment and is
explored in MW. MW conclude that the possibility of differential attrition between the experimental
treatment and control groups would not dramatically affect their results. Taking into account the
possibility of differential attrition would lead to wider bounds on the average return to the transfers
than reported in Figure 5 and Table V.
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Figure 5.— Bounds on the average return to cash transfers in urban Mexico in
2012 using experimental data from McKenzie and Woodruff [2008]

Notes: For each lower bound on the dependence between profits with and without cash
transfers, ρL, the solid black region shows the bounds on ATEa for microentrepreneurs
in urban Mexico in 2012 selected according to the criteria in McKenzie and Woodruff
[2008]. The translucent gray region shows a a Stoye [2009] 90% confidence interval
for ATEa, based on 1500 block bootstrap replications, clustered at the firm level.

7. REMEDIAL EDUCATION IN INDIA

I now consider a setting where I can compare predicted average treatment effects

derived using my bounds approach to experimentally estimated average treatment

effects. I take advantage of Banerjee et al. [2007]’s (henceforth BCDL) evaluation of a

remedial education program implemented by the same NGO (Pratham) in two Indian

cities: Mumbai and Vadodara. Under the program, Pratham provides government

schools with a teacher to work with 15-20 students in the third and fourth grade

who have been identified as falling behind. The teacher works with these students

for about half the school day. I will use the results from the Vadodara experiment,

combined with the control group data from Mumbai to predict the average treatment

effect in Mumbai.29

29It is also possible to use Mumbai to predict Vadodara. However, this prediction will be associated
with wider confidence intervals because the Mumbai sample is roughly have the size of the Vadodara
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TABLE V

Bounds on the average return to cash transfers among microentreprenuers in
urban Mexico in 2012 using experimental data from McKenzie and Woodruff [2008]

Rank correlation 0.5 0.6 0.7 0.8 0.9 1

ATEa lower bound 0.069 0.074 0.084 0.097 0.116 0.221

ATEa upper bound 0.324 0.317 0.307 0.293 0.273 0.221

90% Stoye [2009] confidence

interval lower bound -0.154 -0.147 -0.136 -0.120 -0.103 -0.090

90% Stoye [2009] confidence

interval upper bound 0.552 0.542 0.528 0.518 0.497 0.532

Notes: based on 1500 bootstrap replications block bootstrap replications, clustering at
the firm level. Author’s calculations using data from McKenzie and Woodruff [2008].

BCDL carried out the experimental evaluations in Mumbai and Vadodara over

the course of three years, from 2001 to 2003. The last year was primarily used to

investigate the persistence of effects of the program on learning, so I focus on the

first two. In Mumbai, the experiment was carried out only among third graders in

the first year of the evaluation, while in the second year there were compliance issues,

with only two-thirds of Mumbai schools agreeing to participate. To abstract from

the problems with compliance, I will work with the sample of third graders surveyed

during the first year of the experiment in Mumbai. In Vadodara, in contrast, both

grade levels were represented in each of the first two years. I implicitly condition on

grade level and thus do not consider the Vadodara fourth graders.

The researchers administered different achievement tests for both math and verbal

skills in the two samples, which poses a challenge in applying the bounds proposed

here or HIM’s method in this dataset. Along with different questions, the two tests

featured different numbers of questions as well, with 30 questions on the Mumbai

test and 50 on the Vadodara test. As an alternative to using the raw test scores, I

take advantage of the fact that the test scores were mapped to the students’ grade

level competency. Grade level competency measures whether the student successfully

answered questions showing mastery of the subjects taught in each grade. This mea-

sure of achievement is used in the Annual Status of Education Report, also affiliated

sample.
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with Pratham, to compare achievement across Indian states. One final complication

is that students may not achieve all competencies below their maximum competency.

For simplicity, I consider the maximum competency as the outcome of interest and

focus on math scores.

With the exception of competency at baseline, relatively little data on students are

available consistently across the two samples. Table VI shows summary statistics for

the maximum competency at baseline in the two populations as well as students’ class

size and gender. The populations are relatively balanced on gender, while Mumbai

classes are notably larger than those in Vadodara. BCDL find no evidence of treatment

effect heterogeneity on either of these characteristics, so I ignore them and focus on

conditioning on the maximum competency level at baseline.

TABLE VI

Summary statistics for Mumbai and Vadodara samples

(1) (2)

Vadodara Mumbai

Pre-test: maximum competency 0.29 0.54

(0.57) (0.79)

Male 0.29 0.47

(0.45) (0.50)

Number of students in class 63.94 89.51

(27.81) (40.23)

Observations 10049 4429

Notes: Student-level sample means and standard deviations (in parentheses) for
student and classroom characteristics. Students are third graders from years
1 and 2 of the Banerjee et al. [2007] experiment in Vadodara and year 1
in Mumbai. Author’s calculations based on data from Banerjee et al. [2007].

I now move to using the results from Vadodara and the Mumbai control group

to predict the average treatment effect in Mumbai, comparing HIM’s procedure and

the bounds developed in this paper. Testing equality of the conditional distributions

of maximum grade level competency in math for the two control groups is the first

step in applying HIM to this example. Table VII shows the distributions of grade

level competency in math on leaving third grade in the control groups in both cities
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in the BCDL experiments, conditional on their grade level competency in math on

entering third grade. The last column of panel B shows the p-value associated with a

χ2 test of equality for each conditional distribution, treating each classroom-year pair

as a cluster. The tests reject equality of the conditional distributions at the 5% level

for all values of grade level competency on entering third grade. Following the HIM

methodology, we would conclude that we cannot learn anything about the treatment

effect in Mumbai from the Vadodara experiment: the students in the two cities are

too different.

TABLE VII

Controls - P(competency on exiting grade 3 | competency on entering grade 3)

A) Mumbai Post-competency

0 1 2 3 N

Pre-competency

0 0.73 0.17 0.07 0.03 1246

1 0.39 0.28 0.19 0.13 468

2 0.28 0.20 0.28 0.23 254

3 0.12 0.22 0.14 0.53 51

B) Vadodara Post-competency

0 1 2 3 N P(M = V)

Pre-competency

0 0.64 0.29 0.05 0.03 3749 <1e-4

1 0.31 0.48 0.11 0.10 1014 <1e-4

2 0.21 0.39 0.16 0.24 70 0.035

3 0.49 0.37 0.01 0.12 67 <1e-4

Notes: The final column of panel B reports p-values for χ2 tests of the equal-
ity of the conditional distributions, accounting for classroom-year level clusters.

Turning to the bounds developed in this paper, Figure 6 plots bounds on the pre-
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dicted values of the average effect of the remedial education program on maximum

math grade level competencies in Vadodara as a function of the minimum rank corre-

lation, ρL, between outcomes with and without the remedial education for individuals

with the same grade level competency on entering third grade. The bounds are plotted

in black, while the translucent gray region represents a 90% Stoye [2009] confidence

interval, based on 1500 block bootstrap replications clustering at the classroom-year

level. Table VIII replicate the key results from Figure 6 in tabular form.

A notable feature of the bounds in this example is that, in contrast with the previous

example, they widen quickly with only small deviations from the maximum possible

rank correlation. This is due to the fact that the conditional distributions of control

outcomes differ substantially between Mumbai and Vadodara, as we saw in Table VII.

A zero average treatment effect in Vadodara can only be rejected using the Mumbai

results if ρL is greater than or equal to .937. This reflects a strong, but plausible level

of dependence. BCDL’s result that the ATT is about one half of the test score gain

a control group child realizes from completing a year of school suggests the remedial

education program is unlikely to have the effect of raising participating students’ grade

level competency by more than one grade. Furthermore, BCDL did not find evidence

of significant effects on non-participants. Importantly, in this example I can investigate

the assumption of strong positive dependence by comparing the predictions obtained

from the bounds to the observed results in Mumbai. The light gray line plots the

measured average effect of remedial education on maximum grade level competency

in math in Mumbai. We see that the point estimate with maximum rank correlation

over-predicts the average treatment effect in Mumbai. Some amount of shuffling in

the potential outcome distributions induced by the remedial education treatment is

needed to recover the Mumbai point estimate. This is, again, plausible given that not

all students work with the remedial education teacher.

8. CONCLUSIONS

The methods derived in this paper offer researchers a formal and tractable way of

assessing the extent to which experimental results generalize to contexts outside the

original study. More broadly, this paper provides a method for considering general-

izability as more than an all-or-nothing proposition. I empirically demonstrated the

problems with testing for unobserved differences across contexts among individuals

with the same observed characteristics and taking the test results as sanctioning or
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Figure 6.— Bounds on the change in average grade level competency in Mumbai
using experimental results from Vadodara and untreated outcomes from Mumbai

Notes: For each lower bound on the dependence between a student’s maximum grade level compe-
tency with and without a remedial education teacher assigned to her school, ρL, the solid black
region shows the bounds on the average treatment effect in Mumbai. The translucent gray region
shows a Stoye [2009] 90% confidence interval for ATEa, based on 1500 bootstrap replications
block bootstrap replications clustering at the classroom-year level. The light gray line shows
the point estimate of the average treatment effect in Mumbai, using the experimental results.

prohibiting extrapolation to a particular context. In the Mexican microenterprise ex-

ample, the test grants the researcher license to extrapolate broadly based on a very

small experiment. In the remedial education example, testing leads us to conclude

that the experimental results from one site teach us nothing about causal effects in

the other.

In contrast, the bounds developed here quantify our uncertainty about effects in

the context of interest due to unobserved differences across the contexts. In the Mex-

ican microenterprise case, the narrow bounds showed us that the Leon 2006 results

appear largely representative of effects for similar entrepreneurs in urban Mexico in

2012. However, the small size of the experiment should make us cautious about ex-

trapolating, which shows up in the wide confidence intervals around the bounds. In
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TABLE VIII

Bounds on the change in average grade level competency in Mumbai using
experimental results from Vadodara and untreated outcomes from Mumbai

Rank correlation 0.5 0.7 0.9 0.9375 0.95 1

ATEa lower bound -0.061 -0.034 0.043 0.062 0.070 0.157

ATEa upper bound 0.307 0.262 0.209 0.196 0.190 0.157

90% Stoye [2009] confidence

interval lower bound -0.134 -0.102 -0.018 0.002 0.012 0.077

90% Stoye [2009] confidence

interval upper bound 0.366 0.324 0.268 0.256 0.253 0.237

Notes: based on 1500 bootstrap replications block bootstrap replications, clustering at
the classroom-year level. Author’s calculations using data from Banerjee et al. [2007].

the remedial education example, the bounds showed that under assumptions of strong

dependence between a student’s grade-level competency with and without a remedial

education teacher assigned to her school, we can learn quite a bit about about the

effect of remedial education in one city using results from the other. The experimental

effects are consistent with the assumption of strong dependence.

Since experimental sites must often be chosen for reasons of cost or convenience,

the methods proposed in this paper have broad applicability. In addition to assessing

what can be learned about causal effects in new contexts on the basis of existing

experimental results, they may be used when researchers have some leeway to se-

lect experimental sites. Based on an assumed distribution for treated outcomes, a

researcher could estimate prospective bounds on causal effects in contexts of interest

with different possible experimental sites.
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APPENDIX: FOR ONLINE PUBLICATION ONLY

APPENDIX A: A PARAMETRIC EXAMPLE

In this appendix, I describe the concepts covered in Section 4 using the example of remedial

education in India and a simple parametric model. Suppose students from the city of Vadodara

represent context e, and students from the city of Mumbai context a. Let Y be a continuous measure

of academic performance.30 I leave the observed covariates X as a vector, but break the vector U

into two components, latent skill S and parental input I. g(·) is a linear production function with

different parameters depending on treatment status.

g(0, X, S, I) = β0 + β′0XX + β0SS + β0II = Y0

g(1, X, S, I) = β1 + β′1XX + β1SS + β1II = Y1

Note that once we assume linearity, the commonality of g(·) across populations is no longer without

loss of generality. In this case, the individual-specific treatment effect, ∆, is

∆ =Y1 − Y0
=(β1 − β0)

+ (β′1X − β′0X)X

+ (β1S − β0S)S

+ (β1I − β0I)I

Our objective is to identify:

ATEa =Ea[Y1 − Y0]

=(β1 − β0)

+ Ea [(β′1X − β′0X)X]

+ Ea [(β1S − β0S)S]

+ Ea [(β1I − β0I)I]

The four elements of ATEa are, respectively, a treatment effect common to all students, the average

deviation from the common treatment effect due to observables in a, the average deviation from the

common effect due to latent skill in a and the average deviation from the common effect due to the

parental input. When β′1X 6= β′0X , there is treatment effect heterogeneity due to observable covariates

and when β1S 6= β0S or β1I 6= β0I there is treatment effect heterogeneity due to unobservables.

30In practice, in Section 7, the measure is discrete.
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A.1. HIM

ATEe alone will in general be biased as an estimator for ATEa, with the bias taking the following

form:

ATEe −ATEa =(β′1X − β′0X)(Ee[X]− Ea[X])

+ (β1S − β0S)(Ee[S]− Ea[S])

+ (β1I − β0I)(Ee[I]− Ea[I])

The bias depends on the differences between the expected values of site characteristics along which

treatment effects are heterogeneous. We need Ea[S|x] = Ee[S|x] if (β0S , β1S) 6= (0, 0) and Ea[I|x] =

Ee[I|x] if (β0I , β1I) 6= (0, 0) for conditional independence of the potential outcomes, (5), to hold.

A.2. ρL = 1

It is straightforward to show that assuming ρL = 1 is equivalent to assuming an individual’s control

and treated potential outcomes, Y0 and Y1, are both generated by a single unobserved characteristic

of the individual (see, for example, the proof of proposition 5.16 in McNeil, Frey, and Embrechts

[2005]). In the terminology of Equation (3) with a continuous outcome, U is one-dimensional and

the structural functions g(0, x, u) and g(1, x, u) are each weakly increasing in u (Athey and Imbens

[2006]).

To gain some intuition for this result, assume the parental input I is excluded from the production

function so unobservables are one-dimensional31 and the potential outcomes can be written as

Y0 = β0 + β0XX + β0SS

and

Y1 = β1 + β1XX + β1SS.

With a one-dimensional unobservable, the way in which the distributions of observables F eX,Y (x, y)

31This is not the only way to generate 1-dimensional unobservables in the linear production func-
tion described in Section A.1. We could make use of a single index specification for the unobservables
where

Y0 = β0 + β0XX + β0SS + β0II

Y1 = β1 + β1XX + κ(β0SS + β0II).

Alternatively, if S and I have a Pearson product-moment correlation of 1, we can write I as a
linear function of S (I = bS) so that:

Y0 = β0 + β0XX + (β0S + β0Ib)S

Y1 = β1 + β1XX + (β1S + β1Ib)S.
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in the experimental population change with treatment status can be mapped into differences in the

treatment and control structural functions. This knowledge of the changes in the structural function

can be applied to differences in the distributions of observables in the control state, F eX,Y0
(x, y0) and

F aX,Y0
(x, y0), across populations to recover Ea[Y1].

Let α = F eY0|X(y0|x) for a given value of y0. Consider the α quantiles of Y1|X and Y0|X in e:

QeY1|X(α|x) = β1 + β′1Xx+ β1SQ
e
S|X(α|x)

QeY0|X(α|x) = β0 + β′0Xx+ β0SQ
e
S|X(α|x)

Making use of the linear functional form, we can subtract the x-subgroup, t-specific expectation

from each quantile to remove the common and x-specific structural effects,

QeY1|X(α|x)− Ee[Y1|x] = β1S

(
QeS|X(α|x)− Ee[S|x]

)

and

QeY0|X(α|x)− Ee[Y0|x] = β0S

(
QeS|X(α|x)− Ee[S|x]

)
.

By taking the ratio of the α-quantile-specific deviation from the x-subgroup specific expectation in

the treatment group and the α-quantile-specific deviation in the control group, we obtain the ratio

of the effects of the latent skill S in the treated and control states.

QeY1|X(α|x)− Ee[Y1|x]

QeY0|X(α|x)− Ee[Y0|x]
=
β1S

(
QeS|X(α|x)− Ee[S|x]

)

β0S

(
QeS|X(α|x)− Ee[S|x]

)

=
β1S
β0S

(15)

Knowing the ratio of the effects of latent math skill across treatment and control states allows us to

map differences in the distributions of latent skill and pre-test score F eX,S(x, s) and F aX,S(x, s) iden-

tified by differences in the joint distributions of the control outcomes F eX,Y0
(x, y0) and F aX,Y0

(x, y0)

into differences in the observed treatment group distribution in e, F eX,Y1
(x, y1), and the unknown

treated group distribution in a, F aX,Y1
(x, y1). Specifically, consider:

Ea[Y0|x]− Ee[Y0|x] = β0S (Ea[S|x]− Ee[S|x]) .

Then we can use the change in the effect of unobservables from equation (15) to identify the unknown

expected value of the treated outcome conditional on covariates x.

Ea[Y1|x]− Ee[Y1|x] =
β1S
β0S

(Ea[Y0|x]− Ee[Y0|x])

Ea[Y1|x] =
β1S
β0S

(Ea[Y0|x]− Ee[Y0|x]) + Ee[Y1|x]

Finally, the conditional average treatment effect is obtained by subtracting the conditional expecta-
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tion of the test score in the population of interest.

Ea[Y1 − Y0|x] =
β1S
β0S

(Ea[Y0|x]− Ee[Y0|x]) + Ee[Y1|x]− Ea[Y |x]

A.3. ρL < 1

When we introduce multidimensional heterogeneity, we can no longer directly link differences in

F eX,Y0
(x, y0) and F aX,Y0

(x, y0) to changes in the structural function g(t, x, u) in response to treatment.

This is easy to see when we reintroduce independent variation in I. Consider the treatment-to-

control ratio of α-quantile deviations from the x-specific subgroup expectations in e:

QeY1|X(α|x)− Ee[Y1|x]

QeY0|X(α|x)− Ee[Y0|x]
=
Qeβ1SS+β1II

(α|x)− Ee[β1SS + β1II|x]

Qeβ0SS+β0II
(α|x)− Ee[β0SS + β0II|x]

Whereas previously this ratio simplified to the treatment-to-control ratio of effects of latent skill on

the test score at the end of third grade, it no longer identifies a specific change in the structural

function.

In the empirical sections (6 and 7), I show that small deviations from 1-dimensional unobserved

heterogeneity (ρL = 1) can generate non-trivial bounds, depending on the extent of difference

in the conditional distributions of untreated outcomes between a and e. Only when unobserved

heterogeneity is exactly, and not approximately, 1-dimensional do differences in the conditional

distributions of the control outcomes not lead to a loss in identification. This motivates considering

the bounds from Proposition 2 and investigating how they change with ρL.

APPENDIX B: EXAMPLE LINEAR PROGRAM

This appendix provides an example of a linear program derived in 3 that is used in estimation

in Section 7. The unconditional bounds on ATEa are derived using x−conditional linear programs,

averaged over the distribution of x in context a, as shown in (13). Table IX shows the choice

variables and constraints (10) and (11) in the context of the remedial education in India example

where Mumbai is treated as a and Vadodara as e. As is discussed in more detail in Section 7, I

measure student achievement by the discrete grade level competency of third graders on completion

of the grade. In Table IX, I condition on a competency level of zero in math when beginning the

grade.

The row and column labeled “All” represents the constraints on the marginal distributions P e(y0|x)

and P e(y1|x). Without further constraints, the values of the choice variables are restricted only by

the requirement that the sums across rows (for the untreated outcomes) equal the probability in the

column labeled “All control” and that the sums down the columns (for the treated outcomes) equal

the probability in the row labeled “All treated.”

Example Table X shows the coefficient on each choice variable P (y0j , y1k). The differences in the

distributions of control outcomes mean that we would maximize the objective function by ascrib-

ing the highest treatment effects to individuals with Y0 = 2 and the lowest treatment effects to
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TABLE IX

Choice variables - P (y0j , y1k|competency on entering third grade = 0), e =Vadodara

Remedial ed

Competency on exiting grade 3

0 1 2 3 All control

N
o

re
m

ed
ia

l
ed

C
om

p
et

en
cy 0 P (0, 0) P (0, 1) P (0, 2) P (0, 3) 0.64

1 P (1, 0) P (1, 1) P (1, 2) P (1, 3) 0.29

2 P (2, 0) P (2, 1) P (2, 2) P (2, 3) 0.05

3 P (3, 0) P (3, 1) P (3, 2) P (3, 3) 0.03

All treated 0.57 0.31 0.07 0.05

Notes: Choice variables for the linear program described in Section 5.1. Treat-
ment and control group probability mass functions computed using third graders
entering grade 3 with grade level competency 0 in math in years 1 and 2 of
the Banerjee et al. [2007] experiment in Vadodara and year 1 of the Mum-
bai experiment. Probability mass functions do not sum to 1 due to rounding.

individuals with Y0 = 1.

Constraint (12) on the dependence between Y0 and Y1 in Vadodara renders us unable to do so

arbitrarily.To gain some intuition for the joint distributions implied by different values of ρL, Table

XI shows the joint distribution implied by assuming ρL = 1. In this case, the majority of the mass in

the joint distribution lies on the principal diagonal. Most individuals (85%) have a treatment effect

of zero, with a few individuals experiencing a positive treatment effect of at most 1 competency

level.

APPENDIX C: OMITTED DEFINITIONS

C.1. Copula

A copula function C : [0, 1]2 → [0, 1] satisfies:

1. Boundary conditions:

(a) C(0, u) = C(v, 0) = 0 ∀ u, v ∈ [0, 1]

(b) C(u, 1) = u and C(1, v) = v ∀ u, v ∈ [0, 1]

2. Monotonicity condition:

(a) C(u, v) + C(u′, v′)− C(u, v′)− C(u′, v) ≥ 0 ∀ u, v, u′, v′ s.t. u ≤ u′, v ≤ v′
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TABLE X

Contribution of choice variables to the objective
-P e(y0j , y1k|competency on entering third grade = 0), e =Vadodara, a =Mumbai

Remedial education

Competency on exiting grade 3

0 1 2 3

N
o

re
m

ed
ia

l
ed

C
om

p
et

en
cy 0 0 1.14 2×1.14 3×1.14

1 0 0.59 2×0.59 3×0.59

2 0 1.48 2×1.48 3×1.48

3 0 1.2 2×1.2 3×1.2

Notes: Objective function for the linear program described in Section 5.1.
Author’s calculations based on 3 with grade level competency 0 in math
in years 1 and 2 of the Banerjee et al. [2007] experiment in Vadodara.

C.2. Comonotonicity

When two random variables U and V are comonotonic

FU,V (u, v) = min {FU (u), FV (v)} .

C.3. Countermonotonicity

When two random variables U and V are countermonotonic

FU,V (u, v) = max {FU (u) + FV (v)− 1, 0} .

APPENDIX D: OMITTED PROOFS FROM SECTION 4

D.1. Proof of Lemma 1

Under Assumption 1, F eY |T,X(y|T = 0, x) = F eY0|T,X(y0|T = 0, x) = F eY0
(y0|x) where the last

equality follows from T ’s being independent of Y0 and X conditional on D = e. F eY |T,X(y|T = 1, x) =

F eY1
(y1|x) by the same argument. F aY |X(y|x) = F aY0|X(y|x) by Assumption 2. Under Assumption 4,

the conclusion follows from Assumption 3. The bounds are sharp by construction, since each element

of C defines a valid possible conditional distribution F aY1|Y0,X
(y1|y0, x).



GENERALIZING THE RESULTS FROM SOCIAL EXPERIMENTS 51

TABLE XI

P e(y0j , y1k|competency on entering third grade = 0), ρL = 1 e =Vadodara

Remedial education

Competency on exiting grade 3

0 1 2 3 All Control

N
o

re
m

ed
ia

l
ed

C
om

p
et

en
cy 0 0.57 0.07 0 0 0.64

1 0 0.24 0.05 0 0.29

2 0 0 0.02 0.03 0.05

3 0 0 0 0.03 0.03

All Treatment 0.57 0.31 0.07 0.05

Notes: Joint distribution generated by the linear program described in Sec-
tion 5.1 when ρL = 1. Treatment and control group probability mass func-
tions computed using third graders entering grade 3 with grade level compe-
tency 0 in math in years 1 and 2 of the Banerjee et al. [2007] experiment
in Vadodara. Probability mass functions may not sum to 1 due to rounding.

D.2. Proof of Proposition 1

Using Assumption 5 and Lemma 1, we obtain sharp bounds on Ea[Y1|x] for all values of x on

the support of F aX(x) in terms of observable quantities. min Ea[Y1|x] refers to the lower bound and

max Ea[Y1|x] to the upper bound. Integrating the lower bounds over F aX(x) provides a lower bound

for Ea[Y1]. Doing the same for the upper bounds provides the upper bound on Ea[Y1]. Sharpness

of the unconditional bounds follows from sharpness of the conditional bounds in Lemma 1. Under

Assumption 2, Ea[Y ] = Ea[Y0]. ATEa = Ea[Y1 − Y0] = Ea[Y1]− Ea[Y ]. The conclusion follows by

substituting the lower and upper bounds on Ea[Y1] for Ea[Y1].

D.3. Proof of Proposition 2

The proof of (i) is identical to the proof of Lemma 1 with the additional restriction in Assumption

7 imposed. The proof of (ii) is identical to the proof of Proposition 1, with the bounds in (i)

substituting for the bounds under Lemma 1.

APPENDIX E: OMITTED PROOFS AND RESULTS FROM SECTION 5

E.1. Proof of Proposition 3

By the definition of a copula, any C ∈ C defines a joint distribution FY0,Y1
(y0, y1) = C(FY0

(y0), FY1
(y1))

satisfying (a) FY0,Y1(y0,∞) = F eY0
(y0) and (b) FY0,Y1(∞, y1) = F eY1

(y1). Y = TY0 + (1 − T )Y1 and

independence of T from the potential outcomes gives us F eY0
(y0) = F eY |T (y|T = 0) and F eY1

(y1) =
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F eY |T (y|T = 1). The CDF corresponding to any joint probability mass function π satisfying con-

straints (10) and (11) can thus be represented as C(FY0
(y0), FY1

(y1)) for some C ∈ C. Conversely,

the PMF corresponding to FY0,Y1(y0, y1) = C(FY0(y0), FY1(y1)) for any C ∈ C can be represented as

some π ∈ [0, 1]J
2

satisfying constraints (10) and (11).

Mesfioui and Tajar [2005] show that ρstandard,e(Y0, Y1) can also be written as

− 3 + 3

J∑

j=1

J∑

k=1

[P e(y0j)P
e(y1k)

×
(
P e(Y0 ≤ y0j , Y1 ≤ y1k)

+ P e(Y0 < y0j , Y1 ≤ y1k)

+ P e(Y0 < y0j , Y1 ≤ y1k)

+P e(Y0 ≤ y0j , Y1 < y1k)
)]

By definition C.2, Spearman’s ρ under comonotonicity is therefore given by

ρstandard,eM (Y0, Y1) =

− 3 + 3

J∑

j=1

J∑

k=1

[
P e(yj |T = 0)P e(yk|T = 1)

×
(

min {P e(Y ≤ yj |T = 0), P e(Y ≤ yj |T = 1)}

+ min {P e(Y < yj |T = 0), P e(Y < yj |T = 1)}

+ min {P e(Y < yj |T = 0), P e(Y ≤ yj |T = 1)}

+ min {P e(Y ≤ yj |T = 0), P e(Y < yj |T = 1)}
)]
.

For discrete outcomes

Re(yj |T = t) =
P e(Y ≤ yj |T = t) + P e(Y ≤ yj−1|T = t)

2

so

ρstandard,eπ (Y0, Y1) = 12CovC(Re(Y |T = 0), Re(Y |T = 1)),

using independence of the potential outcomes and treatment assignment in e to equate Re(Yt) and

Re(Y |T = t). Thus, the inequality constraint (12) restricts C to the set C(ρL). The objective function

is
∫
R
(∫

R y1dC1(F eY0
(y0), F eY1

(y1))
)
dF aY0

(y0)−Ea[Y0], which is the object to be maximized/minimized

in Proposition 2.
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E.2. Linear programming representation when ρL ∈ [−1, 1]

Proposition 5 Suppose Assumptions 1, 2, 3, 4, 5, 7 and 8 hold. Then the upper bound in Propo-

sition 2, τU (ρL), is equivalent to the solution to the following linear programming problem, expressed

in terms of observable quantities.

max
π∈[0,1]J2

J∑

j=1

J∑

k=1

y1k
P a(yj)

P e(yj |T = 0)
× πjk −

J∑

j=1

y0jP
a(yj)

subject to

J∑

j=1

K∑

k=1

πjk = 1

J∑

k=1

πjk = P e(yj |T = 0) ∀j ∈ {1, ..., J − 1}

J∑

j=1

πjk = P e(yk|T = 1) ∀k ∈ {1, ..., J − 1}

G

sign(G)(3H − 3)
≥ ρL

where

G =

J∑

j=1

J∑

k=1

πjk

(
P e(Y ≤ yj |T = 0) + P e(Y ≤ yj−1|T = 0)− 1

2

)

(
P e(Y ≤ yj |T = 1) + P e(Y ≤ yj−1|T = 1)− 1

2

)
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and

H =





J∑

j=1

J∑

k=1

[
P e(yj |T = 0)P e(yk|T = 1)

×
(

min {P e(Y ≤ yj |T = 0), P e(Y ≤ yj |T = 1)}
+ min {P e(Y < yj |T = 0), P e(Y < yj |T = 1)}
+ min {P e(Y < yj |T = 0), P e(Y ≤ yj |T = 1, xl)}
+ min {P e(Y ≤ yj |T = 0), P e(Y < yj |T = 1, xl)}

)]

if G ≥ 0
J∑

j=1

J∑

k=1

[
P e(yj |T = 0)P e(yk|T = 1)

×
(

max {P e(Y ≤ yj |T = 0) + P e(Y ≤ yj |T = 1)− 1, 0}
+ max {P e(Y < yj |T = 0) + P e(Y < yj |T = 1)− 1, 0}
+ max {P e(Y < yj |T = 0) + P e(Y ≤ yj |T = 1)− 1, 0}
+ max {P e(Y ≤ yj |T = 0) + P e(Y < yj |T = 1)− 1, 0}

)]

otherwise

The lower bound in Proposition 2 can be obtained by replacing the max operator with the min operator

in the statement of the problem above.

Proof: The proof is identical to that of 3, allowing for both cases in Definition 1 instead of only

the first. The first case is all that is needed if dependence is restricted to be positive. Q.E.D.

E.3. Proof of Proposition 4

The frequency estimator is asymptotically normal:
√
N(p̂−p)→ N (0,Σ). Theorem 23.4 in van der

Vaart [1998] shows that the bootstrap provides a consistent estimate of Σ. Under Assumption 9,√
N(φ(p̂)−φ(p))→ N (p,∇φ(p)Σ∇φ(p)′) by the delta method. Theorem 23.5 in van der Vaart [1998]

shows that the bootstrap consistently estimates this distribution and thus its functionals, σL, σU

and %. Thus, Assumption 1(i) of Stoye [2009] is satisfied. Assumption 1(ii) of Stoye [2009] holds

by Assumption (9) (iii) and (iv). Recall that φL(p; ρL) is obtained by switching the max operator

to min in equation (14), subject to the same set of constraints. P (φL(·; ρL) ≤ φU (·; ρL)) = 1 is

thus satisfied by construction for any argument, so Assumption 3 of Stoye [2009] is satisfied. The

conclusion follows from Proposition 2 of Stoye [2009].

E.4. Bayesian inference for ATEa

I follow Moon and Schorfheide [2012]’s recommended approach to Bayesian inference in partially

identified models.32 I first perform inference for the point-identified, reduced form parameter vector

32See DiTraglia and Garcia-Jimeno [2015] for another recent application.
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p. The sample vector

C =




∑N
i=1 1{Yi = y1, Xi = x1, Ti = 0, Di = a}

...

∑N
i=1 1{Yi = yj , Xi = xl, Ti = t,Di = d}

...

∑N
i=1 1{Yi = yJ , Xi = xL, Ti = 1, Di = e}




constitutes a draw from a multinomial distribution with parameters N and p. The likelihood is

characterized by the relationship

P (c|p) ∝
J∏

j=1

L∏

l=1

∏

td∈{0a,0e,1e}

p
cjltd
jltd ,

and an uninformative conjugate prior33 for p by a Dirichlet distribution with the parameter vector

given by a vector of ones of dimension J × L× 4 (see Gelman, Carlin, Stern, Dunson, Vehtari, and

Rubin [2014]). The posterior distribution is Dirichlet with parameter vector C.

We can use the linear program in (14) to produce bounds for any draw pb from the posterior.

To produce a posterior distribution for ATEa, I specify that ATEa is distributed uniformly on

[τL(pb; ρL), τU (pb; ρL)] (Moon and Schorfheide [2012]).34 The distribution of ATEa can be charac-

terized by simulation, according to the following steps.

1. Draw pb from a Dirichlet(C) distribution B times.

2. For each b, compute τL(pb; ρL) and τU (pb; ρL) using the linear program described in (13).35

3. Draw τ bs from a Uniform(τL(pb; ρL), τU (pb; ρL)) distribution S times.

The posterior distribution function is approximated by

FBS(ATEa|c) =
1

BS

B∑

b=1

S∑

s=1

1{τ bs ≤ ATEa},

which converges to the posterior, F (ATEa|c), uniformly almost surely as BS →∞.

33Kline and Tamer [2016] show that specifying a prior is not necessary for conducting inference
on the identified set itself. However, the object of policy interest is not the identified set, but ATEa

itself.
34Other priors may be more relevant depending on the loss function employed. See Stoye [2012].
35 Note that Assumption 9 (ii) is not required here.
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