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Abstract

Impact evaluations can help to inform policy decisions, but they are

rooted in particular contexts and to what extent they generalize is an

open question. I exploit a new data set of impact evaluation results and

find a large amount of effect heterogeneity. Effect sizes vary systemati-

cally with study characteristics, with government-implemented programs

having smaller effect sizes than academic or NGO-implemented programs,

even controlling for sample size. I show that treatment effect heterogeneity

can be appreciably reduced by taking study characteristics into account.
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1 Introduction

Recent years have seen extraordinary growth in the use of rigorous impact evalua-

tions in the social sciences, particularly in international development. This expansion

of evidence is welcome. However, if this evidence is to be useful in informing policy,

we must also know the extent to which results from impact evaluations generalize to

new contexts. Concerns about external validity have stimulated lively theoretical de-

bates in economics (Deaton, 2010; Pritchett and Sandefur, 2013). Further, examples

of studies which raised questions about the external validity of initial findings have

begun to trickle in (Bold et al., 2010; Allcott, 2015). There is also growing interest

in extrapolating to different contexts (Dehejia et al., 2015; Gechter, 2015; Bandiera

et al., 2015; Meager, 2015; Kowalski, 2016). Still, a motivating question has not

yet been answered: how much do results truly vary and are there characteristics of

studies that predict generalizability?

To answer this question, this paper leverages a new data set of 15,024 estimates

from 635 papers on 20 types of interventions in international development, gathered

in the course of meta-analysis. I find a large degree of heterogeneity in treatment ef-

fects, some of which can be explained by study characteristics. In particular, smaller

studies tend to report larger effect sizes, as do programs implemented by NGOs or

academics. Interestingly, studies of interventions that may be thought to have a more

direct causal effect seem to exhibit less heterogeneity in treatment effects, though this

result is only suggestive given the small number of interventions considered. Taken

together, these results suggest greater attention be paid to study and intervention

characteristics.

This point is worth emphasizing, since impact evaluation results are widely cited

in reports generated for policymaking but are often shared without much informa-

tion about context, study design or even standard errors. If researchers knew all the

factors that could be affecting results and could fully explain heterogeneity in treat-

ment effects, and if this information were included in policy reports, the dispersion of

studies’ results would not be an issue. However, even much more basic information

is typically not provided. For example, there is not room in the World Development

Report, the World Bank’s flagship annual publication that is widely circulated among

policymakers, for a detailed description of each study, nor do these reports typically
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include confidence intervals or similar information.1 Nor is this issue limited to devel-

opment; at the present time of writing, the plain language two-pagers the Campbell

Collaboration publishes for policymakers also provide limited contextual information

and no standard errors.2 Details about studies’ implementation and other factors are

frequently sparse not just in policy reports, but also in the research papers themselves:

of the studies considered in this paper, 1 in 5 did not even make clear the basic detail

of what type of organization (government, non-profit, private sector, researcher or

other) implemented the program, and in more than 1 in 4 papers it was not clear how

much time had elapsed between the beginning of the intervention and the collection

of midline or endline data.

In order to systematically analyze heterogeneity in studies’ results, a comprehen-

sive and unbiased sample of studies is needed. I use those studies that were included

in meta-analyses and systematic reviews by a non-profit research institute, AidGrade.

To date, AidGrade has conducted 20 meta-analyses and systematic reviews of differ-

ent development programs.3 These meta-analyses draw upon the results reported

in the initial studies. To more thoroughly model heterogeneity in treatment effects,

ideally one would want micro-data from large-scale, coordinated studies covering the

same outcome variables and with the same covariates collected across many differ-

ent settings. However, given that micro-data are rarely available, the results data

reported in academic papers represent the typical best option. Since the results re-

ported in academic papers on these 20 topics were extracted from their source papers

in the same way, coding the same outcomes and other variables, I can look across

different types of programs to see if there are any more general trends that help to

explain impact evaluation results.

Before I can begin to discuss heterogeneity in treatment effects, an introduction

to Bayesian hierarchical models is warranted, as they are still quite new in economics

with notable exceptions (Bandiera et al., 2015; Meager, 2015). Other disciplines

such as medicine and psychometrics have more thoroughly considered generalizabil-

ity (e.g. Shavelson and Webb, 1991; Higgins and Thompson, 2002; Briggs and Wilson,

2007), but there is as yet no widespread agreement on measures of heterogeneity in

1World Development Reports from 2010-2016 were checked for standard error information and
only 8 cases were found out of thousands of cited papers.

2Based on all the reviews posted on their website, last accessed March 16, 2016.
3Throughout, I will refer to all 20 as meta-analyses, but some did not have enough comparable

outcomes for meta-analysis and became systematic reviews.
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economics. I discuss the strengths and limitations of candidate measures of hetero-

geneity and explicitly tie them to generalizability using the framework of Bayesian

meta-analysis. I demonstrate how these measures can help to address several key

policy questions, such as: 1) given a set of results on the effect of a particular in-

tervention (e.g. conditional cash transfers) on a particular outcome (e.g. school

enrollment rates), what is the likelihood that we would accurately predict the sign of

the true effect of a similar study in another context?; 2) how well can we predict the

magnitude of that true effect? These questions are a simple extension of Type S and

Type M errors discussed by Gelman and Carlin (2014) and Gelman and Tuerlinckx

(2000). Type S errors are the probability of a significant result having the incorrect

sign, and Type M errors represent the magnitude by which a significant point estimate

differs from the true value it seeks to estimate. While Gelman and Carlin consider

replications, essentially capturing the generalizability of a study’s results to its own

setting, a similar approach can be leveraged to consider generalizability to another

setting.

I find that without considering study or intervention characteristics, an inference

about another study will have the correct sign about 67% of the time for the median

intervention-outcome pair in my sample. If trying to predict the treatment effect

of a similar study using only the mean treatment effect in an intervention-outcome

combination, the median ratio of the
?
MSE to that mean is 2.15 across intervention-

outcome combinations. Further, only about 9% of the observed variation in study

results can be attributed to sampling variance. I find about 20% of the remaining

variance could be explained using a single best-fitting explanatory variable. However,

this statistic obscures a lot of heterogeneity, with the median decrease being about 9%

among the intervention-outcomes for which this comparison was made. The results

underscore both the large amount of true inter-study variance and the importance of

careful modeling of treatment effects using micro-data.

2 Theory

Consider a set of studies on the effects of similar interventions performed in dif-

ferent locations or contexts; for example, studies on the effect of conditional cash

transfer programs on school enrollment rates. Given a set of such studies, one may

wish to predict the true effect of the intervention in another context. I will argue that
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one can estimate how well one can extrapolate from a set of results using some basic

measures of heterogeneity.

However, as generalizability and models from the meta-analysis literature are rel-

atively under-considered within economics, an introduction to these models is war-

ranted. This section will therefore be structured as follows. First, I will introduce

notation and the basic models used in the meta-analysis literature. This will be fol-

lowed by a discussion of how these models can be estimated. I will then introduce a

set of potential heterogeneity measures relating to the model and motivate use of one

particular measure, τ 2. I will first motivate its use by considering how it has been

used in the literature to improve estimates of a study’s true effect in that study’s own

setting. Finally, I will show that the same approach can be used to make inferences

about the true effect of similar studies in other settings.

2.1 Bayesian Meta-Analysis

The meta-analysis literature suggests two general types of models that can be

parameterized in many ways: fixed-effect models and random-effects models.4

Fixed-effect models assume there is one true effect of a particular program and

all differences between studies can be attributed simply to sampling error. In other

words:

Yi “ θ ` εi (1)

where Yi is the point estimate in study i, θ is the true effect and εi is the error term.

Random-effects models do not make this assumption; the true effect could poten-

tially vary from context to context. Here,

Yi “ θi ` εi (2)

where θi is the true effect. Random-effects models are more suitable than fixed-

effect models when there are heterogeneous treatment effects and they are also more

plausible. Random-effects models can also be modified by the addition of explanatory

variables, at which point they are called mixed models. Both random-effects models

and mixed models will be considered in this paper, however, to build intuition I will

4Much of this exposition will draw from Gelman et al. (2013), and the interested reader is also
referred to Borenstein et al. (2009) for a gentle introduction to meta-analysis.
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focus the exposition on the random-effects case.

A common approach taken to estimate the random-effects model is to weight

each study’s point estimate by the inverse of the variance of the estimate, using the

standard error associated with the estimate. In my analyses, I will instead take a

fully Bayesian approach. In particular, I will assume:

θi „ Npµ, τ 2q (3)

Yi|θi „ Npθi, σ
2
i q (4)

where µ and τ 2 are unknown hyperparameters and σ2
i is the sampling variance, as-

sumed known. There are two sources of variation in this model: the true inter-study

variation, τ 2, and the sampling variance, σ2
i . Equation 4 is generally justified by con-

sidering that in a given study, sample sizes are large and so the central limit theorem

holds. For a large enough study, one might be confident in assuming the sampling

variance known, though in principle it could be estimated with some noise. The top

level in the hierarchy, represented in Equation 3, is more controversial. θi can al-

ternatively be assumed to follow other distributions, and a nonparametric approach

could even be taken. However, I would like to pick one workhorse model that can be

broadly applied across many intervention-outcome combinations, as that may help in

interpreting the variance term, and a normal distribution seems best for this purpose.

I will later perform posterior predictive checks to gauge the suitability of this model

for each of the intervention-outcome combinations I study.

In practice, a researcher will observe Yi, the study’s point estimate, and its stan-

dard error. Yi and σ2
i are taken as known, with the standard error conventionally used

to estimate σi.
5 The other parameters, θi, µ and τ 2, will have to be estimated. There

is a large literature on estimating these models (e.g. Gelman, 2006; Rubin, 1981;

Efron and Morris, 1975). I outline a simple approach to estimating a fully Bayesian

model, following Gelman et al. (2013).

5It should be noted that the standard error may estimate σi only with some noise. I will not
be able to assess this in my data, but the approximation is generally considered unlikely to be
problematic (Gelman et al., 2013) and if the fit were really poor this would show up in the fit of the
model, which I will check using posterior predictive checks.
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2.2 Estimating a Bayesian Hierarchical Random-Effects

Model

Bayes’ rule says that the posterior probability is proportional to the likelihood of

the data given certain parameter values multiplied by the prior probability of those

parameters. Ultimately, I will want to estimate the parameters θ (a vector of θi), µ

and τ given the data. I do this by making draws from the joint posterior distribution

ppθ, µ, τ |Y q. Note that ppθ, µ, τ |Y q can be written as ppθ|µ, τ, Y qppµ|τ, Y qppτ |Y q. In

estimating the model, I will draw the hyperparameters τ , then µ, from their marginal

posterior distributions and draw θ from its posterior distribution conditional on the

drawn values of µ and τ . The rest of this section follows Gelman et al. (2013) in

writing down the posterior distributions for ppθ|µ, τ, Y q, ppµ|τ, Y q, and ppτ |Y q that

will be used.

If there are N studies i in a given intervention-outcome combination, ppθ|µ, τ, Y q

factorizes into N components:

ppθ|µ, τ, Y q “
ź

i

ppθi|µ, τ, Y q (5)

Equation 3 provides the prior for θi, where µ and τ are unknown hyperparameters

that will need to be estimated and Equation 4 provides the likelihood. Conditioning

on the distribution of the data, the posterior is:

θi|µ, τ, Y „ Nppθi, Viq (6)

where

pθi “

Yi
σ2
i
`

µ
τ2

1
σ2
i
` 1

τ2

, Vi “
1

1
σ2
i
` 1

τ2

(7)

and Y is a vector of all Yi within the intervention-outcome combination.

I will assume a uniform prior for µ|τ following Gelman et al. (2013) and update

based on the data. As the Yi are estimates of µ with variance pσ2
i ` τ

2q, the posterior

of µ is given by:

µ|τ, Y „ Nppµ, Vµq (8)

7



where

pµ “

ř

i
Yi

σ2
i`τ

2

ř

i
1

σ2
i`τ

2

, Vµ “
1

ř

i
1

σ2
i`τ

2

(9)

For τ , I again use a uniform prior over a large range of possible values. To obtain

ppτ |Y q, first note that ppτ |Y q “ ppµ,τ |Y q
ppµ|τ,Y q

. The denominator of this equation is given

by Equation 8; for the numerator, ppµ, τ |Y q is proportional to ppµ, τqppY |µ, τq and

the marginal distribution of Yi|µ, τ is known:

Yi|µ, τ „ Npµ, σ2
i ` τ

2
q (10)

Hence, for the numerator:

ppµ, τ |Y q9ppµ, τq
ź

i

NpYi|µ, σ
2
i ` τ

2
q (11)

Substituting into the equation for ppτ |Y q, this yields:

ppτ |Y q9
ppτq

ś

iNpYi|µ, σ
2
i ` τ

2q

Npµ|pµ, Vµq
(12)

As this equation must hold for any µ, including pµ, pµ can be substituted for µ, and

it is this expression that I will evaluate:

ppτ |Y q9
ppτq

ś

iNpYi|pµ, σ
2
i ` τ

2q

Nppµ|pµ, Vµq
(13)

9ppτqV 1{2
µ

ź

i

pσ2
i ` τ

2
q
´1{2exp

ˆ

´
pY ´ pµq2

2pσ2
i ` τ

2q

˙

(14)

Given the equations for the posteriors, estimating the parameters is merely a mat-

ter of making simulations. First, I approximate a uniform distribution for the prior

of τ by generating 2,000 equally spaced points over a large range.6 Then, I sample

from the posterior of τ |Y , µ|τ, Y and θi|µ, τ, Y , 10,000 times. R code implementing

this approach is included in an appendix.

It should be noted that all these calculations are done within each intervention-

outcome combination, independently. It would be possible to analyze data at the

6Specifically, for each intervention-outcome I generate the standard deviation of point estimates
and generate 2,000 points spaced equally between 0 and 10*sd.
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intervention level instead or add a level to the model such that the mean true effect

of one intervention-outcome combination can be informative about the mean true

effect of another intervention-outcome combination. Pooling results across outcomes

within an intervention would have the benefit of increasing the number of observations

that could be leveraged in an analysis; it will be shown that not many studies cover

the same intervention-outcome combination. It could also mitigate the issue that mul-

tiple results on different outcomes are sometimes taken from the same paper, leading

to dependence between intervention-outcome combinations. However, this approach

also has a major drawback: my focus in this paper is on estimating heterogeneity, and

these estimates could be artificially inflated by pooling across diverse outcomes. Fur-

ther, I will be wanting to explain the observed variation in treatment effects, and some

of the explanatory variables may have different relationships with different outcomes.

Aggregating the data could make it harder to explain the variation. It could also

make the source of the results less transparent. I will thus present results separately

for each intervention-outcome combination as a conservative approach, but caution

should be taken in interpreting results across intervention-outcomes given that they

are correlated.

2.3 Estimating a Mixed Model

One way to extend the basic random-effects model would be by adding explanatory

variables, making it a mixed model. The estimation strategy is similar. Here, as the

simplest model, I will assume:

Yi “ α `Xiβ ` ei ` ui (15)

with ei „ Np0, τ 2q capturing the true unexplained variance between studies and

ui „ Np0, σ2
i q capturing the sampling error. Again, posterior distributions will be

constructed from the priors and likelihood functions for each parameter to be es-

timated. Appendix D contains a derivation of the relevant posterior distributions,

which are similar to the posterior distributions used in the random-effects model, and

the estimation procedure is analogous. To estimate the parameters, I will again start

by generating the uniformly-distributed prior for τ over a large range, then sampling

from the posterior of τ |Y , β|τ, Y and ei|β, τ, Y . It should be noted that the τ 2 that

is estimated here will be smaller than the τ 2 estimated using a random-effects model,
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since some of the variance in Yi will have been explained by Xi. For clarity, I will

henceforth denote this “residual” τ 2 as τ 2R. As with the random-effects model, sample

R code for implementing the estimation procedure is included in an appendix.

2.4 Heterogeneity Measures

As a measure of the true inter-study variation, τ 2 may be an attractive measure of

heterogeneity. But there are many qualities one might like a measure of heterogeneity

to have. This section discusses desirable properties for a measure of heterogeneity

and shows how τ 2 compares to other potential measures that could be used.

First, it should be noted that some measures capture the variability of results

and some measure the proportion of variation that can be explained. Both types

of measures can be important: if the variation can be explained, it may not be a

problem in making inferences; on the other hand, if overall variation is large, then

even explaining a large proportion of it may result in inaccurate predictions.

Within the first category, the most obvious measure to consider is the variance of

studies’ results within a given intervention-outcome combination, var(Yi). A potential

drawback to using this measure is that studies that have larger effects or are measured

in terms of units with larger scales will have larger variances. One can only make

comparisons between data with the same scale. Hence, the literature suggests either:

1) restricting attention to those outcomes that have the same natural units (e.g.

enrollment rates in percentage points); 2) converting results to be in terms of a

common unit, such as standard deviations; or 3) scaling the measure, such as by the

mean result, to create a unitless figure. Each approach has drawbacks. Restricting

attention to outcomes in the same natural units can be limiting. Converting results

to be in terms of standard deviations can be problematic if the standard deviations

themselves vary, but it is a common approach in the meta-analysis literature. Scaling

the standard deviation of results within an intervention-outcome combination by the

mean result within that intervention-outcome creates a unitless measure known as

the coefficient of variation (CV), which represents the inverse of the signal-to-noise

ratio. As a unitless figure, this measure can be compared across intervention-outcome

combinations with different natural units, however, it is not immune to criticism,

particularly in that it may result in large values as the mean approaches zero.

The measures discussed so far focus on variation. However, if the variation could
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be explained, it would no longer result in inaccurate predictions in a new setting. As

mentioned, the variation in observed treatment effects is:

varpYiq “ τ 2 ` σ2
i (16)

where τ 2 represents the true inter-study variation and σ2
i is the sampling variance.

τ 2 thus represents the maximum inter-study variation that could be explained by

a model. As the true inter-study variation, τ 2 could be an attractive measure of

heterogeneity, however, it suffers from the same problem as var(Yi) in that it depends

on the outcome’s units.

One may also be interested in the proportion of the variation that is not sampling

error. A common such measure is:

I2 “
τ 2

τ 2 ` s2
(17)

where s2 is a measure of the sampling variance that is taken to be held in common

across a set of studies.7

The I2 statistic is an established unitless metric in the meta-analysis literature

that helps determine whether a fixed or random-effects model is more appropriate.

The higher the I2, the less plausible it is that sampling error drives all the variation

in results, and the more appropriate a random-effects model is. While I2 has the

nice property that it is unitless and disaggregates sampling variance as a source of

variation, estimating it depends on the weights applied to each study’s results and

thus, in turn, on the sample sizes of the studies. To get a full picture of the extent

to which results might generalize, then, multiple measures may be helpful.

In short, each of these statistics has its advantages and disadvantages. Table

1 summarizes which of the desirable properties of a measure of heterogeneity are

possessed by each of the proposed measures. Of these measures, a Bayesian may

prefer measures that separate out sampling variance, such as τ 2 or I2. While I2

depends on the sampling variance, a Bayesian might consider this an advantage rather

7Higgins and Thompson, in their seminal 2002 paper defining the I2 statistic, take a weighted

mean of the σ2
i in that set as a “typical” value. Specifically, they define: s2 “

pk´1q
ř

1

σ2
i

ˆ

ř

1

σ2
i

˙2

´
ř

ˆ

1

σ2
i

˙2 ,

where k is the number of studies. When there is a small number of studies, this may serve to slightly
depress s but represents the conventional approach to estimating I2.
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Table 1: Desirable Properties of a Measure of Heterogeneity

Does not depend
on the precision
of individual esti-
mates

Does not depend
on the estimates’
units

Does not depend
on the mean result
in the cell

varpYiq X X
CVpYiq X X
τ 2 X X
I2 X X

The “precision” of an estimate refers to its standard error. A “cell” here refers to an

intervention-outcome combination. Each measure could be applied to summarize the remaining

variation after fitting the data to a more complicated model.

than a disadvantage, as it tells us something about the informativeness of a result.

To further motivate the focus on τ 2, and to a lesser extent I2, I will describe a couple

of situations in which these measures may be particularly useful.

2.5 Leveraging Heterogeneity Measures to Improve Esti-

mates

First, consider a lab experiment conducted in several settings, as in the “Many

Labs” project (Klein et al., 2014). Each experiment has high “internal validity”,

defined as the ability to identify the causal effect of the treatment (Banerjee and

Duflo, 2009). One can also look across experiments to gauge the “external validity”

of one set of n results to another setting, i.e. how well observed point estimates

Y1, Y2, ..., Yn can be used to jointly predict the point estimate of another study, Yj, or

the true underlying effect θj, perhaps in conjunction with a more complicated model.

Importantly, the best estimate of θj is not Yj. Rather, Yj may be improved upon by

considering information external to study j, i.e. data from other studies i “ 1, ..., n.

For example, it is possible that study j, while unbiased, had a very small sample

size. To the extent to which the other studies are informative about the effect in this

setting, one would want to leverage those data to improve the estimate of θj. The pθj

that is estimated from the Bayesian model is a “shrinkage estimator”, and the degree
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of shrinkage depends on the precision of the estimate relative to τ 2:

pθj “ p1´ λjqYj ` λjµ (18)

where λj “
σ2
j

σ2
j`τ

2 . These estimators have a storied past (e.g. Rubin, 1981; Efron and

Morris, 1975; Stein, 1955).

In this example, knowing the relationship between sampling variance and τ 2 is

clearly helpful and can improve estimates of what a replication would find in the same

setting. In effect, this example can be thought of as giving us the generalizability of

a result to its own setting.

As a second motivating example, consider the case in which one would like to know

whether two parameters, θj and θk, are equal. This could be thought of as testing for

heterogeneity in treatment effects by setting or, alternatively, as testing for differences

between treatment arms in a given setting. Suppose the sampling variance is equal

across j and k for simplicity, i.e. σj “ σk “ σ. In this case, as detailed by Gelman

and Tuerlinckx (2000), a classical test would call an observed difference significant at

p ă 0.05 if:

|Yj ´ Yk| ą 1.96
?

2σ (19)

If a Bayesian were to construct a 95% confidence interval for θj´θk, however, this

interval would be represented by pθj ´ pθk ˘ 1.96
a

Vj ` Vk, where Vj is the variance of

θj|µ, τ, Y . It will later be observed that Vj “
1

1

σ2
j

` 1
τ2

, and the Bayesian analog to the

classical test would be:

|Yj ´ Yk| ą 1.96
?

2σ

c

τ 2 ` σ2

τ 2
(20)

This example illustrates that a measure analogous to I2 is important in discerning

heterogeneity across studies.8

Gelman and Tuerlinckx use this framework to examine what they call Type S and

Type M errors (2000), further discussed in Gelman and Carlin (2014). For Gelman

and Tuerlinckx, a Type S (sign) error is the probability that a claim is made that

θj ą θk when in reality θj ă θk.
9 A Type M (magnitude) error can be interpreted

8As the number of studies increases, s2 approaches σ2 assuming a common σ.
9Gelman and Tuerlinckx consider a claim made θj ą θk if the estimate of θj is significantly

greater than the estimate of θk.
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as an exaggeration factor, i.e. the expected value of a replication effect divided by

the hypothesized true effect. Gelman and Carlin consider both types of error only for

those results that were statistically significant and focus on predicting the effect of a

replication in the same setting.

I argue that a similar approach can be taken to consider generalizability to another

setting. Instead of Gelman and Tuerlinckx’s Type S error, a policymaker may care

about the probability that θj ă 0 when pθj ą 0 or θj ą 0 when pθj ă 0, regardless of

the statistical significance of the estimate of θj. Similarly, analogous to the Type M

error, a policymaker may care about the MSE of an estimate of θj, and this MSE can

be predicted given estimates of τ 2.

In summary, τ 2 and I2 are intrinsically related to the problem of how one might

interpret evidence from a particular study.

2.6 Using Heterogeneity Measures to Extrapolate

With this background in place, I will now tie together the heterogeneity measures

used in the literature and generalizability. Given a population P of potential studies,

I will define generalizability as the ability to draw correct inferences from a set of

studies, S, about a study j.10 The inferences I will focus on are about the sign and

magnitude of θj, answering the two questions posed in the introduction, namely 1)

given a particular set of studies, how likely are we to correctly guess the sign of the

true effect of a similar study in another context?, and 2) by what magnitude is our

prediction likely to be wrong?

10Importantly, the target study, j, may or may not be in the same setting as any study in S and it
need not even share the same implementation details. However, θi and θj should be draws from the
same distribution for any i in S; this enables any parameters estimated using S to be informative
about θj . This distributional assumption matters when considering literatures that are biased, such
that the studies that were carried out were special in some way that affects their treatment estimates.
Note, however, that I am explicitly not imposing that the true effects must be similar. If there are
a variety of contexts and study-generating processes causing a wide dispersion of treatment effects,
that should be captured in the τ2 that is estimated using the studies in S. Instead, I only require
the true effects to be from the same distribution.

More research into the biases introduced in the study-generating process is welcome. However, I
regard the question of whether the results of many studies could be described as coming from the
same distribution as an empirical question - part of the broader question of how well the model fits
the data. Another possible way in which the model could be misspecified is if the error is not truly
normally distributed. Any model misspecification can be considered empirically, in that one could
fit a portion of the data to the model and use it to try to make predictions out of sample, though
one would not be able to attribute the source of the error to e.g. research biases or other model
misspecifications. I will consider this issue later in the paper.
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These are not the only potential questions of interest when thinking about extrap-

olating from a set of studies. For example, one might want to know the probability

that the true effect of a program in a given context falls above a certain non-zero

threshold or that it falls within a given range. One may instead want to know the

likelihood that a potential study will find a significant result assuming a given sam-

ple size and standard deviation. However, the two focal questions about sign and

magnitude are certainly part of what one might care about.11 I concentrate on these

questions for clarity but note that the model can be used to answer many other ques-

tions.

From here, the approach is straightforward. First, consider the probability that

one can accurately predict the sign of the true effect of a program in a given study

j that is yet to be conducted.12 The best guess as to the effect of a program in a

new setting, without specifying a more complex model, is simply pµ, the best estimate

of µ. Given values of µ, τ 2 and σ2
j , one can calculate how likely it is that a correct

inference will be made about the sign of the true effect of the program. Figure 1a

plots curves representing particular constant probabilities assuming µ “ 0.12 (the

mean standardized effect in the data) over various τ 2 and sampling variances. For

simplicity in exposition I assume a common sampling variance across studies. Figure

1b similarly plots the average magnitude of the prediction error, again using standard-

ized values. In practice, µ and τ 2 can be estimated using all N observations within

each intervention-outcome combination, and for sufficiently high values of N one may

think these estimated pµN and pτ 2N are stable and approximate µ and τ 2. The sampling

variance was assumed known in generating these simulated curves.13 The figures are

overlaid with triangles with indicative values for the 57 intervention-outcome com-

binations used in this paper. For these markers, estimates of τ are based on all N

11For instance, a policymaker may prefer positive results to negative results for political reasons;
they may also imagine beneficiaries might more strongly dislike a given harm than appreciate a
comparable benefit. Then whether a potential program was likely to have a positive effect in their
context would be important. The magnitude of the likely effect of the program is also something that
would naturally enter into one’s evaluation of the benefits of a particular program, and researchers
conducting power calculations would also like to know the likely effect of a program in a given
setting. Thus, error in predicting the magnitude of these effects is important.

12This exposition will refer to results of a study. One may think that a study’s results will be
a function of the exact program variant and the context. At this stage, I do not have to model
a study’s results more explicitly. In particular, a program may vary in implementation or content
from one study to another, so long as this variance can be estimated.

13In reality, each study has its own sampling variance and the literature uses the standard error
of a point estimate to estimate it.
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observations in each intervention-outcome combination, and Higgins and Thompson’s

approximation of a common sampling error, s, is assumed to approximate σ (2002).14

These figures show that both the sampling variance and the true inter-study varia-

tion, τ 2, are important for making correct inferences about another study, but the

two also interact: for large σ, decreasing τ 2 will not lead to large improvements in the

accuracy of one’s inferences. The intuition is that if the data are sufficiently noisy,

whether the true effects vary from study to study will not be pivotal in making the

correct prediction. On the other hand, reducing the sampling variance will always

help, even in cases of large τ 2.

The above exposition focused on a random-effects model for the sake of clarity,

without considering any potential explanatory variables. If one could leverage other

data to build a better model, one may be able to obtain better estimates. Later in

this paper, I will leverage mixed models that do seek to explain some of the observed

variation.

Figure 2 shows how the two aforementioned questions about sign and magni-

tude would be answered by a random-effects model if applied to one illustrative

intervention-outcome combination in the data (the effect of conditional cash transfers

on school enrollment rates). In particular, to create each point, results from n studies

relating to the effect of conditional cash transfers on enrollment rates (point estimate

and standard error) are independently drawn and a best estimate of θn`1, pθn`1, is

formed. Since this is a random-effects model, pθn`1 is simply pµn`1. Then this estimate

of θn`1 is compared to a draw of θi generated from θi „ NppµN , pτ
2
N), where pµN and pτ 2N

are the estimates of µ and τ 2 that are obtained from the random-effects data using all

data for that intervention-outcome combination, assuming they approximate the true

underlying parameter values µ and τ 2.15 Similar figures for all intervention-outcomes

in the data are provided in an appendix. In these figures, the predictions do not

improve by much after the first few studies, an important point that will be discussed

more later.

These figures assume the Bayesian model is true. I can empirically examine how

14This is because each study within an intervention-outcome combination has a different sampling
variance, so some aggregate measure must be created. I only use s when a common measure is
required, i.e. only in this figure and in estimates of I2, never in the estimation of any θi, µ, or τ2.

15The figures do not show a monotonic relationship between the accuracy of the estimate and
the number of studies used because the studies can have quite different values from one another so
the prediction error can be quite large at times. The studies are drawn in a random order in each
simulation and increasing the number of simulations helps to average this out across simulations.
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Figure 1: Heterogeneity Measures and Extrapolation
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The top figure plots the probability of making the correct inference about the sign of the
underlying parameter θj of some new study, j, assuming a mean standardized effect size of
µ “ 0.12 and that τ2 and σ2 are known. The bottom figure plots the MSE of the prediction of the
magnitude of θj , under the same assumptions. The range of values for τ and σ plotted here was
chosen because these represent common estimated values in the data; the overlaid triangles
represent intervention-outcome combinations in the data, using standardized values. For each
intervention-outcome combination, τ is estimated using a random-effects model; to estimate a σ
held in common across the intervention-outcome combinations, I use Higgins and Thompson’s
approximation, s.
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Figure 2: Example Predicting the Effects of a Conditional Cash Transfer Program on
Enrollment Rates
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These figures plot: 1) the probability of making the correct inference about the sign of the
underlying parameter θn`1 of some new study, given a certain number of studies, n, with estimates
with which to make that guess; 2) the MSE of the best guess of θn`1.
n represents the number of studies used to form the estimate; for each intervention-outcome
combination the maximum n used is N ´ 1, so as to leave something to predict. 100,000
simulations are used and the mean probability of making the correct inference about the sign and
the MSE is calculated for each n as described in the text. In the bottom part of the figure, the
black line indicates the mean MSE; the 95% interval is provided by the shaded area. In the top
part of the figure, the black line represents the mean probability of making the correct inference
about the sign, but a 95% interval is not added since for any one given run the outcome will be 0
(incorrectly predicted the sign) or 1 (correctly predicted the sign).
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well the model fits the data. While Figure 2 compares the estimates of pθn`1 to values

of θi drawn from θi „ NppµN , pτ
2
Nq, one may instead wish to be more agnostic as to

whether the model is correctly specified and compare the predictions of θn`1 to a draw

of Yi.
16 These figures are provided in Appendix E. The figures making a comparison

to pθi and Yi often have similar probabilities of making the correct inference about

the sign of a similar study or its magnitude. Those using pθi do not necessarily do

better or worse than those using Yi. When real data are used, however, drawn with-

out replacement, it is no longer the case that the probability of making the correct

inference about the sign of a similar study or its magnitude monotonically improves

with the number of data points used.17 Later in the paper, I will perform additional

checks to gauge the fit of the model.

Again, it should be noted that these are very simple models with no explana-

tory variables. A more complicated mixed model should obtain even better results,

although in this particular example the probability of making the correct inference

about the sign of θj is already quite high and the MSE quite low.18

3 Data

This paper uses a database of impact evaluation results collected by AidGrade, a

U.S. non-profit research institute founded by the author in 2012. Its main focus is on

gathering results of impact evaluations and analyzing them through meta-analysis.

AidGrade began 10 meta-analyses each in 2012 and 2013, and it followed the standard

stages that are part of any Cochrane review:19 topic selection; a search for relevant

16Yet another alternative would compare pθn`1 to a value of θi estimated from a draw of Yi as
in Equation 18. One might think that this estimated θi would capture the true effect of the study
better than Yi, due to pooling. Nonetheless, I focus here on comparisons with Yi to remain agnostic
as to the appropriateness of the model.

17An example can clarify why this is the case. Consider an intervention-outcome combination
which has three point estimates: two small, insignificant and negative ones and one large, precisely-
estimated positive one. If the two negative data points are drawn first, and used to generate the
estimate of the third, they will mispredict the sign of the last, positive data point. If a negative data
point and the positive data point are drawn first, they will also mispredict the remaining negative
data point. Hence, the probability of correctly predicting the sign of the last study is actually zero
when the maximum number of data points are used, no matter how many simulations are run.

18This is a function of conditional cash transfer programs typically having small positive effects
on enrollment rates.

19The interested reader is referred to Part 2 of the current Cochrane Handbook for Systematic
Reviews of Interventions (version 5.1), by Higgins and Green, eds., 2011.
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papers; screening of papers; data extraction; and data analysis.

In the sections that follow, I will briefly describe the main features of the data col-

lection process, focusing on how interventions and studies were selected for inclusion,

how variables were selected, and how results were extracted. A more detailed account

is provided in an appendix. There were minor differences in the procedures followed

for the meta-analyses began in 2012 and 2013; I will describe the process followed

for those meta-analyses started in 2013 and note any differences in the process that

pertain to the meta-analyses begun in 2012.

3.1 Selection of Interventions

Four AidGrade staff members each independently made a preliminary list of in-

terventions, which were then combined. In 2012, there was no staff and this list

was made by the author. Pilot searches were conducted using SciVerse and Google

Scholar to determine whether there might be enough studies for a meta-analysis.20

These pilot searches shortlisted 12 interventions in 2012, and 42 interventions in 2013.

These were posted on AidGrade’s website in 2013 and the general public was asked

to vote on interventions they wanted covered. Respondents could select up to three

interventions from those on the shortlist, and a space was provided for adding an

“other” option. In the eight-day voting window, 452 votes were cast by 158 individ-

uals, with 20 votes cast for the “other” option. The same procedure was followed in

2012, but the public vote did not influence the interventions ultimately selected, as it

was discovered that two of the 12 interventions posted on the website that year did

not have any outcome variables in common, which would preclude any meta-analysis.

Thus, the other 10 interventions with outcome variables in common were selected.

The outcome variables were categorized into three types, defined as follows. First,

a set of “strict” outcomes captured results that measured the exact same thing, e.g.

height in centimeters. “Loose” outcomes were those that measured the same vari-

able but were defined in slightly different ways across studies. For example, different

papers might use different hemoglobin threshold values for anemia. Finally, a set

of “broad” outcomes was added retroactively to capture whether the outcome was

an “economic”, “educational”, or “health” outcome. As it was important for the

meta-analyses to compare similar outcomes, a rule was set that after searching for

20At this stage, the pilot searches only needed to identify two papers for an intervention to not
be rejected.
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and screening papers for inclusion, the identified papers would be checked for “strict”

outcomes held in common; if at least three papers on a common outcome were not

found, that intervention would be replaced.

In 2013, from the shortlist of 42 interventions only 10 could be covered due to

capacity constraints. These were selected partially through randomization to ensure

balance between the included and excluded topics. However, the winner of the public

vote, women’s empowerment programs, was automatically selected to be included in

the set of meta-analyses. In this process, interventions were matched prior to ran-

domization using nearest neighbor matching.21 After randomly restricting attention

to half the topics, those covered by the most papers in the pilot searches were selected

for inclusion, based on having found that many interventions from the meta-analyses

begun in 2012 had relatively few papers sharing outcome variables. However, some

interventions were still only covered by three studies. The interventions selected in

each round of meta-analysis are listed in Table 2.

3.2 Identification of Papers

A comprehensive literature search was done using the search aggregators Sci-

Verse, Google Scholar, and EBSCO/PubMed. The online databases of the Abdul

Latif Jameel Poverty Action Lab, Innovations for Poverty Action, the Center for Ef-

fective Global Action and the International Initiative for Impact Evaluation were also

searched. Finally, the references of all existing meta-analyses or systematic reviews

turned up by the search were reviewed for completeness.

Any impact evaluation on a given intervention was included, except those in high-

21To obtain balance among the interventions included and excluded, each shortlisted topic was
matched with another of the shortlisted topics based on how many likely impact evaluations the
pilot searches identified for each; how many votes they received in the public vote; the overall theme
of the interventions (e.g. education, health) according to the database of an external organization,
AidData, after matching the interventions to AidData activity codes; and the recent aid commit-
ments for the intervention as reported in AidData’s database. The theme had to match exactly
within each pair. For each of the three other factors, each topic was assigned a score on an index
between zero and one representing where it stood among the other interventions; the index took
the value: (topic value - minimum value among topics) / (maximum value among topics - mini-
mum value among topics). 32 topics were successfully matched in this way using nearest neighbor
matching without replacement. The remaining unmatched topics were singletons under their re-
spective themes. For example, if there were an odd number of health-related interventions, the last
health-related intervention would be by itself after others were matched. These last topics were
independently randomized.
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Table 2: List of Development Programs Covered

2012 2013

Conditional cash transfers Contract teachers
Deworming Financial literacy
Improved stoves HIV education
Insecticide-treated bed nets Irrigation
Microfinance Micro health insurance
Safe water storage Micronutrient supplementation
Scholarships Mobile phone-based reminders
School meals Performance pay
Unconditional cash transfers Rural electrification
Water treatment Women’s empowerment programs

This table lists the development programs considered in this paper. Three titles
here may be misleading. “Mobile phone-based reminders” refers specifically to
SMS or voice reminders for health-related outcomes. “Women’s empowerment
programs” required an educational component to be included in the interven-
tion and it could not be an unrelated intervention that merely disaggregated
outcomes by gender. Finally, “micronutrient supplementation” was initially too
loosely defined; this was narrowed down to focus on those providing zinc to chil-
dren, but the other micronutrient papers are still included in the data used in
this paper.

income countries.22 Both published studies and working papers were included. The

particulars of the search and inclusion criteria used for each intervention is available

in an online appendix. Screening proceeded in steps with the title, then the abstract,

and finally the full text screened.

3.3 Selection of Variables and Data Extraction

All data were entered independently by two different coders and any discrepancies

were reconciled by a third. In total, apart from a field specifying the topic, 85 fields

were coded for each paper, including 13 fields with identifying information (author,

publication year, program name, etc.); these were converted to 89 variables; the full

list of variables and the coding manual is available as an online appendix). Addi-

tional topic-specific variables were coded for some interventions, such as the median

and mean loan size for microfinance programs. This paper focuses on the variables

22The World Bank’s country classification system was used for this, with “high-income” countries
excluded (2015).
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held in common across the interventions, except when a mixed model is used for sev-

eral intervention-outcome combinations covered by a large number of studies. The

common variables include general identifying information (such as author and pub-

lication year); methodological information (such as the identification strategy used,

whether the study was randomized by cluster, and whether it was blinded), character-

istics of the intervention (such as location, duration between the start of intervention

to the start of midline or endline data collection, intervention implementer, and char-

acteristics of the sample), whether the study reported key information in the paper

text (such as attrition and study costs), and finally, the results themselves.

Several key decisions relating to the data collected are worth highlighting. First,

there was little choice over the selection of the results variables, since these needed

to capture the actual way that results were reported in a paper. For the variables

capturing study characteristics there was more choice, and here it was thought im-

portant for the interpretation of the results to know more about the methods used

and context of the study.

Since this paper pays particular attention to the program implementer, it is worth

discussing in more detail how this variable was coded. Implementers could initially

be coded as governments, NGOs, private sector firms, or academics. There was also

a code for “other” or “unclear”. It was ultimately decided to consider NGOs and

academic research teams together as it turned out to be practically difficult to distin-

guish between them in the studies, especially as the papers frequently used passive

voice (e.g. “X was done” without noting who did it).

Since this paper focuses on heterogeneity of impact evaluation results, I focus on

the “strict” outcomes, defined previously as outcomes that measured the exact same

thing. Analyzing studies with “strict” outcomes helps exclude those sources of vari-

ation that stem from different outcome measures being used.23

There were also several closely related “strict” outcome variables, such as diarrhea

prevalence and diarrhea incidence, or enrollment rates and attendance rates.24 I keep

23The exceptions to this rule were that the impact of bed nets on malaria and the impact of
micronutrients on anemia were considered despite malaria and anemia being “loose” outcomes,
because these outcomes were typically among the primary goals of their respective interventions.
Malaria was the unique outcome held in common across many studies of bed nets programs, and
including anemia also results in fewer papers being discarded for not having outcome variables in
common.

24“Prevalence” measures capture the proportion of the population experiencing the disease or
symptom at one point in time. “Incidence” measures instead capture the rate of occurrence of new
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these outcomes separate because they do not follow the “strict” rule: they are not

measuring the exact same thing, and one would consequently expect some natural

variation in their results.

Studies tended to report results for multiple specifications. AidGrade focused on

those results least likely to have been influenced by author choices, i.e. specifications

with the fewest controls, apart from fixed effects. Where a study reported results

using different methodologies, coders followed the internal preference ordering of pri-

oritizing randomized controlled trials, followed by regression discontinuity designs and

differences-in-differences, followed by matching, and to collect multiple sets of results

when they were unclear on which to include. Where results were presented separately

for multiple subgroups, coders collected both the aggregate results and any results

by subgroup.25

There may seem to be some tension between using the authors’ preferred method-

ology where specified but also focusing on those results with the fewest controls. This

approach was taken due to the belief that it would be much easier for researchers to

consciously or subconsciously engage in specification searching by adding covariates

or restricting attention to certain subgroups. In contrast, it may be harder to engage

in specification searching by changing methodology. First, researchers tend to be re-

warded for pursuing the most credible methods wherever possible, and so one might

expect that where researchers have a choice they will always pick the most credible

methods. Further, the method used was often implicitly selected before the beginning

of the study; most of the studies in the database are randomized controlled trials,

and these are usually planned in advance. There were few instances in which a paper

reported results using two different methods.

cases of a disease or symptom over a period of time. It is important to distinguish between these,
as they may differ substantially. For example, if an illness takes a long time to cure, shifts in its
prevalence rate may not be easily apparent, whereas shifts in its incidence rate may be more rapidly
observed. These outcomes also are reported in different ways.

25There was one exception to this rule, which was if an author appeared to only be including a
subgroup because results were significant within that subgroup. For example, if an author reported
results for children aged 8-15 and then also presented results for children aged 12-13, only the
aggregate results would be recorded, but if the author presented results for children aged 8-9, 10-11,
12-13, and 14-15, all subgroups would be coded as well as the aggregate result when presented.
Authors only rarely reported isolated subgroups, so this was not a major issue in practice.
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3.4 Data Description

I focus on those papers that passed all screening stages in the meta-analyses.

The search and screening criteria were very broad and, after passing the full text

screening, the vast majority of papers that were later excluded were excluded merely

because they had no outcome variables in common or did not provide sufficient data

for analysis (for example, not providing data that could be used to calculate the stan-

dard error of an estimate or displaying results only graphically). The small overlap

of outcome variables is a surprising and notable feature of the data. In some cases,

multiple papers by the same authors or multiple versions of the same paper reported

results for the same outcomes; as these were correlated, I used only the most recent

result for each outcome in analysis. After removing these duplicates, the number

of observations drops from 15,024 results collected across 635 papers to 1,932 results

from 307 papers when restricting attention to only those results that can be compared

with results from another paper on the same intervention-outcome. The implication

is that even when papers report on common outcomes, those common outcomes rep-

resent a small subset of the results a paper reports.

These 1,932 results include multiple results from the same intervention-outcome-

paper on different subgroups or over different time periods. For most of the analyses

in this paper, I collapse the data to one observation per intervention-outcome-paper

to avoid dependence between observations (Higgins and Green, 2011). Where results

had been reported for multiple subgroups (e.g. women and men), I aggregate them

as in the Cochrane Handbook’s Table 7.7.a. Where results were reported for multi-

ple time periods (e.g. six months after the intervention and twelve months after the

intervention), I use the most comparable time periods across papers. Sometimes, a

paper provided more than one set of subgroups, such as results for girls and boys and,

separately, results for three different age groups. When aggregating across different

subgroups, I use the minimal set of subgroups that could be aggregated (i.e. girls

and boys in the example). This minimal set was comprised of 887 results. Aggre-

gating them reduced the number of results to 698 (across 307 papers) if using the

“loose” outcomes and retaining those intervention-outcome combinations covered by

at least two papers. For the outcomes considered in this paper (the “strict” out-

comes plus the loose outcomes for malaria and anemia prevalence), this reduced the

number of results to 649 (across 277 papers) if retaining those intervention-outcome

combinations covered by at least two papers and 576 results (across 251 papers) if
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retaining those intervention-outcome combinations covered by at least three papers.

Finally, one paper appeared to misreport results, suggesting implausibly low values

and standard deviations for hemoglobin. This observation was excluded and the pa-

per’s corresponding author contacted.

Most analyses in this paper use the unstandardized “raw” results data reported in

papers, however, the data were also standardized to be able to provide a set of results

more comparable with the literature and so as not to overweight those outcomes with

larger scales in some analyses. The typical way to compare results across different

outcomes is to use the standardized mean difference, defined as SMD “
µ1´µ2
σp

, where

µ1 is the mean outcome in the treatment group, µ2 is the mean outcome in the control

group, and σp is the pooled standard deviation.26 The signs of the results were also

adjusted so that a positive effect size always represents an improvement. Data could

not always be standardized, as the standard deviation of the outcome variable was

often not reported. Thus, the standardized data consist of only 612 results if retaining

those intervention-outcome combinations covered by at least two papers and 561 if

retaining those intervention-outcome combinations covered by at least three papers.

Figure 3 shows the raw distribution of effects for each of the intervention-outcome

combinations. This figure suggests a fair amount of variation. In general, inter-

ventions are rarely distinguishable from one another in terms of their effects on a

particular outcome, with their effect sizes tending to overlap substantially. Table 13

in Appendix B lists the interventions and outcomes and describes their results in

a bit more detail, providing the distribution of significant and insignificant results.

It should be emphasized that the number of negative and significant, insignificant,

and positive and significant results per intervention-outcome only provides ambigu-

ous evidence of the typical effects in that intervention-outcome. Simply tallying the

numbers in each category is known as “vote counting” and can be misleading.27

26Ideally, the study would report σp, in which case that value was used. When it reported
standard deviations separately for the control and treatment group, these were pooled using the
formula in the Cochrane Handbook’s Table 7.7.a. When these data were not available, the standard
deviation in the control group was preferentially used, followed by the standard deviation in the
treatment group, followed by the standard deviation of the outcome variable from other studies
within the same intervention-outcome combination.

27For example, if a review of the literature uncovered many papers with small sample sizes and
insignificant effects, one might be tempted to conclude the intervention “didn’t work” when it could
merely be that each study was underpowered and if the results were pooled in a meta-analysis they
would be significant. Many authors have described further unpalatable properties of vote counting
(e.g. Koricheva and Gurevitch, 2013; Combs et al., 2009; Hedges and Olkin, 1980).
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Figure 3: Dispersion of Estimates

This figure provides a box-and-whisker plot of the effect sizes found for each intervention-outcome combination covered by at least 5 papers.

The dots represent outliers (defined by convention as 1.5 IQR beyond the nearest quartile), the whiskers the remaining maximum and

minimum values, and the boxes the interquartile range and median value. One observation with an effect size greater than 2 is omitted for

legibility.
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Table 3 further summarizes the distribution of papers across interventions and

highlights the fact that papers do not frequently study the same outcomes. This is

consistent with the story that researchers each want to publish one of the first papers

on a topic. Figure 5 in Appendix B disaggregates these numbers by intervention-

outcome combination.

Table 3: Descriptive Statistics: Distribution of Strict Outcomes

Intervention Number of Mean papers Max papers
outcomes per outcome per outcome

Conditional cash transfers 15 18 36
Contract teachers 1 3 3
Deworming 12 13 17
Financial literacy 3 5 5
HIV/AIDS education 5 6 10
Improved stoves 4 2 2
Insecticide-treated bed nets 1 18 18
Irrigation 2 2 2
Micro health insurance 4 2 2
Microfinance 6 4 5
Micronutrient supplementation 22 23 37
Mobile phone-based reminders 2 4 5
Performance pay 1 3 3
Rural electrification 3 3 3
Safe water storage 1 2 2
Scholarships 3 2 3
School meals 3 3 3
Unconditional cash transfers 3 10 13
Water treatment 3 8 10
Women’s empowerment programs 2 2 2

Average 4.8 6.6 9.1

This table shows the distribution of strict outcomes across interventions. As described in the text,

two “loose” outcomes, malaria and anemia prevalence, are included due to their having frequently

been among the primary goals of the intervention.

28



4 Results

The previous sections motivated the use of some measures of heterogeneity, ex-

plicitly linked them to generalizability through a Bayesian model, and described the

data. This section provides values for these measures and explores how they vary with

study or intervention characteristics. The data set contains 96 intervention-outcome

combinations, of which 57 are covered by at least three papers. The rest of this paper

will focus on this set of 57 intervention-outcomes, unless otherwise specified.

4.1 Without Modeling Heterogeneity

Table 4 presents estimates of the likelihood of making a correct inference about

the sign of a similar study, the expected
?
MSE, τ 2 and I2 for each intervention-

outcome combination. For reference, estimates of µ are also provided, along with τ
|µ|

and the “typical” σi among studies in an intervention-outcome, using Higgins and

Thompson’s aggregation, s. Unstandardized values are used.

The median probability that the sign of a similar study would be correctly pre-

dicted for these intervention-outcome combinations was 67%. Those intervention-

outcome combinations with the highest likelihood that a prediction about a similar

study would have the right sign had the lowest values of pτN
|pµN |

. Recall that the prob-

ability of making the correct inference about sign does not depend specifically on
τ
|µ|

, but it does depend on both τ 2 and µ, and the ratio can help in interpreting τ 2.

The
?
MSE may likewise be easiest to interpret relative to pµN . The median

?
MSE
|pµ|

for these intervention-outcome combinations was 2.15. In other words, a prediction

of a result in a new setting is likely to be wrong by about 215% unless some of the

variation can be explained by a model.

Some of the lowest values of pτN
|pµN |

are for conditional cash transfers and health-

related interventions such as the impact of bed nets on malaria. Among those with

the highest pτN
|pµN |

are the financial interventions, i.e. microfinance and financial literacy

training. For only a few intervention-outcome combinations can one make the correct

inference about the sign of a similar study at least 90% of the time: bed nets reli-

ably decrease malaria; CCTs improve enrollment rates; mobile phone-based reminders

improve appointment attendance rates. For microfinance and financial literacy, the

probability of making the correct inference about the sign of a similar study was only

slightly better than 50% in most cases. That said, within a given intervention, the
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probability of making the correct inference about the sign of a similar study varied by

outcome. For example, for conditional cash transfers, the probability of making the

correct inference about height-for-age was only 50%, likely a function of the estimated

average effect size being so small. It should also be noted that those interventions

covering a large number of outcomes would be more likely to be represented at both

the high and low end of the pτN
|pµN |

spectrum just by chance.

Table 5 further summarizes these results by creating three bins for |pµN | and pτ 2N
such that a third of the intervention-outcomes fall into each bin and then reporting

the mean correct rate and
?
MSE for those intervention-outcomes that fall in each

of the cells of the resultant 3x3 table. This table shows that for intervention-outcome

combinations with a low |pµN | and medium or high pτ 2N , as well as those with a medium

|pµN | and high pτ 2N , the sign of another study can be predicted with just better than

a 50% chance. For reference, the cutoff thresholds for “low” and “high” |pµN | were

0.057 and 0.165, and for pτ 2N these thresholds were 0.030 and 0.175, respectively.28

Intervention-outcomes with larger pτ 2N are likely to have larger |pµN |, but not all do.

The right hand side of the table provides the number of intervention-outcomes that

fall into each cell, suggesting that some of the summary statistics be treated with

caution due to the small number of intervention-outcomes involved. Still, the table

may be helpful in summarizing the disaggregated results.29

It should be noted that τ 2 depends on how narrowly an intervention-outcome is

defined. If outcomes were defined more broadly, for example, τ 2 would appear to rise.

By using narrowly defined outcomes, i.e. “strict” outcomes plus malaria and anemia

prevalence, these results err on the side of smaller estimated τ 2.30 Using “strict”

28It is hard to convert these to values of pτN
|pµN |

, given that the lower pτN within a cell, the lower pτN
|pµN |

,

and the lower |pµN | within a cell, the higher pτN
|pµN |

, but if one were at exactly the cutoff threshold for

“low” pτN and “low” |pµN |, this would correspond to a pτN
|pµN |

value of 3.04; at the “high” cutoff threshold

for |pµN |, the “low” pτN cutoff corresponds to a equate to a pτN
|pµN |

value of 1.05. At the “high” pτN

cutoff, the “low” and “high” cutoffs for |pµN | yield pτN
|pµN |

values of 7.34 and 2.54, respectively. Again,

there will be great variation in pτN
|pµN |

within a cell depending on the exact values taken by pτN and

|pµN |.
29Again, it should be noted that studies on some interventions reported more outcomes than

others. Due to this fact and the possibility of unmodeled correlation between different outcomes,
this table should not be interpreted as providing low, medium and high values of |pµN | and pτ2N for
interventions.

30As discussed, the intervention-outcome combination of bed net programs - malaria had the
lowest pτN{|pµN | and was associated with the highest probability of making the correct inference
about the sign of a similar study. Anemia prevalence also fared well along these measures. Hence,
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outcomes reduces the number of studies that can be included in the analysis, but it

minimizes τ 2 and yields better predictions than increasing the number of studies in

a cell for these data. As previously observed, the marginal benefits to prediction of

including an additional study fall precipitously over the first few studies. Also, it is

helpful to be able to distinguish between different potential sources of variation for

interpretability.

4.1.1 Robustness Checks

One may be concerned that low-quality papers are either inflating or depressing

the degree of heterogeneity that is observed. There are many ways to measure paper

quality. Here, I consider two measures.31

First, I use the most widely-used quality assessment measure, the Jadad scale

(Jadad et al., 1996). The Jadad scale asks whether the study was randomized,

double-blind, and whether there was a description of withdrawals and dropouts. A

paper gets one point for having each of these characteristics. In addition, a point

is added if the method of randomization was appropriate, subtracted if the method

is inappropriate, and similarly added if the blinding method was appropriate and

subtracted if inappropriate. This results in a 0-5 point scale. Given that the kinds of

interventions being tested are not typically suited to blinding, I consider all papers

scoring at least a 3 to be of high quality.

In an alternative specification, I also consider only those results from studies that

were RCTs. This is for two reasons. First, RCTs are the gold standard in impact

evaluation. Second, a companion paper finds that RCTs exhibit the fewest signs

of specification searching and publication bias (Vivalt, forthcoming). It should be

emphasized that without building an explicit model for potential biases, I would have

no way of separating these biases from true, underlying heterogeneity in treatment

effects. Thus, looking at only studies that were RCTs and hence less subject to

specification searching and publication bias provides a good robustness check.

the choice to include these outcomes does not appear to have biased the overall results to make
studies appear more heterogeneous.

31There are also other ways to measure paper quality. I would argue that what is most relevant
is the information provided to policymakers, and they often do not know which methods a study
used, let alone receive assessments of a paper’s quality.
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Table 4: Heterogeneity Measures for Treatment Effects Within Intervention-Outcomes

Intervention Outcome Units {P pSignq {

?
MSE pτ2N

pI2N
pτN
|pµN |

pµN psN N

Conditional cash transfers Retention rate pp 0.67 0.01 0.000 0.69 1.51 -0.01 0.01 5

Conditional cash transfers Attendance rate pp 0.75 0.07 0.001 0.77 0.57 0.05 0.02 14

Conditional cash transfers Labor force participation pp 0.80 0.03 0.001 0.91 1.32 -0.02 0.01 18

Unconditional cash transfers Enrollment rate pp 0.86 0.03 0.001 0.89 0.86 0.04 0.01 13

Conditional cash transfers Enrollment rate pp 0.96 0.03 0.001 0.96 0.60 0.05 0.01 36

Financial literacy Has savings pp 0.73 0.04 0.001 0.46 1.49 0.02 0.04 4

Micronutrients Birthweight kg 0.76 0.05 0.002 0.86 1.17 0.04 0.02 7

Rural electrification Enrollment rate pp 0.85 0.07 0.002 0.55 0.69 0.07 0.04 3

Deworming Hemoglobin g/dL 0.53 0.07 0.004 0.47 3.73 0.02 0.07 14

Micronutrients Weight-for-height SD 0.69 0.07 0.005 0.76 1.80 0.04 0.04 26

Micronutrients Weight-for-age SD 0.72 0.09 0.009 0.89 1.76 0.05 0.03 31

Micronutrients Mid-upper arm circumference cm 0.73 0.10 0.009 0.81 1.56 0.06 0.05 17

Micronutrients Height-for-age SD 0.68 0.11 0.011 0.90 2.21 0.05 0.03 33

Micronutrients Diarrhea incidence log risk ratio 0.82 0.14 0.015 0.77 1.06 -0.11 0.07 7

Financial literacy Has taken loan pp 0.48 0.12 0.017 0.88 9.79 0.01 0.05 4

HIV/AIDS education Used contraceptives pp 0.68 0.15 0.023 0.85 1.93 0.08 0.06 4

Conditional cash transfers Probability unpaid work pp 0.56 0.16 0.024 0.97 3.01 -0.05 0.03 5

Conditional cash transfers Height-for-age SD 0.50 0.21 0.030 0.76 17.99 -0.01 0.10 7

Insecticide-treated bed nets Malaria log risk ratio 0.98 0.20 0.030 0.61 0.46 -0.38 0.14 10

Mobile phone-based reminders Appointment attendance rate log risk ratio 0.90 0.15 0.030 0.85 1.01 0.17 0.07 3

Micronutrients Test scores SD 0.63 0.20 0.034 0.99 2.17 0.08 0.02 9

Conditional cash transfers Pregnancy rate pp 0.55 0.16 0.037 0.97 6.67 -0.03 0.04 3

Micronutrients Weight kg 0.76 0.21 0.041 0.96 1.39 0.15 0.04 31

Contract teachers Test scores SD 0.85 0.19 0.054 0.92 1.23 0.19 0.07 3

Conditional cash transfers Birth at healthcare facility pp 0.56 0.19 0.056 0.90 4.46 0.05 0.08 3

Performance pay Test scores SD 0.67 0.21 0.058 0.97 2.05 0.12 0.05 3
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Conditional cash transfers Skilled attendant at delivery pp 0.60 0.21 0.062 0.82 2.49 0.10 0.12 3

Conditional cash transfers Test scores SD 0.54 0.28 0.068 0.98 3.09 0.08 0.04 5

Deworming Weight-for-height SD 0.54 0.28 0.075 0.97 4.60 0.06 0.04 11

Micronutrients Body mass index kg/mˆ2 0.77 0.29 0.077 0.98 1.31 0.21 0.04 5

Micronutrients Mortality log risk ratio 0.53 0.34 0.084 0.38 6.35 -0.05 0.37 11

Scholarships Enrollment rate pp 0.60 0.27 0.111 0.99 2.97 0.11 0.03 3

Deworming Height-for-age SD 0.64 0.38 0.132 1.00 2.24 0.16 0.02 14

Deworming Weight-for-age SD 0.60 0.40 0.145 1.00 2.73 0.14 0.02 12

Micronutrients Perinatal death log risk ratio 0.57 0.43 0.151 0.55 3.20 0.12 0.35 6

Micronutrients Diarrhea prevalence log risk ratio 0.67 0.42 0.154 0.81 1.75 -0.22 0.19 6

School meals Test scores SD 0.52 0.37 0.172 0.96 8.62 0.05 0.08 3

Micronutrients Prevalence of anemia log risk ratio 0.88 0.44 0.175 0.86 0.80 -0.53 0.17 13

Deworming Mid-upper arm circumference cm 0.50 0.45 0.176 0.99 4.90 0.09 0.04 7

Deworming Weight kg 0.60 0.42 0.182 0.98 3.32 0.13 0.05 17

School meals Enrollment rate pp 0.53 0.46 0.215 0.82 11.29 0.04 0.21 3

Micronutrients Stunted log risk ratio 0.51 0.41 0.228 0.80 6.94 -0.07 0.24 3

Deworming Height cm 0.53 0.50 0.229 0.95 5.42 0.09 0.11 16

Micronutrients Hemoglobin g/dL 0.73 0.50 0.235 0.99 1.70 0.28 0.04 37

Micronutrients Height cm 0.66 0.48 0.244 0.96 2.81 0.18 0.10 29

Water treatment Diarrhea prevalence log rate ratio 0.78 0.58 0.280 0.96 1.30 -0.41 0.11 9

Water treatment Diarrhea incidence log rate ratio 0.75 0.93 0.795 0.95 1.29 -0.69 0.21 5

Conditional cash transfers Unpaid labor hours hours/week 0.83 1.10 1.007 0.66 0.98 -1.02 0.73 5

Micronutrients Stillbirth log risk ratio 0.51 0.99 1.015 0.75 7.67 0.13 0.59 4

Water treatment Dysentery incidence log rate ratio 0.69 1.51 3.365 0.95 2.08 -0.88 0.42 3

Conditional cash transfers Labor hours hours/week 0.73 2.61 5.491 0.96 1.44 -1.63 0.48 7

Rural electrification Study time hours/day 0.67 2.60 10.008 0.98 2.36 1.34 0.46 3

Financial literacy Savings current US$ 0.57 56.17 1121.801 0.76 1.80 18.57 18.77 5

Microfinance Total income current US$ 0.64 54.18 2800.220 0.93 2.16 24.53 14.07 5

Microfinance Profits current US$ 0.52 142.10 18280.820 0.93 22.82 5.93 37.61 5
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Microfinance Savings current US$ 0.51 142.75 28863.130 1.00 8.65 19.63 9.83 3

Microfinance Assets current US$ 0.53 250.06 75770.520 0.98 5.44 50.59 38.24 4

{P pSignq is the average estimated probability of making the correct inference about the sign of a particular true effect, θj , given all data in

that intervention-outcome combination, and {

?
MSE represents the average estimated square root of the mean squared error of that

prediction. pτ2N , pI2N , pτN
|pµN |

and pµN likewise present the average estimate for each parameter. psN estimates a common sampling error for each

intervention-outcome using Higgins and Thompson’s approximation. It is important in estimating pI2N and it provides a way to summarize

the σi within an intervention-outcome combination, given they vary by study. However, the individual study-specific estimates of the

sampling variance, σ2
i , were used to generate the estimates of µ and τ and hence the other columns in the table. Each measure is calculated

separately by intervention-outcome combination, without pooling across intervention-outcomes. Unstandardized values are used throughout.

10,000 simulations are run to calculate the probability of making the correct inference about the sign of θj and the MSE for each

intervention-outcome combination. Wherever pI2N appears equal to 1.00, this is the result of rounding. This table reports results for all 57

intervention-outcome combinations covered by at least three studies.
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Table 5: Summary of Generalizability Measures by Heterogeneity Measures

{P pSignq {

?
MSE N

pτ 2N pτ 2N pτ 2N
|pµN | Low Medium High Low Medium High Low Medium High

Low 0.692 0.539 0.526 0.08 0.26 0.46 14 4 1
Medium 0.769 0.617 0.528 0.11 0.29 0.56 4 10 5
High 0.982 0.813 0.661 0.20 0.30 50.43 1 5 13

This table summarizes the information provided in Table 4 by splitting the intervention-outcome

combinations into three equal-sized groups according to |pµN | and pτ2N and then calculating the

average value of {P pSignq and {

?
MSE for the intervention-outcome combinations that fall in each

cell. Note that since |pµN | tends to increase with pτ2N , there are relatively few observations in some

cells.

Table 6 provides summary measures of heterogeneity using the data that meet

these two quality criteria.32 The summary heterogeneity measures are not substan-

tially different using these data. The common sampling error that is estimated, psN ,

appears slightly lower in magnitude for the 50th and 75th percentile for these studies.

However, a t-test fails to reject that the mean of psN among either group of results

meeting these quality criteria is lower than the mean of psN among all results, and this

is true even when restricting attention to the half of each sample with the highest psN .

These differences are minute enough to not translate into improvements in {P pSignq

or {

?
MSE.

4.1.2 Model Checking

It is good practice to check the fit of the model using posterior predictive checks.

These checks compare the data with the posterior distribution, under the intuition

that for a model that fits the data well, the data should look similar to draws from

the posterior distribution. To conduct a posterior predictive check, one takes some

function of the data that is of interest and generates a test statistic, T , for that

function using the data and the simulated posterior distribution. One then computes

the probability that the test statistic in the posterior distribution is larger than that

in the observed data. This defines the Bayesian p-value:

32Full tables are provided in Tables 14-15 in Appendix B.
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Table 6: Heterogeneity Measures by Study Quality

{P pSignq {

?
MSE pτ 2N

pI2N
pτN
|pµN |

pµN psN N

All studies
25th percentile 0.54 0.14 0.017 0.80 1.32 -0.01 0.04 4
50th percentile 0.67 0.28 0.075 0.91 2.16 0.05 0.07 6
75th percentile 0.75 0.48 0.229 0.97 4.46 0.13 0.21 13
RCTs
25th percentile 0.56 0.12 0.013 0.81 1.37 -0.03 0.04 4
50th percentile 0.66 0.27 0.075 0.92 1.97 0.05 0.05 7
75th percentile 0.76 0.45 0.211 0.96 3.47 0.13 0.15 14
Higher-quality studies
25th percentile 0.56 0.12 0.016 0.83 1.54 -0.05 0.04 4
50th percentile 0.69 0.29 0.088 0.91 1.86 0.05 0.05 7
75th percentile 0.74 0.45 0.215 0.97 3.17 0.12 0.13 14

This table shows quantiles of the heterogeneity measures for different subgroups of studies: all

studies, RCTs, and those studies considered “higher-quality” using the Jadad scale. As in Table 4,
{P pSignq is the average estimated probability of making the correct inference about the sign of a

particular true effect, θj , given all data in that intervention-outcome combination, and {

?
MSE

represents the average estimated square root of the mean squared error of that prediction. pτ2N , pI2N ,
pτN
|pµN |

and pµN likewise present the average estimate for each parameter, and psN estimates a common

sampling error for each intervention-outcome using Higgins and Thompson’s approximation. Each

measure is calculated separately by intervention-outcome combination, without pooling across

intervention-outcomes. Unstandardized values are used throughout. 10,000 simulations are run to

calculate the probability of making the correct inference about the sign of θj and the MSE for each

intervention-outcome combination. Wherever pI2N appears equal to 1.00, this is the result of

rounding. This table reports results for those intervention-outcome combinations covered by at

least three studies.
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p “ P pT pY rep, θq ě T pY, θq|Y q (21)

where Y rep can be thought of as the data that the model would predict a replication

of all the studies would find, θ represents all the parameters in the model, including

the hyperparameters, and Y represents the observed data.

These tests have a nuanced interpretation, and it is not the case that if a model

fails to fit the data in some way it is necessarily a bad model. In particular, in

the context of this paper, one might think that outliers in the original data that

were based on small sample sizes are not great estimates of their respective true

effect sizes θi but should rightly be thought to be closer to the mean within an

intervention-outcome combination. In that case, some differences between the

original data and the posterior distribution would be expected and even desired.

There are many test statistics that could be used to check whether the top-level

assumption of normality is reasonable in my data. Following Bandiera et al. (2015),

I check whether the center part of my data and the posteriors appear equally sym-

metrically distributed. Often a fairly large interval of the data is used for this kind of

analysis, but some of my intervention-outcome combinations are small and it makes

little sense to talk about a 10th percentile, for example, of an intervention-outcome

combination with three studies. I thus start by considering the 25-75th percentile

for all intervention-outcome combinations. For those intervention-outcomes with at

least nine studies, I also consider the 10-90th percentile, and for those with at least

19 studies I additionally consider the 5-95th percentile. Taking the example of a

test of symmetry over the 10-90th percentile in an intervention-outcome with nine

studies, the test statistic would be written as follows:

T pY, θq “ |Yp9q ´ µ| ´ |Yp1q ´ µ| (22)

where the ninth and first order statistics represent the 90th and 10th percentiles of

the distribution and µ is the best guess of any data point in Y in a random-effects

model. T pY, θq would be distributed around 0 if symmetric. The exact order statistic

used depends on the intervention-outcome, given the different number of studies they

contain and the different percentiles tested. T pY rep, θq would similarly be written as:

T pY rep, θq “ |Y rep
p9q ´ µ| ´ |Y

rep
p1q ´ µ| (23)
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To calculate the p-value in Equation 20, I draw 1,000 values of µ and τ 2 from their

posterior distributions and then draw Y rep, using σ2
i drawn from the set of observed

σ2
i .

Table 16 presents results. For none of the 57 intervention-outcome combinations

are the observed data and the simulated replication data significantly different from

each other in the 25-75th interval.33 For one of the 22 intervention-outcome combi-

nations with at least nine studies, the observed data and simulated replication data

are significantly different in the 10-90th interval. For two of the seven intervention-

outcome combinations with at least 19 studies, the observed data and simulated repli-

cation data are significantly different in the 5-95th interval. The larger the number

of studies, the more likely the tails are to be skewed. The one intervention-outcome

which failed the 10-90th interval test was the effect of CCTs on enrollment rates, an

intervention-outcome with among the largest number of studies. This intervention-

outcome combination also failed the test using the 5-95th interval, along with the

effect of micronutrients on height. It should not be surprising that intervention-

outcome combinations with a larger number of studies should fail these tests more

often as it is easier to detect a misspecified model with more data points. Overall,

the tests are encouraging, though the model may fit less well in the extreme tails.

4.2 Modeling Heterogeneity

If the observed heterogeneity in outcomes can be systematically modeled, one

could make better predictions. I first look across different intervention-outcome com-

binations to examine whether effect sizes, pτ 2 or pI2 are correlated with any study or

intervention characteristics. I then turn to look within a few specific intervention-

outcome combinations and build a mixed model to try to explain the variance.

4.2.1 Across Intervention-Outcomes

Table 7 presents the results of a simple OLS regression of effect sizes on study char-

acteristics, using standardized values.34 Data for 10 of the 57 intervention-outcomes

33The relevant thresholds are p ă 0.025 and p ą 0.975, given that for these tests a very high
p-value also indicates a poor fit; to gauge fit one should test not just whether T pY rep, θq ě T pY, θq
but also whether T pY rep, θq ď T pY, θq.

34Variables one might wish to include in this kind of regression and for which the data are not too
sparse include: number of authors; publication year; publication code (i.e. published or unpublished
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could not be standardized and hence are excluded from this table.35

I find that studies based on a smaller number of observations have greater effect

sizes. This is what one would expect if specification searching were easier in small data

sets. This pattern of results would also arise if power calculations drove researchers to

only proceed with studies with small sample sizes if they believed the program would

result in a large effect size, or if larger studies were less well-targeted. Interestingly,

government-implemented programs have lower effect sizes even controlling for sample

size, compared to programs implemented by the private sector. Studies in the Mid-

dle East / North Africa (MENA) region may appear to perform slightly better than

those in Sub-Saharan Africa (the excluded region category), but very few studies were

conducted in MENA countries, so not much weight should be put on this. RCTs do

not exhibit significantly different results than quasi-experimental studies within an

intervention-outcome combination.

These regressions include intervention-outcome fixed effects so as to better iso-

late the variation in effect sizes that can be explained by study characteristics even

across intervention-outcome combinations, and standard errors are also clustered at

this level. Some systematic differences in effect sizes across interventions or across

outcomes is to be expected, and without including fixed effects these differences could

obscure the relationship between the effect sizes and study characteristics. For ex-

ample, many of the largest studies were on conditional cash transfer programs, which

were also often government-implemented. Without controlling for intervention, it

would be unclear whether the observed negative relationship between sample size

and effect size was just due to conditional cash transfer programs having small effect

and type of journal); organization code; method; whether the study was blinded; country (aggregated
here to region following the World Bank’s geographic divisions to avoid including too many dummy
variables); and whether attrition was reported. I believe these are the most relevant variables, as
the other study characteristics gathered were simply paper or result indicators, seemingly unrelated,
or quite noisy (for example, the variable “number of months after intervention” was collected to
capture the duration of time that had passed between the beginning of the intervention and the
midline or endline data collection, however, this was unclear in many papers). The coding manual
is available as an appendix for a list of other potential covariates.

35These were: the impact of conditional cash transfers on birth at a healthcare facility; the impact
of conditional cash transfers on labor hours; the impact of conditional cash transfers on pregnancy
rates; the impact of conditional cash transfers on retention rates; the impact of conditional cash
transfers on having a skilled attendant at delivery; the impact of financial literacy on having savings;
the impact of financial literacy on having taken a loan; the impact of water treatment on diarrhea
incidence; the impact of water treatment on diarrhea prevalence; and the impact of water treatment
on dysentery incidence.
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sizes. Effect sizes could additionally differ by outcome, even when standardized values

are used, since some outcome variables may tend to have larger standard deviations

than others. Further, it may be easier for some interventions to have an effect on

a particular outcome, so that there is some variation in effect size by intervention-

outcome. I include intervention-outcome fixed effects to abstract from any such issues

in this table.

However, whether pτ 2N or pI2N varies systematically with any intervention-, outcome-,

or intervention-outcome-level characteristics is also of interest. It is harder to analyze

differences in pτ 2N or pI2 because there are not many intervention-outcome combina-

tions (and hence observations of pτ 2N or pI2N) that can be used in a regression, especially

when using standardized values. Recall that data for 10 intervention-outcomes were

unable to be standardized; this leaves 47 intervention-outcome combinations to use

in a regression. Still, using k to denote intervention-outcome combinations, I can run

regressions of the form:

pτ 2N “ α ` βXk ` εk (24)

pI2N “ α1 ` β1X 1
k ` ε

1
k (25)

where Xk and X 1
k represent explanatory variables that vary at the intervention-

outcome level.36 To formXk, I use the within-intervention-outcome variance of each of

the explanatory variables in Table 7, in turn. The intuition is that if there is a strong

relationship between study characteristics and effect size, the within-intervention-

outcome variance in those characteristics might help to explain the variance in ef-

fect sizes. In place of the within-intervention-outcome variance of each of a set of

regional dummy variables, however, I use the number of countries represented in

an intervention-outcome, controlling for the number of studies in that intervention-

outcome. This is because this measure might be easier to interpret and minimizes

the number of explanatory variables. In addition, it could be that context varies im-

mensely between countries, so that countries may be a better unit for analysis than

regions.37 X 1
k is constructed as the mean value within the intervention-outcome com-

bination of each of the explanatory variables considered in Table 7 rather than the

36
pτ2N and pI2N naturally vary at the intervention-outcome level; they could equally well be sub-

scripted as pτ2kN and pI2kN .
37Country dummies were not included in Table 7 because they would have been likely to result

in overfitting.
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within-intervention-outcome variance of these variables. The mean might be more

appropriate for these regressions since pI2N captures a proportion of variance rather

than a variance, but I show results using the within-intervention-outcome variance in

an alternative specification (Table 17 in Appendix B). In my preferred specification,

I also winsorize one outlier for pτ 2N .38 Results without winsorizing this outlier are in-

cluded in Table 17 and are not very different.

Table 7: Regression of Effect Size on Study Characteristics

(1) (2) (3) (4) (5)

Number of -0.013** -0.013** -0.011**
observations (100,000s) (0.01) (0.01) (0.00)
Government-implemented -0.081*** -0.073***

(0.02) (0.03)
Academic/NGO-implemented -0.018 -0.020

(0.01) (0.01)
RCT 0.021

(0.02)
East Asia 0.002

(0.03)
Latin America -0.003

(0.03)
Middle East/North 0.193**
Africa (0.08)
South Asia 0.021

(0.04)

Observations 528 597 611 528 521
R2 0.19 0.22 0.21 0.21 0.19

Each column reports the results of regressing the standardized effect size on different explanatory

variables, dropping one outlier with an effect size greater than 2. This table uses those

intervention-outcomes covered by at least 2 papers; readers will recall the maximum number of

observations for this data set was 612, before dropping the one outlier. Different columns contain

different numbers of observations because not all studies reported each explanatory variable.

Projects implemented by the private sector comprise the excluded implementer group, and the

excluded region is Sub-Saharan Africa. Intervention-outcome fixed effects are included, with

standard errors clustered by intervention-outcome.

38One value of pτ2N is 6.6 standard deviations away from the mean and several times higher than
the next largest value, so it may make sense to treat as an outlier. This pτ2N was estimated for the
impact of rural electrification programs on study time and seems to be a result of studies finding
impacts ranging from a few minutes to several hours per week.
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Table 8 shows that the regressions of pτ 2N on the aforementioned explanatory vari-

ables are mostly null. It is possible that this is a result of the extra variation intro-

duced by not including intervention or outcome fixed effects. The within-intervention-

outcome variance in the sample size appears to be negatively correlated with pτ 2N , but

this is likely to be an artifact of CCTs having the greatest variance in sample size and

also having relatively low pτ 2N . pI2N is positively associated with the mean sample size

within an intervention-outcome combination. This is not a surprise, because increases

in sample size reduce the sampling variance and so should mechanically reduce pI2N ,

independent of the relationship of sample size to pτ 2N . In the alternative specification

in Table 17 that uses the within-intervention-outcome variance rather than the mean

as an explanatory variable, the academic/NGO-implemented variable is also signifi-

cantly associated with pI2N , but this could be due to those intervention-outcomes with

high variance in implementation containing more government-implemented programs

and government-implemented programs tending to have larger sample sizes, driving

down the sampling variance and hence driving up pI2N .

The explanatory variables used in Table 8 are not the only ones that might

have a theoretical reason to be associated with pτ 2N . A stronger relationship might

hold between pτ 2N and how direct an impact an intervention is likely to have. Those

intervention-outcome combinations for which the interventions act more directly on

the targeted outcomes may be expected to have smaller pτ 2N . This hypothesis has fre-

quently been made in the literature on “theories of change” or “causal chains” (e.g.

Williams, 2018). However, it is difficult to operationalize this intuition. I focus on two

examples for which I think there is theoretical reason to believe the effect of the inter-

vention on certain outcomes is particularly direct: the effect of health interventions

and the effect of interventions that provide an economic incentive that is conditional.

It is frequently hypothesized that results from social science interventions vary more

than results for interventions that produce effects through biological channels. From

an economic standpoint, conditional programs that have a direct causal mechanism

through which they are posited to work could also have more generalizable results.

To test these hypotheses, I regress pτ 2N and pI2N on dummy variables indicating

whether the intervention in the intervention-outcome combination in question is a

health intervention or a conditional intervention. These regressions take the same

form as Equations 24 and 25, but now k is used to denote interventions rather than

intervention-outcomes and Xk and X 1
k each indicate whether the intervention is a
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Table 8: Regression of pτ 2N and pI2N on Study Characteristics

pτ2N

(1) (2) (3) (4) (5) (6)

Var(Sample Size) -0.045** -0.026
(0.02) (0.06)

Var(Government-implemented) 0.118 0.651
(0.40) (0.80)

Var(Academic/NGO-implemented) 0.019 -0.685
(0.36) (0.44)

Var(RCT) -0.268 -0.144
(0.40) (0.58)

Number of Countries -0.033 -0.019
(0.03) (0.04)

Number of Studies 0.006 0.001
(0.01) (0.02)

Observations 41 47 47 47 47 41
R2 0.01 0.00 0.00 0.01 0.11 0.12

pI2N

(7) (8) (9) (10) (11) (12)

Mean(Sample Size) 0.094* 0.139**
(0.05) (0.06)

Mean(Government-implemented) 0.026 -0.154
(0.06) (0.11)

Mean(Academic/NGO-implemented) -0.056 -0.057
(0.06) (0.14)

Mean(RCT) -0.066 -0.073
(0.09) (0.14)

Number of Countries -0.008 -0.017
(0.01) (0.02)

Number of Studies 0.004 0.008
(0.01) (0.01)

Observations 41 47 47 47 47 41
R2 0.02 0.00 0.02 0.01 0.00 0.06

This table shows the results of regressions of pτ2N and pI2N on intervention-outcome-level summary

statistics of the study characteristics considered in Table 7 (i.e. estimating pτ2N “ α` βXk ` εk and
pI2N “ α1 ` β1X 1k ` ε

1
k where Xk and X 1k represent intervention-outcome-level summary statistics

such as the variance of the sample size of studies within an intervention-outcome). One outlier

value of pτ2N 6.6 standard deviations away from the mean is winsorized, as described in the text.

Robust standard errors are used.
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health or conditional intervention, in turn.

I label as health interventions deworming drugs, micronutrient supplementation

programs and bed nets programs. HIV/AIDS education programs might also be

thought of as health interventions, though they are based on behavior change rather

than on direct provision of drugs or supplements, and school meals programs also are

somewhat health-related. In an alternative specification, I include these latter two

interventions as health interventions. I classify conditional cash transfer programs

(which generally provide benefits conditional on enrollment in school) and perfor-

mance pay programs (which provide benefits conditional on test scores) as conditional

programs. One may also consider scholarships programs to be implicitly conditional

given that one needs to continue to attend school in order to receive the scholarship.

I include scholarships as a conditional intervention in an alternative specification.

The main regression results are reported in Table 9, while Appendix Table 18

provides results without winsorizing one value of pτ 2N and Appendix Table 19 provides

results for the regressions using the alternative definitions of health and conditional

interventions. There is some suggestive evidence that health interventions and condi-

tional economic interventions have lower pτ 2N . However, these results are sensitive to

whether one winsorizes an extreme outlier for pτ 2N and whether the alternative defini-

tions are used. The point estimates all have the expected sign: health interventions

and conditional economic interventions have smaller pτ 2N . It remains possible that out-

comes with lower standardized pτ 2N are simply overrepresented in the outcomes studied

by these interventions. No significant relationship is observed with pI2N .39

These tables illustrate that it is not easy to make quick judgments about which

types of interventions generalize. Health interventions have long been suspected to

be distinctly better at obtaining generalizable results than interventions that act

through social or behavioral pathways. I find some evidence of this, but the fact that

the relationship is not stronger suggests that the story is not so straightforward. One

possible explanation is that the results of health interventions can depend greatly on

the baseline prevalence of the disease they were intended to treat, and these regres-

sions do not control for that. This motivates the next stage of analysis: modeling

within-intervention-outcome variation.

39It can be observed that the sign of the relationship flips for conditional programs. This could
be a function of the CCTs captured by this variable tending to have large sample sizes, which would
increase pI2N .
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Table 9: Regression of pτ 2N and pI2N on Intervention Characteristics

pτ 2N
pI2N

(1) (2) (3) (4) (5) (6)

Health -0.114 -0.210* -0.074 -0.086
(0.09) (0.12) (0.05) (0.05)

Conditional -0.128** -0.262** 0.023 -0.032
(0.05) (0.12) (0.05) (0.05)

Observations 47 47 47 47 47 47
R2 0.04 0.03 0.13 0.04 0.00 0.05

This table shows the results of regressions of pτ2N and pI2N on intervention-level characteristics (i.e.

estimating pτ2N “ α` βXk ` εk and pI2N “ α1 ` β1X 1k ` ε
1
k where Xk and X 1k now represent the

intervention-level characteristics of whether the intervention was a health intervention and whether

it provided economic incentives that were conditional on certain actions). As before, one value of

pτ2N 6.6 standard deviations away from the mean is winsorized. Robust standard errors are used.

4.2.2 Within Intervention-Outcomes

While seeking to explain heterogeneity across intervention-outcomes has the ad-

vantage of enabling a larger sample of studies to be used, more variation might be

explained if I modeled heterogeneity within particular intervention-outcome combi-

nations. To this end, I focus on those intervention-outcome combinations covered

by over 10 studies. I exclude micronutrient programs so as to focus on those inter-

ventions more often studied by economists. To explain heterogeneity in treatment

effects across studies within an intervention-outcome, I leverage both the potential

explanatory variables that are shared in common across all the intervention-outcome

combinations, used in the previous regressions, and the variables that were coded that

are intervention-specific. Excluding micronutrients, only CCTs, UCTs, and deworm-

ing programs have over 10 studies on a particular outcome in my data. Table 10 lists

the intervention-specific variables that were coded for each of these interventions.40

Some of the intervention-specific variables relate to the sample (e.g. age, gen-

der). Variables relating to the sample often varied within a study and different values

were reported for different subgroups. To generate a study-level aggregate value,

40In addition to these variables, I also consider the possibility that there is an interaction between
the drug provided and the dosage, since different drugs have different strengths and are typically
given in different amounts.
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the same process was followed as was used to create a single treatment effect per

intervention-outcome-paper, creating a weighted mean. If a paper reported aggre-

gate values alongside results for subgroups, the aggregate value was used, else the

smallest set of non-overlapping subgroups were aggregated. For example, if results

were reported separately for girls and boys and also for three different age groups,

the results for girls and boys would be aggregated.

With these variables, I can estimate decreases in τ 2 and I2 were a mixed model

to be used. With many possible explanatory variables and a small number of observa-

tions, I must select among the explanatory variables. I choose the single explanatory

variable which maximizes the R2 when running an OLS regression of the treatment

effect Yi on the explanatory variable Xi (Yi “ α ` βXi ` εi) run separately within

each intervention-outcome. The “residual” pτ 2, pτ 2R, is then calculated using the mixed

model described by Equation 15, with the selected explanatory variable as its Xi.

Results are presented in Table 11. On average, pτ 2R is reduced from pτ 2 by about

20%. The median is a bit lower at 9%, as there are several intervention-outcomes

for which pτ 2 does not appreciably decrease, and pτ 2R and pI2R actually minutely in-

crease for two intervention-outcome combinations, reflecting simulation noise. The

intervention-outcome combinations for which pτ 2N decreased the most were the impact

of deworming on weight-for-height (72%), the impact of deworming on weight (68%),

and the impact of deworming on height-for-age (25%). It should be noted that while I

restricted attention to those intervention-outcome combinations with over 10 studies,

many of the papers failed to report all the explanatory variables, reducing the effec-

tive number of observations. There is thus a risk that some of the largest decreases

are the result of overfitting.

Given the number of studies within an intervention-outcome combination, it is in-

feasible to build models with more explanatory variables. Further gains may, however,

be possible by leveraging micro-data when they are available. To provide support for

this intuition, I turn to consider an intervention-outcome combination covered by

a particularly large number of studies: the effect of conditional cash transfers on

enrollment rates. While up to this point the paper has used data that either were

originally reported as an aggregate point estimate or data from combining the mini-

mum number of non-overlapping subgroups, here I turn to consider the maximal set

of non-overlapping subgroups to increase the sample size and run OLS regressions of
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Table 10: List of Intervention-Specific Variables

CCTs:
Minimum transfer per child conditional on meeting education requirements
Maximum transfer per child conditional on meeting education requirements
Minimum transfer per household conditional on meeting education requirements
Maximum transfer per household conditional on meeting education requirements
Min transfer per household conditional on meeting non-education-related requirements
Max transfer per household conditional on meeting non-education-related requirements
Whether program eligibility was restricted to poor households
Whether enrollment at school was a condition
Whether attendance at school was a condition
What the threshold attendance level was for those conditional on school attendance
Whether there were any health-related conditions, such as health checks
Baseline enrollment rates
Whether the sample comprised only those enrolled at baseline, not enrolled, or a mix
The sample size
Whether the study was done in a rural and/or urban setting
Results for other programs in the same region
The age range of the sample under consideration
The gender of the sample under consideration

UCTs:
The minimum transfer amount per child
The maximum transfer amount per child
The minimum transfer amount per household
The maximum transfer amount per household
Whether program eligibility was restricted to poor households
Baseline enrollment rates
Whether the sample comprised only those enrolled at baseline, not enrolled, or a mix
The sample size
Whether the study was done in a rural and/or urban setting
Results for other programs in the same region
The age range of the sample under consideration
The gender of the sample under consideration

Deworming:
Indicators for albendazole, mebendazole, levamisole, pyrantel pamoate, or multiple drugs
How many rounds of treatment there were
How many months elapsed between each round
The dosage of each drug provided in one round
The baseline prevalence of each of Ascaris lumbricoides, Trichuris trichiura, and hookworm

In some cases, only endline enrollment or prevalence rates are reported. The baseline rates
variables are therefore constructed by using baseline rates for both the treatment and control
group where they are available, followed by the baseline rate for the control group; the base-
line rate for the treatment group; the endline rate for the control group; the endline rate for
the treatment and control group; and the endline rate for the treatment group. Regions in-
clude Latin America, Africa, the Middle East and North Africa, East Asia, and South Asia,
following the World Bank’s divisions (2015).47



the unstandardized treatment effect on these sample characteristics.41 If Yis is the es-

timated effect of a conditional cash transfer program on enrollment rates in subgroup

s of study i, these regressions are of the form: Yis “ α` βXis` εis. These subgroups

never overlap, so no results are double-counted, but results can be correlated across

subgroups within a study, so I cluster standard errors by study. Since most variables

describing a paper (such as whether it was an RCT) do not vary within the paper,

I consider only those variables that describe sample characteristics as explanatory

variables in these regressions.

Results are presented in Table 12. The baseline enrollment rates show the

strongest relationship to the treatment effect, as reflected in the R2 of these regressions

and their significance levels. It seems easier for there to be large treatment effects

when the baseline level of the outcome variable is low. Some papers pay particular

attention to those children that were not enrolled at baseline or that were enrolled

at baseline. These are coded as having a 0% or 100% enrollment rate at baseline, re-

spectively, in addition to being represented by two dummy variables. CCT programs

seem to have larger effects on enrollment rates for those not enrolled at baseline, be-

yond the linear trend (Column 2). Studies done in urban areas tend to find smaller

treatment effects than studies done in rural or mixed urban/rural areas. There is no

significant difference in treatment effects by gender or age.42 Finally, for each ob-

servation I calculate the mean treatment effect in the same region, excluding results

from the program in question. Treatment effects do appear correlated across different

programs in the same region.

If data that are disaggregated even just to the subgroup level can obtain a much

improved fit, it would suggest that models leveraging micro-data would yield even

better results.43

41For example, if I have results for girls and boys reported separately, as well as for three different
age groups, I will now use the results for the three different age groups.

42Shown here: minimum sample age. Results for the maximum or mean age variables available
upon request.

43I do not run a mixed model using the significant characteristics as explanatory variables because
doing so would artificially increase the estimated τ2 for the intervention-outcome. For example,
splitting the papers’ samples into results by age group would generally serve to increase τ2 relative
to using the aggregate result. Even if that estimated τ2 could then be reduced by the mixed model,
it is not clear what the implication would be for the perhaps more standard scenario in which one
wants to compare aggregate point estimates across papers.
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Table 11: Residual Heterogeneity Measures by Intervention-Outcome

Intervention-Outcome Explanatory Variable R2
pτ 2 pτ 2R

pτ2´pτ2R
pτ2

pI2 pI2R
pI2´pI2R
pI2

N

CCTs-Attendance rate Baseline enrollment rate 0.43 0.0031 0.0029 0.06 0.878 0.857 0.02 8
CCTs-Enrollment rate Min household non-educ. transfer 0.28 0.0010 0.0008 0.20 0.961 0.952 0.01 36
CCTs-Labor force particip. Conditional on health check 0.38 0.0012 0.0013 -0.06 0.939 0.944 -0.01 10
UCTs-Enrollment rate Sample minimum age 0.34 0.0006 0.0006 0.03 0.844 0.848 0.00 10
Deworming-Height Mebendazole dosage 0.32 0.2201 0.2111 0.04 0.942 0.940 0.00 13
Deworming-Height-for-age Mix of drugs 0.32 0.0500 0.0373 0.25 0.989 0.986 0.00 13
Deworming-Hemoglobin Baseline prevalence T. Trichiura 0.36 0.0078 0.0082 -0.06 0.645 0.657 -0.02 11
Deworming-Weight Baseline prevalence hookworm 0.73 0.3587 0.1153 0.68 0.995 0.984 0.01 9
Deworming-Weight-for-age Baseline prevalence T. Trichiura 0.39 0.0114 0.0101 0.11 0.966 0.960 0.01 8
Deworming-Weight-for-height Baseline prevalence hookworm 0.92 0.0189 0.0053 0.72 0.910 0.604 0.34 5

This table shows residual heterogeneity measures after fitting a mixed model to each of several intervention-outcome combinations with a

particularly large number of studies. Each mixed model used the single explanatory variable with the highest R2 in an OLS regression of

treatment effects on each potential explanatory variable in Table 10. The explanatory variable selected is reported in this table, along with

the R2 and number of observations available for this regression. One aggregate result per intervention-outcome-study is used.
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Table 12: Regression of Projects’ Results on Characteristics (CCTs on Enrollment Rates)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Enrollment Rates -0.205*** -0.102*** -0.090*** -0.081**
(0.05) (0.03) (0.03) (0.03)

Enrolled at Baseline 0.001 -0.002
(0.02) (0.02)

Not Enrolled at 0.195*** 0.199*** 0.189***
Baseline (0.03) (0.02) (0.04)
Number of -0.008 0.003
Observations (100,000s) (0.00) (0.00)
Rural 0.038** 0.013 0.032

(0.02) (0.01) (0.02)
Urban -0.049*** -0.018 -0.017

(0.01) (0.01) (0.02)
Girls 0.001 0.014

(0.01) (0.01)
Boys -0.020 -0.004

(0.02) (0.02)
Minimum Sample Age 0.001 0.002

(0.00) (0.00)
Mean Regional Result 1.000** 0.263

(0.47) (0.36)

Observations 249 249 145 270 270 270 270 244 270 249 119
R2 0.32 0.44 0.00 0.05 0.03 0.00 0.01 0.00 0.02 0.45 0.50

Each column regresses the impact of conditional cash transfer programs on enrollment rates (i.e. the subgroup-level point estimates Yis) on

different explanatory variables. Multiple results for different subgroups may be reported for the same paper. The data on which this table is

based include multiple results from the same paper for different subgroups that are non-overlapping (e.g. boys and girls, groups with

different age ranges, or different geographical areas). Standard errors are clustered by paper. Not every paper reports every explanatory

variable, so different columns are based on different numbers of observations. “Enrolled at Baseline” is a dummy variable indicating whether

the entire sample on which a result was reported was enrolled in school at baseline; “Not Enrolled at Baseline” is a dummy variable

indicating whether the entire sample was not enrolled in school at baseline. These correspond to 100% and 0% enrollment rates for the

sample under consideration, but it makes sense to consider them separately due to selection issues.
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5 Discussion

Why should we care about the dispersion of results across studies? Information

on the context, intervention, implementation and study quality could decrease the

amount of unexplained heterogeneity and so improve inference. However, the in-

formation provided in academic papers is naturally limited. I find that sampling

variance accounts for only 9% of the total variance in estimated treatment effects

for the median intervention-outcome combination in my data. For 10 intervention-

outcome combinations in my data with a large number of studies, I find about 20%

of the remaining variance could be explained using a single best-fitting explanatory

variable. However, this statistic obscures a lot of heterogeneity, with the median

decrease being about 9%. These results, though perhaps better than many might

expect, emphasize the importance of sharing micro-data to build even better models

and treating the point estimates reported in papers as merely a starting point.

A few limitations should be discussed. I classify different programs as the “same”

intervention despite minor differences between them. This is because these programs

differ in too many idiosyncratic ways to be able to usefully categorize them into finer

groups. While describing multiple distinct programs as being part of the “same” in-

tervention may be a common practice, it is important to remember that some of the

observed variation could be due to differences in the programs themselves.

One may also be concerned that results are driven by those interventions with the

greatest number of studies in the data set: micronutrients programs, conditional cash

transfers, and deworming programs. For results that are presented disaggregated by

intervention-outcome, such as the results in Table 4, this is not a concern. For the

regressions across intervention-outcome combinations reported in Table 7, however,

one might still wonder if results were driven by these interventions. It is also possible

that outcomes within the same intervention may be correlated. As discussed, I cannot

combine outcomes within an intervention, as that would make it harder to determine

the source of the observed heterogeneity.

More heterogeneity in treatment effects might be modeled using micro-data; data

taken from the results reported in academic papers are not as rich, providing both

fewer observations and fewer covariates. However, despite shifting norms, micro-data

are still rarely available,44 so the approach outlined in this paper may still frequently

44Less than 10% of the studies in AidGrade’s database made micro-data available.
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be useful. Further, if more authors were to make their study’s micro-data available,

that would not in and of itself be sufficient for building more complicated models to

explain heterogeneity, as typically there is little overlap in covariates collected across

different studies. To remedy this, more collaboration among researchers at an earlier

stage would be helpful.

In light of the observed variation in studies’ results, how policymakers combine

information from different studies is a fruitful area for further research. Vivalt and

Coville (2017), for example, find some evidence that policymakers exhibit “variance

neglect” in the same way they often suffer from extension neglect (sample size ne-

glect): they do not fully take confidence intervals into consideration when updating.

If policymakers also pay more attention to the more positive results, this would lead

to those interventions with a greater dispersion of results being considered to have

better effects. This paper hence underscores the importance of further research to

determine how policymakers interpret the information they are given and how to best

present information to enable optimal decision-making.

6 Conclusion

How much impact evaluation results generalize to other settings is an important

question. Before now, no data set existed with many different types of interventions,

with all data collected in the same way, with which to present a broad overview.

The issues underlying external validity are well-known and assessments of external

validity will always remain best conducted on a case-by-case basis. However, with the

results presented here, it begins to be possible to speak a bit more generally about

how results tend to vary across contexts and what that implies for impact evaluation

design and policy recommendations.

I consider several ways to evaluate the magnitude of the variation in results.

Whether results are too heterogeneous ultimately depends on the purpose for which

they are being used, as some policy decisions might have greater room for error than

others. However, I suggested a way of thinking about the problem based on the rela-

tionship between these measures and one’s ability to draw inferences about results in

another setting and provided estimates for many intervention-outcome combinations.

I found evidence of systematic variation in effect sizes that is surprisingly robust

across different interventions and outcomes. Smaller studies tended to have larger
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effect sizes, which might be expected if the smaller studies are better-targeted, are se-

lected to be evaluated when there is a higher a priori expectation they will have a large

effect size, or if there is a preference to report larger effect sizes, which smaller studies

would obtain more often by chance. Government-implemented programs also had

smaller effect sizes than academic/NGO-implemented programs, even after control-

ling for sample size. This is unfortunate given we often do smaller impact evaluations

with NGOs in the hopes of finding a strong positive effect that can scale through

government implementation and points to the importance of research on scaling up

interventions. RCTs do not appear to have significantly different effect sizes than

quasi-experimental studies.

I then sought to explain heterogeneity within several intervention-outcome com-

binations covered by a large number of studies. Heterogeneity measures greatly im-

proved for some intervention-outcome combinations, but not for others. I also ex-

plored variation across different subgroups for one particular intervention-outcome

combination, which afforded a larger sample size. Taken together, the results suggest

that careful modeling could help substantially and that there are likely to be large

gains in using even more disaggregated micro-data.

There are some steps that researchers can take that may improve the generaliz-

ability of their own studies. First, just as with heterogeneous selection into treatment

(Chassang, Padró i Miquel and Snowberg, 2012), one solution would be to ensure

one’s impact evaluation varied some of the contextual variables that one might think

underlie the heterogeneous treatment effects. Given that many studies are underpow-

ered as it is, that may not be likely. However, large organizations and governments

have been supporting more impact evaluations, providing more opportunities to ex-

plicitly integrate these analyses. Efforts to coordinate across different studies, asking

the same questions or looking at some of the same outcome variables, would also

help. Framing these efforts as increasing our understanding of heterogeneous treat-

ment effects could also provide positive motivation for replication projects in different

contexts. Different findings would not necessarily negate the earlier ones but add an-

other level of information.

In summary, generalizability is not binary but something that we can measure.

Policymakers should take caution when extrapolating from studies done in other con-

texts, and researchers should pay more attention to sampling variance, modeling,

coordination, and replication.
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Appendices

A Guide to Appendices

A.1 Appendices in this Paper

B) Additional tables and figures.

A.2 Further Online Appendices

Having to describe data from twenty different meta-analyses and systematic re-

views, I must rely in part on online appendices. The following are available at

http://www.evavivalt.com/appendices-generalize:

C) Sample R code estimating random-effects and mixed models.

D) Derivation of mixed model estimation strategy.

E) Additional figures for each intervention-outcome.

F) The search terms and inclusion criteria for each topic.

G) Bibliography of included and excluded papers.

H) The coding manual.

I) Further details on the data collection process.
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B Additional Results

Figure 4: AidGrade’s Strategy
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Figure 5: Number of Papers on Each Unstandardized Outcome by Intervention
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Table 13: Descriptive Statistics: Strictly Defined Outcomes

Intervention Outcome # Neg sig papers # Insig papers # Pos sig papers # Papers
Conditional cash transfers Attendance rate 0 6 8 14
Conditional cash transfers Enrollment rate 0 7 29 36
Conditional cash transfers Birth at healthcare facility 0 2 1 3
Conditional cash transfers Height 0 1 1 2
Conditional cash transfers Height-for-age 0 6 1 7
Conditional cash transfers Labor force participation 1 12 5 18
Conditional cash transfers Labor hours 0 3 4 7
Conditional cash transfers Pregnancy rate 1 1 1 3
Conditional cash transfers Probability unpaid work 1 0 4 5
Conditional cash transfers Retention rate 0 3 2 5
Conditional cash transfers Skilled attendant at delivery 0 3 0 3
Conditional cash transfers Test scores 1 2 2 5
Conditional cash transfers Unpaid labor hours 3 2 0 5
Conditional cash transfers Weight-for-age 0 2 0 2
Conditional cash transfers Weight-for-height 0 1 1 2
HIV/AIDS education Contracted STD 0 2 0 2
HIV/AIDS education Has multiple sex partners 0 2 0 2
HIV/AIDS education Pregnancy rate 0 1 1 2
HIV/AIDS education Probability sexually active 0 2 0 2
HIV/AIDS education Used contraceptives 0 2 2 4
Unconditional cash transfers Enrollment rate 0 5 8 13
Unconditional cash transfers Test scores 0 1 1 2
Unconditional cash transfers Weight-for-height 0 2 0 2
Insecticide-treated bed nets Malaria 0 4 6 10
Contract teachers Test scores 0 1 2 3
Deworming Attendance rate 0 1 1 2
Deworming Birthweight 0 2 0 2
Deworming Diarrhea incidence 0 1 0 1
Deworming Height 3 10 3 16
Deworming Height-for-age 1 9 4 14
Deworming Hemoglobin 0 13 1 14
Deworming Malformations 0 2 0 2
Deworming Mid-upper arm circumference 2 0 5 7
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Deworming Test scores 0 0 2 2
Deworming Weight 3 8 6 17
Deworming Weight-for-age 1 6 5 12
Deworming Weight-for-height 2 7 2 11
Financial literacy Has savings 0 4 0 4
Financial literacy Has taken loan 0 4 0 4
Financial literacy Savings 0 2 3 5
Improved stoves Chest pain 0 0 2 2
Improved stoves Cough 0 0 2 2
Improved stoves Difficulty breathing 0 0 2 2
Improved stoves Excessive nasal secretion 0 1 1 2
Irrigation Consumption 0 1 1 2
Irrigation Total income 0 1 1 2
Microfinance Assets 0 3 1 4
Microfinance Consumption 0 2 0 2
Microfinance Probability of owning business 0 1 1 2
Microfinance Profits 1 3 1 5
Microfinance Savings 0 3 0 3
Microfinance Total income 0 3 2 5
Micro health insurance Enrollment rate 0 1 0 1
Micro health insurance Household health expenditures 0 1 1 2
Micro health insurance Probability of inpatient visit 0 2 0 2
Micro health insurance Probability of outpatient visit 0 2 0 2
Micronutrient supplementation Birthweight 0 4 3 7
Micronutrient supplementation Body mass index 0 1 4 5
Micronutrient supplementation Cough 0 1 0 1
Micronutrient supplementation Cough prevalence 0 2 0 2
Micronutrient supplementation Diarrhea incidence 0 3 4 7
Micronutrient supplementation Diarrhea prevalence 0 5 1 6
Micronutrient supplementation Fever prevalence 0 2 0 2
Micronutrient supplementation Height 3 19 7 29
Micronutrient supplementation Height-for-age 4 21 8 33
Micronutrient supplementation Hemoglobin 6 11 20 37
Micronutrient supplementation Mid-upper arm circumference 2 8 7 17
Micronutrient supplementation Mortality 1 10 0 11
Micronutrient supplementation Perinatal death 0 5 1 6
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Micronutrient supplementation Prevalence of anemia 0 4 9 13
Micronutrient supplementation Stillbirth 0 4 0 4
Micronutrient supplementation Stunted 0 3 0 3
Micronutrient supplementation Test scores 1 2 6 9
Micronutrient supplementation Triceps skinfold measurement 1 0 1 2
Micronutrient supplementation Weight 1 17 13 31
Micronutrient supplementation Weight-for-age 1 20 10 31
Micronutrient supplementation Weight-for-height 0 18 8 26
Mobile phone-based reminders Appointment attendance rate 0 0 3 3
Mobile phone-based reminders Treatment adherence 0 2 0 2
Performance pay Test scores 0 2 1 3
Rural electrification Enrollment rate 0 1 2 3
Rural electrification Study time 0 1 2 3
Rural electrification Total income 0 2 0 2
Safe water storage Diarrhea incidence 0 0 2 2
Scholarships Attendance rate 0 1 1 2
Scholarships Enrollment rate 0 2 1 3
Scholarships Test scores 0 2 0 2
School meals Enrollment rate 0 3 0 3
School meals Height-for-age 0 2 0 2
School meals Test scores 0 2 1 3
Water treatment Diarrhea incidence 0 1 4 5
Water treatment Diarrhea prevalence 0 3 6 9
Water treatment Dysentery incidence 0 1 2 3
Women’s empowerment programs Savings 0 1 1 2
Women’s empowerment programs Total income 0 0 2 2
Average 0.4 3.7 2.7 6.8

This table provides the distribution of results (negative and significant, insignificant, or positive and significant) by intervention-outcome
combination. It draws on slightly more data than the other tables and figures in the paper, since it includes those intervention-outcome
combinations covered by only two papers, and it also includes results which were not reported in a manner that allowed them to be
combined with the rest of the data, such as results where a point estimate was reported along with stars indicating crude significance level
but no more precise standard error, p-value, or t-statistic. As throughout the rest of the paper, “malaria” and “prevalence of anemia” are
included despite being “loose” outcomes as they were frequently the primary outcomes of interest.
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Table 14: Heterogeneity Measures for RCTs

Intervention Outcome Units {P pSignq {

?
MSE xτ2N

xI2N
pτN
|pµN |

pµN psN N

Unconditional cash transfers Enrollment rate pp 0.90 0.04 0.001 0.65 0.78 0.04 0.02 8

Financial literacy Has savings pp 0.74 0.03 0.001 0.45 1.48 0.02 0.04 4

Conditional cash transfers Attendance rate pp 0.95 0.04 0.002 0.89 0.65 0.06 0.01 7

Conditional cash transfers Enrollment rate pp 0.96 0.04 0.002 0.95 0.57 0.07 0.01 20

Micronutrients Birthweight kg 0.77 0.05 0.002 0.86 1.17 0.04 0.02 7

Conditional cash transfers Labor force participation pp 0.59 0.06 0.004 0.96 2.71 -0.02 0.01 7

Deworming Hemoglobin g/dL 0.54 0.07 0.004 0.47 3.71 0.02 0.07 14

Micronutrients Weight-for-height sd 0.71 0.07 0.005 0.75 1.94 0.04 0.04 25

Micronutrients Weight-for-age sd 0.67 0.10 0.009 0.89 1.97 0.05 0.03 29

Micronutrients Height-for-age sd 0.68 0.11 0.011 0.91 2.20 0.05 0.03 32

Micronutrients Mid-upper arm circumference cm 0.66 0.11 0.011 0.87 1.95 0.05 0.04 14

Micronutrients Diarrhea incidence log risk ratio 0.80 0.14 0.015 0.77 1.06 -0.11 0.07 7

Financial literacy Has taken loan pp 0.49 0.13 0.017 0.87 10.06 0.01 0.05 4

HIV/AIDS education Used contraceptives pp 0.70 0.14 0.029 0.92 1.89 0.09 0.05 3

Insecticide-treated bed nets Malaria log risk ratio 0.99 0.20 0.030 0.61 0.46 -0.38 0.14 10

Mobile phone-based reminders Appointment attendance rate log risk ratio 0.91 0.15 0.030 0.85 1.01 0.17 0.07 3

Micronutrients Test scores sd 0.68 0.20 0.035 0.99 1.81 0.10 0.02 8

Micronutrients Weight kg 0.75 0.20 0.041 0.96 1.45 0.14 0.04 28

Contract teachers Test scores sd 0.85 0.20 0.053 0.92 1.22 0.19 0.07 3

Performance pay Test scores sd 0.72 0.19 0.059 0.97 2.05 0.12 0.05 3

Conditional cash transfers Test scores sd 0.67 0.26 0.063 0.92 1.78 0.14 0.08 4

Deworming Weight-for-height sd 0.54 0.28 0.075 0.97 4.59 0.06 0.04 11

Micronutrients Mortality log risk ratio 0.52 0.33 0.084 0.38 6.43 -0.05 0.37 11

Conditional cash transfers Height-for-age sd 0.50 0.27 0.108 0.82 8.36 -0.04 0.16 3

Deworming Height-for-age sd 0.65 0.37 0.132 1.00 2.25 0.16 0.02 14

Deworming Weight-for-age sd 0.60 0.39 0.145 1.00 2.74 0.14 0.02 12
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Micronutrients Perinatal death log risk ratio 0.55 0.44 0.151 0.55 3.14 0.12 0.35 6

Micronutrients Diarrhea prevalence log risk ratio 0.65 0.44 0.153 0.81 1.74 -0.22 0.19 6

School meals Test scores sd 0.50 0.37 0.172 0.96 8.47 0.05 0.08 3

Deworming Mid-upper arm circumference cm 0.56 0.45 0.176 0.99 4.90 0.09 0.04 7

Deworming Weight kg 0.59 0.44 0.182 0.98 3.33 0.13 0.05 17

Micronutrients Prevalence of anemia log risk ratio 0.90 0.45 0.193 0.87 0.86 -0.51 0.17 12

Deworming Height cm 0.53 0.49 0.229 0.95 5.46 0.09 0.11 16

Micronutrients Stunted log risk ratio 0.53 0.40 0.229 0.80 6.71 -0.07 0.24 3

Micronutrients Hemoglobin g/dL 0.70 0.51 0.242 0.99 1.75 0.28 0.04 36

Micronutrients Height cm 0.65 0.51 0.243 0.96 2.43 0.20 0.09 27

Water treatment Diarrhea prevalence log rate ratio 0.81 0.56 0.279 0.96 1.30 -0.41 0.11 9

Micronutrients Body mass index kg/mˆ2 0.57 0.52 0.385 1.00 3.62 0.17 0.04 3

Water treatment Diarrhea incidence log rate ratio 0.77 0.87 0.792 0.95 1.29 -0.69 0.21 5

Micronutrients Stillbirth log risk ratio 0.53 0.95 1.005 0.75 7.78 0.13 0.59 4

Water treatment Dysentery incidence log rate ratio 0.65 1.59 3.322 0.95 2.08 -0.87 0.42 3

Conditional cash transfers Labor hours hours/week 0.62 3.60 12.209 0.96 2.33 -1.50 0.68 5

Financial literacy Savings current US$ 0.56 54.96 1111.109 0.76 1.80 18.56 18.76 5

{P pSignq is the average estimated probability of making the correct inference about the sign of a particular true effect, θj , given all data in

that intervention-outcome combination, and {

?
MSE represents the average estimated square root of the mean squared error of that

prediction. pτ2N , pI2N , pτN
|pµN |

and pµN likewise present the average estimate for each parameter. psN estimates a common sampling error for each

intervention-outcome using Higgins and Thompson’s approximation. It is important in estimating pI2N and it provides a way to summarize

the σi within an intervention-outcome combination, given they vary by study. However, the individual study-specific estimates of the

sampling variance, σ2
i , were used to generate the estimates of µ and τ and hence the other columns in the table. Each measure is calculated

separately by intervention-outcome combination, without pooling across intervention-outcomes. Unstandardized values are used throughout.

10,000 simulations are run to calculate the probability of making the correct inference about the sign of θj and the MSE for each

intervention-outcome combination. Wherever pI2N appears equal to 1.00, this is the result of rounding.
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Table 15: Heterogeneity Measures for Higher-Quality Studies

Intervention Outcome Units {P pSignq {

?
MSE xτ2N

xI2N
pτN
|pµN |

pµN psN N

Unconditional cash transfers Enrollment rate pp 0.90 0.04 0.001 0.65 0.78 0.04 0.02 8

Financial literacy Has savings pp 0.72 0.04 0.001 0.45 1.48 0.02 0.04 4

Conditional cash transfers Enrollment rate pp 0.91 0.07 0.004 0.91 0.72 0.09 0.02 10

Deworming Hemoglobin g/dL 0.55 0.07 0.004 0.47 3.74 0.02 0.07 14

Micronutrients Weight-for-height sd 0.71 0.07 0.005 0.76 1.86 0.04 0.04 24

Micronutrients Birthweight kg 0.71 0.07 0.006 0.94 1.65 0.05 0.02 4

Micronutrients Weight-for-age sd 0.72 0.09 0.009 0.90 1.75 0.05 0.03 28

Micronutrients Mid-upper arm circumference cm 0.69 0.12 0.011 0.86 1.78 0.06 0.04 14

Micronutrients Height-for-age sd 0.70 0.11 0.012 0.91 2.08 0.05 0.03 29

Micronutrients Diarrhea incidence log risk ratio 0.80 0.14 0.015 0.77 1.06 -0.11 0.07 7

Financial literacy Has taken loan pp 0.48 0.13 0.017 0.87 10.27 0.01 0.05 4

Conditional cash transfers Attendance rate pp 0.73 0.11 0.017 0.90 1.68 0.08 0.04 3

Insecticide-treated bed nets Malaria log risk ratio 0.99 0.17 0.017 0.44 0.41 -0.32 0.15 7

HIV/AIDS education Used contraceptives pp 0.71 0.14 0.029 0.91 1.88 0.09 0.05 3

Micronutrients Test scores sd 0.70 0.19 0.035 0.99 1.81 0.10 0.02 8

Micronutrients Weight kg 0.75 0.23 0.045 0.97 1.37 0.15 0.04 28

Conditional cash transfers Test scores sd 0.75 0.19 0.053 0.94 1.60 0.14 0.06 3

Contract teachers Test scores sd 0.86 0.19 0.053 0.92 1.22 0.19 0.07 3

Deworming Weight-for-height sd 0.54 0.29 0.075 0.97 4.59 0.06 0.04 11

Conditional cash transfers Labor force participation pp 0.51 0.25 0.088 0.97 11.11 -0.03 0.05 3

Micronutrients Mortality log risk ratio 0.55 0.36 0.105 0.45 3.48 -0.09 0.36 9

Deworming Height-for-age sd 0.66 0.37 0.132 1.00 2.25 0.16 0.02 14

Micronutrients Body mass index kg/mˆ2 0.67 0.36 0.145 0.99 1.93 0.20 0.04 4

Deworming Weight-for-age sd 0.64 0.38 0.145 1.00 2.73 0.14 0.02 12

Micronutrients Diarrhea prevalence log risk ratio 0.65 0.43 0.154 0.81 1.76 -0.22 0.19 6

School meals Test scores sd 0.50 0.37 0.171 0.96 8.68 0.05 0.08 3
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Micronutrients Prevalence of anemia log risk ratio 0.89 0.44 0.175 0.86 0.80 -0.52 0.17 13

Deworming Mid-upper arm circumference cm 0.53 0.44 0.178 0.99 4.94 0.09 0.04 7

Deworming Weight kg 0.63 0.46 0.202 0.98 2.86 0.16 0.07 15

Micronutrients Stunted log risk ratio 0.53 0.40 0.227 0.80 6.70 -0.07 0.24 3

Micronutrients Hemoglobin g/dL 0.74 0.49 0.236 0.99 1.68 0.29 0.04 33

Deworming Height cm 0.52 0.53 0.253 0.94 7.84 0.06 0.12 15

Micronutrients Height cm 0.64 0.52 0.255 0.97 2.43 0.21 0.09 26

Water treatment Diarrhea prevalence log rate ratio 0.80 0.61 0.339 0.97 1.30 -0.45 0.11 8

Micronutrients Perinatal death log risk ratio 0.49 0.79 0.658 0.85 8.42 0.10 0.34 4

Water treatment Diarrhea incidence log rate ratio 0.77 0.97 0.794 0.95 1.29 -0.69 0.21 5

Water treatment Dysentery incidence log rate ratio 0.66 1.57 3.310 0.95 2.06 -0.88 0.42 3

Conditional cash transfers Labor hours hours/week 0.69 5.11 35.498 0.88 2.00 -2.98 2.25 3

Financial literacy Savings current US$ 0.57 56.03 1112.025 0.76 1.79 18.60 18.66 5

{P pSignq is the average estimated probability of making the correct inference about the sign of a particular true effect, θj , given all data in

that intervention-outcome combination, and {

?
MSE represents the average estimated square root of the mean squared error of that

prediction. pτ2N , pI2N , pτN
|pµN |

and pµN likewise present the average estimate for each parameter. psN estimates a common sampling error for each

intervention-outcome using Higgins and Thompson’s approximation. It is important in estimating pI2N and it provides a way to summarize

the σi within an intervention-outcome combination, given they vary by study. However, the individual study-specific estimates of the

sampling variance, σ2
i , were used to generate the estimates of µ and τ and hence the other columns in the table. Each measure is calculated

separately by intervention-outcome combination, without pooling across intervention-outcomes. Unstandardized values are used throughout.

10,000 simulations are run to calculate the probability of making the correct inference about the sign of θj and the MSE for each

intervention-outcome combination. Wherever pI2N appears equal to 1.00, this is the result of rounding.
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Table 16: Posterior Predictive Checks on Different Percentiles of the Data

p-value

Intervention Outcome 25-75% 10-90% 5-95% N

Conditional cash transfers Attendance rate 0.071 0.068 14

Conditional cash transfers Birth at healthcare facility 0.307 3

Conditional cash transfers Enrollment rate 0.130 0.010 * 0.017 * 36

Conditional cash transfers Height-for-age 0.705 7

Conditional cash transfers Labor force participation 0.786 0.887 18

Conditional cash transfers Labor hours 0.548 7

Conditional cash transfers Pregnancy rate 0.541 3

Conditional cash transfers Probability unpaid work 0.550 5

Conditional cash transfers Retention rate 0.821 5

Conditional cash transfers Skilled attendant at delivery 0.372 3

Conditional cash transfers Test scores 0.647 5

Conditional cash transfers Unpaid labor hours 0.562 5

Contract teachers Test scores 0.436 3

Deworming Height 0.304 0.456 16

Deworming Height-for-age 0.830 0.059 14

Deworming Hemoglobin 0.043 0.052 14

Deworming Mid-upper arm circumference 0.574 7

Deworming Weight 0.647 0.403 17

Deworming Weight-for-age 0.772 0.456 12

Deworming Weight-for-height 0.613 0.192 11

Financial literacy Has savings 0.521 4

Financial literacy Has taken loan 0.246 4

Financial literacy Savings 0.507 5

HIV/AIDS education Used contraceptives 0.703 4

Insecticide-treated bed nets Malaria 0.686 0.920 10

Microfinance Assets 0.517 4

Microfinance Profits 0.522 5

Microfinance Savings 0.400 3

Microfinance Total income 0.515 5

Micronutrients Birthweight 0.380 7

Micronutrients Body mass index 0.341 5

Micronutrients Diarrhea incidence 0.203 7

Micronutrients Diarrhea prevalence 0.924 6

Micronutrients Height 0.774 0.233 0.003 * 29

Micronutrients Height-for-age 0.736 0.323 0.030 33

Micronutrients Hemoglobin 0.771 0.057 0.380 37
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Micronutrients Mid-upper arm circumference 0.508 0.906 17

Micronutrients Mortality 0.204 0.674 11

Micronutrients Perinatal death 0.590 6

Micronutrients Prevalence of anemia 0.518 0.445 13

Micronutrients Stillbirth 0.358 4

Micronutrients Stunted 0.548 3

Micronutrients Test scores 0.722 0.181 9

Micronutrients Weight 0.872 0.089 0.032 31

Micronutrients Weight-for-age 0.611 0.109 0.574 31

Micronutrients Weight-for-height 0.522 0.133 0.280 26

Mobile phone-based reminders Appointment attendance rate 0.540 3

Performance pay Test scores 0.422 3

Rural electrification Enrollment rate 0.380 3

Rural electrification Study time 0.679 3

Scholarships Enrollment rate 0.521 3

School meals Enrollment rate 0.259 3

School meals Test scores 0.246 3

Unconditional cash transfers Enrollment rate 0.219 0.115 13

Water treatment Diarrhea incidence 0.421 5

Water treatment Diarrhea prevalence 0.464 0.920 9

Water treatment Dysentery incidence 0.627 3

The p-value is the proportion of the simulations for which the test statistic is more extreme than

in the observed data.
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Table 17: Regression of pτ 2N and pI2N on Study Characteristics: Alternative Specifica-
tions

pτ2N

(1) (2) (3) (4) (5) (6)

Var(Sample size) -0.113 0.079
(0.08) (0.17)

Var(Government-implemented) -0.617 -0.517
(0.93) (1.71)

Var(Academic/NGO-implemented) -0.725 -1.352
(0.92) (1.04)

Var(RCT) -1.260 -1.726
(1.19) (1.95)

Number of Countries -0.083 -0.093
(0.06) (0.11)

Number of Studies 0.016 0.005
(0.02) (0.03)

Observations 41 47 47 47 47 41
R2 0.00 0.00 0.01 0.02 0.04 0.10

pI2N

(7) (8) (9) (10) (11) (12)

Var(Sample Size) 0.034** 0.023
(0.02) (0.02)

Var(Government-implemented) 0.220 0.063
(0.14) (0.50)

Var(Academic/NGO-implemented) 0.215* 0.035
(0.12) (0.46)

Var(RCT) 0.229 0.107
(0.17) (0.23)

Number of Countries -0.008 -0.020
(0.01) (0.02)

Number of Studies 0.004 0.009
(0.01) (0.01)

Observations 41 47 47 47 47 41
R2 0.02 0.02 0.02 0.03 0.00 0.05

This table shows the results of regressions of pτ2N and pI2N on intervention-outcome-level summary

statistics of the study characteristics considered in Table 7 (i.e. estimating pτ2N “ α` βXk ` εk and
pI2N “ α1 ` β1X 1k ` ε

1
k where Xk and X 1k represent intervention-outcome-level summary statistics

such as the variance of the sample size of studies within an intervention-outcome). In contrast to

Table 8, this table shows the results on the full sample, not winsorizing an outlier for pτ2N . The

alternative pI2N regressions use the variance rather than the mean as the summary statistic for each

intervention-outcome combination.
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Table 18: Regression of pτ 2N on Intervention Characteristics, Alternative Specification

pτ 2N

(1) (2) (3)

Health -0.434 -0.712
(0.37) (0.57)

Conditional -0.308 -0.765
(0.21) (0.57)

Observations 47 47 47
R2 0.03 0.01 0.08

This table shows the results of regressions of pτ2N and pI2N on intervention-level characteristics (i.e.

estimating pτ2N “ α` βXk ` εk and pI2N “ α1 ` β1X 1k ` ε
1
k where Xk and X 1k now represent the

intervention-level characteristics of whether the intervention was a health intervention and whether

it provided economic incentives that were conditional on certain actions). In contrast to Table 9,

this table shows the results on the full sample, not winsorizing an outlier for pτ2N .
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Table 19: Regression of pτ 2N and pI2N on Intervention Characteristics: Alternative Defi-
nitions

pτ 2N
pI2N

(1) (2) (3) (4) (5) (6)

Health -0.024 -0.081 -0.069 -0.077
(0.09) (0.14) (0.05) (0.06)

Conditional -0.060 -0.120 0.041 -0.016
(0.08) (0.15) (0.05) (0.06)

Observations 47 47 47 47 47 47
R2 0.00 0.01 0.02 0.04 0.01 0.04

This table shows the results of regressions of pτ2N and pI2N on intervention-level characteristics (i.e.

estimating pτ2N “ α` βXk ` εk and pI2N “ α1 ` β1X 1k ` ε
1
k where Xk and X 1k represent the

intervention-level characteristics of whether the intervention was a health intervention and whether

it provided economic incentives that were conditional on certain actions). In this table, “health”

interventions comprise bed nets, deworming, HIV/AIDS education, micronutrients, and water

treatment, while “conditional” interventions comprise conditional cash transfer programs,

performance pay programs, and scholarships. An outlier for pτ2N is winsorized, as described in the

text.
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