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Abstract. The generalized Catalan numbers wn are given by the recurrence wn = 2wn−1 +
∑n−2

i=1 wiwn−2−i if n ≥ 2,
with w0 = w1 = 1, and count a restricted subset of the Catalan paths having semilength n. In this paper, we provide

new combinatorial interpretations of these numbers in terms of �nite set partitions. In particular, we identify �ve classes

of the partitions of size n, all of which have cardinality wn and each avoiding a set of two classical patterns of length four.

We use both combinatorial and algebraic arguments to establish our results, applying the kernel method in a couple of

the apparently more di�cult cases.
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1 Introduction

Let wn denote the generalized Catalan number de�ned by the recurrence

wn = 2wn−1 +
n−2∑
i=1

wiwn−2−i, n ≥ 2, (1)

with w0 = w1 = 1. The right side of (1) is sometimes written as
∑n−1

i=1 wiwn−2−i, if one assumes
w−1 = 2. The �rst few wn values for n ≥ 0 are 1, 1, 2, 5, 13, 35, 97, 275, . . .. Using (1), one can show
that the wn have generating function given by

∑
n≥0

wnx
n =

(1− x)2 −
√
1− 4x+ 2x2 + x4

2x2
. (2)

The numbers wn count, among other things, the Catalan paths of semilength n having no occurrences
of DDUU (see [8]), or, equivalently, the Catalan paths of semilength n + 1 having no UUDD. They
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also count the subset of the permutations of size n avoiding the two generalized patterns 1-3-2 and
12-34 (see Example 2.10 of [6]). For further information on these numbers, see also A025242 of [10].
Here, we provide new combinatorial interpretations for the wn in terms of �nite set partitions, showing
that they enumerate certain two-pattern avoidance classes.

We'll use the following notational conventions: N := {0, 1, 2, . . . }, P := {1, 2, . . . }, [0] := ∅, and
[n] := {1, . . . , n} for n ∈ P. Empty sums take the value 0 and empty products the value 1, with 00 := 1.
If n ∈ P, then a partition of [n] is any collection of non-empty, disjoint subsets, called blocks, whose
union is [n]. (If n = 0, then there is a single empty partition which has no blocks.) A partition with k
blocks is also called a k-partition and is denoted by B1/B2/ · · · /Bk, where the blocks are arranged in
the standard order: min(B1) < · · · < min(Bk). The set of k-partitions of [n] will be denoted by Pn,k

and the set of all partitions of [n] by Pn. In what follows, we will represent Π = B1/B2/ · · · /Bk ∈ Pn,k,
equivalently, by the canonical sequential form π = π1π2 · · ·πn wherein j ∈ Bπj , 1 ≤ j ≤ n, and in such
case we will write Π = π. Note that the word π = π1π2 · · ·πn is a restricted growth function from [n]
onto [k] (see, e.g., [12] for details). For example, the partition Π = 1, 5/2, 3, 7, 8/4/6 ∈ P8,4 has the
canonical sequential form π = 12231422.

A classical pattern τ is a member of [ℓ]m which contains all of the letters in [ℓ]. We say that a word
σ ∈ [k]n contains the classical pattern τ if σ contains a subsequence isomorphic to τ . Otherwise, we say
that σ avoids τ . For example, a word σ = σ1σ2 · · ·σn avoids the pattern 231 if it has no subsequence
σiσjσk with i < j < k and σk < σi < σj . The pattern avoidance question is a well studied problem
in enumerative combinatorics, starting with Knuth [5], who showed that the number of elements of Sn

avoiding the pattern τ is the n-th Catalan number Cn for all τ ∈ S3. Simion and Schmidt [9] later
extended this result by determining the number of elements of Sn avoiding the patterns in any subset
of S3. Comparable work has been done more recently concerning pattern avoidance on set partitions;
we refer the reader to the papers by Klazar [4], Sagan [7], and Jelínek and Mansour [3] and to the
references therein.

In what follows, we will represent set partitions as words using the canonical sequential form and
consider the problem of avoidance of certain classical patterns by these words. If {w1, w2, . . .} is a
set of classical patterns, then let Pn(w1, w2, . . .) and Pn,k(w1, w2, . . .) denote the subsets of Pn and
Pn,k, respectively, which avoid all of the patterns. We will denote the cardinalities of Pn(w1, w2, . . .)
and Pn,k(w1, w2, . . .) by pn(w1, w2, . . .) and pn,k(w1, w2, . . .), respectively. Note that pn(w1, w2, . . .) =∑

k≥0 pn,k(w1, w2, . . .).
In this paper, we identify �ve classes of partitions each avoiding a set of two classical patterns

of length four and each enumerated by the generalized Catalan number wn. This addresses some
particular cases of a general question raised by Goyt at the end of [2] concerning the avoidance by
�nite set partitions of two or more patterns of length four. Our main result is the following theorem
which we prove in the next section as a series of propositions.

Theorem 1.1 If n ≥ 0, then pn(u, v) = wn for the following pairs (u, v):

(1) (1211, 1212) (2) (1121, 1212) (3) (1121, 1221)
(4) (1112, 1123) (5) (1122, 1123).

Furthermore, in the �rst three cases above, we in fact have pn,k(u, v) the same for all n and k and
we supply two di�erent explicit formulas for it, thereby obtaining a seemingly new identity involving
Catalan numbers and binomial coe�cients.
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2 Pattern avoidance and generalized Catalan numbers

Theorem 1.1 above will follow from combining the results in the sections below. We start with the
patterns {1211, 1212} and {1121, 1212}.

2.1 The cases {1211, 1212} and {1121, 1212}

De�ne the polynomials wn(q) by

wn(q) =

n∑
k=1

pn,k(1211, 1212)q
k, n ∈ P,

with w0(q) = 1. We consider the following cases regarding members π of Pn(1211, 1212), where n ≥ 2:

1. π = 1π′, where π′ contains no 1's.

2. π = 1iπ′, where i ≥ 2 and π′ contains no 1's.

3. π = 1iπ′1π′′, where i ≥ 2, π′ and π′′ contain no 1's, and π′ is non-empty.

4. π = 1π′1π′′, where π′ and π′′ contain no 1's and π′ is non-empty.

In all of the cases above, note that π′ and π′′ avoid the patterns 1211 and 1212, with each letter of π′′

greater than each letter of π′ in the last two cases. Note that we get a contribution towards the total
weight of qwn−1(q) in the �rst case. The partitions in the second and third cases, combined, contribute
weight wn−1(q), for removing the �rst 1 yields a bijection between these members of Pn(1211, 1212)
and members of Pn−1(1211, 1212). For the fourth case, �rst observe that π′ and π′′ are both partitions
on their respective sets and have no letters in common. Thus, the members of Pn(1211, 1212) in this
case have weight q

∑n−2
i=1 wi(q)wn−2−i(q), upon considering the length i of π′. Combining all of the

cases yields the following recurrence for wn(q).

Proposition 2.1 If n ≥ 2, then

wn(q) = (1 + q)wn−1(q) + q

n−2∑
i=1

wi(q)wn−2−i(q), (3)

with w0(q) = 1 and w1(q) = q.

Recurrence (3) reduces to (1) when q = 1, which implies pn(1211, 1212) = wn. Let f(x; q) denote
the generating function

f(x; q) =
∑
n≥0

wn(q)x
n.

Multiplying both sides of (3) by xn and summing over n ≥ 2 implies that f(x; q) satis�es

qx2f2(x; q)− (1− qx)(1− x)f(x; q) + (1− x) = 0,
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and is thus given by

f(x; q) =
(1− qx)(1− x)−

√
[(1− qx)(1− x)]2 − 4qx2(1− x)

2qx2
, (4)

which generalizes (2).
The generating function f(x; q) can be written as

f(x; q) =
1

1− qx
C

(
qx2

(1− x)(1− qx)2

)
,

where C(t) is the ordinary generating function for the Catalan number Cn = 1
n+1

(
2n
n

)
, that is, C(t) =

1−
√
1−4t
2t (see, e.g., [11]). Thus,

f(x; q) =
∑
i≥0

Ci
qix2i

(1− x)i(1− qx)2i+1

=
∑
i,j≥0

Ci

(
2i+ j

j

)
x2i+j

(1− x)i
qi+j ,

which implies that the coe�cient of xnqk in the generating function f(x; q) is given by

k∑
i=1

Ci

(
k + i

2i

)(
n− 1− k

i− 1

)
, n > k ≥ 1.

Replacing 1211 with 1121 in the preceding and making some slight modi�cations shows that the
statistic recording the number of blocks on Pn(1121, 1212) has the same distribution as it does on
Pn(1211, 1212). Note that the third case above should instead concern partitions of the form π =
1π′1iπ′′, where neither π′ nor π′′ contains the letter 1, π′ is non-empty, and i ≥ 2. In particular, we
obtain the following result.

Proposition 2.2 If n ∈ N, then pn(1121, 1212) = pn(1211, 1212).

One may also prove Proposition 2.2 by de�ning bijections fk = fn,k between Pn,k(1211, 1212) and
Pn,k(1121, 1212) for each k and combining them. We construct the fk in a recursive fashion, letting f0
be the empty mapping and f1 = ιd. If k ≥ 2 and π ∈ Pn,k(1211, 1212), then let

fk(π) = 1ifk−1(π
′),

if π = 1iπ′ and i ≥ 1 (the mapping fk−1 here is understood to be applied to partitions on the letters
{2, 3, . . .}); let

fk(π) = 1fr(π
′)1ifs(π

′′),

if π = 1iπ′1π′′, where r + s = k − 1 and i ≥ 2; and let

fk(π) = 1fr(π
′)1fs(π

′′),

if π = 1π′1π′′, where r + s = k − 1. For example, if π = 11222343215565 ∈ P14,6(1211, 1212), then
f6(π) = 12343222115655 ∈ P14,6(1121, 1212). The above bijection can be extended to show, more
generally, that

pn,k(1
j21, 1212) = pn,k(121

j , 1212), n, k ∈ N,
where j ≥ 1.
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2.2 The case {1121, 1221}

We will show that the partitions avoiding {1121, 1221} are equivalent to those which avoid {1121, 1212},
implying pn(1121, 1221) = wn. In what follows, we will call a (maximal) sequence of identical consec-
utive letters a run (of the letter).

Proposition 2.3 If n ∈ N, then pn(1121, 1221) = pn(1121, 1212).

Proof. We will show pn,k(1121, 1221) = pn,k(1121, 1212) for all n and k. To do this, we �rst describe
an inductive procedure for generating the members of Pn,k(1121, 1212), starting with the largest letter.
First note that the k's occurring within a member π ∈ Pn,k(1121, 1212) are limited to a single run of
the letter. The possible positions of the k − 1's relative to the k's in π are then

(k − 1)(k − 1) · · · (k − 1)︸ ︷︷ ︸
r times

kk · · · k︸ ︷︷ ︸
s times

or
(k − 1) kk · · · k︸ ︷︷ ︸

s times

(k − 1)(k − 1) · · · (k − 1)︸ ︷︷ ︸
r times

,

where r and s are positive integers. One can then subsequently add the letters k − 2, k − 3, . . . , at
each point deciding whether a letter i occurs as a single run of letters or as two runs, the �rst of which
has length one. Given a partition π = π1π2 · · ·πm on the letters {2, 3, . . . , k} having k − 1 blocks and
avoiding the patterns 1121 and 1212, let us call the letter πi an active site (in accordance with the
generating tree methodology described in [13]) if one may write a non-empty sequence of the letter 1
directly to the right of πi within the partition 1π without creating an occurrence of 1121 or 1212.

Given k ≥ 2, let an,k,t denote the number of partitions of length n using the letters {2, 3, . . . , k},
avoiding the patterns 1121 and 1212, and having exactly t active sites. Note that we always have t ≥ 1,
since the last letter is always an active site. From the de�nitions, we may write

pn,k(1121, 1212) =
∑
t≥1

an,k+1,t, (5)

for all n ≥ k ≥ 1.
We now �nd a recurrence for the numbers an,k,t. LetAn,k,t denote the class of partitions enumerated

by an,k,t de�ned above. If k ≥ 1, we �rst observe that a member π ∈ An,k+1,t may be obtained by
writing a sequence of i 1's just before a member α ∈ An−i,k,t−1 for some i ≥ 1 and then adding one to
each letter of the resulting partition. Note that all of the active sites of α remain intact in π and that
there is an active site that has been created corresponding to the right-most 2 in π. Hence, there are∑

i≥1 an−i,k,t−1 possible members of An,k+1,t in this case.
Alternatively, one may add the 1's in the procedure described in the prior paragraph as two separate

runs, the �rst of which has length one. Note that this is the only other option since we are to avoid
1121. If one were to write a 1 before some β ∈ Am,k,j , add a non-empty run of 1's just after the t-th
active site of β from the right (where t ≤ j), and then add one to each letter, the resulting partition γ
would belong to Am+i,k+1,t for some i ≥ 2. To see this, note that all of the active sites in β to the left
of (and including) the t-th right-most one are deactivated in γ, while those to the right of it remain
active in γ, with the �nal 2 in γ now also active. Furthermore, no other active sites are lost or created
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in the transition from β to γ. Thus, the members of An,k+1,t having i 2's for some i occurring as two
runs number

∑
i≥2

∑
j≥t an−i,k,j . Combining this case with the prior one, we obtain the recurrence

an,k+1,t =

n−k+1∑
i=1

an−i,k,t−1 +

n−k+1∑
i=2

n−i∑
j=t

an−i,k,j , n ≥ k ≥ 2, t ≥ 1, (6)

with the initial values an,2,1 = 1 and an,2,m = 0 if m ≥ 2 for all n ≥ 1, where an,k,t = 0 if n < k − 1 or
if t > n or if t = 0 with n, k ∈ P.

We now turn to the case {1121, 1221}. Note that the positions of the k − 1's relative to the k's
within some member of Pn,k(1121, 1221) are given either by

(k − 1)(k − 1) · · · (k − 1)︸ ︷︷ ︸
r times

kk · · · k︸ ︷︷ ︸
s times

or
(k − 1)k (k − 1)(k − 1) · · · (k − 1)︸ ︷︷ ︸

r times

kk · · · k︸ ︷︷ ︸
s−1 times

,

where r and s are positive integers. We proceed similarly to the case {1121, 1212}, de�ning active site
just as before, with 1221 in place of 1212 in the de�nition. Make the same replacement in the de�nition
of an,k,t given above, letting bn,k,t represent the new sequence, and denote the set of partitions that
result by Bn,k,t. Note that the active sites now correspond to the �rst occurrences of letters instead of
�nal occurrences. From the de�nitions, we may write

pn,k(1121, 1221) =
∑
t≥1

bn,k+1,t,

for all n ≥ k ≥ 1.
To complete the proof that pn,k(1121, 1221) = pn,k(1121, 1212), it then su�ces to show that an,k,t =

bn,k,t for all possible values, and for this, we show that the sequence bn,k,t satis�es recurrence (6) since
it clearly satis�es the same initial conditions. Similar reasoning applies. For the �rst sum, suppose
α ∈ Bn−i,k,t−1, where i ≥ 1. If we write a 1 before α, write a run of i− 1 1's just after its right-most
active site, and then add one to each letter, the resulting partition π belongs to Bn,k+1,t. Note that all
of the active sites in α remain active in π and that an additional site occurs just after the �rst 2 of π
(which is its �rst letter). The contribution in this case is then

∑
i≥1 bn−i,k,t−1.

On the other hand, suppose we add 1's to an active site which is not the right-most one. In this
case, we can form γ ∈ Bn,k+1,t by writing a 1 just before β ∈ Bn−i,k,j , writing a run of i − 1 1's after
the (t− 1)-st left-most active site of β, and then adding one to each letter, where i ≥ 2 and j ≥ t. (If
t = 1, we simply add a run of i 1's just before some member of Bn−i,k,j , where j ≥ 1.) Note that the
t − 1 left-most active sites of β remain active in γ, with an additional site created after the �rst 2 in
γ. Thus, the contribution in this case is

∑
i≥2

∑
j≥t bn−i,k,j , which completes the proof. 2

Using recurrence (6), one may derive explicit formulas for the coe�cients an,k,t as follows. First,
we replace n by n− 1 in (6) and subtract to get the recurrence

an,k+1,t = an−1,k+1,t + an−1,k,t−1 +

n−2∑
j=t

an−2,k,j , n ≥ k ≥ 2, t ≥ 1. (7)
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If one de�nes An,k(u) =
∑n

t=1 an,k,tu
t, then multiplying (7) by ut and summing over t = 1, 2, . . . , n

yields

An,k+1(u) = An−1,k+1(u) + uAn−1,k(u) +
u

1− u
(An−2,k(1)−An−2,k(u)), n ≥ k ≥ 2. (8)

In order to solve this, we de�ne the generating function Ak(x;u) =
∑

n≥k−1An,k(u)x
n. Multiplying

(8) by xn and summing over n ≥ k yields

Ak+1(x;u) = xAk+1(x;u) + uxAk(x;u) +
ux2

1− u
(Ak(x; 1)−Ak(x;u)), k ≥ 2,

which is equivalent to

Ak+1(x;u) =
ux

1− x
Ak(x;u) +

ux2

(1− u)(1− x)
(Ak(x; 1)−Ak(x;u)), k ≥ 2, (9)

with the initial value A2(x;u) =
ux
1−x . If we de�ne A1(x;u) = 1, then one sees (9) holds for k = 1 as

well. Now, we de�ne the generating function A(x, q;u) =
∑

k≥1Ak(x;u)q
k. Multiplying (9) by qk+1

and summing over k ≥ 1 yields

A(x, q;u)− q =
uxq

1− x
A(x, q;u) +

ux2q

(1− u)(1− x)
(A(x, q; 1)−A(x, q;u)),

which is equivalent to(
1− uxq

1− x
+

ux2q

(1− u)(1− x)

)
A(x, q;u) = q +

ux2q

(1− u)(1− x)
A(x, q; 1). (10)

This type of functional equation can be solved systematically using the kernel method (see [1]). In this

case, if we assume that u = u0, where u0 = u0(x, q) satis�es 1− u0xq
1−x + u0x2q

(1−u0)(1−x) = 0, i.e.,

u0(x, q) =
(1 + xq)(1− x)−

√
(1 + xq)2(1− x)2 − 4xq(1− x)

2xq
,

then

A(x, q; 1) =
(1− x)(u0 − 1)

u0x2

=
(1− xq)(1− x)−

√
[(1 + xq)(1− x)]2 − 4xq(1− x)

2x2
. (11)

(Note that A(0, 0; 1) = 0 dictates our choice of root for u0(x, q) above.)

Observe that A(x, q; 1) = qf(x; q), in accordance with (5), where f(x; q) is given by (4) above.
Substituting q = 1 into (11) gives the generating function (2). Furthermore, substituting the expression
for A(x, q; 1) given in (11) into (10) yields an explicit formula for the generating function A(x, q;u),
from which one can recover the coe�cients an,k,t.
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Remark. Rewriting A(x, q; 1) as

A(x, q; 1) = −q(1− x)

x
+

q

x(1 + xq)
C(t),

where t = xq
(1−x)(1+xq)2

and C(t) =
∑

n≥0Cnt
n = 1−

√
1−4t
2t , we see that its xnqk+1 coe�cient is given

by
k∑

i=1

(−1)k−iCi

(
k + i

2i

)(
n+ i− k

i− 1

)
,

for all n ≥ k ≥ 1. Since this is also the value of pn,k(1121, 1212), comparison with the expression found
in the prior section for the xnqk coe�cient of f(x; q) yields the following Catalan number identity
which seems to be new:

k∑
i=1

Ci

(
k + i

2i

)(
n− 1− k

i− 1

)
=

k∑
i=1

(−1)k−iCi

(
k + i

2i

)(
n+ i− k

i− 1

)
, n, k ∈ P. (12)

2.3 The case {1112, 1123}

Let Pk(x) be the generating function for the number of set partitions of [n] having exactly k blocks
that avoid the patterns 1112 and 1123, where k is �xed. Suppose k ≥ 2 and π ∈ Pn,k(1112, 1123).
Then π may be uniquely expressed as π = 123 · · · (k− 1)π′, where π′ is a k-ary word that contains the
letter k and avoids 112 and 123. This implies the relation

Pk(x) = xk−1(Wk(x)−Wk−1(x)), k ≥ 2, (13)

where Wk(x) is the generating function for the number of k-ary words of length n that avoid 112 and
123. Note that (13) also holds when k = 1 since P1(x) =

x
1−x .

In order to �nd an explicit formula for the generating function Wk(x), we re�ne it as follows. Let
Wk,m(x) denote the generating function for the number of k-ary words π = π1π2 · · ·πn of length n that
avoid 112 and 123 such that π contains each of the letters 1, 2, . . . ,m exactly once with these letters
occurring from right to left in increasing order.

Our �rst step in �nding an explicit formula for Wk(x) is to establish a recurrence relation for
Wk,m(x).

Lemma 2.4 Let k ≥ 1. Then Wk,k(x) = xk and for all m = 1, 2, . . . , k − 1,

Wk,m(x) = Wk−1,m(x) +
1

1− x
Wk,m+1(x) +

m∑
j=1

xm+1−j

(1− x)m+2−j
Wk−m−1+j,j(x). (14)

Proof. Clearly, Wk,k(x) = xk. We �nd a recurrence for Wk,m(x) when m = 1, 2, . . . , k − 1. Let
π = π(m+1)mπ(m)(m− 1) · · ·π(2)1π(1) denote any k-ary word of length n that avoids 112 and 123 such
that π contains each of the letters 1, 2, . . . ,m exactly once with these letters occurring from right to
left in increasing order. We now consider the appearance of the letter m + 1 in π, distinguishing the
following cases:
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1. π does not contain the letter m+ 1: The contribution from this case is Wk−1,m(x).

2. π(m+1) contains the letter m+ 1 exactly once: We consider the following subcases:

• π(j) does not contain the letter m+1 for all j = 2, 3, . . . ,m and π(1) = π′(m+1) · · · (m+1).
Note that π′ can only have letters from the set {m + 2,m + 3, . . . , k}. The contribution
from this subcase is then 1

1−xWk,m+1(x).

• π(j) does not contain the letter m + 1 for all j = i + 1, i + 2, . . . ,m and π(i) contains the
letter m+ 1, which implies that

π(i)(i− 1) · · ·π(2)1π(1)

= π′(m+ 1) · · · (m+ 1)(i− 1)(m+ 1) · · · (m+ 1) · · · 1(m+ 1) · · · (m+ 1),

where π′ has letters greater than m+ 1 and the sequence of m+ 1's directly following it is
non-empty. The contribution is then xi

(1−x)i
Wk+1−i,m+2−i(x).

Thus the total contribution in this case is given by

1

1− x
Wk,m+1(x) +

m∑
j=2

xm+2−j

(1− x)m+2−j
Wk−m−1+j,j(x).

3. π(m+1) contains the letter m+ 1 at least twice: In this case, one may write π as

π = π′(m+ 1)π′′(m+ 1) · · · (m+ 1)m(m+ 1) · · · (m+ 1) · · · 1(m+ 1) · · · (m+ 1),

where π′ and π′′ have only letters greater than m+1 and all of the sequences of the letter m+1
coming after π′′ are possibly empty, except for the �rst. Thus, the contribution for this case is
given by xm+1

(1−x)m+1Wk−m,1(x).

4. π contains at least one letter m+ 1, but π(m+1) does not: Suppose π(i) contains m+ 1 for some
i ∈ [m], with i maximal. Then each π(j) is a (possibly empty) sequence of the letter m + 1 for
each j ∈ [i− 1]. That is, π may be written as

π = π(m+1)mπ(m)(m− 1) · · ·π(i+1)iπ′(m+ 1) · · · (m+ 1)

(i− 1)(m+ 1) · · · (m+ 1) · · · 1(m+ 1) · · · (m+ 1),

where π′, π(i+1), π(i+2), . . . , π(m+1) are words on {m+2, . . . , k} and all but the �rst sequence of
m+ 1's is possibly empty. Thus the total contribution in this case is given by

m∑
i=1

xi

(1− x)i
Wk−i,m−i+1(x) =

m∑
i=1

xm+1−i

(1− x)m+1−i
Wk−m−1+i,i(x).
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Adding all the above contributions implies that the generating functionWk,m(x) satis�es the recurrence
relation

Wk,m(x) = Wk−1,m(x) +
1

1− x
Wk,m+1(x) +

m∑
j=2

xm+2−j

(1− x)m+2−j
Wk−m−1+j,j(x)

+
xm+1

(1− x)m+1
Wk−m,1(x) +

m∑
i=1

xm+1−i

(1− x)m+1−i
Wk−m−1+i,i(x)

= Wk−1,m(x) +
1

1− x
Wk,m+1(x) +

m∑
j=1

xm+1−j

(1− x)m+2−j
Wk−m−1+j,j(x),

for all m = 1, 2, . . . , k − 1, as required. 2

We now de�ne the generating function Wk(x, u) =
∑k

m=1Wk,m(x)um−1. Multiplying (14) by um−1

and summing over m = 1, 2, . . . , k − 1, we obtain

Wk(x, u)− xkuk−1

= Wk−1(x, u) +
1

(1− x)u

k−1∑
m=1

Wk,m+1(x)u
m +

k−1∑
m=1

m∑
j=1

xm+1−j

(1− x)m+2−j
Wk−m−1+j,j(x)u

m−1

= Wk−1(x, u) +
1

(1− x)u
(Wk(x, u)−Wk(x, 0)) +

k−1∑
j=1

xk−j

(1− x)k+1−j
Wj(x, u)u

k−1−j ,

for all k ≥ 1. In order to solve the above recurrence relation, we de�ne the further generating function
W (x, u, y) =

∑
k≥1Wk(x, u)y

k. Multiplying the above recurrence relation by yk, summing over k ≥ 1,
and interchanging summation yields

W (x, u, y)− xy

1− xyu

= yW (x, u, y) +
1

(1− x)u
(W (x, u, y)−W (x, 0, y)) +

x
(1−x)2

1− x
1−xyu

∑
k≥1

Wk(x, u)y
k+1,

which is equivalent to

W (x, u, y) =
xy

1− xyu
+ yW (x, u, y) +

1

(1− x)u
(W (x, u, y)−W (x, 0, y))

+

xy
(1−x)2

1− x
1−xyu

W (x, u, y).

We solve this functional equation using the kernel method. If we assume that u = u0, where u0 =

u0(x, y) satis�es the equation 1 = y + 1
(1−x)u0

+
xy

(1−x)2

1− x
1−x

yu0
, i.e.,

u0(x, y) =
(1− x)(1− y)−

√
[(1− x)(1− y)]2 − 4xy(1− y)

2xy(1− y)
,
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then we get

W (x, 0, y) =
x(1− x)yu0(x, y)

1− xyu0(x, y)
. (15)

(Note that W (0, 0, 0) = 0 dictates our choice of root for u0(x, y) above.)
Now we may state the main result of this section.

Proposition 2.5 The generating function for the number of partitions of [n], n ≥ 0, that avoid the
patterns 1112 and 1123 is given by

(1− x)2 −
√
1− 4x+ 2x2 + x4

2x2
.

Proof. First note that every k-ary word π that avoids the patterns 112 and 123 and contains the letter
1 may be expressed uniquely as π = π′1π′′11 · · · 1, where π′ and π′′ are k-ary words that avoid the
patterns 112 and 123 but do not contain the letter 1. Thus, the generating function Wk(x) satis�es
the recurrence

Wk(x) = Wk−1(x) +
1

1− x
Wk,1(x), k ≥ 1,

where W0(x) = 1. Therefore, relation (13) gives

Pk(x) =
xk−1

1− x
Wk,1(x) =

xk

x(1− x)
Wk(x, 0).

Summing this over all k ≥ 1 then yields∑
k≥1

Pk(x) =
1

x(1− x)
W (x, 0, x),

which, by (15), implies

1 +
∑
k≥1

Pk(x) = 1 +
(1− x)2 −

√
1− 4x+ 2x2 + x4

x(1− x2 +
√
1− 4x+ 2x2 + x4)

=
(1− x)2 −

√
1− 4x+ 2x2 + x4

2x2
,

as required. 2

2.4 The case {1122, 1123}

Suppose the distinct letters in some word α are a1 < a2 < · · · < at and that α = ai1ai2 · · · ais
for some positive integers s and t with 1 ≤ ij ≤ t for each j. Let r(α) denote the word given
by at+1−isat+1−is−1 · · · at+1−i1 . We now de�ne an explicit bijection ρ between Pn,k(1112, 1123) and
Pn,k(1122, 1123), where we may clearly assume k ≥ 2. As previously noted, any member of the set
Pn,k(1112, 1123) can be written uniquely as π = 12 · · · (k− 1)π′, where π′ is a k-ary word avoiding the
patterns 112 and 123 and containing the letter k. We de�ne ρ(π) to be the word 12 · · · (k − 1)r(π′).
Note that r(π′) avoids the patterns 122 and 123 and contains the letter k if and only if π′ avoids
112 and 123 and contains k. Since each member of Pn,k(1122, 1123) can be expressed uniquely as
12 · · · (k− 1)π′′, where π′′ is a k-ary word that avoids the patterns 122 and 123 and contains the letter
k, we see that ρ is a bijection. Proposition 2.5 then gives
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Proposition 2.6 The generating function for the number of partitions of [n], n ≥ 0, that avoid the
patterns 1122 and 1123 is given by

(1− x)2 −
√
1− 4x+ 2x2 + x4

2x2
.

Remark. The bijection above shows further that pn(1123, 1τ) = pn(1123, 1r(τ)), where τ is any
classical pattern. The speci�c case described above is τ = 122.

We conclude by noting that the structure of this paper can be extended to study the number of
partitions of [n] avoiding other sets of patterns. In our study, we have already linked the number of
set partitions satisfying certain conditions to generalized Catalan numbers (as done in this paper),
Fibonacci numbers, Catalan numbers, sequence A054391 in [10] counting a restricted set of permuta-
tions, and sequence A005773 in [10] counting Motzkin left factors. These connections we will describe
in forthcoming papers.
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