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1. Introduction

Consider the finite setXn = {1,2, ...,n} ordered in the standard way. Let Tn denote
the full transformation semigroup on Xn, that is, the semigroup of all mappings a:
Xn->Xn under composition. We shall call a order-preserving if i ^ j implies ia. ^ j a
for i,jeXn, and a is decreasing if ia =S i for all ieXn. This paper investigates
combinatorial properties of the semigroup &n of all order-preserving mappings o n J n ,
and of its subsemigroup #„, which consists of all decreasing and order-preserving
mappings.

Combinatorial properties of Tn have been studied over a long period under various
guises and many interesting and delightful results have emerged (see, e.g. [7, 8]). Two
papers concerned with combinatorial results of &n are [11] and [3], while little seems
to have been written on <ian. The inverse semigroup of partial one-to-one order-
preserving maps has been studied by Garba[2]. Nevertheless both (9n and (€n have
arisen naturally in language theory: any ̂ -trivial finite semigroup divides some (€n

(see [14]) while a description of the class of semigroups that are divisors of some &n

remains an interesting open problem. It comes as a pleasant surprise that many
classical results from elementary analysis and combinatorics emerge as keys to our
combinatorial problems. For instance it transpires that |^n| = Cn, the nth Catalan
number, and indeed the standard Catalan identity (Result l-4) follows easily from a
natural partition of <gn. Many of our counting tasks can be formulated as certain
'ballot' problems and thus may be solved using Andre's Reflection Principle (Result
1*3). From single-variable calculus the Wallis Product arises during the calculation
of the mean number of orbits of a randomly chosen ae(Pn and allows us to prove that
this number approaches ^\Z(nn) for large n. By way of contrast, the mean number
of orbits of a e ^ n never exceeds 3: we find the distribution of the orbit number
explicitly in this case and obtain the limiting distribution.

We list some standard combinatorial results germane to our purposes. We shall
write the binomial coefficient (") also as C(n,r).

RESULT 11.

(i) 2£=0 C(n, k) G(m, k) = C(n + m,m) for n ^ m.
(ii) l*^0C{2k,k)C(2n-2k,n-k) = 4n.

To see (i), consider a collection of n red and m blue labelled balls. The number of
ways of choosing m balls from this collection can be thought of as the sum, from
k = 0 to n, of the number of ways of choosing k blue balls and m — k red balls, from
which the follows the identity.

To prove (ii) one can use the factorization (1— 4a;)~1 = (1— 4#)~*-(l— 4a;)~i The
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coefficient of xn in the binomial expansion of (1—4x)~5 is C(2n, n), while the
corresponding coefficient in the geometric series for (1 —4a;)"1 is 4". The coefficient in
the product is then the required summation.

As explained in [11], the members of (9n are in a natural one-to-one correspondence
with the sequences of n A's and n B's ending in B: given such a sequence the
corresponding mapping <xe&n is defined by the rule ia = j , where j is the number of
the next B in the sequence following the ith A. From this we see

RESULT 1-2. \On\ = G(2n-l,n-l).

Deleting the final B in such a sequence gives us an arbitrary sequence of n A !s and
(n — l)B's which can be thought of as the result of counting a ballot in which the two
candidates, A and B, receive n and n — 1 votes respectively. Such a count can be
represented as a lattice path from (0,0) to (2n — 1,1), where each point of the count
corresponds to a lattice point (p,q), and the following point on the path is (p+l,
q + 1) according as A or B polls the next vote. The lattice point (p,q) then signifies
a lead of q votes for A after p votes have been counted.

RESULT 1*3 (the reflection principle). Let a, b and c be positive integers. Then the
number of lattice paths from (0, a) to (b, c) which touch or cross the x-axis equals the total
number of lattice paths from (0, —a) to (b,c).

The principle follows from the observation that there is a bijection between the
two types of path defined by reflecting in the x-axis the initial segment of any path
of the first type up to the point where it first meets the axis (see Figure below).

(0,-a)

The bold path represents a typical lattice path from (0, a) to (b,c) which first meets
the axis as indicated. The dotted path represents the reflection of the initial segment
which, together with the remainder of the path, yields a lattice path from (0, —a) to
(b, c). In general there will be paths of either type if and only if there is some positive
integer d (representing the number of down-directed edges of the path from (0, —a))
such that 2d + a + c = b, that is, if and only if b — (a + c) is an even positive integer.
The number of such lattice paths is then C(b,d), corresponding to the number of
choices for selecting the positions of the d down-edges amongst the b edges of the
lattice path.

The nth Catalan number Cn is C(2n,n)/(n+l) = C(2n,n—\)/n. Historically, Cn
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was defined as the number of distinct bracketings of the (n+l)-fold product
x1x2... xn+1. Equally, Cn may be denned as the number of binary trees with n source
nodes, and as the number of ways of triangulating a convex (n + 2)-gon by means of
non-intersecting diagonals (see [10]). The amenability of Catalan numbers to
manipulation stems from the following convolution-style identity.

RESULT 1-4. S ^ C ^ CB_t = Cn.

This result can be verified by partition arguments appropriate to the type of
collection used to define Cn: we provide a new argument based on partitioning c€n in
Section 3.

Section 2 deals with combinatorial aspects of (9n while corresponding results for #„
appear in Section 3. Some results for Tn are stated along the way for the sake of
comparison. The content of Section 2 was in part the subject of the author's talk at
the Lisbon Conference on Lattices, Semigroups and Universal Algebra, and appears
in the proceedings of that meeting [7].

Notation. We shall write fix, ax, a\ for the mean, standard deviation, and
variance respectively of a random variable X (we shall also write Var {X) for the
latter quantity). Each aeTn can be pictured as a digraph on n vertices with ij an arc
of a if ia =j. Each component of such a digraph is functional, meaning that it
consists of a unique cycle, together with a number of trees rooted around the points
of the cycle. The components of the digraph of a correspond to the orbits of the
mapping a, where we say that the orbit of isXn is {jsXn: iar = jas for some positive
integers r, s}. The arrows within a tree rooted on the cycle of some component of a
point along the path towards the root of the tree. Hence if we follow the convention
that the cycles of a are directed anti-clockwise, then the arrows may be deleted from
the picture of a without loss of information, provided that one-cycles (which
correspond to fixed points) are shaded to avoid ambiguity. For further background
see [8].

PROPOSITION 1-5. The cycles of the components of ae&n each consist of a unique fixed
point. Each orbit of ae(9n is convex in the ordered set Xn.

Proof. Suppose that i,jeXn are distinct members of some cycle of a component of
a, so that j = iar, i = jas for some positive integers r and s. Suppose that i < ia. We
then obtain an increasing sequence i,ia,ia2, ...,iar =j,iar+x, ...,iar+s. But iar+s =
jas = i, giving equality throughout, and yielding the contradiction that i = j . The
same contradiction results if i > ia, so that all cycles of the digraph of ae&n are
trivial.

Next let C be an orbit of aeOn with (unique) fixed point p say, and let c and d be
the respective minimum and maximum members of C. Let r, s be the respective least
non-negative integers such that car = das = p. Then

c < ca < ca2 < ... < car = p = das < da3'1 < ... < da < d.

Let keXn lie between c and d. Then either cam < k ^ cam+1 for some 0 ^ m ^ r— 1,
or dam ^ k > dam+1 for some 0 ^ m < s — 1. In the first case we obtain

p = oaj = cam+r ^ kar ^ cam+l+r = p,
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which gives kctr = p, so that keC. A similar argument and conclusion applies in the
alternative case, and so we conclude that C = {keXn: c ̂  k < d}, as required.

Remark. It follows from Proposition 1-5 that the digraph of any <xs(9n is a forest
of rooted, labelled trees (each vertex is labelled by a member of Xn, and each
component is a tree with a distinguished root vertex in the unique fixed point of the
component). It is easy to verify that this is a necessary and sufficient condition on
a subsemigroup S of Tn to ensure that S is aperiodic or combinatorial meaning that
all the subgroups of S are trivial. This is also equivalent to Green's JJ? relation being
trivial.

2. The semigroup of order-preserving mappings

Let 8r = {m1>m2, ...,mr} with 1 ̂  m1 < m2 < ... < mr ̂  n. An order-preserving
mapping a: Sr^-Xn is determined by the choice of p1>p2, ...,pr such that 1 ̂  p1 ^
p2 ^ ... ̂ pr^n, where mia=p{ (i = 1,2, ...,r). We can then represent a as a
sequence of r A's and n B's, consisting of pl — 1 B's followed by an A;p2—p1 B's
followed by an A ; . . . ;pr— pr_x B's followed by an A; and finally n—pr+l B's.

For example, if n = 6 and Sr ={1,2,4,6} then the map

1 2 4 6
1 3 3 5

is associated with the sequence ABBAABBABB. Any such sequence is determined by
the choice of the r places among the r + n—1 available for the positioning of the A's.
Hence we conclude that the number of order-preserving maps from Sr into Xn is
C(r + n—l,r) = C(r+n—l,n—l).

Let Yn(a) stand for the random variable, the value of which is the rank of a (that
is, |ima| where a is a randomly selected member of <9n).

LEMMA 2-1. E(Yn) = n2/(2n-l), crYn = V((n-l)/2)-n/(2n-l).

Proof. We first show that the number of order-preserving mappings a: Sr->Xn

such that rank a = k is given by C(n, k)-C(r— l,k— 1) (1 < k < r): the first factor
counts the choices for ima = {i1,i2,...,ilc} say, while the second counts the choices
for the set Pa = {j)1,p2, •••,Pic), where p} is the greatest member of Sr such that pi0L =
ij (1 ^ j ' ^ k). (Note that pk must equal mr, and thus p^ < mr, for all j < k). Since
a is determined by the choice of the pair (iraa,PJ and different pairs determine
different mappings, the assertion is established.

Now take a.s(9n with rank a = r, while ft is a randomly chosen member of &n.
Denote the random variable with value rank a/? by Ynr. From the foregoing we
obtain

P r ( 7 _j.,C(n,k)C(r-l,k-l)
n'T C(r + n— l,n— 1)

(Taking r = n thus gives the distribution of Yn.) Hence

r
E(Ynr) = (Cir + ̂ n-l))-1 £ W(n,k)C(r-l,k-l)

fc-i

n '-1

C{n-l,k)C(r-l,k).
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By Result 1-1 (i) this equals

C( + 2 l ) (2-3)
C(r + n-l,n-l) ' n + r-1'

If one now takes r = n, (2-3) yields the stated result for E(Fn) = E(Yn n). Again by
using (2-2) one obtains

-Lw-1)-1 £ k(k-l)C(n,k)C(r-l,k-l)
k-2

r~1}
 t/zC(n-l,k)C(r-2,k-l).

We re-write this using the identity

C{r-2,k-l) = C{r-l,k)-C(r-2,k).

We obtain, using Result 1-1 (i),

E(yBir(rn>r-i))

C^ + w - l . w - l ) ^ . !
-l,k)-^ C(n-l,k)C(r-2,k)

n(n— l)r(r— 1)

Then from the general fact that a\ = E(X(X-1))-E(X) (E(Z)-l) we obtain

and in particular Var(l^ r) < n for all values of r = 1,2, ...,n. The value of the
standard deviation of Yn is obtained by putting r = n and taking square roots, thus
completing the proof.

THEOREM 2-5. Let Zk be the random variable with value ri~x rank (ax a2 . . . afc), where
aj ,a2 , ...,afc are randomly selected members of (9n. Then

Mk= l imE(Zf c)= 1/(1+A) for all k^ I.
n-*cc

Remark. If we replace Cn by Tra in this result then we obtain Mk ~ 2/k: see [6].

Proof. We prove by induction on k both the stated value for Mk and that o~z ->• 0
as n->- oo ; that this is true for k = 1 follows from Lemma 2-1. Assume that our claim
holds for some arbitrary value k— 1 ̂  1 and let 5, e > 0 be given. From Chebyshev's
Inequality, for any positive number R we have

Pr ( | V , - ^ - x l > tf<r, _) ̂  \jR\ where ^t_1 = E(ZW).
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Choose R so that 1/R2 < e. Then choose N sufficiently large so that Raz _ < 8/2
and l/^.j -Mk^\ < 8/2 for all n ̂  N. Thus, for all n ̂  N, \Zlc_1-Mk_1\ ̂  8 implies
that \Zk_1—ju,lc_1\ + \/ik_1—Mk_1\ ^ 8, and hence \Zk_l—fik_1\ > 8/2. Therefore

P r d Z ^ - J f ^ l ^ *) ̂  Pr fl^-^.J ^ 5/2) < e

for all n~5*N. We conclude that Pr (IZ^j — M^J < £) > 1 — e for all sufficiently large
values of n. Now, by (2-3),

1 ' ' (n + r-l) (l+r/n-l/n)'

and this is increasing in r. Hence

= £ Pr (Zt_x = r/n) E(Zfc | Zfc_t = r/n)

Zk_1=Mk_1-8), (2-6)

so that

+ k-k8 &sn^co' (2?)

which approaches 1/(1 +k) as 8, e->0. Similarly, splitting the sum in (2-6) into two
sums corresponding to r/n ^ Mk_x + 8 and r/n > Mk_1 + 8, and taking appropriate
bounds yields

which also approaches 1/(1 + ;̂) as #, e-*0 and (2-7) and (2-8) together yield that
Mk— 1/(1+&). We complete the proof by verifying inductively that cZ/c^-0 as
TO-> oo.

Write Wk = nZk, Pi = Pr(Wk = i), Pii = Pr(Wk = i\ Wk_x = j), q, = Pr (Wk_, = j),
and fij = E(H .̂| Wk_1 = j) for 1 ̂  i,ji^ ?z. For the moment let a be arbitrary and
consider

ip^i-a)2 = E fs2»«?,)(»-a)2 = iq

Write i — a as i — fy + fij — a and expand to obtain

*-/«/+ 2 ip^i-^) {p,-a)+ £ ̂ (a-/i;.)
2). (2-9)

t = l

Now S"=1ptf(i—/t^)2 = «Tyn = (9(/i) by (2-4). Also Ij^p^i — fij) is identically zero, so
that the sum of the first two terms in (2-9) is 0(n). The remaining term equals

^ ) 2 . (2-10)

By Chebyshev's Inequality, for any positive value of R,
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Let e > 0 be arbitrary, and take R such that l/R2 < e. SinceBcrw = o(n), it follows
that there exists intervals In of length o(n) such that the probability that Wk_x lies
outside /„ is less than e. Take i = i(n) to be a fixed member of /„ fl Xn, and put
a = l(Wk\ W _̂! = i). Now recall that

say,

Hence \a — E(Wk\Wk_1=j)\^\i—j\=o(n) for all jeln Pi Xn. Therefore the sum-
mation 2 of (2-10) is such that

2 =

Therefore we obtain that

and hence that <r\k ^ o(l) + e, and since e was arbitrary, it follows that o\k = o(l),
whence crz = o(l), as required.

Let Zn(a) now denote the random variable the value of which is the number of
fixed points of a randomly selected oce&n. By Proposition 1-5, Zn(oc) also equals the
component number of the digraph of a, and also the number of cycle points.

The number of mappings ae(9n with ka = k for all keXn is the product of the
number of order-preserving mappings from Xlc_1 to Xk and the number of such maps
from Xn__k to Xn_k+1. By the remark preceding the proof of Lemma 2-1 the number
of order-preserving maps from a set of order r to a set of order n is C(r + n—l,n—l),
whence we conclude that

_ C(2k-2,k-l)C(2n-2k,n-k)
~ C(2n-l,n-l) '

Hence
n

= 2 Pr (ka = k)

= C(2n-i,n-\.)-1 2 C(2k-2,k-l)G(2n-2k,n-k)

-l,n-1)"1 2 C{2k,k)C(2m-2k,m-k),
k-0

where m = n— 1. From Result 1-1 (ii) one now obtains the first statement in the next
result.

THEOREM 2-11. E(ZJ = 4"~VC(2n- l , » - l ) . Moreover (<E(Zn)-y/{nn)/2)^-0 as
CO.
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Proof. To verify that the mean is of order -\/(n7r)/2 one readily shows that

2(E(Zn))
2 _ (2-4-6 ... (2n-2))2-2n

n ~ (1-3-5... (2n-l))2 '

This is the product of Wallis which approaches n/2, from which we infer that
E(Zn) ~ \/(n7T)/2. In the course of the proof of the Wallis limit it is established that

(2-4-6. ..2nf n (2-4-6... 2n)2

(l-3-5...(2n-l))2(2n+l) 2 (1 - 3 5 . . . (2n-l))22n

from which we obtain that
4E»(ZB) < n < 4E2(Zn)
2n + l ^ 2 *~~ 2rc

This yields 0 < 4E2(Zn)-nn ^ 4E2(Zn)/(2n+l).

We deduce from above that the ratio on the right approaches n/2, and thus

4E2(Zn)-nn=O(l),

from which it follows that E(Zn)-V(nn)/2^0.

Remarks. The closest analogue of this result for Tn concerns the random variable
Xn(a)(aeTn), the value of which is the order of the stable range to a (which
corresponds to the number of cycle points of the digraph of a). It is shown in [9] that

The proof of this result is based on Stirling's factorial approximation formula
and a result of Ramanujan concerning the 'first half of the McLaurin series for en.
By contrast, the component number of oceTn has a mean that only increases
logarithmically with n. It is shown in [9] that if Cn(a) denotes the number of
components of a randomly selected aeTn then

where y is the Euler—Mascheroni constant. The first proof of this fact is due to
Kruskal[13]. From Lemma 2-1 it follows readily that the mean value of Yn(a) (the
rank of a random oce(9n) satisfies

(E(Yn)-n/2)H

The corresponding result for Rn{<x), the rank of a random asTn, is noted in [9]:

Katz [12] considered the problem of finding the probabilitj' of'indecomposability' of
a randomly selected aeTn, by which was meant the probability that a has only one
component. He proved that this probability is of order \Z(n/2n). We shall now solve
the corresponding problem for (9n. The 'ballot' argument involved also furnishes us
with the value of |#J.

Recall from the first section the natural one-to-one correspondence between cte@n

and a ballot in which candidate A polls n votes while candidate B polls n—l votes.
Observe that isXn is a fixed point of ae(5n if and only if in the count of the
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corresponding ballot the ith A appears between the (i — l)th and the ith B. In terms
of the count, this corresponds to a tie after 2i — 2 votes, with A polling the next vote.
Now to say that <xe&n is indecomposable means exactly that a has a unique fixed
point, which, formulated in terms of the corresponding ballot count, means precisely
that A never surrenders the lead once he has taken it (i.e. once A is strictly ahead in
the count, he stays strictly ahead).

We consider a more general ballot in which A polls n + r votes while his opponent
B polls n votes (r ^ 1), and we seek the probability that A never relinquishes the lead
once he has gained it. Let J\ denote the set of ballots of this type, let Y2 denote the
set of ballots in which A never trails at any point in the count, and let Y = Fx U Y2.
Consider a e Y, and let (p, 0) be the final point on the lattice path of a where the count
is tied. Let a' be the count of the lattice path which results from reflection of that
portion of the path of a from (0,0) to (p, 0) in the x-axis. Then a' eY and we observe
that the mapping ': Y^- Y defines a bijection between Y1 and Y2 with (a')' = a. In
fact, ' defines a bijection between Yt\Y2 and Y2\Y1 as Yx fl E> consists precisely of all
those counts where A leads throughout, which coincides with the set of fixed points
of the mapping '.

We next find |E>|( = \Y^) by calculating the order of the complementary set of
counts, which consists of all those counts during which A trails B at some point. The
number of paths that correspond to counts where A falls behind at some point equals
the number of lattice paths from (0,0) to (2n + r,r) which touch or cross the line
y = — 1. By the Reflection Principle (Result 1-3) this equals the number of lattice
paths from ( — 2,0) to (2n + r,r), which is C(2n + r, n — 1); the n—1 corresponds to the
n— 1 places where the path dips, leaving n + r+l rises. Hence the probability that
A trails J5 at some time during the count is C(2n + r, n—1 )/C(2n + r,n) = n/(n + r+ 1).
Hence the probability of the complementary event that A never trails is
1— n/(n + r + l) = (r+l)/(n + r+l), and this equals the probability that A never
loses his lead once he has gained it. By taking r — 1 and replacing n by n — 1 we
obtain our required result.

THEOREM 2-12. The probability that ae(9n is indecomposable is 2/(n + l).

3. The semigroup of all decreasing and order-preserving mappings

We saw in the preceding section that a mapping ae(9n is indecomposable if and
only if in the corresponding ballot count the winning candidate A never relinquishes
his lead once he has gained it, and that this collection of counts is in bijection with
the set of counts where A never trails his opponent. We now ask what type of
mapping this latter set of counts represents. Candidate A never trails in the count if
and only if the ith vote for A appears before the ith vote for B for i = 1,2,..., n; in
other words, the number of votes for A preceding the ith for B in the sequence is
always greater than or equal to i. In the corresponding mapping, since each ieXn is
mapped to the number of the next B following the ith A in the sequence, this
condition is equivalent to ia =% i for all ieXn. Therefore the collection of mappings
corresponding to the set of counts in which the winning candidate never trails is <̂ n,
the semigroup of order-preserving and decreasing mappings, and |^n| equals the
cardinality of the set of all indecomposable mappings in (9n. This yields our next
result.
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THEOREM 3-1. |#n| = Cn, the nth Catalan number.

Proof. From the preceding argument, together with Theorem 2-12 and Result 1-2,
we have

. „ . „ _ . , , , ,, 2 (2n-l\ 1 (2n\
\%,\ = p e % : OL indecomposable}, = = ,
' "' ' " v " ' n+l\n-l) n+l\n)'

which is the nth Catalan number.

Remarks. For each collection of counts of a given ballot there corresponds a dual
collection obtained by reversing the count sequence of the ballot. Given a count
where A never relinquishes his lead once he has gained it, the dual count has the
property that A never relinquishes his eventual winning lead once he has taken it. In
our case, since the winning margin for A is one, the characteristic conditions of both
types of count are identical, so that the set of indecomposable mappings of (9n is self-
dual under this correspondence. On the other hand, the dual of the condition that A
never trails in the count is that A's lead never exceeds his eventually winning margin,
which in our case is tantamount to saying that A's lead never exceeds one. This is to
say that the number of the next B to follow the ith vote for A in the count is at least
i, or in terms of the corresponding mapping a.,ia^ i for all ieXn. Hence the dual to
*<?„ under this correspondence is the isomorphic semigroup of all increasing and order-
preserving mappings on Xn.

There are natural bijections between ^n and other standard collections of order Cn

which thus yield alternative proofs of Theorem 3-1. We give the specific connection
between C6n and the set of all binary trees on n source nodes. In this context it is more
natural to take the base set Xn to be {0,1, 2, ...,n— 1}.

By a binary tree we shall mean complete binary tree where every node u is either
a source node, meaning that there are exactly two arcs from u leading to its two sons,
or that u is an endpoint or leaf. Every node except the uppermost root of the tree is
the son of exactly one source node, so that it follows that a binary tree with n source
nodes has 2n+l nodes in all. We shall also assume that our binary trees are ordered,
in the sense that the nodes are consecutively numbered in the order in which they are
met while carrying out an anti-clockwise search of the tree, beginning at the root. An
example of a binary tree with seven source nodes is given below.

12

11

9 10

Given a binary tree B on n source nodes (and so with n+ 1 leaf nodes) we associate
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a mapping a e *£„ by the rule that i H> t, where t leaf nodes precede the ith source node
in the ordering of the nodes of B. To see that ae&n observe that our rule certainly
defines an order-preserving map on Xn, and since the final source node precedes its
two sons in the ordering of the nodes, the maximum possible value of (n— l ) a is
Ti+1 — 2 = n — 1. We can then prove by induction on n that a also has the decreasing
property: remove the two sons of the final source node from B to give a binary tree
B' on n—1 source nodes, which, by induction, we may assume is associated with a
member of <^n_1 by the above rule. Indeed, the mapping a' associated with B' is just
the restriction of the mapping a to Xn_lt and so, by the inductive hypothesis, we
have that a\Xn_1 is decreasing, and we have already observed that (n— l)oc ̂ n— 1,
allowing us to conclude that ae%>n. The mapping ae% associated with our binary
tree above has its ordered list of images of the members of X7 the tuple (0,0,1,1,3,
3,6).

Conversely, we can associate with any a e ^ , a binary tree B on n source nodes
using the inverse of the foregoing procedure. Suppose inductively that we have
associated with a' = a\Xn_x a binary treeB' on n— 1 source nodes in such a way that
B' is associated with a by the procedure of the preceding paragraph. Let k denote
(n— 1) a. The tree B' has n leaf nodes. Take the (fc+ l)th leaf node (with k + 1 ̂  n),
and replace it by a source node to form the binary tree B. By construction, the
mapping associated with B is a, as required.

The number of indecomposable a e ^ , is easily obtained through our ballot
correspondence. In terms of the corresponding count,

(i) a e ^ , if and only if A never trails B in the count,
(ii) a is indecomposable if and only if A never relinquishes the lead once gained.
The conjunction of this pair of conditions is equivalent to the single constraint that

A leads the count throughout. The enumeration of such counts is the classical
Bertrand-Whitworth ballot problem, readily solved by the Reflection Principle (see
[1] or [10]), and in general, the probability of such a ballot is r/(2n + r). Again, upon
putting r = 1 and replacing n by n — 1 we see that the proportion of such mappings
in %>n is

1 /2n-l\
2n-l\n-l) "-1"

This yields

PROPOSITION 3-2. The proportion of indecomposable mappings in %>n is

asw->oo.

It is interesting here that the probability decreases to |, and not to 0, as is the case
with &n and Tn. This suggests the existence of a limiting distribution for Zn{a), where
Zn(a) denotes the component number of a randomly chosen a e ^ n . Our determination
of this limiting distribution involves the use of the standard Catalan identity for
which we can now offer a new proof.

Proof of Result 1-4. Partition (€n into n disjoint sets if j , if 2, ••.,Kn, where oceKk if
k is the greatest integer such that ka = k. Note that aeK1 if and only if 1 is the
unique fixed point of a, which is to say that a. is indecomposable. Then

I«U = S 1**1-
4=1
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Now \Kk\ = \(^k_l\\{oce(Sn_k+1: a indecomposable}| = Glc_1Cn_k, since, in general, the
number of indecomposable mappings in Cn is Gn_v Hence

n

\^n\ = 2 C'fc_1 Cn_k.
fc-1

We can use this result to show that the expected number of components of a random
a e ^ n is a monotonic function of n increasing to a limit of 3. This contrasts with
Theorem 2-11 which shows that the mean component number in (9n is of order \/n.

PROPOSITION 3-3. E(Zn) = 3n/(n+2) where Zn(a) is the component number of a
random

Proof. We have

£ fex = k) = C-n
l

Glc_lCn+1_h. — CnC0\ = (Cn+1 — Cn)/Cn

2(2n+l) t _ 3n
n+2 n+2

Let N(n, k) = \{ae^n: a has exactly k fixed points}|.

LEMMA 3-4.

Proof. Using Proposition 3"2 we have

iV(w, 1) = \{ae^n: a indecomposable}| = Gn_1

= (l/n)C(2n-2,n-l) =

as asserted. Using the argument of the proof of Result 1-4, we focus attention on the
final fixed point of a mapping in (€n and conclude that

N(n,2) = n-ZN(k, l)N(n-k, 1) = "z C^C^^,

by Result 1-4, and Cn_j = {2/(2n-2))C(2n-2,N), as required.
We next establish the recurrence

N(n,k+1) =N(n,k)-N(n-l,lc-l) for k = 1,2, . . . ,? i - l . (3-5)

The above calculation shows that (35) is valid for k = 1 (asiV(?i,0) = 0). Take fc ̂  2.
By considering the final fixed point t oi asc^n with exactly k+1 fixed points we see
that

n

JV(?I,&+1)= % N{t-l,k)N(n-t+l,l). (3-6)
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By considering the penultimate fixed point t we also have

n- l
N(n,k+l)= ~ZN(t-l,k-l)N(n-t + l,2). (3-7)

(-*

But we know that N(n — t+1,2) =N(n — t+l, 1), and so, by substituting accordingly
in (3-7), we obtain

N(n,k+l) = ?lN(t-l,k
t-k

Therefore N(n,k+l) = N(n, k)— N{n— 1, k— 1), as asserted.
It is now a routine matter, using a double induction on n and k, to verify that the

solution to our recurrence is given by

N(n,k) = (k/(2n-k))C(2n-k,n) for k = 1,2, ...,n.

THEOREM 3-8. The probability distribution for the random variable Zn(a), the
component number of a random ae<^n is given by

r. iv n i ;\ k(n+1) (n-l) (n-2)... (n-k+1)
T>v(Zn = k)=p(n,k) = 2{2n_l){2n_2)_{2n_k) fork=l,2,...,n. (3-9)

As n increases, Zn approaches in distribution and in moments the random variable Z,
where pk = Fr(Z = k) = k/2k+1 for k = 1,2,.... In particular, the limiting values of
the mean and variance are 3 and 2 respectively. Furthermore, for n > 1, the probability
sequence is bi-modal, with modes k = 1 and k = 2, and is strictly monotonically
decreasing for k > 2, features shared with the limiting distribution Z.

Proof. Except for the statement about moments, this is now immediate: from
Theorem 3-l and Lemma 3-4 we obtain

which simplifies to yield the expression (3-9). That \imn^xp(n, k) = k/2k+1 follows on
dividing each of the last k terms in the numerator and denominator by n, so that Zn

approaches Z in distribution. From (3-9) we deduce the recurrence

~ ^ fo r fc= l l 2 , . . . I n - l (3-10)

from which the statements on modes and on monotonicity follow. The statement on
convergence in moments can be deduced from the following fact.

LEMMA 3-11. If n > 2 then p(n, k) > pk for k = 1,2,3 and p(n, k) < pk for k ^ 4.

Proof. Direct calculation using (3-9) allows one to that the assertions of the
Lemma for k = 1,2,3 and 4. It remains only to observe that if p(n, k) < pk for some
k, then (3-10) yields

from which we infer that p(n, k+ 1) < pk+1. The result now follows by induction on
k. To show convergence in moments, first observe that E(Z') certainly exists for
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t = 1,2,... (indeed the values of \E(Zl) are integers, and can be calculated recursively).
Let ( be a positive integer, and let e > 0 be given. Choose N ̂  3 such that

2
k=N+l

Then, for any positive integer n,

k\pk-p(n,k))

N

k-\

00 CO

- 2 ktplc+ 2 klip{n,k).
k-N+l k-N+1

Since Zm approaches Z in distribution, it follows that for sufficiently large n the first
term is less than e/3; the same is true of the second term, and of the third which is
bounded by the second. Hence, for all n sufficiently large, |E(Z') — E(Z^)| < e, and so Zn

approaches Z in moments also.

Remark. Using the fact that p(n, k) < pk for all k sufficiently large, it can be shown
that E(.Z(

W) < E(Zl) for all positive integers n and t.

The probability distribution for the component number of a random a e &n can be
calculated explicitly in a similar fashion. Let us now write Zn(a) for the component
number of a randomly chosen oce(Dn, andletjV(?i,&) be the cardinality of {oce&n: a has
exactly k components}.

THEOREM 3-12. Let p(n,k) = Vv[Zn = k), where Zn is the component number of a
random as(9n. Then

The distribution of Zn has a unique mode at [(| +2n) — 1)], the greatest integer
not exceeding (|) (-\/{\. +2n) — 1), unless l+2n is a perfect square, in which case
[(I) V( l +2n)+ 1] is another mode. The distribution decreases monotonically on either
side of the mode(s) with the minimum occurring at k = n. Furthermore, p(n, k) ~ 2k/n
as n ->• oo.

Proof. Assertion (3-13) for k = 1 is Theorem 2-12; in this c a s e i n , 1) = Cn. In order
to establish (3-13) for k > 1 it is enough, by Result 1-2, to verify that

n\(n ~ ' ''"' ( '

We do this by proving the analogue of Lemma 3-4.

LEMMA 315.

N(n,k+l) =N(n+l,k)-2N(n,k)-N(n,k-l) fork= l,2,...,n-l.

Proof. Let a be a typical member of &n with exactly two components, and thus two
fixed points, p < q, say. Bearing in mind the convexity of the orbits of a (Proposition
1-5), and letting t be the maximum of the orbit of p, we see that

N(n,2) = %N(t, l)N{n-t, 1) = V Ct Cn_t = £ Ct_x Cn+1_t.
« - l ( - 1 (=2
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Applying Result 1-4 then yields that

N(n,2) = Cn+1-C0Cn-CnC0 = Cn+1-2Cn.

In other words, iV(7i,2) =N(n+l, l) — 2N(n, 1), in agreement with the statement of
our lemma.

Next, for k ̂  2, by considering the final, and then the penultimate fixed point of
a mapping from &n with exactly k+1 fixed points, we obtain the expressions

N{n,k+l)= 2 J\r(«,Jfe)JV(n-«, 1), (3-16)

n-2

N{n,k+l)= 2 N(t,k-l)N(n-t,2). (3-17)

Replacing N(n~t, 2) by iV(n-«+l, l)-2JV(w-«, 1) in (3-17) yields that

JV(n,A+l)= S N(t,k-l)N(n-t+I,l)-2 2 JV(*,&-l)JV(?i-<, 1).
t~k-\ t-k-1

From (3-16) we see that the first term can be written as

N(n+l,k)-N(n-i,k-l)N(2,l)-N(n,k

while the summation in the second term equals

Combining these expressions yields

N(n,k + l)=N(n+l,k)-2N(n,k)-N(n,k-l)

as required. A routine calculation now shows that the expression for N(n, k) given in
(3-14) is correct, and thus (3-13) is also.

From (3-13) comes the recurrence relation

From (3-18) it follows that

p(n,k+l)>p(n,k) ifandonlyif k < {\)(^/{\ + 2n)-1) (3-19)

with equality occurring in both sides simultaneously. Using [x] to denote the greatest
integer not exceeding a real number x, we see that if (|) (V(l +2n) — 1) is not an
integer then Zn has a unique mode at [(|) (\/(l+2n)— 1)], while otherwise Zn is
bi-modal with modes [(|) (V(l +2n)± 1)]. That the distribution of Zn falls away
monotonically on either side of the mode(s) follows from (3-19), and that the
minimum value of p(n, k) occurs at k = n follows by comparing p(n, 1) = 2/(n+l)
with p(n,n) = l/C(2n-l,n- 1). Finally, from (3-13),

and since the bracketed term approaches 1 for large n, it follows that p(n, k) ~ 2k/n
as n^co.
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In [11], the cardinality of E(&n), the set of idempotents of &n, was shown to be F2n,
the 2?ith Fibonacci number. This was achieved by solving a certain recurrence
relation. Determining the order of E{^n) is, however, a simple matter, for any
aeE(^n) is determined by iraa, the image of a. To see this, first recall that oceTn is an
idempotent if and only if im a and the set of fixed points of a coincide. If we further
suppose that aeE(^n) then, for any ieXn, ia ^ i,ia is a fixed point of a, and since
a preserves order, ia must be the greatest fixed point less than or equal to i. Hence
an idempotent of (4n is determined by its image and thus \E^€n)\ — |{ima: ae^n}|.
Now the subsets of Xn which occur as images of mappings ae? B are exactly the
subsets of Xn that contain 1. This yields the first statement in our final result.

THEOREM 3-19. \E(<£n)\ = 2""1. Furthermore, R = \E(%)\/\^J ~ ^(nn) (n+ l)/2n+1.

Proof. We have E = 2n-1/Cn, from which one obtains 4n+1R2/2n(n+l)2 = Wn,
where Wn is the Wallis product as in the proof of Theorem 2-11. Hence we deduce that
2n+1RI'(V'(nn) (n+l))-* 1 as n-> oo, as required.

Remark. For an investigation of the number of idempotents of finite full
transformation semigroups see [4] and [5].
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