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Abstract

This thesis studies cloud capacity auto-scaling, or how to provision and release re-
sources to a service running in the cloud based on its actual demand using an auto-
matic controller. As the performance of server systems depends on the system design,
the system implementation, and the workloads the system is subjected to, we focus
on these aspects with respect to designing auto-scaling algorithms. Towards this goal,
we design and implement two auto-scaling algorithms for cloud infrastructures. The
algorithms predict the future load for an application running in the cloud. We discuss
the different approaches to designing an auto-scaler combining reactive and proactive
control methods, and to be able to handle long running requests, e.g., tasks running
for longer than the actuation interval, in a cloud. We compare the performance of
our algorithms with state-of-the-art auto-scalers and evaluate the controllers’ perfor-
mance with a set of workloads. As any controller is designed with an assumption
on the operating conditions and system dynamics, the performance of an auto-scaler
varies with different workloads.

In order to better understand the workload dynamics and evolution, we analyze a
6-years long workload trace of the sixth most popular Internet website. In addition,
we analyze a workload from one of the largest Video-on-Demand streaming services
in Sweden. We discuss the popularity of objects served by the two services, the spikes
in the two workloads, and the invariants in the workloads. We also introduce, a mea-
sure for the disorder in a workload, i.e., the amount of burstiness. The measure is
based on Sample Entropy, an empirical statistic used in biomedical signal processing
to characterize biomedical signals. The introduced measure can be used to charac-
terize the workloads based on their burstiness profiles. We compare our introduced
measure with the literature on quantifying burstiness in a server workload, and show
the advantages of our introduced measure.

To better understand the tradeoffs between using different auto-scalers with differ-
ent workloads, we design a framework to compare auto-scalers and give probabilistic
guarantees on the performance in worst-case scenarios. Using different evaluation cri-
teria and more than 700 workload traces, we compare six state-of-the-art auto-scalers
that we believe represent the development of the field in the past 8 years. Knowing
that the auto-scalers’ performance depends on the workloads, we design a workload
analysis and classification tool that assigns a workload to its most suitable elasticity
controller out of a set of implemented controllers. The tool has two main components;
an analyzer, and a classifier. The analyzer analyzes a workload and feeds the analysis
results to the classifier. The classifier assigns a workload to the most suitable elasticity
controller based on the workload characteristics and a set of predefined business level
objectives. The tool is evaluated with a set of collected real workloads, and a set of
generated synthetic workloads. Our evaluation results shows that the tool can help a
cloud provider to improve the QoS provided to the customers.





Sammanfattning

Denna avhandling studerar autoskalning, det vill säga hur en regulator automatiskt
kan allokera och avallokera resurser för en tjänst som körs i molnet beroende p̊a
tjänstens belastningsmönster. Prestandan för ett serversystem beror p̊a systemets
design, dess implementation och den belastning systemet utsätts för. Denna avhan-
dling fokuserar p̊a dessa aspekter för design av algoritmer för autoskalning. Tv̊a al-
goritmer för autoskaling i molninfrastrukturer designas och implementeras. Algorit-
merna predikterar framtida belastningsmönster för en tjänst som körs i molnet. Olika
ansatser till att designa en regulator som kombinerar reaktiva och proaktiva reglerme-
toder utvärderas. Vi designar även metoder för att hantera serverförfr̊agningar som
tar l̊ang tid att betjäna, det vill säga beräkningar som körs längre än regulatorns
aktiveringsintervall.

Vi jämför v̊ara algoritmer med existerande autoskalare fr̊an forskningsfronten och
utvärderar dess prestanda med hjälp av olika belastningskurvor. D̊a alla regulatorer
är designade med vissa antaganden om belastningönster och datorsystemets dynamik
varierar en regulators prestanda för olika typer av belastningskurvor.

För att bättre först̊a egenskaperna hos belastningskurvor och hur dessa utvecklas
med tiden analyserar vi 6 år av loggdata fr̊an Wikipedia, den sjätte mest populära web-
sidan p̊a Internet. Vi analyserar även en belastningskurva fr̊an en av de största video-
streaming-tjänsterna i Sverige. I dessa analyser studeras populariteten hos dataobjekt
p̊a dessa tv̊a tjänster, hur belastningstoppar ser ut samt invarianter i belastningen,
exempelvis periodiska mönster som å terkommer varje dag eller vecka. Vi introduc-
erar även ett volatilitetsm̊att för oordningen i en belastningkurva, vilket är baserat
p̊a metoder och m̊att som används för signalbehandling inom biomedicin. Det nya
m̊attet kan användas för att karaktärisera belastningskurvor. Vi utvärderar det mot
existerande m̊att fr̊an forskningslitteraturen och p̊a visar fördelar.

För att bättre först̊a avvägningar mellan olika autoskalare för olika belastningsmön
ster designar vi ett ramverk för att jämföra autoskalare. Ramverket ger probabilis-
tiska garantier för autoskalarnas prestanda i värsta-fall-scenarion. Med olika utvärder-
ingskriteria och över 700 olika belastningskurvor jämför vi sex olika autoskalningsal-
goritmer fr̊an litteraturen, vilka representerar forskningsomr̊adets utveckling under de
senaste åtta åren.

D̊a prestandan hos en autoskalare beror p̊a belastningskurvan designar vi ett analys-
och klassificeringsverktyg som matchar en belastningskurva till den mest lämpliga
av en mängd tillgängliga autoskalare. Vilken autoskalare som väljs beror p̊a belast-
ningskurvans egenskaper och p̊a förvalda preferenser s̊asom prestandakriterier. Verk-
tyget utvärderas med b̊ade riktiga belastningskurvor och syntetiskt genererade belast-
ningsmönster. Utvärderingen visar att verktyget i de allra flesta fall väljer den bäst
lämpare autoskalaren och därmed att det kan hjälpa en molnleverantör att f̊a mer
responsiva tjänster och samtidigt minska resursanvändningen.
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1 Introduction

Cloud computing is a computing model that allows better management, higher utiliza-
tion and reduced operating costs for datacenter operators while providing on-demand
resource provisioning for multiple customers. Datacenters are often enormous in size
and complexity. This complexity is further increased because of the multitude of
(complex) hosted applications [47], making datacenter management a very complex
task [11]. The management of a cloud datacenter is too complex for a human to man-
age and automated management systems are required. This thesis studies automated
cloud elasticity management, one of the main datacenter management capabilities.
Elasticity can be defined as the ability of cloud infrastructures to rapidly change the
amount of resources allocated to an application in the cloud according to its demand.
This work studies algorithms, techniques and tools that a cloud provider can use to
automate dynamic resource provisioning allowing the provider to better manage the
datacenter resources.

Performance of Internet-scale server systems like cloud systems depends on three
main factors; design of the system, implementation of the system, and the load on the
system [19]. The first two factors should be optimized during system design and im-
plementation. The third factor should be optimized at run-time. Variations in system
load can be attributed to either internal events in the application or external events.
Internal events can occur in the servers’ hardware, e.g., bad blocks on a solid state
drive [43], the operating system, e.g., thread scheduling, or the applications running
on the servers. Such events cause the occurrence of very short bottlenecks that reduce
system performance considerably [56]. On the other hand, external events include, for
example, changes in the characteristics of the workload volume [12] or the workload
mix [51]. As an example, Internet traffic due to Michael Jackson’s death resulted in
disruptions in many major Internet services [46]. Nowadays, a drop in QoS is often
reflected in a financial loss [15]. In the future, a decrease in the QoS might be reflected
in a loss of a life, e.g., in case of self-driving cars relying on cloud systems [33].

The performance of networked systems has been studied since Kleinrock’s early
work on queuing theory and modeling in the 1970s [32], typically with an aim of
optimizing server system design and implementation. Little focus has been given to
optimizing run-time performance until 15 years ago when Chase et al. published their
seminal work on controlling provisioned resources according to load variations [14].
A few years before Chase et al.’s paper, Foster and Kesselman introduced Grid com-
puting [21]. These two papers were followed by Kephart’s and Chess’s paper on auto-
nomic computing [31]. These advances coupled with advances in virtualization tech-
nologies [2,9], containers [40], server power management techniques [18] and increased
network bandwidth has paved the way for the era of cloud computing [10] where elas-
tic server infrastructures allow on-demand resource provisioning which is the focus of
our dissertation.
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1.1 What is Cloud Computing?

Cloud computing started as a technology hype-term to describe a lot of different sys-
tems leading to a lot of confusions on what the term refers to [8, 55]. The confusion
was reduced when the US National Institute of Standards and Technology (NIST)
defined and characterized the important aspects of cloud computing in a special pub-
lication [38]. NIST defined cloud computing as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction”.

NIST identifies in their cloud definition five essential characteristics for cloud ser-
vices [38],

I. On-demand self service. Consumers can provision computing capabilities, e.g.,
server time and network storage, and control them automatically with no human
interaction required.

II. Broad network access. The computing capabilities are available and accessible
over the network through heterogeneous client platforms, e.g., mobile phones,
tablets and laptops.

III. Resource pooling. Resources are pooled between multiple consumers to serve
each customer’s requirements.

IV. Rapid elasticity. Computing capabilities can be provisioned rapidly on-demand
to deal with load changes. The provisioning can be in some cases automated.

V. Measured service. Usage can be monitored, controlled and reported transpar-
ently.

A key challenge to fulfill the cloud model is the scale of these systems. Current
cloud datacenters are enormous in size. For example, on the 31st of December, 2014,
Rackspace, a market leader in providing cloud computing services, had more than
112628 servers hosted in 9 datacenters serving more than 300000 customers [47]. A
typical server has between 4 cores and 128 cores. Management of such huge and
complex systems requires some automation in the management software. On-demand
provisioning and resource pooling requires the middleware to be able to handle the
provisioning demands for the customer and allocate the resources required by the
service autonomically and transparently [31]

2 Cloud Capacity Auto-Scaling

Auto-scaling cloud resources, sometimes referred to as elasticity control or manage-
ment, is an incarnation of the dynamic provisioning of server resources problem, a
problem which has been studied for over a decade [13, 14]. For the past decade and
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half, there has been tens – if not hundreds – of algorithms and techniques proposed in
the literature tackling the same question; how to dynamically change the amount of
provisioned resources for an application running on server systems according to the
varying application’s load [3, 7, 13,14,20,22–29,35–37,39,44,45,49–53]?

Horizontal elasticity is the property of a cloud datacenter to rapidly vary the number
of VMs allocated to a service according to demand. Vertical elasticity is the property
of a cloud datacenter to rapidly change configurations of virtual resources allocated
to a service according to demand, e.g., adding more CPU power, memory or disk
space to already running VMs. Autoscalers utilize the elasticity properties of a cloud
by dynamically allocating sufficient capacity to a running service to maintain an
acceptable level of QoS at reduced costs [54]. This dissertation focuses on automated
horizontal auto-scaling of cloud resources based on workload dynamics, i.e., we focus
on auto-scalers that change the number of VMs allocated to a service running in the
cloud.

2.1 Auto-Scaling Controller Requirements

We have identified five key requirements for an auto-scaler for cloud resources. These
requirements, in our opinion, are essential to make the auto-scaler useful and safe to
use. The requirements are;

I. Scalability: It has been estimated in 2014 that Amazon’s EC2 operates around
one and half million servers running millions of virtual machines [42]. One single
service can have up to a few thousand virtual machines [16]. Some services run
in the cloud for a short period of time while other services can run for years , e.g.,
reddit has been running on EC2 entirely since 2009 [48]. Algorithms used for
automated elasticity must be scalable with respect to the amount of resources
running, the monitoring data analyzed and the time for which the algorithm
has been running.

II. Adaptiveness: Workloads of Internet and cloud applications are dynamic [30].
An automated elasticity controller should be able to adapt to the changing work-
load dynamics or changes in the system models, e.g., new resources added or
removed from the system. This should be done while reducing both overprovi-
sioning and underprovisioning of resources.

III. Rapid: An automated elasticity algorithm should compute the required capacity
rapidly enough to preserve the QoS requirements. Sub-optimal configurations
that preserve the QoS requirements are better than any optimal configuration
taking longer to compute than the time that can be tolerated by the users or the
application to preserve the QoS required. Limited lookahead control is a very
accurate technique for the estimation of the required resources but according to
one study, it requires almost half an hour to come up with an accurate solution
for 15 physical machines each hosting 4 Virtual Machines (VMs) [34].
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IV. Robustness: Changing load dynamics might lead to a change in the controller
behavior [41]. A robust controller should prevent oscillations in resource allo-
cation and/or in performance with respect to the QoS requirements. While
adaptiveness describes the ability of the controller to adapt to changing work-
loads, robustness describes the stability of the controller with changing workload
and/or system dynamics. A controller might be able to adapt to the workload
but with oscillations in resource allocation that results in application instability,
e.g., adding and removing VMs to a traditional SQL database tier incurs high
penalties with respect to consistency. Another controller might not be able to
adapt to the changing workload, but is stable with changing workload or system
dynamics, i.e., it is robust but not adaptive.

V. QoS and cost awareness: The automated elasticity algorithm should be able to
vary the capacity allocated to a service according to demand while enforcing the
QoS requirements. If the algorithm provisions less resources than required, then
QoS may deteriorate, leading to possible losses. When the algorithm provisions
extra capacity that is not needed by the service, then there is a waste of resources.
In addition, the costs of the extra unneeded capacity increases the costs of
running a service in the cloud.

2.2 Thesis Position Statement

The focus of our work started as an effort to design new auto-scaling algorithms
for cloud applications. It became evident from the very start that while one can
design a few hundred more auto-scaling algorithms using state-of-the-art techniques
from different disciplines such as control theory, neural network, fuzzy logic, statistical
inference, estimation theory, queuing theory, optimization and machine learning, there
is a genuine lack of understanding of the dynamic provisioning problem stemming from
the lack of understanding of the workloads. By lack of understanding of the problem
we mean that most of the current work on auto-scaling is based on trial and error and
empirical designs. While one can test a proposed algorithm under certain assumptions
and conditions, and for a specific application, no one really knows how to generalize
these results. Going back to the opening statement of the thesis, the performance of
the system and the proposed auto-scaling algorithm depends on the system design,
implementation and workloads.

Our position is that deeper understanding of cloud workloads is needed to tackle
and solve the dynamic resource provisioning problem. Workloads can be classified
into different classes based on their quantitative, and qualitative characteristics with
respect to an application. For example, some workloads are bursty, e.g., the load on
the Bulgarian Wikitionary project, a project hosted by the Wikimedia foundation [1],
shown in Figure 1. If a traditional database system is subject to a bursty workload
pattern where changing the amount of provisioned resources can come at a very high
cost due to consistency and replication, then the auto-scaler should not for example
cause oscillations in the resources provisioned.
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Figure 1: The Bulgarian Wikitionary project has bursty access patterns.

Our position is that the vast space of the workloads and applications can be di-
vided into smaller sub-spaces with each sub-space representing a category of workloads
and applications with similar quantitative and qualitative characteristics. The prob-
lem is then reduced to finding an auto-scaler for each category. The sub-spaces are
multi-dimensional, with each dimension representing a feature or a characteristic of
the workload or the application. Examples of workload features include periodicity,
burstiness and the load-mix, i.e., the different request types [51]. Examples of ap-
plication features include the amount of resources required to process one request
from a certain type, the tolerance of the application to provisioning decisions, the
application’s ability to process delayed requests and the time required to process one
request of a certain type. For example, a simple webserver application serving static
content will require much less resources and processing time per request compared to
an application that does optical character recognition online.

While this work does not define these categories, we show that they exist. Paper
VII and Paper VIII show the varying performance of state-of-the-art auto-scaling
algorithms and how one algorithm can be much better than another one for one work-
load or application compared to another one. Paper V introduces Sample Entropy,
a measure for burstiness, one of the main features to classify workloads. Sample En-
tropy is used in Paper III, with other workload and application features, to classify
different workloads using a k-Nearest-Neighbors classifier. The classification is used
to assign each workload to the most suitable auto-scaling algorithm given some QoS
constraints, e.g., on overprovisioning and underprovisioning. In papers I and II, we
develop an auto-scaling algorithm capable of handling queued requests. In order to
understand some of the cloud workloads, we provide deep analysis for two workloads,
the workload on all Wikimedia foundation’s projects including Wikipedia in Paper
IV, and a Video-on-Demand workload in Paper VI.
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2.3 Thesis Contributions

In support of our thesis statement, this thesis makes the following contributions to-
wards a better understanding of workloads and elasticity controllers.

I. A comparison between all possible approaches to design a hybrid auto-scaler
using a mix of reactive and proactive components for scaling. By a reactive
component we mean a component that changes the future capacity using a
set of predefined load thresholds, e.g., for every increase of 10 requests/second
increase in the arrival rate, provision new resources. By a proactive we mean, a
component capable of predicting the future load based on the patterns in the
workload history. An auto-scaler was designed that predicts the future workload
using the slope of the workload. The controller is further enhanced to take into
account the queuing effects resulting from delayed requests.

II. Two comprehensive studies of two server system workloads. The first study is
the longest server workload study we are aware of. In this study, we analyze
the load on the Wikimedia foundation’s servers that host among other things
Wikipedia, Wikibooks and Wikitionary. The second is a study of the workload
of TV4, a major Swedish Video-on-Demand (VoD) provider. These workloads
are studied to provide us with a better understanding of how server systems
evolve over time and thus enable us to design better auto-scalers.

III. A method to characterize and compare burstiness, a workload characteristic
that affects the performance of an auto-scaler.

IV. Two comparative studies of some of the auto-scalers proposed in the literature.
The first study uses scenario theory and chance constrained programming to
provide some formal theoretical guarantees on the performance of different auto-
scalers with different workloads. The second study compares the performance of
a set of the published auto-scalers in a practical setting with different workloads.

V. A Workload Analysis and Classification tool for cloud infrastructures that acts
as a meta-controller to select the most suitable auto-scaling algorithm for a
workload. The tool analyzes the history of the running/new workloads and ex-
tracts some key characteristics. Workloads are then classified and assigned to
the most suitable available elasticity auto-scaler based on the extracted char-
acteristics and a set of user-defined Business-Level-Objectives (BLO), reducing
the risk of bad predictions and improving the provided QoS.

3 Paper Summary and Future Work

This thesis consist of 7 papers and an appendix that support the thesis position. While
most of this work was done assuming an infrastructure-as-a-Service cloud delivery
model [8], the algorithms and techniques developed are suitable for all cloud delivery
models. The contributions of each paper follows.
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3.1 Paper I

The first paper in the thesis [7] introduces two proactive elasticity algorithms that can
be used to predict future workload for an application running in the cloud. Resources
are then provisioned according to the controllers’ predictions. The first algorithm
predicts the future load based on the workload’s rate of change with respect to time.
The second algorithm predicts future load based on the rate of change of the workload
with respect to the average provisioned capacity. The two auto-scaling algorithms are
explained and tested.

The paper also discusses the nine possible approaches to build hybrid elasticity
controllers that have a reactive elasticity component and a proactive component. The
reactive elasticity component is a step controller that reacts to the changes in the
workload after they occur. The proactive component is a controller that with a
prediction mechanism to predict future load based on the load’s history. The two
introduced controllers are used as the proactive component in the nine approaches
discussed. Evaluation is performed using webserver traces. The performance of the
resulting hybrid controllers are compared and analyzed. Best practices in designing
hybrid controllers are discussed. The performance of the top performing hybrid con-
trollers is compared to a state-of-the-art hybrid elasticity controller that uses a dif-
ferent proactive component. In addition, the effect of the workload size on the per-
formance of the proposed controllers is evaluated. The proposed controller is able to
reduce Service-Level-Agreement (SLA) violations by a factor of 2 to 10 compared to
the state-of-the-art controller or a completely reactive controller.

3.2 Paper II

The design of the algorithms proposed in the first paper include some simplifying
assumptions that ignore multiple important aspects of the cloud infrastructure and
the workload’s served. Aspects such as VM startup time, workload heterogeneity, and
the changing request service rate of a VM are not considered in the first paper. In
addition, it is assumed that delayed requests are dropped.

Paper II [4], extends on the first paper by enhancing the cloud model used for the
controller design. The new model uses a G/G/N queuing model, where N is variable,
to model a cloud service provider. The queuing model is used to design an enhanced
hybrid elasticity controller that takes into account workload heterogeneity and the
changing request service rate of a VM. The new controller is suitable for applications
where buffering of delayed requests is possible. The controller also takes into account
the size of the delayed requests when predicting the amount of resources required for
the future load. The designed controller’s performance is evaluated using webserver
traces and traces from a cloud computing cluster with long running jobs. The results
are compared to a controller that only has reactive components. The results show
that the proposed controller reduces the cost of underprovisioning compared to the
reactive controller at the cost of using more resources. The proposed controller requires
a smaller buffer to keep all requests if delayed requests are not dropped.
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3.3 Paper III

The third paper presents an analysis of a trace from the Wikimedia foundation span-
ning the period between May, 2008 till October, 2013 [17]. This is the largest web-
workload analysis study we are aware of. Using descriptive statistics, time-series anal-
ysis, and polynomial splines, we study the trend and seasonality of the workload, its
evolution over the years, and investigate patterns in page popularity. We show the
effects that spikes on a Wikipedia page have on related Wikipedia pages. In addition,
we show that the workload is highly predictable with a strong seasonality. We develop
a short term prediction algorithm using splines that is able to predict the workload
with a Mean Absolute Percentage Error of around 2%.

3.4 Paper IV

Sample Entropy (SampEn) is a technique that has been used in biomedical systems
research for more than a decade to quantify disorder in biomedical signals. Our fourth
paper introduces a modified version of the SampEn algorithm as a measure of bursti-
ness in cloud workloads [6]. SampEn is has two main parameters. The first parameter
defines how tolerant the measure is to small bursts. The second parameter defines the
subset of the workload in which the algorithm searches for similarities. We show that
SampEn ordering of workloads is robust against a wide selection of these two param-
eters. We compared the proposed algorithm to some of the state-of-the-art burstiness
measures and show that the modified version of SampEn is better suited for classifying
burstiness.

3.5 Paper V

Since Video-on-Demand (VoD) and video sharing services account for a large percent-
age of the total downstream Internet traffic and cloud applications, we analyze and
model a workload trace from a VoD service provided by a major Swedish TV broad-
caster [5]. The trace contains over half a million requests generated by more than
20000 unique users. We show that the user and the session arrival rates for the TV4
workload do not follow a Poisson process. The arrival rate distribution is modeled
using a log-normal distribution while the inter-arrival time distribution is modeled
using a stretched exponential distribution. We observe the “impatient user” behavior
where users abandon streaming sessions after minutes or even seconds of starting them.
Both very popular videos and non-popular videos are specially affected by impatient
users. This behavior seems to be an invariant in VoD workloads and is neither affected
by the average bit-rate nor by the number of videos a user watches. We discuss the
spikes in the workload and their cause and show that spikes are very hard to predict
in many cases.
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3.6 Paper VI

In Paper VI, we introduce a method able to compare the performance of auto-scaling
algorithms and provide probabilistic guarantees on their performance. The method
is based on both robust control theory and stochastic control theory. The evaluation
is formulated as a chance constrained optimization problem, which is solved using
scenario theory. The adoption of such a technique allows one to give probabilistic
guarantees on the obtainable performance of the controllers in the presence of un-
certainties. Six different state-of-the-art auto-scaling algorithms have been selected
from the literature for extensive test evaluation, and compared using the proposed
framework. We build a discrete event simulator and parameterize it based on real
experiments. Using the simulator, each auto-scaler’s performance is evaluated using
796 distinct real workload traces from projects hosted on the Wikimedia foundations’
servers, and their performance is compared. The evaluation is carried out using differ-
ent performance metrics, highlighting the flexibility of the framework, while providing
probabilistic bounds on the evaluation and the performance of the algorithms. Our
results highlight the problem of generalizing the conclusions of the original published
studies.

3.7 Paper VII

As it is not possible to design an autoscaler with good performance for all workloads
and all scenarios as discussed in Paper VI, Paper VII proposes WAC, a Workload
Analysis and Classification tool for automatic selection of a number of implemented
cloud auto-scaling methods. . The tool has two main components, the analyzer and
the classifier. The analyzer extracts two key features from the workload, periodicity
and burstiness. Periodicity is measured using the autocorrelation of the workload,
one of the standard methods for measuring periodicity. Burstiness is measured using
the modified SampEn algorithm proposed in Paper IV. The classifier component uses
a k-Nearest-Neighbors (kNN) algorithm to assign a workload to the most suitable
elasticity controller based on the results from the analysis. The classifier requires
training using training data. Four different training datasets are used for the training.
The first set consists of 14 real workloads, the second set consists of 55 synthetic
workloads. The third set consists of the previous two sets combined. The last set
of workloads consists of a 798 workloads to different Wikimedia foundation projects.
The paper then describes the training of the classifier component and the classification
accuracy and results. The results show that the tool is able to assign between 87% to
98.3% of the workloads to the most suitable controller.

4 Future Work

There are several directions identified for future work starting from this thesis, some
of which already started while others are planned. We are working on identifying and
defining the different main workload classes in a better way and design optimal or
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near-optimal auto-scaling methods for each class using stochastic and robust control
theory. We are developing a statistical framework that provides probabilistic guaran-
tees on the performance of auto-scaling algorithms based on their error models. We
are working on a better statistical model for request arrival rates other than the Pois-
son process model. In addition, we are working on finding a bounded entropy measure
for burstiness or disorder in signals that is able to provide a more solid mathematical
definition than Sample Entropy.
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Abstract

Cloud elasticity is the ability of the cloud infrastructure to rapidly change the amount
of resources allocated to a service in order to meet the actual varying demands on
the service while enforcing SLAs. In this paper, we focus on horizontal elasticity,
the ability of the infrastructure to add or remove virtual machines allocated to a
service deployed in the cloud. We model a cloud service using queuing theory. Using
that model we build two adaptive proactive controllers that estimate the future load
on a service. We explore the different possible scenarios for deploying a proactive
elasticity controller coupled with a reactive elasticity controller in the cloud. Using
simulation with workload traces from the FIFA world-cup web servers, we show that
a hybrid controller that incorporates a reactive controller for scale up coupled with our
proactive controllers for scale down decisions reduces SLA violations by a factor of
2 to 10 compared to a regression based controller or a completely reactive controller.

1 Introduction

With the advent of large scale data centers that host outsourced IT services, cloud
computing [21] is becoming one of the key technologies in the IT industry. A cloud
is an elastic execution environment of resources involving multiple stakeholders and
providing a metered service at a specified level of quality [16]. One of the major
benefits of using cloud computing compared to using an internal infrastructure is
the ability of the cloud to provide its customers with elastic resources that can be
provisioned on demand within seconds or minutes. These resources can be used to
∗The paper has been re-typeset to match the thesis style. The order of the subfigures in Figure 4 was

changed during the re-typesetting for readability. Reproduced with permission of IEEE.
†Department of Computing Science, Umeå University, Sweden, email:

{ahmeda, tordsson, elmroth}@cs.umu.se



Figure 1: Flash crowds illustrating the rapid change in demand for the FIFA world
cup website.

handle flash crowds. A flash crowd, also known as a slashdot effect, is a surge in
traffic to a particular service that causes the service to be virtually unreachable [4].
Flash crowds are very common in today’s networked world. Figure 1 shows the traces
of the FIFA 1998 world cup website. Flash crowds occur frequently before and after
matches. In this work, we try to automate and optimize the management of flash
crowds in the cloud by developing an autonomous elasticity controller.

Autonomous elastic cloud infrastructures provision resources according to the
current actual demand on the infrastructure while enforcing service level agreements
(SLAs). Elasticity is the ability of the cloud to rapidly vary the allocated resource
capacity to a service according to the current load in order to meet the quality of
service (QoS) requirements specified in the SLA agreements. Horizontal elasticity is
the ability of the cloud to rapidly increase or decrease the number of virtual machines
(VMs) allocated to a service according to the current load. Vertical elasticity is the
ability of the cloud to change the hardware configuration of VM(s) already running
to increase or decrease the total amount of resources allocated to a service running in
the cloud.
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Building elastic cloud infrastructures that scale up and down with the actual demand
of the service is a problem far from being solved [16]. Scale up should be fast enough
in order to prevent breaking any SLAs while it should be as close as possible to the
actual required load. Scale down should not be premature, i.e., scale down should
occur when it is anticipated that the service does not need these resources in the near
future. If scale down is done prematurely, resources are allocated and deallocated in
a way that causes oscillations in the system. These resource oscillations introduce
problems to load balancers and add some extra costs due to the frequent release
and allocation of resources [14]. In this paper we develop two adaptive horizontal
elasticity controllers that control scale up and scale down decisions and prevent
resource oscillations.

This paper is organized as follows; in Section 2, we describe the design of our
controllers. In Section 3 we describe our simulation framework, our experiments and
discuss our results. In Section 4 we describe some approaches to building elasticity
controllers in the literature. We conclude in Section 5.

2 Building an Elastic Cloud Controller

In designing our controllers, we view the cloud as a control system. Control systems
are either closed loop or open loop systems [23]. In an open loop control system,
the control action does not depend on the system output making open loop control
generally more suited for simple applications where no feedback is required and no
system monitoring is performed. Contrarily, a closed loop control system is more
suited for sophisticated application as the control action depends on the system output
and on monitoring some system parameters. The general closed-loop control problem
can be stated as follows: The controller output µ(t) tries to force the system output
C(t) to be equal to the reference input R(t) at any time t irrespective of the disturbance
∆D. This general statement defines the main targets of any closed loop control system
irrespective of the controller design.

In this work, we model a service deployed in the cloud as a closed loop control
system. Thus, the horizontal elasticity problem can be stated as follows: The elasticity
controller output µ(t) should add or remove VMs to ensure that the number of service
requests C(t) is equal to the total number of requests received R(t)+∆D(t) at any
time unit t with an error tolerance specified in the SLA irrespective of the change in
the demand ∆D while maintaining the number of VMs to a minimum. The model is
simplified by assuming that servers start up and shut down instantaneously.

We design and build two adaptive proactive controllers to control the QoS of a
service as shown in Figure 2. We add an estimator to adapt the output of the controller
with any change in the system load and the system model.
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Figure 2: Adaptive Proactive Controller Model.

2.1 Modeling the state of the service

Figure 3 shows a queuing model representing the cloud infrastructure. The infrastruc-
ture is modeled as a G/G/N stable queue in which the number of servers N required
is variable [19]. In the model, the total number of requests per second Rtotal is divided
into two inputs to the infrastructure, the first input R(t) represents the total amount of
requests the infrastructure is capable of serving during time unit t. The second input,
∆D represents the change in the number of requests from the past time unit. Since
the system is stable, the output of the queue is the total service capacity required per
unit time and is equal to Rtotal . P represents the increase or decrease in the number of
requests to the current service capacity R(t).

The goal of a cloud provider is to provide all customers with enough resources
to meet the QoS requirements specified in the SLA agreements while reducing over
provisioning to a minimum. The cloud provider monitors a set of parameters stated
in the SLA agreements. These parameters represent the controlled variables for the
elasticity controller. Our controllers are parameter independent and can be configured

I:4



Figure 3: Queuing Model for a service deployed in the cloud.

to use any performance metric as the controlled parameter. For the evaluation of
our controllers, we choose the number of concurrent requests received for the past
time unit to be the monitored parameter because this metric shows both the amounts
of over provisioned and under provisioned resources which is an indicator to the
costs incurred due to the elasticity engine. Most of the previous work on elasticity
considers response time to be the controlled parameter. Response time is software
and hardware dependent and is not well suited for comparing the quality of different
elasticity approaches [6].

2.2 Estimating future usage
From Figure 3, the total future service capacity required per unit time, C(t +1), is
C(t +1) = ∆D(t)+R(t), where R(t) is the current service capacity and ∆D(t) is the
change in the current service capacity required in order to meet the SLA agreement
while maintaining the number of VMs to minimum. A successful proactive elasticity
engine is able to estimate the change in future demand ∆D(t) and add or remove VMs
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based on this proactive estimation. ∆D(t) can be estimated by

∆D(t) = P(t)C(t) (1)

where P(t) is the gain parameter of the controller. P(t) is positive if there is an
increase in the number of requests, negative if there is a decrease in the number of
requests, or zero if the number of requests is equal to the current service capacity.

We define Ĉ to be the infrastructure’s average periodical service rate over the past
Td time units. Ĉ is calculated for the whole infrastructure and not for a single VM.

Thus, Ĉ =
∑

Td
i niti
Td

, where Td is a system parameter specifying the period used for
estimating the average periodical service rate and ti is the time for which the number
of requests received per unit time for the whole infrastructure stay constant at ni

requests per unit time before the demand changes. Thus, ∑Td
i ti = Td . We also define

n, the average service rate over time as n = ∑t n(t)
T .

From equation 1 and since the system is stable ,

F = Ĉ P, (2)

where F , the estimated increase or decrease of the load, is calculated using the gain
parameter of the controller P every time unit. The gain parameter represents the
estimated rate of adding or removing VMs. We design two different controllers with
two different gain parameters.

For the first controller PC1, the gain parameter P1 is chosen to be the periodical rate
of change of the system load,

P1 =
∆DTd

TD
. (3)

As the workload is a non-linear function in time, the periodical rate of change of the
load is the derivative of the workload function during a certain period of time. Thus,
the gain parameter represents the load function changes over time.

For the second controller PC2, the gain parameter P2 is the ratio between the change
in the load and the average system service rate over time,

P2 =
∆DTd

n
. (4)

This value represents the load change with respect to the average capacity. By substi-
tuting this value for P in Equation 1, the predicted load change is the ratio between
the current service rate and the average service rate multiplied by the change in the
demand over the past estimation period.
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2.3 Determining suitable estimation intervals

The interval between two estimations, Td , represents the period for which the estima-
tion is valid, is a crucial parameter affecting the controller performance. It is used
for calculating Ĉ for both controllers and for P1 in the case of the first controller. Td
controls the controllers’ reactivity. If Td is set to one time unit, the estimations for the
system parameters are done every time unit and considers only the system load during
past time unit. At the other extreme, if Td is set to ∞, the controller does not perform
any predictions at all. As the workload observed in data centers is dynamic [11],
setting an adaptive value for Td that changes with the load dynamics is one of our
goals.

We define K to be the tolerance level of a service i.e. the number of requests the
service does not serve on time before making a new estimation, in other words,

Td =
K

Ĉ
. (5)

K is defined in the SLA agreement with the service owner. If K is specified to be zero,
Td should always be kept lower than the maximum response time to enforce that no
requests are served slower by the system.

2.4 An elasticity engine for scale-up and scale-down decisions

The main goal of any elasticity controller is to enforce the SLAs specified in the
SLA agreement. For today’s dynamical network loads [4], it is very hard to anticipate
when a flash crowd is about to start. If the controller is not able to estimate the flash
crowd on time, many SLAs are likely to be broken before the system can adapt to the
increased load.

Previous work on elasticity considers building hybrid controllers that combines
reactive and proactive controllers [27] and [13]. We extend on this previous work
and consider all possible ways of combining reactive and proactive controllers for
scaling of resources in order to meet the SLAs. We define an elasticity engine to
be an elasticity controller that considers both scale-up and scale-down of resources.
There are nine approaches in total to build an elasticity engine using a reactive
and a proactive controller. These approaches are listed in Table 1. Some of these
combinations are intuitively not good, but for the sake of completeness we evaluate
the results of all of these approaches. In order to facilitate our discussion, we use
the following naming convention to name an elasticity engine; an elasticity engine
consists of two controllers, a scale up (U) and a scale down (D) controller. A controller
can be either reactive (R) or proactive (P). PC1 and PC2 are a special case from
proactive controllers e.g. URP-DRP elasticity engine has a reactive and proactive
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Table 1: Overview of the nine different ways to build a hybrid controller.

Engine Name Scale up mechanism Scale down mechanism
UR-DR Reactive Reactive
UR-DP Reactive Proactive

UR-DRP Reactive Reactive and Proactive
URP-DRP Reactive and Proactive Reactive and Proactive
URP-DR Reactive and Proactive Reactive
URP-DP Reactive and Proactive Proactive
UP-DP Proactive Proactive
UP-DR Proactive Reactive

UP-DRP Proactive Reactive and Proactive

controller for scale up and scale down while a UR-DPC1 is an engine having a reactive
scale up controller and PC1 for scale down.

3 Experimental Evaluation
In order to validate the controllers, we designed and built a discrete event simulator
that models a service deployed in the cloud. The simulator is built using Python. We
used the complete traces from the FIFA 1998 world cup as input to our model [5].
The workload contains 1.3 billion Web requests recorded in the period between April
30, 1998 and July 26, 1998. We have calculated the aggregate number of requests per
second from these traces. They are by far the most used traces in the literature. As
these traces are quite old, we multiply the number of requests received per unit time
by a constant in order to scale up these traces to the orders of magnitude of today’s
workloads. Although there are newer traces available such as the Wikipedia trace [26],
but they do not have the number of peaks seen in the FIFA traces. We assume perfect
load balancing and quantify the performance of the elasticity engines only.

3.1 Nine Approaches to build an elasticity engine
In this experiment we evaluate the nine approaches to a hybrid controller and quantify
their relative performance using PC1 and PC2. We use the aggregate number of requests
per unit time from the world cup traces multiplied by a constant equal to 50 as input
to our simulator. This is almost the same factor by which the number of Internet
users increased since 1997 [3]. To map the number of service requests to the number
of servers, we assume that each server can serve up to 500 requests per unit time.
This number is an average between the number of requests that can be handled by
a Nehalem Server running the MediaWiki application [17] and a Compaq ProLiant
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DL580 server running a database application [8]. We assume SLAs that specify the
maximum number of requests not handled per unit time to be fewer than 5% of the
maximum capacity of one server.

The reactive controller is reacting to the current load while the proactive controller
is basing its decision on the history of the load. Whenever a reactive controller
is coupled with a proactive controller and the two controllers give contradicting
decisions, the decision of the reactive controller is chosen. For the UR-DR controller,
scale down is only done if the number of unused servers is greater than two servers in
order to reduce oscillations.

To compare all the different approaches, we monitor and sum the number of servers
the controllers fail to provision on time to handle the increase in the workload, S−. This
number can be viewed as the number of extra servers to be added to avoid breaking
all SLAs, or as the quality of estimation. S− is the average number of requests the
controller fails to provision per unit time. Similarly, we monitor the number of extra
servers deployed by the infrastructure at any unit time. The summation of this number
indicates the provisioned unused server capacity, S+. S+ is the averaged value over
time. These two aggregate metrics are used to compare the different approaches.

Table 2 shows the aggregate results when PC1 and PC2 are used for the proactive
parts of the hybrid engine. The two right-most columns in the table show the values
of S− and S+ as percentages of the total number of servers required by the workload
respectively. We compare the different hybridization approaches with a UR-DR
elasticity engine [24].

The results shown in the two tables indicate that using an UR-DPC2 engine reduces
S− by a factor of 9.1 compared to UR-DR elasticity engine, thus reducing SLA
violations by the same ratio. This comes at the cost of using 14.33% extra servers
compared to 1.4% in the case of a UR-DR engine. Similar results are obtained using
a URPC2-DPC2 engine. These results are obtained because the proactive scale down
controller does not directly release resources when the load decreases instantaneously
but rather makes sure that this decrease is not instantaneous. Using a reactive controller
for scale down on the other hand reacts to any load drop by releasing resources. It is
also observed that the second best results are obtained using an UR-DPC1 elasticity
engine. This setup reduces S− by a factor of 4, from 1.63% to 0.41% compared to a
UR-DR engine at the expense of increasing the number of extra servers used from
1.4% to 9.44%.

A careful look at the table shows that elasticity engines with reactive components for
both scale up and scale down show similar results even when a proactive component
is added. We attribute this to the premature release of resources due to the reactivity
component used for the scale down controller. The premature release of resources
causes the controller output to oscillate with the workload. The worst performance is
seen when a proactive controller is used for scale up with a reactivity component in

I:9



Table 2: S− and S+ for PC1 and PC2

Name S− S− S+ S+ S−% S+%
UR-DR -1407732 -0.3 120641 0.026 -1.63% 1.4%

PC1 results
UR-DPC1 -354814 -0.077 8159220 1.78 -0.41% 9.44%

UR-DRPC1 -1412289 -0.3 1202806 0.26 -1.63% 1.4%
URPC1-DRPC1 -1411678 -0.3 1203170 0.26 -1.63% 1.4%

URPC1-DR -1407036 -0.3 1206391 0.26 -1.62% 1.4%
URPC1-DPC1 -354127 -0.077 8160627 1.78 -0.41% 9.4%
UPC1-DPC1 -4147953 -0.9 1827431 0.399 -4.8% 2.1%
UPC1-DR -8474040 -1.85 408447 0.399 -9.8% 2.1%

UPC1-DRPC1 -11408704 -2.49 190427.0 0.041 -10% 0.27%
PC2 results

UR-DPC2 -159029 -0.0347 12386346.0 2.7 -0.18% 14.33%
UR-DRPC2 -1418949.0 -0.31 1176239.0 0.257 -1.64% 1.36%

URPC2-DRPC2 -1419269.0 -0.31 1175393.0 0.257 -1.64% 1.35%
URPC2-DR -1407732.0 -0.31 1206407.0 0.263 -1.63% 1.4%

URPC2-DPC2 -159029 -0.0347 12386346.0 2.707 -0.18% 14.33%
UPC2-DPC2 -4350841.0 -0.951 2216866.0 0.485 -5.03% 2.6%
UPC2-DR -11245521 -2.458 396697 0.0867 -13% 0.46%

UPC2-DRPC2 -11408704 2.49 190427 0.0416 -13.2% 0.22%

the scale down controller. This engine is not able to react to sudden workload surges.
In addition it releases resources prematurely.

Figures 4(a), 4(b) and 4(e) shows the performance of a UR-DR, UR-DPC1 and a
UR-DPC2 elasticity engines over part of the trace from 06:14:32, the 21st of June,1998
to 01:07:51 27th of June,1998. Figures 4(c), 4(d) and 4(f) shows an in depth view of
the period between 15:50:00 the 23rd of June, 1998 till 16:07:00 on the same day
(between time unit 208349 and 209349 on the left hand side figures).

The UR-DR elasticity engine releases resources prematurely as seen in Figure 4(c).
These resources are then reallocated when there is an increase in demand causing
resource allocation and deallocation to oscillate. The engine is always following the
demand but is never ahead. On the other hand, figures 4(d) and 4(f) show different
behavior where the elasticity engine tries not to deallocate resources prematurely in
order to prevent oscillations and to be ahead of the demand. It is clear in Figure 4(f)
that the elasticity engine estimates the future load dynamics and forms an envelope
over the load. An envelope is defined as the smooth curve that takes the general
shape of the load’s amplitude and passes through its peaks [12]. This delay in the

I:10



(a) UR-DR performance in a period of 6 days. (b) UR-DPC1 performance in a period of 6 days.

(c) UR-DR: Zooming on a period of 17 minutes. (d) UR-DPC1: Zooming on a period of 17 min-
utes.

(e) UR-DPC2 performance in a period of 6 days. (f) UR-DPC2: Zooming on a period of 17 minutes.

Figure 4: Performance of UR-DR, UR-DPC1 and, UR-DPC2 elasticity engines with
time: The Figures show how the different engines detect future load. It can be

observed that the UR-DR engine causes the capacity to oscillate with the load while
UR-DPC1 and UR-DPC2 predict the envelope of the workload.
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deallocation comes at the cost of using more resources. These extra resources improve
the performance of the service considerably as it will be always ahead of the load.
We argue that this additional cost is well justified considering the gain in service
performance.

3.1.1 Three classes of SLAs

An infrastructure provider can have multiple controller types for different customers
and different SLA agreements. The results shown in table 2 suggest having three
classes of customers namely, gold, silver and bronze. A gold customer pays more in
order to get the best service at the cost of some extra over-provisioning and uses a
UR-DPC2 elasticity engine. A silver customer uses the UR-DPC1 elasticity engine to
get good availability while a bronze customer uses the UR-DR and gets a reduced, but
acceptable, QoS but with very little over-provisioning. These three different elasticity
engines with different degrees of over provisioning and qualities of estimation give
cloud providers convenient tools to handle customers of different importance classes
and thus increase their profit and decrease their penalties. Current cloud providers
usually have a general SLA agreement for all their customers. RackSpace [2] for
example guarantees 100% availability with a penalty equal to 5% of the fees for each
30 minutes of network or data center downtime for the cloud servers. It guarantees
99.9% availability for the cloud files. The network is considered not available in case
of [2]: (i) The Rackspace Cloud network is down, or (ii) the Cloud FilesÂ service
returns a server error response to a valid user request during two or more consecutive
90 second intervals, or (iii) the Content Delivery Network fails to deliver an average
download time for a 1-byte reference document of 0.3 seconds or less, as measured
by The Rackspace Cloud’s third party measuring service. For an SLA similar to the
RackSpace SLA or Amazon S3 [1], using one of our controllers significantly reduces
penalties paid due to server errors, allowing the provider to increase profit.

3.2 Comparison with regression based controllers
In this experiment we compare our controllers with the controller designed by Iqbala
et al. [13] who design a hybrid elasticity engine with a reactive controller for scale-up
decisions and a predictive controller for scale-down decisions. When the capacity
is less than the load, a scale up decision is taken and new VMs are added to the
service. For scale down, their predictive component uses second order regression. The
regression model is recomputed for the full history every time a new measurement
data is available. If the current load is less than the provisioned capacity for k time
units, a scale down decision is taken using the regression model. If the predicted
number of servers is greater than the current number of servers, the result is ignored.
Following our naming convention, we denote their engine UR-DRegression. As
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Table 3: Comparison between the UR-DRegression, UR-DPC1, UR-DPC2, and UR-DR
elasticity engines

Name S− S+ S− S+

UR-DRegression -74791.7 1568047.8 -2.24% 47%
UR-DPC1 -50307.2 1076236.3 -1.51% 32.24%
UR-DPC2 -35818.6 1326841.7 -1.07% 39.75%
UR-DR -99801.8 653082.9 -2.99% 19.57%

regression is recomputed every time a new measurement data is available on the
full history, simulation using the whole world cup traces would be time consuming.
Instead, in this experiment we used part of the trace from 09:47:41 on the 13th of May,
1998 to 17:02:49 on the 25th of May, 1998. We multiply the number of concurrent
requests by 10 and assume that the servers can handle up to 100 requests. We assume
that the SLA requires that a maximum of 5% of the capacity of a single server is not
serviced per unit time.

Table 3 shows the aggregated results for four elasticity engines; UR-DRegression,
UR-DPC1, UR-DPC2 and UR-DR. Although all the proactive approaches reduce the
value of S− compared to a UR-DR engine, PC2 still shows superior results. The
number of unused server that get provisioned by the regression controller S+ is 50%
more than for PC1 and 15% more than PC2 although both PC1 and PC2 reduces S− more.
The UR−DR controller has a higher SLA violation rate ( 3%) while maintaining
a much lower over-provisioning rate (19.57%). As we evaluate the performance of
the controller on a different part of the workload and we multiply the workload by
a different factor, the percentages of the capacity the controller fail to provision on
time and the unused provisioned capacity changed from the previous experiment.

Figures 5(a), 5(b) and 5(c) show the load compared to the controller outputs for the
UR-DR, UR-DPC2, and UR-DRegression approaches. The amount of unused capacity
using a regression based controller is much higher than the unused capacity for the
other controllers. The controller output for the UR-DRegression engine completely
over-estimates the load causing prediction oscillations between the crests and the
troughs. One of the key advantages of PC1 and PC2 is that they depend on simple
calculations. They are both scalable with time compared to the regression controller.
The highest observed estimation time for the UR-DRegression is 6.5184 seconds with
an average of 0.97695 seconds compared to 0.000512 seconds with an average of
5.797×10−6 in case of PC1 and PC2.
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(a) UR-DRegression elasticity engine. (b) UR-DPC2 elasticity engine.

(c) UR-DR elasticity engine

Figure 5: Performance Comparison of UR-DR, UR-DPC2 and UR-DRegression
elasticity engines. The UR-DRegression controller over-provisions many servers to

cope with the changing workload dynamics.

I:14



3.3 Performance impact of the workload size

In this experiment we investigate the effect of changing the load and server power on
the performance of our proposed elasticity engines. We constructed six new traces
using the world cup workload traces by multiplying the number of requests per second
in the original trace by a factor of 10, 20, 30, 40, 50, and 60. We ran experiments
with the new workloads using the UR-DR, UR-DPC1 and UR-DPC2 elasticity engines.
For each simulation run, we assume that the number of requests that can be handled
by any server is 10 times the factor by which we multiplied the traces, e.g., for an
experiment run using a workload trace where the number of requests is multiplied
by 20, we assume that the server capacity is up to 200 requests per second. We also
assume that for each experiment the SLA specifies the maximum unhandled number
of requests to be 5% of the maximum capacity of a single server.

Figure 6(a) shows the percentage of servers the engines failed to provision on time
to handle the increase in demand for each workload size (S−) while Figure 6(b) shows
the percentages of extra servers provisioned for each workload size. It is clear that
the UR-DR engine exhibits the same performance with changing workloads. For the
UR-DPC1 and the UR-DPC2 engines on the other hand, the performance depends
on the workload and the server capacity. As the factor by which we multiply the
workload increases, the percentage of servers the two engines failed to provision
on time decreases. Inversely, the percentage of extra servers provisioned increases.
These results indicate that the quality of estimation changes with any change in the
workload. We attribute the improvement in the quality of estimation when the load
increases using the UR-DPC1 and UR-DPC2 engines to the ability of both estimators
to predict the envelope of the workload, thus decreasing the number of prematurely
deallocated resources. Although the number of requests increases in the different
workloads, the number of times the controllers deallocate resources prematurely also
increases, but at a slower rate than the load. We have performed similar experiments
with the Wikipedia traces [26] and obtained similar results [10]. Due to lack of space
we omit those results.

3.4 Discussion

Although our proactive controllers PC1 and PC2 are designed using the change in
the load as the controller parameter, they can be generalized to be used with any
hardware parameter such as CPU load, memory consumption, network load and disk
load or any server level parameter such as response time. When PC1 or PC2 controller
is used with hardware measured parameter, e.g., CPU load, C(t) becomes the total
CPU capacity needed by the system to handle the CPU load per unit time. ∆D is the
change in the load. Ĉ becomes the average periodical measurement of the CPU load
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(a) The effect of changing load size on the
percentage of S− to the total number of servers.

(b) The effect of changing load size on the percentage
of S+ to the total number of servers.

Figure 6: The effect of changing the workload size and the server capacity on the
UR-DR, UR-DPC1 and UR-DPC2 elasticity engines.

and n the average measurement of the CPU load over time. The definition of the two
controllers remains the same.

Both the UR-DPC1 and UR-DPC2 engines can be integrated in the model proposed
by Lim et al. [20] to control a storage cloud. In storage clouds, adding resources does
not have an instantaneous effect on the performance since data must be copied to
the new allocated resources before the effect of the control action takes place. For
such a scenario, PC1 and PC2 are very well suited since they predict the envelope
of the demand. The engines can also replace the elasticity controllers designed by
Urgaonkar et al. [27] or Iqbala et al. [13] for a multi-tier service deployed in the
cloud.

4 Related Work

The problem of dynamic provisioning of resources in computing clusters has been
studied for the past decade. Cloud elasticity can be viewed as a generalization of
that problem. Our model is similar to the model introduced in [9]. In that work, the
authors tried to estimate the availability of a machine in a distributed storage system
in order to replicate its data.

Toffetti et al. [25] use Kriging surrogate models to approximate the performance
profile of virtualized, multi-tier Web applications. The performance profile is specific
to an application. The Kriging surrogate model needs offline training. A change in
the workload dynamics results in a change in the service model. Adaptivity of the
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service model of an application is vital to cope with the changing load dynamics in
todays Internet [4].

Lim et al. [20] design an integral elasticity controller with proportional thresholding.
They use a dynamic target range for the set point. The integral gain is calculated
offline making this technique suitable for a system where no sudden changes to
the system dynamics occur as the robustness of an integral controller is affected by
changing the system dynamics [22].

Urgaonkar et al. [27] propose a hybrid control mechanism that incorporates both
a proactive controller and a reactive controller. The proactive controller maintains
the history of the session arrival rate seen. Provisioning is done before each hour
based on the worst load seen in the past. No short term predictions can be done. The
reactive controller acts on short time scales to increase the resources allocated to a
service in case the predicted value is less than the actual load that arrived. No scale
down mechanism is available.

In [18], the resource-provisioning problem is posed as one of sequential optimiza-
tion under uncertainty and solved using limited look-ahead control. Although the
solution shows very good theoretical results, it exhibits an exponential increase in
computation time as the number of servers and VMs increase. It takes 30 minutes to
compute the required elasticity decision for a system with 60 VMs and 15 physical
servers. Similarly, Nilabja et al. use limited lookahead control along with model
predictive control for automating elasticity decisions. Improving the scalability of
their approach is left as a future direction to extend their work.

Chacin and Navaro [7] propose an elastic utility driven overlay network that
dynamically allocate instances to a service using an overlay network. The instances of
each services construct an overlay while the non-allocated instances construct another
overlay. The overlays change the number of instances allocated to a service based
on a combination of an application provided utility function to express the service’s
QoS, with an epidemic protocol for state information dissemination and simple local
decisions on each instance.

There are also some studies discussing vertical elasticity [15]. Jung et al. [14]
design a middleware for generating cost sensitive adaptation actions such as elasticity
and migration actions. Vertical elasticity is enforced using adaptation action in fixed
steps predefined in the system. To allocate more VMs to an application a migration
action is issued from a pool of dormant VMs to the pool of the VMs of the target host
followed by an increase adaptation action that allocates resources on the migrated
VM for the target application. These decisions are made using a combination of
predictive models and graph search techniques reducing scalability. The authors leave
the scalability of their approach for future work.
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5 Conclusions and Future Work

In this paper, we consider the problem of autonomic dynamic provisioning for a cloud
infrastructure. We introduce two adaptive hybrid controllers PC1 and PC2, that use both
reactive and proactive control to dynamically change the number of VMs allocated to
a service running in the cloud based on the current and the predicted future demand.
Our controllers detect the workload envelope and hence do not deallocate resources
prematurely. We discuss the different ways of designing a hybrid elasticity controller
that incorporates both reactive and proactive components. Our simulation results show
that using a reactive controller for scale up and one of our proactive controllers for
scale down improves the SLA violations rate two to ten times compared to a totally
reactive elasticity engine. We compare our controllers to a regression based elasticity
controller using a different workload and demonstrate that our engines over-allocate
between 32% and 15% less resources compared to a regression based engine. The
regression based elasticity engine SLA violation rate is 1.48 to 2.1 times the SLA
violation rate for our engines. We also investigate the effect of the workload size on
the performance of our controllers. For increasing loads, our simulation results show
a sublinear increase in the number of SLAs violated using our controllers compared
to a linear increase in the number of SLAs violations for a reactive controller. In
the future, we plan to integrate vertical elasticity control in our elasticity engine and
modify the controllers to consider the delay required for VM start up and shut down.

6 Acknowledgments

This work is supported by the OPTIMIS project (http://www.optimis-project.eu/) and
the Swedish government’s strategic research project eSSENCE. It has been partly
funded by the European Commission’s IST activity of the 7th Framework Program
under contract number 257115 . This research was conducted using the resources of
High Performance Computing Center North (http://www.hpc2n.umu.se/).

References

[1] Amazon S3 service level agreement, October 2007.

[2] Rackspace hosting: Service level agreement, June 2009.

[3] Internet growth statistics, July 2011.

[4] I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long. Managing flash crowds on
the Internet. 2003.

I:18



[5] M. Arlitt and T. Jin. ”1998 world cup web site access logs”, August 1998.

[6] P. Bodık. Automating Datacenter Operations Using Machine Learning. PhD
thesis, University of California, 2010.

[7] P. Chacin and L. Navarro. Utility driven elastic services. In Distributed Applica-
tions and Interoperable Systems, pages 122–135. Springer, 2011.

[8] P. Dhawan. Performance comparison: Exposing existing code as a web service,
October 2001.

[9] A. Duminuco, E. Biersack, and T. En-Najjary. Proactive replication in distributed
storage systems using machine availability estimation. In Proceedings of the
2007 ACM CoNEXT conference, CoNEXT ’07, pages 27:1–27:12, New York,
NY, USA, 2007. ACM.

[10] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri,
R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimitrakos,
S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia, A. Kipp,
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Abstract
Elasticity is the ability of a cloud infrastructure to dynamically change the amount
of resources allocated to a running service as load changes. We build an autonomous
elasticity controller that changes the number of virtual machines allocated to a ser-
vice based on both monitored load changes and predictions of future load. The cloud
infrastructure is modeled as a G/G/N queue. This model is used to construct a hy-
brid reactive-adaptive controller that quickly reacts to sudden load changes, prevents
premature release of resources, takes into account the heterogeneity of the workload,
and avoids oscillations. Using simulations with Web and cluster workload traces, we
show that our proposed controller lowers the number of delayed requests by a factor
of 70 for the Web traces and 3 for the cluster traces when compared to a reactive
controller. Our controller also decreases the average number of queued requests by
a factor of 3 for both traces, and reduces oscillations by a factor of 7 for the Web
traces and 3 for the cluster traces. This comes at the expense of between 20% and
30% over-provisioning, as compared to a few percent for the reactive controller.

1 Introduction

Elasticity of the cloud infrastructure is the ability of the infrastructure to allocate
resources to a service based on the running load as fast as possible. An elasticity
controller aims to allocate enough resources to a running service while at the same
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time avoiding costly over-provisioning. The problem for an elasticity controller is
thus to decide when, and how much, to scale up or down. Scaling can be done either
horizontally, by increasing or decreasing the number of Virtual Machines (VMs)
allocated, or vertically, by changing the hardware configuration for CPU, memory,
etc. of already running VMs. The resources allocated to a service can vary between
a handful of VMs to tens of thousands of VMs depending on the load requirements.
Most Infrastructure as a Service (IaaS) providers does not host a single service but
rather quite a few scalable services and applications. Given the scale of the current
and future cloud datacenters and services, these are impossible to manage manually,
making autonomic management a key issue for clouds.

Recently, the scientific computing community started discussing the potential use
of cloud computing infrastructures to run scientific experiments such as medical
NLP processing [6] and workflows for astronomical data released by the Kepler
project [25]. Most of the applications are embarrassingly parallel [11]. There are
some limitations to the wide adoption of the cloud paradigm for scientific computing
as identified by Truong et al. [23] such as the lack of cost evaluation tools, cluster
machine images and, as addressed in this paper, autonomic elasticity control.

There are many approaches to solve the elasticity problem [5, 7, 10, 17, 18, 20,
24, 27, 28], each with its own strengths and weaknesses. Desired properties of an
elasticity controller include the following:

• Fast: The time required by the controller to make a decision is a key factor for
successful control, for example, limited look-ahead control is shown to have
superior accuracy but requires 30 minutes to control 60 VMs on 15 physical
servers [14].

• Scalable: The controller should be scalable with respect to the number of VMs
allocated to a service and with respect to the time of running the algorithm.
There are many techniques that can be used for estimation of the load and elas-
ticity control which are not scalable with either time or scale e.g., regression
based control is not scalable with respect to the algorithm execution time [1].

• Adaptive: Scientific workloads and Internet traffic are very dynamic in na-
ture [2, 15]. Elasticity controllers should have a proactive component that pre-
dicts the future load to be able to provision resources a priori. Most prediction
techniques such as neural networks build a model for the load in order to pre-
dict the future. Another desired property of an adaptive controller is the ability
to change the model whenever the load dynamics change.

• Robust and reliable: The changing load dynamics might lead to a change in
the controller behavior [9, 19]. A controller should be robust against chang-
ing load dynamics. A robust controller should prevent oscillations in resource
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allocation i.e., the controller should not release resources prematurely. A reac-
tive controller (step controller) is a controller that only allocates new VMs to
a service when the load increases and deallocates the VMs once the load de-
creases beyond a certain level. This type of controller thus reduces the number
of VMs provisioned and minimizes the provisioning costs, at the expense of
oscillations.

Our previous work [1] studies different ways to combine reactive and proactive
control approaches for horizontal elasticity. The two simple hybrid controllers pro-
posed combine reactive scaling up with proactive scale-down. These controllers act
on the monitored and predicted service load, but ignore multiple important aspects
of infrastructure performance and service workload. In this paper, our previous work
is extended by an enhanced system model and controller design. The new controller
takes into account the VM startup time, workload heterogeneity, and the changing
request service rate of a VM. It thus controls the allocated capacity instead of only
the service load. The controller design is further improved by adding a buffer to
the controller to store any delayed requests for future processing. This buffer model
characterizes many scientific workloads where jobs are usually queued for future
processing. The proposed controller can be used by both the cloud service provider
and the cloud user to reduce the cost of operations and the cost of running a service
or an experiment in the cloud. The controller can be used also to control the elasticity
of a privately run cloud or cluster.

The performance of the controller is tested using two sets of traces, a Web work-
load from the FIFA world cup [3] and a recently published workload from a Google
cluster composed of around 11 thousand machines [26]. The Web trace is selected as
it is a well known and rather bursty workload and thus challenging for an elasticity
controller. The cluster traces, consisting mostly of MapReduce jobs, are chosen to
evaluate the behavior of our approach on traces more similar to scientific workloads.

The rest of this paper is organized as follows. Section 2 describes the system model
and the design of the proposed controller. In Section 3, the simulation framework
and the experiments are described and the results are discussed. Section 4 discusses
some of the different approaches available in the literature for building elasticity
controllers. Section 5 contains the conclusions.

2 Controller design

2.1 System model
In this work, the cloud infrastructure is modeled as a closed loop control system
and queueing models are used to design a feedback elasticity controller. The cloud
infrastructure is modeled as a G/G/N stable queue in which the number of servers
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Figure 1: Queueing model and elasticity control for a cloud service.

N required is variable [16] as shown in Figure 1. This is a generalization of the work
by Khazaei et al. [13] where a cloud is modeled as an M/G/m queue with a constant
number of servers, m. We assume that the system serves generic requests that can
be anything from a Web query to Pubmed [12] to a job in a workflow to process
astronomical data [25].

The number of VMs allocated to a service at any time unit, N, changes according
to the controller output. When the load increases, VMs are added and when it de-
creases VMs are removed. We assume that it takes one time unit for a VM to boot
and get intialized. In practice, it also takes time to shut-down a VM, but for most
applications, no more requests are sent to a VM after a shutdown command is issued.
It is thus assumed that the effect of VM shut down on capacity is instantaneous.

In our model, requests not served are buffered and delayed as shown in Figure 1.
We make no assumptions about a finite buffer size, but the designed controller uses
the number of buffer requests as one criteria for adding VMs. The buffer length is
also used as a performance metric in the evaluation section. A buffered request is
delayed and thus the larger the number of buffered requests, the slower the request
response time. Assuming the queue is stable, the average service rate over time is
equal to the average arrival rate over time. Whenever the system is at risk of insta-
bility due to increase in the demand, the elasticity controller increases N to enforce
system stability. The elasticity control problem can be stated as follows: the elas-
ticity controller should add or remove VMs to ensure system stability, i.e., over a
long period of time, the number of serviced requests (the service capacity) is equal
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Table 1: Overview of used notation.

Variable Description
N Number of VMs deployed
L(t) Total service load at time t
R(t) Total service capacity available at time t
C(t) Service capacity required at time t
A(t) Arriving (new) requests at time t
D(t) Increase/decrease in required capacity at time

t
B(t) Size of buffer at time t
E(t) Amount of already processing requests at

time t
K Number of queued requests before starting a

new VM
r Number of time units needed to start all

buffered requests
Td Estimation interval (time between two estima-

tions)
LTd Average load over the last estimation interval
Lt Average load over all time
D̃ Predicted value for request change rates over

next Td time units
P Estimated ratio between D̃ and average load
MAvg The average of the median request service

rates per unit time over the the Td

to the total number of received requests received with an error tolerance (number of
buffered requests). This should be achieved irrespective of the change in the request
arrival rate and while maintaining the number of VMs to a minimum.

2.2 Estimating future usage
The optimal total service capacity, C(t), required for time t is:

C(t) =C(t−1)+D(t), (1)

where C(t−1) is the capacity required in the last time step and D(t) is the increase
or decrease in capacity needed in order to meet SLAs while maintaining the num-
ber of VMs to a minimum. The controller is activated each Td time units. When
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evoked at time t, it estimates the change in workload for the next Td time units, D(t+
1),D(t+2), . . . ,D(t+Td). VM allocations are adjusted at times t+1,t+2, . . . ,t+Td
according to these predictions, followed by a new prediction for t+Td . . . t+2Td . We
define A(t) as the arrival rate of new requests to the service. A suitable initial service
configuration could be C(0) = A(0).

We define the total workload of the service, L(t), as the sum of the arriving re-
quests, the existing, already processing requests, E(t), and any buffered requests to
be served. No assumptions are thus made about the time needed to serve a request,
which can vary from seconds to hours. We use B(t) to denote the number of requests
in the buffer at time t. If enough VMs are allocated to initialize all buffered requests
in the next time unit, these machines may become idle and be released shortly after,
causing oscillations in resource allocations. We thus define r, a system parameter
specifying over how many time units the currently buffered load should be started.
Now, the total workload at time t can be written as:

L(t) = A(t)+E(t)+
B(t)

r
. (2)

The capacity change required can be written as

D(t) = L(t)−R(t) (3)

where R(t) denotes the currently allocated capacity. Assuming that A(t) remains
constant for the next time unit, the estimated change in the current service capacity
required, D̃ for the future Td time units can be estimated by

D̃ = PLTd (4)

where P represents the estimated rate of adding or removing VMs. We define LTd to
be the average periodical service load over the past Td time units,

LTd =
∑Td

i=0 L(t− i)
Td

. (5)

Similarly, we define Lt , as the average load over all time as follows:

Lt =
∑t

i=0 L(i)
t

. (6)

Now, P represents the estimated ratio of the average change in the load to the average
load over the next Td time units and LTd is the estimated average capacity required
to keep the buffer size stable for the next Td time units. P is positive if there is an
increase in total workload (new service requests, buffered requests, and requests that
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need to be processed longer); negative if this sum decreases (with the buffer empty);
and zero if the system is at a steady state and the buffer is empty.

We define P to be the ratio between D(t) and the average system load over time,

P =
D(t)
Lt

. (7)

This value represents the change in the load with respect to the average capacity. By
substituting Equations 7 in Equation 4,

D̃ =
LTd

Lt
D(t). (8)

This formulation is a proportional controller [21] where D(t) is the error signal and
LTd/Lt , the normalized service capacity, is the gain parameter of the controller. By
substituting Equation 5 in Equation 8, we obtain

D̃ =
∑Td

i=0 L(t− i)
Lt

D(t)
Td

. (9)

If Td is optimal, i.e., estimations occur when the rate of change of the load changes,
then D(t)/Td is the slope of the changing load multiplied by the ratio between the
instantaneous load and the overtime average load.

2.3 Determining suitable estimation intervals
The interval between two estimations, Td , is a crucial parameter affecting the con-
troller performance. It is used to calculate P and D̃ and Td also controls the reactivity
of the controller. If Td is set to one, the controller performs predictions every time
unit. At the other extreme, if Td is set to ∞, the controller performs no predictions
at all. As the workloads observed in datacenters are dynamic [2], setting an adaptive
value for Td that changes according to the load dynamics is important.

We define the maximum number of buffered requests, K, as the tolerance level
of a service i.e., the maximum number of requests queued before making a new
estimation or adding a new VM, thus:

Td =

{
K/|D̃| if K¿0 and —D̃| 6= 0
1 if K=0 or D̃ = 0 (10)

The value of K can be used to model SLAs with availability guarantees. A low value
for K provides quicker reaction to load changes, but will also result in oscillations as
resources will be provisioned and released based on the last few time units only. Con-
versely, K is large, the system reacts slowly to changing load dynamics. Similarly,
r affects the rate with which buffered requests should be started, and thus impose
similar tradeoffs between oscillations and quickly reacting to load increases.
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2.4 Hybrid elasticity control

The main goal of an elasticity controller is to allocate enough resources to enforce
the SLAs while decreasing total resource usage. It is very hard to anticipate whether
an observed increase in load will continue to rise to a large peak [2] as there are
no perfect estimators or controllers. Using pure estimation for scale-up decisions is
dangerous as it can lead to system instability and oscillations if the load dynamics
change suddenly while the controller model is based on the previous load.

Algorithm 1: Hybrid elasticity controller with both proactive and reactive compo-
nents.
Data: r, K
Result: Perform resource (de)allocation to keep the system stable

1 Proactive Aggregator← 0;
2 Td ← 1;
3 for each time step t do
4 Update R(t),A(t),B(t), and E(t) from monitoring data;
5 Calculate D(t) using Equation 3;
6 if Time from last estimation ≥ Td then
7 Calculate LTd from Equation 5;
8 Calculate Lt from Equation 6;
9 Calculate P from Equation 7;

10 Calculate D̃ from Equation 8;
11 Update MAvg;
12 Calculate Td from Equation 10;
13 NReactive← ⌈D(t)/MAvg⌉;
14 Proactive Aggregator+= D̃/MAvg;
15 NProactive← ⌊Proactive Aggregator⌋;
16 Proactive Aggregator−= NProactive;
17 if NReactive > K then
18 if NProactive > 0 then
19 Deploy NProactive +NReactive servers
20 else
21 Deploy NReactive servers
22 else
23 (Un)deploy NProactive servers
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Our design is a hybrid controller where a reactive component is coupled with the
proposed proactive component for scale up and a proactive only component for scale
down. The details of the implementation are given in Algorithm 1. The controller
starts by receiving monitoring data from the monitoring subsystem in Line 4. If Td
time units passed since the last estimation, the system model is updated by reestimat-
ing D̃ and Td as shown from Line 6 to Line 12. The unit of D̃ is requests per time
unit.

The actual calculation of the number of VMs to be added or removed by the differ-
ent controllers is done between lines 13 and 16. In some applications, D̃ is divided
by MAvg in Line 14 to find the number of servers required. The rate of the proactive
controller can be steered by multiplying D̃ by a factor, e.g., to adding double the es-
timated VMs for some critical applications. The reactive controller is coupled with
the proactive controller to reach a unified decision as shown from Line 17 to Line
23. For scale up decisions, when the decisions of both the reactive component and
the proactive component are to scale up, the decisions are added. For example, if
the reactive component decides that two more VMs are required while the proactive
component decides that three VMs are needed, five VMs are added. The reactive
component is reacting for the current load while the proactive component is estimat-
ing the future load based on the past load. If the reactive component decides that a
scale up is needed while the proactive decides that a scale down is needed then the
decision of the reactive component alone is performed because the reactive compo-
nent’s decision is based on the current load while the proactive component’s decision
may be based on a skewed model that needs to be changed.

For the reactive and proactive components to calculate the number of VMs re-
quired for a given load, the controller needs to know the service capacity of a VM
i.e., the number of requests serviced per VM every time unit. This number is variable
as the performance of a VM is not constant.

In addition, there are different request types and each request takes different time
to service. As a solution, we calculate MAvg, the average of the median request service
rates per VM per unit time over the past estimation period Td . MAvg is used by the
reactive and proactive components to calculate the number of VMs required per
unit time to service all the requests while meeting the different SLAs. The median is
chosen as it is a simple and efficient statistical measure which is robust to outliers and
skewed distributions. No assumptions are made about the service rate distribution for
a VM. MAvg is a configurable parameter which can be changed based on deployment
requirements.
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3 Experimental Evaluation

To validate the controller, a three-phase discrete-event simulator [4] was built using
python that models a service deployed in the cloud. Two different workloads are
used for the evaluation, the complete traces from the FIFA 1998 world cup [3] and a
set of Google cluster traces [26].

In all evaluations, the controller time step, i.e., the time it takes to start a VM is
selected to be 1 minute, which is a reasonable assumption [22]. The effects of the
controller’s decision to increase the resources provisioned does thus not appear until
after one minute has elapsed and the new VMs are running. The granularity of the
monitoring data used by the controller is also 1 minute.

Algorithm 2: Reactive elasticity controller.
Data: r, K
Result: Perform resource (de)allocation to keep the system stable

1 for each time step t do
2 Update R(t),A(t),B(t), and E(t) from monitoring data;
3 Calculate MAvg;
4 Calculate D(t) using Equation 3;
5 NReactive← ⌈D(t)/MAvg⌉;
6 if NReactive > 0 and D(t)> K then
7 Deploy NReactive servers
8 if NReactive <−2 then
9 Undeploy NReactive servers

The controller’s performance is compared to a completely reactive controller sim-
ilar to the one proposed by Chieu et al. [8]. The design of the reactive controller
is shown in Algorithm 2. The calculation of the median service rate is done every
minute as this is the time between two load estimations. In order to reduce oscil-
lations in the reactive controller, scale down is not done until the capacity change
D(t) is less than the current provisioned capacity C(t) by 2MAvg, i.e., scale down is
only done when there are more than two extra VMs provisioned. In the experiments,
we refer to our controller in Algorithm 1 as CHybrid and the reactive controller in
Algorithm 2 as CReactive.

With a few exceptions, most of the work available on elasticity control compares
performance with static provisioning. However, we chose to compare our controller
with a reactive controller to highlight the tradeoffs between over-provisioning, SLA
violations, and oscillations.
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Table 2: Web workload performance overview.

CHybrid results CReactive results
F λ OP OP UP UP V N OP OP UP UP V N
1 100 41905 0.548 3883 0.05 2.5 3 35600 0.47 267402 3.49 5.98 2.95

10 100 535436 6.99 8315 0.1 19.7 26.09 206697 2.7 8835898 115.45 135.97 23.28
20 100 1075447 14.05 98678 1.29 38.9 51.76 380059 4.966 19611571 256.26 297.29 46.14
30 100 1617452 21.14 148896 1.9 58.1 77.46 555503 7.25 30944637 404.35 466 69.15
40 100 2155408 28.16 197660 2.58 77.3 103.11 732157 9.567 42265699 552.28 634.57 92.14
20 200 654596 8.55 35380 0.46 19.3 27.57 225979 2.95 5187614 67.78 87.63 22.86
30 300 761956 9.96 30951.0 0.4 19.3 28.94 235436 3.07 3783052 49.4 69 22.71
40 400 857608 11.2 30512 0.4 19.3 30.16 241854 3.16 3180898 41.56 61.04 22.7

3.1 Performance Metrics
Different metrics can be used to quantify the controller performance. We define OP
to be the number of over-provisioned VMs by the controller per time unit aggre-
gated over the whole trace. OP is the average number of over-provisioned VMs by
the controller per minute. Similarly, UP and UP are the aggregate and the average
number of under-provisioned VMs by the controller per minute. We also define V ,
the average number of servers required to service the buffered load per minute,

V = Σ
Buffered Load

Median Service rate of a VM
. (11)

V represents the way the buffers get loaded. It does not represent the optimal number
of servers required to service the load but rather represents average required number
of VMs due to the queue build up. We use N to denote the average number of VMs
deployed over time.

3.2 Web workload performance evaluation

The Web workload contains 1.3 billion Web requests recorded at servers for the
1998 FIFA world cup in the period between April 30, 1998 and July 26, 1998. The
aggregate number of requests per second were calculated from these traces. In the
simulation, the requests are grouped by time of arrival. The focus is not on individ-
ual requests but rather on the macro-system performance. For the experiments, the
average service rate of a VM is drawn from a Poisson distribution with an average
equal to λ requests per second. It is assumed that the time required to process one
request is 1 second. The tolerance level K is chosen to be 5, i.e., 5 requests may be
buffered before the controller reacts.

Assuming perfect load balancing, the performance of the controller is the only
factor affecting performance in the simulation. We set r to 60 seconds, i.e., queued
requests are emptied over one minute.
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The controller is configured for the worst case scenario by using the maximum
load recorded during the past minute as the input request arrival rate to the controller.
This assumption can be relaxed by monitoring the average or median load for the
past minute instead. Using the median or the average will result in provisioning less
resources for most workloads.

As the Web traces are quite old, we have multiplied the number of requests by a
factor F in order to stress test the controller performance under different load dynam-
ics. For different experiments, λ is also changed. Table 2 shows the performance of
the two controllers when F takes the values of 1, 10, 20, 30, and 40 while λ takes the
values of 100, 200, 300, and 400. Due to the size of the trace, the aggregate metrics
UP and OP are quite large.

For the over-provisioning metrics, OP and OP, it is clear that CHybrid has a higher
over-provisioning rate compared to CReactive. This is intuitive because CHybrid provi-
sions resources ahead in time to be used in the future and delays the release of re-
sources in order to decrease oscillations. When λ changes such that the ratio between
λ and F is constant at 10, OP and OP are reduced for both controllers compared to
when only F increases and the rate of increase of both values is lower. Notably, these
values are quite small if we compare them to static provisioning. If capacity would
be statically provisioned for the workload, 42 servers would be needed when F = 1
and λ = 100, whereas using the proactive controller or even the reactive controller,
the average number of provisioned servers is around 3, reducing resource use by
around 92.5% compared to static provisioning but at the cost of an increase in the
number of delayed requests.

Looking at the aggregate and the average under-provisioning metrics, UP and UP,
CHybrid is superior to CReactive. Since CHybrid scales up and down proactively, it pre-
vents oscillations. It proactively allocates VMs to and does not release resources
prematurely, thus decreasing the amount of buffered and delayed requests. In fact,
CReactive shows a very high rate of under-provisioning due to the fact that all de-
layed requests are buffered. The average number of under-provisioned servers of
CReactive is 70 times that of CProactive when F = 1 and λ = 100. Since CReactive is
always lagging the load and releases resources prematurely causing oscillations, the
performance of the controller is quite bad. In real life, the buffer is not infinite and
thus requests are dropped. In comparison, using the proposed controller, CHybrid, the
request drop rate is quite low. Again, we note that for a ratio between λ and F of
10, under-provisioning (UP and UP) is reduced for both controllers compared to
when only F increases. Actually, for CHybrid, UP and UP, are almost constant while
for CReactive, they decrease significantly with the increase of λ and F while hav-
ing a constant internal ratio. We attribute this to the higher service capacity of the
VMs allowing the system to cope with higher system dynamics. For future work, we
plan to investigate the effect of the VM capacity on the performance of an elasticity
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Table 3: Number of VMs added and removed for the Web workload with F = 1 and λ = 100.

XR XP
CProactive 1141 1152
CReactive 15029 N/A

controller with different system dynamics and if the property we have just noted is
general for any arrival process.

The V columns in Table 2 show the average number of VMs required to empty the
buffer in one minute or the average number of minutes required by a single VM to
empty the buffer. This is illustrated by figures 2(a) and 2(b) that show the average
buffered requests per VM at any second for CHybrid and CReactive respectively when
N = 100 and K = 1. In Figure 2(a) there are three major peaks when the buffered load
per VM is above 1000 requests resulting in a relatively small V and UP in the table.
These three peaks are a result of sudden large load increases. On the other hand,
Figure 2(b) shows more peaks with buffered load more than 50000 requests per VM,
resulting in a relatively high V and UP. The average required buffer size for CReactive
per VM in order to service all requests is almost 3 times the buffer size required
by CProactive. Thus, for a limited buffer size, CReactive drops many more requests than
CHybrid.

Figures 3(a) and 3(b) show the load and the provisioned capacity using both con-
trollers for the full trace when λ = 100 and F = 1. These plots show the macro
behavior of the controllers. The total number of buffered requests is the reason for
having very high load peaks for CReactive. The largest spike seen in Figure 3(a) was
around the fifth of May at 11:15. For ten minutes, the load suddenly increases ten-
fold and then starts oscillating causing some instability in CProactive. Notable, as the
buffered load is emptied over r time units, the capacity does not increase with the
same rate as the numbered of buffered requests increase.

To study the micro behavior of the controllers, figures 4(a) and 4(b) show the
load and controller output for one and half hour from 21:21:12 on 25 June, 1998
to 22:44:31 on the same day. These figures show that CProactive tracks the envelope
of the load by keeping the provisioned capacity slightly higher than the load while
CReactive oscillates the provisioned capacity with the increase or decrease of the load.
Note that as the capacity of a single VM is variable, the capacity in Figure 4(a),
which is measured in number of requests, appears to be oscillating. What actually
happens is that the number of provisioned VMs drops gradually from 13 to 6 with
no oscillations.

Table 3 shows XR, the total number of servers added and removed by the reactive
component of a controller, and XP, the total number of servers added and removed
by the proactive component, using CHybrid and CReactive for a simulation run with
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(a) CProactive

(b) CReactive

Figure 2: Number of buffered requests over time for the Web workload.
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(a) CHybrid

(b) CReactive

Figure 3: Load and the provisioned capacity over time for the Web workload.
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(a) CHybrid

(b) CReactive

Figure 4: Load and the provisioned capacity for 1.5 hours of the Web workload.
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Table 4: Properties of the cluster workload.

execution time queue time total time
Median 347.4 s 3.6 s 441.6 s
Average 3961.8 s 220.76 s 4182.5 s
90th percentile 3803 s 3325 s 4409 s

F = 1 and λ = 100. The total number of server added or removed by CProactive is
2293 servers almost one seventh of the total number of server added or removed by
the reactive controller. These results illustrate how the reactive controller increases
resource oscillations.

3.3 Cluster workload performance evaluation

Recently, Google published a new sample dataset of resource usage information
from a Google production cluster [26]. The traces are from an cluster with 11000
servers. As this cluster is used to run a mixture of MapReduce and other computa-
tionally intensive jobs, the traces are representative for scientific workloads.

In this experiment, there is no risk of causing oscillations if r = 1 since most of the
requests take more than 1 minute to serve. The median job length in the workload
is 347.5 seconds or almost 6 minutes. Table 4 summarizes the statistical properties
of the tasks in the workload. Due to lack of space we do not comment more on the
properties of the workload. K is set to 5 jobs also for this experiment. We define
that a job is delayed if it remains in the queue for more than 1 minute. The median
number of tasks that can be processed on a single machine in the trace is 170, while
the minimum is 120. To be more conservative, we set the number of tasks assigned
to a server to 100.

Table 5 shows the performance of the proactive and reactive controllers. The
amount of under-provisioning using the CReactive is almost three times that of CProactive.
This comes at the cost of over-provisioning on average 164 VMs compared to around
1.4 VMs for the reactive controller. However, the amount of over-provisioning is still
low, around 25%, as CProactive used 847 VMs on average, as compared to 687 VMs
for the reactive controller.

While OP and UP may be crucial for a workload like the Web trace, they are less
important for a workload of jobs like the cluster trace where a job can wait in the
queue for minutes. More importantly for this workload type is V , the average number
of buffered tasks. CProactive keeps the average number of buffered tasks below K. On
the contrary, the reactive controller’s average buffer length is double the allowed
buffer size K and three times that of the proactive controller. This is illustrated in
figures 5(a) and 5(b) that show the number of buffered requests over time.
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(a) CProactive

(b) CReactive

Figure 5: Number of buffered requests over time for the cluster workload.
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(a) CProactive

(b) CReactive

Figure 6: Load and the provisioned capacity over time for the cluster workload.
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(a) CHybrid

(b) CReactive

Figure 7: Load and the provisioned capacity for 3 hours of the cluster workload.
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Table 5: Cluster workload performance overview.

CProactive CReactive
OP 164 1.369
UP 1.76 5.384
N 847 686.9
V 3.48 10.22
XR 75415.0 505289
XP 78564.0 N/A

We also note that in total, the number of VMs added and removed by the reactive
controller is 505289 compared to 153979 by the proactive controller. This means
that the reactive controller results in more oscillations also for the cluster workload.

Figures 6(a) and 6(b) show the load and provisioned capacity for CProactive and
CReactive. The proactive controller tracks the envelope of the workload, i.e., the capac-
ity stays ahead of the load most of the time, whereas the reactive controller always
lags the load by at least one time unit. Due to the large number of points plotted, the
load appears as if it is completely covered with the capacity. In order to see the micro
behavior of the two controllers we plot the load and capacity for both controllers for
the first 3 hours of the trace in figures 7(a) and 7(b). The figures show how oscil-
lations are reduced using the proactive controller. For example, for the sudden de-
creases in load at minutes 15 and 30, CReactive quickly deallocated VMs followed by
reallocations as load increased again. In contrast, CProactive kept most of the allocated
VMs, causing less oscillations. To summarize the experiments, the workload char-
acteristics and the SLA requirements influence the performance of both controllers
considerably. We also note that our elasticity controller is highly scalable with re-
spect to service workload and infrastructure size. In the performed evaluations, the
controller required on average a few milliseconds to make a decision.

4 Related work

Elasticity is an incarnation of the dynamic provisioning problem which has been
studied for over a decade [7] from the perspectives of both server provisioning and
cloud computing. Different approaches have been proposed to solve the problem in
both its old and new incarnations. Some previous research considered only vertical
elasticity [17, 27]. while many others considered horizontal elasticity in different
contexts [20, 28].

Urgaonkar et al. [24] were among the first to discuss the effect of virtualization
on the provisioning problem or what we call horizontal elasticity. They proposed
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an adaptive controller composed of a predictive and a reactive components. The
predictive component acts in the time scale of hours or days. It provisions resources
based on the tail distribution of the load. The reactive component acts in the time
scale of minutes to handle flash crowds by scaling up the resources provisioned. The
model of the predictive controller is tuned according to the under-provisioning of
resources seen in the past a few hours. Scale down is not considered.

Gandhi et al. [10] propose a similar controller. The main difference is in the predic-
tive controller design. Their predictive controller identifies patterns in the workload
using a workload forecaster which discretizes it into consecutive, disjoint time inter-
vals with a single representative demand value. Workload forecasting is done on the
time scale of days i.e., the model of the predictive controller is changed at most once
a day. In their approach there is no way to tune the model of the predictive controller
and they do not consider scale down of resources.

Malkowski et al. [18] propose a controller for n-tiered applications. They add to
the predictive and reactive controller a database of previous system states with good
configurations. The elasticity controller starts by looking up if the current state of the
system in the database. If the state is found then the configuration corresponding to
the state is used. Otherwise, the reactive controller determines the underutilized state
or over-utilized state and provisions resources according to the load. In addition, the
predictive controller uses Fourier transforms to forecast the future workload for each
tier from the past.

A much simpler approach is proposed by Calheiros et al. [5]. They model a cloud
provider using basic queueing theory techniques. They assume heterogeneous re-
quests that take constant time to process.

5 Conclusion

In this paper, we consider the problem of autonomic elasticity control for cloud in-
frastructures. The infrastructure is modeled as a G/G/N queue with variable N. The
model is used to design an adaptive proportional controller that proactively adapts
based on the changes in the load dynamics. The controller takes into account re-
source heterogeneity, delayed requests, and variable VM service rates. A hybrid
controller combines the designed controller with a reactive controller that reacts to
sudden increases in the load. The combined controller tries to follow the workload
envelope and avoids premature resource deallocation.

Using simulations we compare the proposed controller to a completely reactive
controller. Two traces with different characteristics are used, Web traces from the
FIFA world cup that are quite bursty in nature with simple requests and cluster traces
from Google with jobs as long as 1 hour. Simulation results show that our proposed
controller outperforms the reactive controller by decreasing the SLA violation rate
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by a factor between 70 for the Web workload and 3 for the cluster one. The reactive
controller required three times larger buffers compared to our controller. The results
also show that the proposed controller reduces resource oscillations by a factor of
seven for the Web workload traces and a factor of three for the cluster traces. As a
tradeoff, the hybrid controller over-provisions between 20% and 30% resources as
compared to a few percent for the reactive one.
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Abstract

Accurate understanding of workloads is key to efficient cloud resource management as
well as to the design of large-scale applications. We analyze and model the workload
of Wikipedia, one of the world’s largest web sites. With descriptive statistics, time-
series analysis, and polynomial splines, we study the trend and seasonality of the
workload, its evolution over the years, and also investigate patterns in page popularity.
Our results indicate that the workload is highly predictable with a strong seasonality.
Our short term prediction algorithm is able to predict the workload with a Mean
Absolute Percentage Error of around 2%.

1 Introduction

The performance of an Internet-scale system is affected by three main factors: the de-
sign of the system, the implementation of the system, and the load on the system [12].
When a system is designed, there is typically an underlying assumption of the load
range for the system operation. On the other hand, the actual workload, and thus the
performance, is only known when the system becomes operational, turning system
design and workload analysis into a chicken-and-egg problem. One way to design a
new system is to analyze workloads of existing (similar) systems and draw similarities
and possible discrepancies between the existing system and the new system.
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Figure 1: Wikimedia foundation’s servers (Source: Wikimedia Foundation).

Workload analysis is also important for differentiating between legitimate and
illegitimate traffic [15], cache design [6], and capacity planning [22]. Within cloud re-
source management [17], problems related to admission control [24], scheduling [18],
virtual machine migration [23] and elasticity [3] are all examples that require deep
understanding of the expected operating workloads in order to design efficient man-
agement algorithms. As a prerequisite for designing better algorithms, we analyze
the workload of a large-scale website, which is a typical application for the cloud.
The selected workload is from the Wikimedia foundation servers, most known for
operating Wikipedia, the sixth most popular site on the web [2]. While three months
of this workload has been analyzed previously [25], we analyze a much larger data-set
spanning the period between June, 2008 until October, 2013, making our study the
largest workload study we are aware of.

This paper contributes to understanding the evolution of an Internet-scale online
service for a period of roughly 5.25 years. We describe the workload and introduce
statistical models of both its long-term evolution and its short-term trends. The short
term model is useful for management tasks such as admission control and auto-
scaling. In addition, we analyze and describe the workload dynamics on popular
pages. Knowledge about object popularity is useful for designing algorithms for
scheduling and caching.
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Table 1: Number of pages on Wikipedia in September each year (in millions).

2008 2009 2010 2011 2012 2013
11.3 13.9 16.7 19.8 23.2 29.6

2 Workload description

2.1 Overview

During the five years period we study, Wikipedia kept evolving, e.g., Table 1 shows
the total number of pages in Wikipedia through our study. The underlying Wikipedia
server architecture also evolved. At the beginning of our study, the foundation was
operating all its projects including Wikipedia using around 300 Servers in Florida,
which acted as the primary site, 26 in Amsterdam and 23 in Korea as shown in Figure
1. In January, 2013, the foundation was running around 885 servers and building a
new cluster in San Francisco that went in production in March, 2013. Today, the
foundation’s servers are distributed on 5 different sites; Virginia, which acts as a
primary site, Florida and San Francisco in the United States and two cluster in
Amsterdam, the Netherlands.

The dataset studied consists of hourly logged files [1] where each file contains the
total number of requests directed to a page hosted on the Wikimedia foundation’s
servers, the page’s name, to which project it belongs and the total amount of bytes
transferred for the page. The files sizes are between 20 MB and 120 MB of compressed
data. While the logging started in December, 2007, there was a problem in the reported
data transfered values until May, 2008. Since our plan is to study both the total number
of requests sent per hour and also the data transfered, we start our analysis from
May, 2008 till October, 2013, i.e. roughly 47479 hours (and files) studied. Due to
monitoring errors and system failures, 424 files are missing. All monitoring errors
lasted for a few consecutive hours, with the longest failure period between the 21st of
September, 2009 until the 1st of October, 2009.

2.2 Global workload characteristics

Figure 2 shows the aggregate load on Wikimedia’s servers. In both figures 2(a)
and 2(b), there are clear dips where the number of requests and the data sent goes to
zero or are reduced significantly. Further investigation showed that these are mostly
times of, or preceding, periods of (monitoring) system failures or server overloads.
The upper bursts on the other hand represent real increases in the system workload.

We used time-series analysis to model the workload request flow. In the classical
decomposition model [9], an observed time series {xt , t ∈ T} is modeled as a real-
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(a) Total number of requests received per hour.
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(b) Total amount of data (bytes) sent per hour.

Figure 2: Load on the Wikimedia foundation’s servers.

ization of a sequence of random variables {Xt , t ∈ T}, Xt = Tt + St +Rt , where Tt
is a slowly changing function (the trend component), St is a periodic function with
known period m (the seasonal component), and Rt is a random noise component
(assumed to be a stationary time series [10]). For modeling the request flow, we use
(seasonal) Autoregressive Integrated Moving Average (ARIMA) models. A seasonal
ARIMA(p,d,q)(P,D,Q)m (m-periodic) process {Yt} is defined by

Φ(Bm)φ(B)(1−Bm)D(1−B)dYt = Θ(Bm)θ(B)Zt ,

where φ(z),θ(z),Φ(z),Θ(z) are polynomials of order p,q,P,Q, respectively, with no
roots inside the unit circle, B is the backshift operator B(Yt) = Yt−1, {Zt} is white
noise with zero mean and variance σ2.

It is clear from Figure 2(a) that the workload dynamics changed tremendously
during the period studied with visible steps, e.g., at the end of 2012 and early 2013.
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Figure 3: Workload, Wikipedia, 3 September-8 October 2013, Seasonal-Trend
decomposition.

This suggests a change in the underlying process of the workload. In this case trying
to build a single global model can be deceiving and inaccurate. Instead of building a
single global model, we modeled smaller periods of the workload where there was no
significant step. Figure 3 shows the decomposition of the request flow for the period
between the 3rd of September till the 8th of October, 2013. The seasonality graph
suggests high daily and weekly correlations between the number of requests during
this period. The trend graph can be approximated with piecewise-linear functions. We
fitted the remainder to a seasonal ARIMA(2, 0, 2)(0, 0, 1) model using the R forecast
package [13].

Figure 4 shows some diagnostic plots of the fit, namely, the standardized residuals,
autocorrelation for residuals, and
p-values for Ljung-Box statistics for the fitted model [9]. While most of the standard-
ized residuals are well inside the [-2, 2] interval, in some cases they are outside. The
autocorrelation function (ACF) also suggests some daily correlation still present in
the residuals, so the fitted model could still be improved. We leave this for future
work.

We have repeated similar analysis for different (regular) parts of the workload and
summarized our results in Table 2. The first column is the period studied. The second
column summarizes the trend characteristics. For most parts of the workload, the vari-
ance in the trend is less than 5% of the average value. The second column summarizes
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Figure 4: Workload, Wikipedia, 3 September-8 October 2013, diagnostics for
ARIMA fitting.

the workload seasonality. For each seasonality plot, we have computed the FFT. The
only two dominant frequencies are at 1 day and 1 week. Their amplitudes are also
noted. The last column describes the fits for the remainders. The remainders are fitted
using seasonal ARIMA models. We note that the models are of low order and are not
too far from each other with even some models repeating, e.g., ARIMA(1,0,2)(0,0,1)
is repeated 4 times. We leave further investigation of the relationship between the
residuals and the goodness of fits for future work.

To better understand the differences between the load on the servers during week-
ends vs. weekdays, Figure 5 shows box-plots for the aggregate hourly number of
requests for all Wednesdays in 2011 and all Saturdays in 2011. A box-plot is a way
to visualize the quartiles and the dispersion of the distributions of the data [19]. The
medians and the means for the different hours are plotted. It is clear from the figure
that the time of the day affects the number of requests significantly with the lowest
activity at 5, 6 and 7 a.m. and the highest activity during the afternoons and the nights.
The data dispersion is also affected by the time of the day and the day of the week.
More accurate predictions can be done at times with lower dispersion. While there are
discrepancies between the mean and the median especially at hours of higher activity,
which might suggest skewed distributions, such a claim is incorrect to make without
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Table 2: Seasonal-Trend decomposition for some Workload intervals, 2008-2013, 5 weeks
intervals, weekly (168 hours) seasonal ARIMA model

Period Trend Seasonal Remainder
min, mean, max periods/amplitudes ARIMA[168]

(y, d/m) (106) (days)/(106)
2008, 17/05-
21/06

15.01, 15.14, 15.28 1.00/6.57,
6.74/2.89

(1,0,2)(0,0,1)

2008, 31/07-
04/09

12.49, 13.36, 13.86 1.00/4.40,
7.26/2.35

(1,0,2)(0,0,1)

2008, 26/10-
30/11

14.58, 15.22, 15.63 1.00/7.57,
7.26/2.14

(1,0,0)(1,0,0)

2009, 09/01-
13/02

15.42, 16.13, 16.33 1.00/7.84,
6.74/2.26

(1,0,0)(1,0,1)

2009, 23/04-
28/05

15.68, 16.28, 16.89 1.01/7.52,
7.26/2.90

(1,0,2)(0,0,1)

2009, 17/05-
21/06

15.40, 16.10, 16.50 0.99/6.56,
7.14/2.87

(2,0,1)(0,0,1)

2010, 28/07-
01/09

18.50, 19.08, 20.01 1.01/6.67,
7.26/3.03

(1,0,2)(0,0,1)

2010, 20/08-
24/09

19.24, 19.87, 20.63 1.00/8.18,
6.85/3.14

(2,0,2)(1,0,1)

2011, 01/01-
04/02

18.73, 21.34, 22.19 1.00/10.20,
6.74/2.53

(3,0,3)(1,0,1)

2011, 20/06-
25/07

19.34, 19.75, 20.39 1.00/6.90,
7.26/2.44

(1,0,3)(0,0,0)

2011, 01/11-
06/12

22.98, 23.35, 23.78 1.01/9.71,
7.26/2.94

(1,0,0)(1,0,0)

2012, 01/01-
04/02

23.01, 25.15, 25.85 1.01/10.14,
6.74/2.05

(3,0,3)(0,0,0)

2012, 07/03-
11/04

23.09, 23.73, 25.23 1.01/9.62,
7.26/2.81

(1,0,0)(1,0,1)

2012, 25/08-
29/09

25.85, 26.56, 27.23 1.00/9.39,
6.74/2.89

((1,0,1)(1,0,1)

2013, 19/01-
23/02

65.87, 66.83, 67.79 1.01/33.96,
6.74/9.77

(1,0,2)(1,0,1)

2013, 15/04-
20/05

60.09, 61.07, 64.24 1.01/30.09,
6.74/8.81

(1,0,0)(0,0,1)

2013, 03/09-
08/10

74.57, 75.33, 77.27 0.99/26.56,
6.93/6.56

(2,0,2)(0,0,1)
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Figure 5: Time of the day/week effect on the aggregate number of requests and
their distribution (Year 2011).

further analysis that we leave for future work [26]. Similar results were obtained for
different days and years for both the number of requests and the sent data.

2.3 Top 500 popular pages
During peak hours, less than one third of Wikimedia’s pages are accessed while
during hours of lower activity around one sixths of all pages are accessed. This
pattern did not change for the period of study. To better understand the dynamics of
the workload on individual pages, we keep track of the top 500 pages having highest
number of requests for the period of study. This is a highly dynamic list with over
650000 pages joining the list for sometime during the period of the study. The least
accessed page in the top 500 list had on average less than 1200 page views per hour
for the period of the study, i.e, less than 20 page views per minute. On the other hand,
the most popular pages in the list where usually general pages, e.g, the English Main
Page. These pages had on average more than 500000 page views at the beginning of
our study and around 20 Million views at the end.

Figure 6 shows the histogram of the number of consecutive hours a page stays
popular before leaving the list. Most pages have volatile popularity, with 41.58% of
the top 500 pages joining and leaving the top 500 list every hour, 87.7% of them
staying in the top 500 list for 24 hours or less and 95.24% of the top-pages staying
in the top 500 list for a week or less. The distribution has a long tail. Since there are
some monitoring gaps in the workload, we were not able to infer which pages were in
the top 500 list during these gaps. This adds some uncertainty to the preceding results.
In order to reduce this uncertainty, we plot Figure 7 which shows the percentage of
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time a page is in the top list during the study period. The x-axis represents the ratio
between the total time an object stays in the top 500 list and the total time of the
study while the y-axis shows the frequency of objects with a certain ratio. Around 9
pages where in the top 500 list for the whole period of the study, these are mostly the
main pages for different Wikipedia projects. On the other hand, Figure 7 confirms
that most objects are popular for only short periods of time.

2.4 Load on a popular page

We now shift our focus towards studying the effect of major events on the workload
on associated pages. We focus on two major events, Michael Jackson’s death and the
Super bowl XLV. While the load on Michael Jackson’s page has been studied for the
period of two days after his death [8], we study a much longer period. For both events,
we report results for the collateral load that accompanied the load on the main page.
We define the collateral load as the load increase on pages associated with the page
of the main event excluding the load on the page dedicated to that event. In order to
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Figure 8: Load on Michael Jackson’s page and the collateral load on the servers.
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Figure 9: Load on the Super Bowl XLV page and the collateral load on the servers.

extract the collateral load, we parse the main event’s page for the webpages that it
links to.

Figure 8 shows the workload on Michael Jackson’s page and the collateral load.
When Michael Jackson died, the load on his page increased by around four orders of
magnitude. This increase was accompanied by an increase in the load on all pages that
his page linked to, but with a smaller yet significant amplitude. Both the load and the
collateral load started decreasing shortly after a few hours but with the collateral load
decreasing slower than the load. After 12 days, on the 7th of July, Michael Jackson’s
memorial service took place, resulting in another significant load spike on the load
on his Wikipedia entry, but in a much larger spike in the collateral load.

Figure 9 shows the load on the Super Bowl XLV page and the collateral workload
on the Wikimedia servers before and after the event. Although the main event was
the Super Bowl, the load spike was in the collateral workload dwarfing the spike
on the Super Bowl page. We obtained similar results for the FIFA 2010 worldcup,
the Eurovision 2010 and the Egyptian revolution articles where for all of them the
collateral workload was typically orders of magnitude than the load on the main
article. This phenomena seems to be common for planned events, where the collateral
load surpasses the load on the original item. We plan to study the collateral load effect
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in more details and find its implication on resource management problems such as
placement and resource provisioning.

3 A predictive workload model
As seen in Figure 3 and confirmed by Table 2, the workload (Yt) has a pronounced
repetitive weekly pattern, which slowly varies over time. We call this the (weekly)
pattern, Pt , and estimate it by fitting cubic splines to the data [20]. Cubic splines are
flexible and able to pick up the features of the pattern. The workloads’ deviation from
the pattern (rest = Yt −Pt) is called the residual and will typically have a positive
autocorrelated structure that also brings information about future values. It may be
captured by an autoregressive model, e.g. in the simplest case with lag structure one,

rest+1 = a0 +a1rest + et+1, (1)

where et is white noise.
The workload is also characterized by occasional outliers, having extremely large

or small values compared to the surrounding workload values. As discussed earlier,
outliers typically come in time consecutive groups. Downward outliers occur due to
monitoring or system problems and do not reflect the true workload. Using bogus
monitoring values for management decisions can lead to severe decrease in the
application performance. They should therefore be ignored and the corresponding
(unobservable) workload be predicted by the estimated pattern. Upward outliers
(large values) on the other hand are real workload increases and should be predicted
as accurately as possible. While it is not possible to predict a completely random
event, i.e, foresee the first upward outlier in a group, it is important for the predictor
to adapt quickly and start mitigating for the workload change. We thus predict the
next workload value by the estimated pattern plus the prediction error of the last
workload,thus aiming at catching up as fast as possible to the ”explosive” nature of
the upward outliers. If the last value was not an outlier, we predict the next workload
by the estimated pattern plus the residual estimated from the autoregressive model in
Equation 1.

The repetitive weekly pattern slowly changes with time in amplitude, level and
shapes. Thus, when estimating the pattern and the residual AR model, and when
identifying outliers, it has to be done locally, say using only the two last weeks of
workload. Moreover the pattern and the AR model should be estimated without the
influence of outliers. We propose to do the following: Let Y ∗t denote the true workload
Yt if it is not an outlier (to be defined), and let it correspond to the estimated pattern
P̂t otherwise. Suppose we have chosen a two week window of workload data without
outliers, Y ∗t−335, ...,Y

∗
t and want to predict the workload at time t + 1. Estimate the

weekly pattern Yt , by first overlaying the two weeks of data on top of each other,
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such that there are two workloads for each hour over a week. Fit a cubic spline to
these data, putting knots at every second hour of a week (87 knots in total over 168
hours of a week) and using B-splines as basis functions. Now compute the residuals,
res∗h =Y ∗h − P̂h, h= t−335, ..., t, noting that P̂h = P̂h+168, and estimate the coefficients
of the AR model using Equation 1 by a least squares fit of res∗t+1 = a0 +a1res∗t .

If the last workload, Yt , is not an outlier, predict the next workload, Yt+1, by

Ŷt+1 = P̂t+1 + â0 + â1(Yt − P̂t). (2)

If Yt is an upward outlier predict Yt+1, by

Ŷt+1 = P̂t+1 +(Yt − P̂t). (3)

If Yt is a downward outlier predict Yt+1, by

Ŷt+1 = P̂t+1. (4)

Outliers are defined as follows. First compute the standard deviation sres of the
residuals res∗h, h = t−335, ..., t. Suppose that we go forward in time and observe Yt+1.
Then Yt+1 is defined to be an upward outlier if Yt+1 is greater than the maximum value
of the estimated pattern (over the last two weeks) plus 4sres. Moreover, Yt+1 is defined
to be a downward outlier if it is zero or less than the minimum value of the estimated
pattern (over the last two weeks) minus 4sres. To predict the workload at time t +2,
having observed Yt+1, we slide the two week window one hour ahead in time and
repeat the above algorithm. The predictive model was applied to both the flow of
requests and the data flow for the Wikimedia workload. Examples of prediction
performance for the request flow can be seen in Figure 10. The actual workload is
shown in blue solid lines, the predicted value in red dotted lines and the predicted
value without compensation for the bursts in solid black lines. In Figure 10(a), there
is a single short spike where the workload almost doubled, while in Figure 10(b),
the workload almost doubled but stayed like that. It is clear that using our corrective
mechanism, the predictor is able to rapidly cope to the changing workload dynamics.
Comparable results were obtained for predicting the data flow which we omit due to
the lack of space. We calculated the Mean Absolute Percentage Error (MAPE) for our
predictions for both the requests flows and the data flows. When excluding outliers,
the MAPE for the predicted request flow is 2.2% while for the data flow is 2.3%, that
is, on average we miss the true workload one step ahead by around 2% for both the
data and request streams. When only considering spikes, the MAPE for the request
stream is 4.6% and is 11% for the data stream.
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Figure 10: Load on the Wikimedia foundation’s servers.

4 Related work

Several projects have analyzed in depth publicly available workloads. All of them
differ from our current work in either the type of the workload analyzed, the period
of the analysis or the magnitude of the workload studied [5, 7, 14, 21].

Urdenta et. al. [25] studied 10% of all requests directed to all the wiki projects
for a period of 107 days between September 19th, 2007 to January 2nd, 2008. They
give more focus to the load directed to the English Wiki. They report some statistics
describing page popularity, save operations and other Wiki operations. .

Kang et. al. crawled Yahoo! videos website for 46 days [16]. Around 76% of the
videos crawled are shorter than 5 minutes and almost 92% are shorter than 10 minutes.
They discuss the predictability of the arrival rate with different time granularities. A
load spike typically lasted for no more than 1 h and the load spikes are dispersed
widely in time making them hard to predict.

Arlitt et. al. [6] analyzed 6 different web server access logs with different durations.
The workloads varied in magnitude of server activity, ranging from a total of 653
requests per day to 355787 requests per day. All workloads studied were logged be-
tween October 1994 and August 1995. They predicted that video and audio workload
growth may have a dramatic impact on the web servers. They noted 10 invariants in
the 6 workloads. Ten years later, Williams et. al. [27] repeated the analysis for three
of the workloads used in the original study. The most notable difference they noted
was the increase in web traffic volume, sometimes up to 32 folds. With 7 out of the
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10 invariants studied in 1997 unchanged, they conclude that there are no dramatic
changes in webserver workload characteristics between 1995 and 2005. Faber et.
al [11] have also reexamined the 10 invariants for scientific websites. They studied
access logs for 4 websites different from the ones studied in [6]. They found that only
3 invariants were unchanged for the scientific website. These results are not aligned
with the results in [27] suggesting that their might be different sets of invariants for
different workloads [4].

Bodik et. al. [8] identify volume spikes as spikes that result from a sudden increase
in the total workload of a system. They define a data spike as a sudden increase in
demand for certain objects, or more generally, a pronounced change in the distribution
of object popularity on the site. They analyze spikes in different workloads and
propose a methodology for capturing both volume and data spike with a statistical
seven-parameter model. The authors also propose a closed-loop workload generator
based on the proposed model.

5 Conclusion

We analyze and describe one of the largest publicly available workloads, the Wikime-
dia foundation’s load. The top 500 pages by number of page accesses were studied.
We model different parts of the workload using time-series analysis. Major events
can cause a collateral load on the servers of the system resulting from pages related
to the event’s page. This collateral load can be orders of magnitude larger than the
load on the original page. We have also introduced a simple prediction algorithm that
can be used to predict short term aggregate workload on the system. Our results show
that, although the Wikimedia workload has complex patterns and dynamics, a simple
cubic spline prediction algorithm can predicts it with MAPE of 2% suggesting that
complex prediction algorithms are not needed for the Wikimedia workload. For future
work, we will further investigate how to build a workload generator for Wikipedia like
systems with a similar popularity model. We also plan to find better spike detection
algorithms for short term predictions.
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[23] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of delta com-
pression techniques for efficient live migration of large virtual machines. ACM
Sigplan Notices, 46(7):111–120, 2011.

[24] L. Tomas and J. Tordsson. Cloudy with a chance of load spikes: Admission
control with fuzzy risk assessments. In IEEE/ACM UCC, 2013.

[25] G. Urdaneta, G. Pierre, and M. Van Steen. Wikipedia workload analysis for
decentralized hosting. Computer Networks, 53(11):1830–1845, 2009.

[26] P. T. von Hippel. Mean, median, and skew: Correcting a textbook rule. Journal
of Statistics Education, 13(2):n2, 2005.

III:16



[27] A. Williams, M. Arlitt, C. Williamson, and K. Barker. Web workload char-
acterization: Ten years later. In Web content delivery, pages 3–21. Springer,
2005.

III:17





Paper IV

Measuring Cloud Workload Burstiness

A. Ali-Eldin, O. Seleznjev, S. Sjöstedt-de Luna, J. Tordsson, and E.
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Sara Sjöstedt-de Luna‡, Johan Tordsson†, and Erik Elmroth†

Abstract

Workload burstiness and spikes are among the main reasons for service disruptions
and decrease in the Quality-of-Service (QoS) of online services. They are hurdles
that complicate autonomic resource management of datacenters. In this paper, we
review the state-of-the-art in online identification of workload spikes and quantifying
burstiness. The applicability of some of the proposed techniques is examined for
Cloud systems where various workloads are co-hosted on the same platform. We
discuss Sample Entropy (SampEn), a measure used in biomedical signal analysis, as a
potential measure for burstiness. A modification to the original measure is introduced
to make it more suitable for Cloud workloads.

1 Introduction

Workload spikes and burstiness decrease online applications’ performance and lead to
reduced QoS and service disruptions [6, 34]. We define a workload spike (sometimes
referred to as a burst or a flash crowd [5]) to be a sudden increase in the demand on
an object(s) hosted on an online server(s) due to an increase in the number of requests
and/or a change in the request-type mix [29].

Some spikes occur due to a non-predictable event in time with non-predictable
load volumes while others occur due to a planned event but with non-predictable
load volumes. Figure 1 shows the load on Michael Jackson’s English Wikipedia page
during the period around his death. Two significant spikes can be seen in the figure.
The first spike occurred right after his death with the load on the page increasing by
∗The paper has been re-typeset to match the thesis style. Reproduced with permission of IEEE.
†Department of Computing Science, Umeå University, Sweden, email:

{ahmeda, tordsson, elmroth}@cs.umu.se
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Figure 1: Spike on the Michael Jackson Wikipedia entry after his death.

three orders of magnitude. The second visible spike occurred 12 days after his death
during his memorial service. Before the memorial service, the load on the page was
still higher than normal by one order of magnitude. The memorial service resulted
in another increase, one order of magnitude larger than the load before the service.
While it is impossible to predict the first spike, it is important to detect and mitigate
against the spike with minimal reduction in the QoS. The second spike on the other
hand can be mitigated against before its occurrence since it is a planned event.

A bursty workload is a workload having a significant number of spikes. The spikes
make it harder to predict the future value of the load. An example of a workload that
exhibits little burstiness is shown in Figure 2(a) for 10% of all user requests issued to
Wikipedia [30]. Most of the variations in the load are due to the diurnal variations
in the usage of Wikipedia. Figure 2(c) shows the load on IR-Cache servers [18]
deployed in San Diego (SD-IRCache) and Figure 2(d) shows the load on the servers
of the FIFA 1998 world cup during the last two weeks before the games ended, with
both workloads having moderate burstiness. These bursts are either due to planned
events with hard to predict magnitude or just increased service usage. Figure 2(b)
shows strong burstiness in the number of tasks submitted per minute to a Google
cluster [36].

Bursty workloads complicate cloud resource management since cloud providers
host a multitude of applications with different workloads in their datacenters. Prob-
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(a) Workload with little burstiness
(Wikipedia).
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(b) Bursty workload (Tasks in a Google clus-
ter).
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(c) Workload with spikes that have a hard to
predict magnitude (IRCache servers).
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(d) Workload with spikes that have a hard to
predict magnitude (FIFA world cup servers).

Figure 2: Different workloads have different burstiness.

lems such as service admission control, Virtual Machine (VM) placement, VM
migration and elasticity [14] are examples of resource management problems that
are complicated due to workload spikes and burstiness. Our interest in quantifying
burstiness is driven by our work on cloud elasticity [3]. Workload burstiness has a
profound effect on the performance of any autoscaling algorithm. Some elasticity
algorithms are better suited for periodic workloads, where the repetitive workload
patterns can be used for estimating the future load [2]. Other algorithms are better
performing on bursty workloads without repetitive patterns [3]. Since there is no
one-size-fits-all solution for workload predictions for elasticity control, we needed a
measure for burstiness that is able to compare and classify workloads [4].

We identified some requirements for a burstiness metric to be robust and work on a
wide range of scenarios.

1. The metric should be able to capture changes in a wide set of workload types.
For example, using the exponential increase will result in missing out bursts
where the required number of servers increases from 1000 servers to 1500
servers.
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2. The parameters used for calculating the metric should be intuitive, and therefore
easy to set.

3. The metric should be able to operate on short data sequences and to be fast to
compute.

4. The metric should differentiate between a gradual workload increase and a
sudden one. For example, techniques using entropy are not able to do that.

This work describes our search for a measure of burstiness that is able to differenti-
ate between different workloads while fulfilling the above requirements. Section 2
discusses the state-of-the-art in both burst detection and quantifying burstiness. While
burst detection can be considered as a different problem from quantifying workload
burstiness, we include some of the techniques for burst detection and discuss how
we considered modifying these to be able to quantify bursts. The limitations of the
various reviewed measures are discussed. We propose a measure, AvgSampEn, for
quantifying burstiness based on SampEn, a measure used for quantifying abnormali-
ties in physiological signals. Section 3 explains the limitations of SampEn and our
modifications to make it suitable for cloud workloads. We compare the proposed
measure with the state-of-the-art in quantifying burstiness.

2 State-of-the-art
The problem of burst detection has been studied in many contexts including bursts
in human communications, neuron spike trains, and seismic signals [13, 15, 19].
We have surveyed a large body of work on signal analysis, time-series analysis,
workload analysis, spike detection and modeling, workload generation and autonomic
management. Unfortunately, all the surveyed papers do not agree on a single definition
of what a true burst is. We believe that the techniques discussed in this section are a
representative set of the state-of-the-art. While visual inspection has been used for
workload spike detection [6, 32], we focus on automated techniques for detecting
spikes and quantifying burstiness.

2.1 Detecting bursts
2.1.1 Index of dispersion

The index of dispersion (I) is a measure of burstiness used in communication net-
works [12]. It was used by Caniff et al. [7] to detect bursts in server workloads. Given
a time-series with inter-arrival times (weakly stationary), I is defined as,

I = SCV (1+2
∞

∑
k=1

ρk), (1)
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where SCV is the squared-coefficient of variation (the ratio between the variance
and the mean squared) and ρk is the lag-k autocorrelation coefficient. Since it is not
practical to calculate the autocorrelation coefficient for the inter-arrival time series
at ∞, the authors use a batch of K = arrival rate×C requests, where arrival rate
is the request arrival rate and C is a constant which they set to 2000 in their design.
The authors substitute the infinite sum in the exact equation by the first 10% of the
batch size. To detect the start and end of a spike, they use the algorithm shown in
Algorithm 1. The algorithm detects a burst by comparing the changes in I through
time. While choosing the different parameters of the algorithm is not intuitive, e.g.,
C, they can be set by the application owners.

Algorithm 1: Using the index of dispersion for burst detection.
1 for current batch of K requests do
2 current I← calculate I for current batch
3 batch rate← arrival rate for current batch
4 total rate← update average arrival rate (all requests)
5 SCV ← update SCV (all requests)
6 if (|current I-old I|> 2×SCV ) AND ( old I

current I >2 OR old I
current I <0.5) then

7 if batch rate >total rate then
8 burst starts
9 else

10 burst ends
11 old I← current I

2.1.2 Exponential increase

Wendel and Freeman [35] define a flash crowd as a period over which request rates
increase exponentially. If rti is the average request rate per unit time over a period ti,
then a spike should satisfy the following conditions,

rti > 2i× rt0 ,∀i ∈ [0,k], (2)

and,
maxi(rti)> m and maxi(rti)> n× ravg, (3)

where m is the minimum request rate required to consider the workload increase as
a spike, and k is the least sustained modest period of continuous workload increase
required to consider a change in the request rate to be a spike. The constant n specifies
how much increase in the maximum sustained rate must be achieved compared to the
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service’s average rate, ravg, in order to consider the increase a spike. A spike is over
when

2−1× rt j < rt j+1 < 2× rt j (4)

The choice of the three parameters, k, m and n, is arbitrary and in most cases appli-
cation dependent. These three parameters can be chosen by the application owner
or after profiling an application before its deployment. The main limitation of this
method is the assumption that a spike should have exponential growth. One example
where spikes were not increasing exponentially is the caching servers’ workload in
Figure 2(c) where some spikes occurred during the first day where the load increased
by less than a factor of two. Another example is large systems serving millions of re-
quests. For a system serving more than 0.5 million requests per minute like Wikipedia,
an increase of as little as 10% in the total load can be considered as a spike [2].

2.1.3 Standard deviation from the moving average

Algorithm 2: Using the standard deviation from the moving average for burst
detection.

1 Calculate Moving Average MAw over a period of w time units
2 Calculate T hreshold← (MAw)+ x× std(MAw)
3 bursts←{|MAw(i)|> T hreshold}

Vlachos et al. [31] use the simple algorithm shown in Algorithm 2 to detect bursts in
online search queries. The algorithm calculates the moving average and the standard
deviation of a workload over a window of w time units. A burst is any increase above
a threshold equals to the summation of the average and x standard deviations. By
setting x large enough, only real spikes are captured by the algorithm.

2.1.4 Limitations

With the exception of the index of dispersion based method, the measures and tech-
niques described above are only suitable for online burst detection but not for quanti-
fying workload burstiness. While the index of dispersion method can be used as a
measure of burstiness, the choice of C is not intuitive. One possible modification to
quantify burstiness using the above methods is to identify and count spikes in each
workload over a certain period of time. The more bursty workloads will have larger
number of spikes over the same period. The drawback of this technique is its inability
to discover periodic bursts, e.g., more people search for the word “Cinema” on search
engines during the weekends [31].
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2.2 Quantifying burstiness
Many of the work on quantifying burstiness is based on the information theoretic
entropy (H) [11] which is a measure of uncertainty in a workload X . Entropy is
calculated using,

H(X) =−∑
i=1

pi× log pi, (5)

where pi is the probability of the workload having the value Xi to occur. The main
limitations with using entropy are the need for a long sequence to be able to calculate
the probabilities, its inability to differentiate between slowly increasing workloads
and sudden spikes, and its inability to take into account burst periodicity.

2.2.1 Slope of entropy plots

Wang et al. [33] introduce entropy plots, plots showing the entropy of a workload at
different aggregation levels for the workload. If entropy is calculated at a fine resolu-
tion, no correlation in the load is observed. The higher the resolution of aggregation is,
the more correlations that can be captured by H. If the plot shows a linear relationship
then the correlation and burstiness is stable across different workload resolutions.
The slope can then be used as an indicator for workload burstiness. If there is a
change in the workload burstiness and the plot is non-linear, then this method does
not work [21].

2.2.2 Normalized entropy

Minh et al. [21] introduce the use of normalized entropy as a measure of workload
burstiness. It is known that the maximum value achievable for H is logN [11]. Given
a time interval T , Minh et al. divide the interval into N equal sized intervals. The
normalized entropy is then defined as,

HNE(X) =−∑N
i=1 pi× log pi

logN
, (6)

where pi denotes the probability that a job arrives in interval i. HNE is bounded
between 0 and 1. According to Minh et al., HNE values close to zero indicates
stronger burstiness.

2.2.3 Burst density

Shen et. al. [28] propose to use signal processing techniques to measure the burst
density in a workload. The authors use the Fast Fourier Transform (FFT) to calculate
the coefficients that represent the amplitude of each frequency component for recent
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resource usage, e.g., L = {lt−Wa , ...., lt−1} where L is the time series of recent resource
usage and Wa is the number of measurements considered. They consider the top k
(e.g., 80%) frequencies in the frequency spectrum as high frequencies and apply
inverse FFT over the high frequency components to synthesize the burst pattern. They
calculate a burst density metric β as the percentage (or number) of positive values
in the extracted burst pattern compared to the total signal. Higher percentages of β
indicate strong burstiness and vice versa. One main disadvantage of this technique is
the complexity in choosing k, the number of top frequencies that are considered as
burst components. We discuss the limitations for both the normalized entropy and
burst density techniques in Section 3.3 in more details.

2.2.4 The Hurst parameter

The Hurst parameter (exponent or coefficient) has been used as a measure for bursti-
ness in the literature for numerous workloads [17, 20, 27]. The Hurst parameter, H,
is a measure of the level of self-similarity of a time-series. Self-similar processes
have heavy-tailed distributions, and thus, there burstiness can be observed at all time
scales.

Various practical issues with estimating the Hurst exponent have been discussed in
the literature [9]. In the literature, there are many suggested techniques to estimate
the Hurst exponent differ for the same time-series to an extent making the estimation
unreliable [22]. Just picking one algorithm from the literature to estimate the Hurst
parameter and applying it to different workloads “is likely to end up with a mislead-
ing answer or possibly several different misleading answers” [9]. Using the Hurst
parameter to quantify cloud workload burstiness can thus lead to wrong conclusions
about the workloads running resulting in “bad” management decisions.

3 A new burstiness measure

Sample Entropy (SampEn) is a robust burstiness measure that was developed by
Richman et al. over a decade ago [25, 26]. It is used to classify abnormal (bursty)
physiological signals. It was developed as an improvement to another burstiness
measure, Approximate Entropy, widely used previously to characterize physiological
signals [24]. Sample Entropy is defined as “the negative natural logarithm of the
(empirical) conditional probability that sequences of length m similar point-wise
within a tolerance r are also similar at the next point”.

It has two advantages over Shannon’s entropy: i) being able to operate on short data
sequences and, ii) it takes into account gradual workload increases and periodic bursts.
These advantages make it an interesting potential measure for workload burstiness as
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a workload having periodic bursts, e.g., every weekend, is easier to manage compared
to workloads with no repetitive bursts.

Three parameters are needed to calculate SampEn for a workload. The first param-
eter is the pattern length m, which is the size of the window in which the algorithm
searches for repetitive bursty patterns. The second parameter is the deviation tolerance
r which is the maximum increase in load between two consecutive time units before
considering this increase as a burst. The last parameter is the length of the workload
which can easily be computed. We therefore focus on m and r and their choice.

The deviation tolerance defines what is a normal increase and what is a burst. When
choosing the deviation tolerance, the relative and absolute load variations should
be taken in account, For example, a workload increase requiring 25 extra servers
for a service having 1000 VMs running can probably be considered withing normal
operating limits, while if that increase was for a service having only 3 servers running
then this is a significant burst. Thus by carefully choosing an adaptive r, SampEn
becomes normalized for all workloads. If SampEn is equal to 0 then the workload
has no bursts. The higher the value for SampEn, the more bursty the workload is.

3.1 Implementation of the algorithm

There is one main limitation of SampEn, it is expensive to calculate both CPU-wise
and memory-wise. The computational complexity (in both time and memory) of
SampEn is O(n2) where n is the number of points in the trace [1]. 1 In addition,
workload characteristics might change during operation, e.g., when Michael Jackson
died, 15% of all requests directed to Wikipedia were to the article about him creating
spikes in the load [6]. If SampEn is calculated for a long history, then recent changes
are hidden by the history.

To address these two points, we modified the sample entropy algorithm [1] by
dividing the trace into smaller equal sub-traces. SampEn is calculated for each sub-
trace. A weighted average, AvgSampEn, is then calculated for all SampEn values for
the sub-traces. More weight can be given to more recent SampEn values. This way the
time required for computing SampEn is reduced since n is reduced significantly. Our
modification also enables online characterization of workloads since SampEn is not
recomputed for the whole workload history but rather for the near past. This approach
of dividing the workload into smaller sub-traces is similar to the approach used by
Costa et al. [10] where they divide a signal to calculate its multi-scale entropy. The
main difference between the two approaches occurs after SampEn is computed for
the smaller sub-trace, Costa et al. plot the results while we take a weighted average.

1There are some suggested implementations that significantly improve the complexity to be between
O(n) and O(n3/2) [23] making SampEn an even more attractive measure.
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Algorithm 3: The algorithm for calculating AvgSampEn.

Data: r, m, T , L
Result: AvgSampEn

1 N← Length(L);
2 Pdivided ←{T (L.k).....T (L.(k+1)} ∀k ∈ {0,N};
3 TotSampEn← 0;
4 for W in Pdivided do
5 n← Length(W );
6 Bi← 0;
7 Ai← 0;
8 Xm←{Xm(i)|Xm(i) = [x(i), ...x(i+m−1)] ∀ 1 < i < n−m+1};
9 for (Xm(i),Xm( j)) in Xm: i 6= j do

10 Calculate d[Xm(i),Xm( j)] = max(|x(i+ k)− x( j+ k)|) ∀ 0≤ k < m;
11 if d[Xm(i),Xm( j)]≤ r then
12 Bi← Bi +1;
13 Bm(r)← 1

n−m ∑n−m
i=1

1
n−m−1Bi;

14 m = m+1
15 Xm←{Xm(i)|Xm(i) = [x(i), ...x(i+m−1)] ∀ 1 < i < n−m+1};
16 for (Xm(i),Xm( j)) in Xm: i 6= j do
17 Calculate d[Xm(i),Xm( j)] = max(|x(i+ k)− x( j+ k)|) ∀ 0≤ k < m;
18 if d[Xm(i),Xm( j)]≤ r then
19 Ai← Ai +1;
20 Am(r)← 1

n−m ∑n−m
i=1

1
n−m−1Ai;

21 TotSampEn← |− log[Am(r)
Bm(r) ]|+a×TotSampEn;

22 AvgSampEn← TotSampEn/N;

Our algorithm is shown in Algorithm 3. 2 T is the workload for which SampEn is
calculated. The trace is divided into N sub-traces of length L (lines 1 to 3). For each
sub-trace, W , SampEn is calculated. The first loop in the algorithm (lines 9 to 14)
calculates Bm(r), the estimate of the probability that two sequences in the workload
having m measurements do not have bursts. The second loop in the algorithm (lines
15 to 19) calculates Am(r), the estimate of the probability that two sequences in the
workload having m+ 1 measurements do not have bursts. Then SampEn for the
sub-trace is calculated and is added to the sum of the SampEn values of all previous

2While there are implementations of SampEn in Matlab, we chose to implement our algorithm in
Python.
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sub-traces multiplied by a weighting factor a (line 20). The average SampEn for the
whole trace is then calculated.

3.2 Choosing the parameters
SampEn has been shown relatively robust towards the choice of the two main param-
eters, the deviation tolerance, r, and the pattern length, m [8, 25]. Ideally, r should be
chosen such as to capture all true bursts while m should be long enough to capture
interesting periodic patterns. While choosing m, another contributing factor is the
granularity of data, studying patterns occurring yearly is different from studying
patterns occurring daily or hourly. Some studies suggest different techniques to set
the two parameters in the context of biomedical signals [8, 16].

Choosing r, some studies suggest the use of some percentage of the standard
deviation of the signal [24, 25]. Lake et. al. [16] show that this can lead to a reduction
in the calculated SampEn due to the inflation of the standard deviation by the spikes.
We have thus chosen a different approach to calculate r. Instead of using the standard
deviation of the trace, r is set as a percentage of some high percentile of the workload,
e.g., 50% of the 75th percentile of the load values. Any increase above that value will
be considered as a spike. Since percentiles in general are a robust measure of scale,
the errors described by Lake et. al. are no longer an issue.

For choosing m, using Auto-Regressive models [16] or using the combination of
the first minimum value of the nonlinear correlation function called average Mutual
Information (MI) and the calculation of False Nearest Neighbor (FNN) [8] has been
proposed. Cloud workloads are different from biomedical signals since most cloud
workloads will have some inherent pattern, e.g., hourly, daily and weekly patterns.
Therefore, m should be picked up to capture these patterns instead of using more
complicated models or methods suitable for biomedical signals. The value of L should
be chosen to be longer than m. Since L controls the rate at which AvgSampEn, it
should be chosen to suit the frequency with which decisions are taken.

3.3 Comparison to the state-of-the-art
We calculated AvgSampEn for a set of more than 70 workloads (more than 10
real workloads and 60 synthetic traces). Due to space limitations, we only show
AvgSampEn values for a subset of these loads, the workloads in Figure 2. The traces
shown all have minutes time granularity. We set the pattern length m to one hour and
the value of L to one day. The deviation tolerance r is set to 30% of the 70th percentile
of the load values during a period L. The weighting factor a is set to one.

Table 1 shows the AvgSampEn values for the 4 workloads Figure 2 compared to
the use of Normalized entropy described in Section 2.2.2 and the burst density metric
described in section 2.2.3. The burst density metric, β , was computed when different
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Table 1: Workload analysis results.

Workload AvgSampEn HNE β80 β0.0001
Wikipedia 0.22 0.998 0.45 0.5

FIFA 0.48 0.988 0.27 0.6
SD-IRCache 3.3 0.975 0.25 0.23

Google 236.25 0.9 0.28 0.4

percentage of frequencies constitute the burst pattern. We choose to show only two
values representing two extremes, when the top 80% and the top 0.0001% frequencies
constitute the burst pattern.

Since the Wikipedia workload shows very little burstiness and is repetitive, the
value of AvgSampEn is very low, almost zero, indicating no burstiness. The SD-
IRCache has more bursts where the load almost doubles in a very short period and
thus the value of AvgSampEn increases and is almost one. The number of tasks
submitted to the Google cluster is very bursty in nature, thus AvgSampEn is very
high. Our experiments on the other workloads showed similar results for the values
of AvgSampEn with different workloads. We therefore used AvgSampEn in our
workload analyzer and classifier [4].

The values of HNE given in Table 1 show that HNE changes marginally with
the different workloads. A workload with clear and strong burstiness such as the
Google workload has an HNE value almost equal to the Wikipedia workload which is
very stable. On the other hand, AvgSampEn varies significantly with the workload
burstiness. The increase in AvgSampEn with increasing burstiness is non-linear due
to the logarithmic function. The burst density metric is clearly unable to differentiate
the workloads in terms of burstiness. It is also not robust with changing parameters,
i.e., the order of the workloads changes with changing the percentage of frequencies
considered.

3.4 Sensitivity of AvgSampEn

To check the sensitivity of AvgSampEn while varying the two main parameters, r
and m, we calculate the value of AvgSampEn when the value of m varies between ten
minutes and six hours with steps of ten minutes, i.e., when m takes the value of 10,
20, 30, ...., 360 minutes. For each step for m we vary r between the 5th percentile of
all workload values multiplied by 0.05 to the 95th percentile multiplied by 0.95 with
an increase of 5 percent in the percentiles and 0.05 in the multiplicative factor.

To give an example, Figure 3(a) shows the ranking of the values of AvgSampEn
when r is set to the 50th percentile of the workload values, i.e., the median workload
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(a) Sensitivity of the Workload when r is set to be the 50th percentile of
the workload and m varies between ten minutes to six hours.
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(b) Sensitivity of the Workload when m is set to five hours and r varies
between the 5th percentile to the 95th percentile of the load.

Figure 3: The ranking of the workloads is relatively stable for varying m but shows
less stability when r varies and the two workloads have AvgSampEn values close to

each other.
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value, multiplied by 0.5. We multiply the percentile by a factor to make the differences
between the tolerances chosen large and to be consistent with the way we defined r in
3.3. The pattern length, m, varies in the figure between ten minutes to 6 hours. It can
be seen that the ranking of the workloads is robust with respect to the pattern length.
On the other hand, this ranking differs with the ranking in Table 1. The difference in
ranking is for the FIFA and Wikipedia workloads, the least two bursty workloads.

Figure 3(b) shows the ranking when m is set to 5 hours while r is left to vary as
described above. While the ranking of the two most bursty workloads is stable, the
least two bursty workloads ranking switch when r is set to the 40th percentile of the
workload values multiplied by 0.4. A low value for r, the deviation tolerance, results
in less stable workload ranking since r defines the sensitivity of the measure to what
a “true burst” is. It is thus advised to use a large enough r to make sure that only “true
bursts” are taken in to account when estimating the burstiness of a workload.

4 Discussion

While AvgSampEn has been able to quantify burstiness in all the workloads we
have tested it with, it is still far from perfect. The computational complexity of
the algorithm is O(n2), even for the modified algorithm [23]. The time required
to update AvgSampEn depends highly on L and m. In addition, the choice of the
parameters, while intuitive, is arbitrary. Despite all the limitations, we were able
to use AvgSampEn for workload classification and assignment to the most suitable
elasticity algorithm with very high accuracy [4]. The sensitivity analysis showed
that the measure is sensitive to the deviation tolerance chosen. To choose a “correct”
deviation tolerance, one has to have a definition of a “true” burst. Defining bursts is
still a problem that is far from being solved in the literature and it requires more focus
within the community. We leave this for future work.
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Abstract
Video-on-Demand (VoD) and video sharing services account for a large per-
centage of the total downstream Internet traffic. In order to provide a better
understanding of the load on these services, we analyze and model a workload
trace from a VoD service provided by a major Swedish TV broadcaster. The trace
contains over half a million requests generated by more than 20000 unique users.
Among other things, we study the request arrival rate, the inter-arrival time, the
spikes in the workload, the video popularity distribution, the streaming bit-rate
distribution and the video duration distribution. Our results show that the user
and the session arrival rates for the TV4 workload does not follow a Poisson
process. The arrival rate distribution is modeled using a lognormal distribution
while the inter-arrival time distribution is modeled using a stretched exponential
distribution. We observe the “impatient user” behavior where users abandon
streaming sessions after minutes or even seconds of starting them. Both very
popular videos and non-popular videos are particularly affected by impatient
users. We investigate if this behavior is an invariant for VoD workloads.

1 Introduction
Over the past decade, Video on Demand (VoD) and Video sharing online services
have been on the rise. A recent report estimated that more than 50% of the
total downstream traffic during peak periods in North America originate from
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Netflix and YouTube [15]. It is thus required to analyze and characterize VoD
workloads in order to understand how to improve and optimize the network
usage and the perceived Quality-of-Service (QoS) by the service users.
Many VoD service providers utilize the power of cloud computing to host their

services [3, 20,35]. Since a typical cloud hosts multitudes of applications with
differing workload profiles [1], Cloud service providers need to understand the
workload characteristics of the running applications including the VoD workload
dynamics. This understanding is crucial as application co-hosting can result
in performance interference between collocated workloads [9, 37]. Furthermore,
resource management problems such as service admission control [45], Virtual
Machine (VM) placement [10], VM migration [44] and elasticity [38] can be
further complicated depending on the workload characteristics [30]. To better
understand VoD workloads, we obtained recent workload traces from TV4,
a major Swedish VoD service provider, detailing the requests issued by the
premium service subscribers to TV4’s VoD service. The VoD service is hosted on a
number of cloud platforms. We provide an extensive analysis and characterization
study of the traces.

Table 1: Example of one entry in the trace.

Video title Farmen del 1_2255111
viewer ID (hashed) a257d2e7788db3238f

Streaming start time 2013-01-13 17:00:00
Streaming end time 2013-01-13 17:08:00

Number of minutes viewed 8
average Bitrate (Mbps) 0.8

categories None
category Tree Nöje/Farmen

video Category Farmen

Table 1 shows an example entry in the trace. Each entry contains nine fields,
out of which the following seven are used in the analysis, the title of the video
requests, the hashed ID of the premium user who requested the video, the time
the streaming of the video started and ended, the number of minutes the video
was streamed, and the average bitrate of the stream. The remaining two are
not used in the analysis since they are missing for some videos.
The traces contain logged data between the 31st of December 2012 until the

18th of March, 2013 from two cities. 1 City A is one of the largest cities in
the Nordic countries with a population over half a million inhabitants while

1The non-disclosure agreement prohibits us from revealing the city names
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City B is a much smaller city with less than fifty thousand inhabitants. The
number of premium users who used the service during that period is 23102 users.
The users viewed 17131 unique videos and started 532421 streaming sessions.
After analyzing the workloads separately, and combined, we found that the
results from our analysis is the same for all three cases with respect to workload
dynamics and characteristics. The difference is in the scale, e.g., spikes occur at
the same times but with higher magnitudes for the combined workload. Due to
space limitations, we show only the analysis of the combined workload.
There are two main contributions of this work. First, in Section 2, we provide

an extensive study of the workload properties related to the session arrivals. We
show that the session arrivals and the user arrivals for the TV4 traces can not
be modeled using a Poisson process, contrary to what has been assumed [25]
or reported [48] in some prior work in the literature. We acknowledge that
the limitation of this finding since our dataset is from a medium sized VoD
service provider. We identify the main events that resulted in spikes in the
number of arrivals. Since the spikes cause non-stationarity in the workload, the
Hilbert-Huang transform is used to perform spectral analysis on the workload.
Second, Section 3 contains analysis for the properties of the workload related

to the streamed sessions. Our analysis shows that a large percentage of the
sessions started are terminated within the first few minutes before the video
ends. Based on this behavior and the popularity distribution of the videos, we
suggest a new caching strategy to help reduce the wasted resources by the VoD
service provider. We review the state-of-the-art in Section 4 and conclude in
Section 5.

2 Workload Analysis: Arrivals

2.1 Arrival rate
The Probability Distribution Function (PDF) and the complementary Cumula-
tive distribution Function (CCDF) of the hourly session arrival rate is shown in
Figure 1 (in blue) on a Log-Log plot. An almost identical plot was also obtained
for the user arrival rate since one user almost always does not start more than
one session per hour. The PDF suggests that the arrival rate process can be
modeled using a heavy tailed distribution. we have fitted the arrival rate data
to different distributions and compared the goodness of fits in order to find
a good fit. The data was fitted to lognormal, exponential, truncated power
law, stretched exponential, gamma and power law distributions, as shown in
Figure 1.
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(a) PDF of the distribution of the arrival rate and different fits.

(b) CCDF of the distribution of the arrival rate and different
fits.

Figure 1: The hourly request arrival rate distribution can be modeled as a
lognormal distribution as suggested by the Log-Log plots of the PDFs and

CCDFs of the different fits.

V:4



The plots show that either a lognormal distribution, an exponential distribu-
tion or a stretched exponential distribution is a good fit. To choose the best fit,
we used the Kolmogorov-Smirnov (KS) test [13]. The p-value for both the log-
normal distribution and the stretched-exponential distribution [34] was greater
than 0.05, the least significance level required to validate the null hypothesis
that the empirical data does not follow the distribution. To be precise, the KS
distance for the lognormal distribution is 0.077 with a p-value of 0.09, and the
KS distance for the stretched exponential distribution is 0.059 with a p-value of
0.31.
Both the lognormal and the stretched exponential distributions are possible

fits given the p-values of the KS test. To identify the better fit, we use the
log-likelihood ratio between the distributions [13]. The log-likelihood ratio of
the lognormal distribution was higher with a p-value of 0.01. We thus conclude
that the lognormal distribution is the best distribution to fit our data from
the distributions tested. The fitted lognormal distribution is different from the
arrival rate distribution of the VoD service provided by China Telecom discussed
by Yu et al. [48] where the arrival rates follows a modified Poisson distribution.

2.2 Inter-Arrival time
Figure 2 shows the PDF of the video sessions’ inter-arrival times (seconds) on
a log-log scale. More than 50% of the sessions start after one or less than one
second from the arrival of the previous session and around 90% of the sessions
start within a minute from a previous session. The maximum inter-arrival
time is around 24 minutes. We have again tried fitting a distribution to the
Inter-Arrival time following the same steps described above. Again, the KS test
showed that both the lognormal distribution (p-value=0.08 > 0.05) and the
stretched exponential distribution (p-value=0.08 > 0.05) to be two viable fits.
Testing using the log-likelihood method described by Clauset et al. [13], the
stretched-exponential distribution has a higher likelihood than the lognormal
distribution with a p-value=0.
While it is popular to model session and user arrival rates as Poisson processes

in workload generators [25], our results suggest that for different VoD services,
different models of arrival might occur. Poisson processes require the inter-arrival
time distribution to be exponential. Figure 2 shows also the best exponential
distribution fit we could achieve for the inter-arrival data. the deviation clearly
shows that the inter-arrival time distribution is not exponential, and thus the
arrivals do not follow a Poisson process. Poisson processes were considered the
defacto processes to model network arrivals until the seminal work by Paxson
and Floyd [39]. It is thus worth investigating if Poisson processes fail also to
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Figure 2: PDF of inter-arrival time (Log-Log plot).

model arrival processes for VoD systems. We unfortunately do not have sufficient
data from enough VoD providers to come to such a conclusion.
Since at least for the TV4 workload, the user and request arrival processes

can not be modeled using Poisson processes, many of the previously developed
theories and models based on the assumption of requests/users generated from
a Poisson process will either be inaccurate or will be wrong for systems like
TV4 [18,21,25]. Since VoD workloads are scarce, we can not compare our results
with systems other than the very few available in the literature.

2.3 Workload Spikes
Figure 3 shows the number of video sessions started per hour in the trace.
The workload has a very clear daily pattern and a weaker weekly pattern. The
pattern is violated due to four main significant spikes. The most significant spike
occurred on Sunday, the 24th of February, 2013 when the load increased from
687 video sessions at 18:00, to 4670 video sessions at 20:00. We investigated

V:6



Figure 3: Number of video sessions per hour starting from 09:00 on the 31st

of December, 2012, to 09:00 on the 18th of March, 2013. Some sessions run
for a few seconds while others run for hours.

the main cause of this spike. To our surprise, the most viewed video was a live
stream of a football game between two French teams in the French soccer league,
Paris Saint-Germain and Olympique Marseille. Paris Saint-Germain is the team
where, Zlatan Ibrahimovic, one of Sweden’s favorite soccer players play [43].
The spike caused a workload increase by roughly four to six folds from normal
behavior seen in the previous weeks.
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The second most significant spike occurred two days later on the 26th of
February, when the load increased from 582 sessions at 19:00 to 3025 session at
21:00. Again, the main cause of the spike was a semi-final match in the Spanish
cup between Barcelona and Real-Madrid. The third largest peak occurred on the
6th of February, 2013 at 20:00 when an international football match was played
between the Swedish and the Argentinian national teams. The load increased
to 2405 sessions in that hour. The fourth largest peak occurred on the 30th of
February, 2013 at 21:00 when the load reached 2365 sessions. Again, the main
cause of the spike was a football match in the Spanish cup between Barcelona
and Real Madrid, the first leg prior to the match that caused the second largest
spike.
Three of the four major spikes in the workload are generated by events that are

not directly related to Sweden. This is a clear example showing the complexity
of workload spike and burstiness management. A service provider should be able
to cope with such events with no reduction in the QoS perceived by the service
customers. The easy but expensive way to provide high QoS guarantees in the
presence of spikes, is to over-provision, buy or rent enough server resources
to handle the largest future spike well in advance before such a spike occurs.
Another solution would be to utilize the power of cloud computing where new
resources can be provisioned whenever needed and released when not used
anymore [4]. The problem with the second approach is the difficulty of detecting
spikes as they occur to be able to provision resources with no QoS degradation.

2.4 Daily patterns
Figure 4 shows a box and whiskers plot showing the effect of the time of the day
on the number of video sessions. A box-plot is a way to visualize the quartiles
and the dispersion of the distributions of data [36]. A box is plotted for all 24
hours of the day where the lower edge of the box represents the first quartile of
the number of sessions arriving on any particular hour. The third quartile is
represented by the top edge of the box. From figure 4, the diurnal pattern of the
trace is evident. the hour with the least arrivals is at 05:00 every morning with
almost no variability. The hours with the highest arrival rates are at 20:00, 21:00
and 22:00 at night, both of which also show significant variance and deviations
from the normal behavior. Since there is very little variability in the load between
mid-night and 15:00, and, the arrivals at these hours are low, a VoD service
provider can use the available unused resources for business analytics [33] or
can release them to save costs. Before hours with higher variability, the provider
can provision more resources.
Similar patterns can be seen in other workloads, e.g., the load on Wikipedia [5],

where the load decreases significantly between mid-night and noon. A cloud
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Figure 4: A Box and Whiskers graph showing the effect of the time of the
day on the number of sessions.

service provider can thus benefit from having services from different time-zones
running in the datacenter. The multiplexing between the different services from
different time-zones should provide higher revenues with a much lower risk of
service performance interference.

2.5 Frequency representation
The request arrival rate represents a time-series. Any time series, X, can be
decomposed into three components, the trend, the seasonality and the random
components [28]. The trend, T is a slowly changing component which captures
the change in the mean of the time series with time. The seasonality, S, represents
the periodic components in the load. The random component, r is the remaining
signal. The decomposition can be performed such that X = T +S + r or such
that X = T ×S× r [28]. Figure 5 illustrates the decomposition of the arrivals
time-series, in Figure 3, into multiplicative factors. The trend component is a
DC component with no frequency variations. The weak weekly patterns are
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(a) The trend component T .

(b) The seasonality component S with clear diurnal and weekly
patterns.

(c) The random component r.

Figure 5: The result from using multiplicative decomposition of the workload.
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Figure 6: The Hilbert spectrum for the session arrivals time-series.

clear in Figure 5(b) since the decomposition removes any part of the signal that
smears the periodic pattern.
Time-series can be classified into either stationary or non-stationary time-series.

A stationary time-series has a non-changing mean and variance. A non-stationary
time-series has one or both of mean and variance changing. To use traditional
time-series analysis models such as ARIMA models, the studied time-series
needs to be stationary [14]. The request arrivals time series for the TV4 data
is non-stationary due to the presence of large spikes. In their seminal work to
model non-stationary time-series, Huang et al. introduced a novel empirical
method to characterize the frequency variations in non linear and non-stationary
time-series [23], recently, known as the Hilbert-Huang Transform (HHT) [22].
At the the core of the HHT is the Empirical Mode decomposition (EMD)

method and its different variations [17, 23, 46]. The EMD (and all its other
variations) are methods with which any complicated data set can be decomposed

V:11



into a finite and often small number of Intrinsic Mode Functions (IMF) that
admit well-behaved Hilbert transforms. The Hilbert spectrum can then be
used to visualize the produced IMFs and frequency variations in the original
signal. Since the number of IMFs produced is low, it is a more efficient way
of spectral analysis compared to, for example, the Fourier transform which
typically requires an infinite number of sinusoidal frequencies to represent any
time-series. Huang et al. and others have discussed the strengths and weaknesses
of their proposed method and showed the superiority of the HHT compared to
other available spectral analysis methods such as the wavelet transforms and
Fourier transforms [17,23,42,46]
Performing spectral analysis on the signal as is with the trend distorts the

spectrum. We have thus used the HHT method to perform spectral analysis
on X = S× r. The Hilbert spectrum is shown in Figure 6. The X-axis is the
time in days and the Y-axis is the frequency in weeks. The colors represent the
intensity of the frequency component at any point in time. On top of the graph,
the analyzed time-series is plotted. The low frequency components dominate
the time-series. The strongest of these components is the weekly component.
At the times of the four major spikes discussed previously, between 25 and

35 days, and 50 and 55 days in Figure 6, the spectral pattern is distorted. The
spikes cause an increase in the power and dispersion of the spectrum of the
time-series. This suggests that a possible way to detect spikes as they occur
would be to use spectral analysis methods to detect the beginning of the spike [6].
We leave this for future work.

3 Workload Analysis: Video Sessions
3.1 Video popularity
Videos offered by a VoD service provider differ in popularity among the users.
Figure 7 shows the CCDF of the popularity distribution of all videos viewed in
our trace. The Figure suggests a heavy-tailed distribution would be good. We
have fitted the popularity data to different distributions in a way similar to the
way the arrival rate was fitted. Using the KS test, all the tried fits had a very
low p-value and therefore were bad. Popularity in often modeled with a power
law or a Zipfian distribution [2, 25,48].

3.2 Video duration
Videos provided by the VoD service are of variable length. Not all users who
start viewing a video stream continue to watch until the end. Some users keep
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Figure 7: The empirical CCDF of the popularity of videos(Log-Log plots).
We were not able to find a suitable fit for the data we have.

replaying the video, going back and forth in the video and pausing the video. This
leads to sessions having very different length. Figure 8 shows the complementary
CDF (CCDF) for the length of the VoD sessions (in seconds). More than 90% of
the sessions last for less than one hour, with more than 50% of the total sessions
lasting less than 12 minutes. More than 20% of the sessions gets terminated
within the first 30 seconds from their start time. While we were not provided
with the length of each single video hosted by TV4, we know that the median
length of the videos is longer than 12 minutes. The videos are the ones viewed
by the premium service users where most of the shows average anything from
20 minutes to 2 hours.
These numbers confirm the “impatient user behavior” discussed in previous

studies described by Yu et al. [48]. Although the difference between our study
and Yu et al.’s study is around 6 years, the numbers we find here do not differ
considerably from their study. For example, Yu et al. found that 50% of the
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Figure 8: CCDF of the length of the sessions in seconds (Log-Log plot).

users terminate a session within the first ten minutes from when they start it
and that more than 90% of all sessions terminate within 60 minutes from when
they start. The main difference between our study and Yu et al.’s study in this
respect is that the users of the TV4 VoD are more likely to stay than the users
in Yu et al.’s study if they make it past the first 10 minutes.
One session lasted for 528771 seconds, which is equivalent to over 6 days.

During the session, only one video has been streamed. The length of the video on
the VoD service servers is around one hour. The average bit-rate for this stream
was zero Mbps. We suspect that this is a session started by a user, paused and
then forgotten about for six days with the receiving device on during that whole
period. Another possibility is a fault in the receiver device resulting in no proper
termination for the session.
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Figure 9: Video popularity versus median session length (Log-Log plot).

3.3 Caching

To handle the “impatient crowd”, Yu et al. suggest to cache the first 10 minutes
of videos to handle the load from up to 50% of the viewers. Since the popularity
of the available videos are not the same, it would be a waste of resources to
cache the first 10 minutes of unpopular videos or videos which get abandoned
by most users before 10 minutes. Figure 9 shows how the median session length
changes with the popularity of the videos (number of views). For extremely
unpopular and extremely popular videos, the “impatient user behavior” is quite
high with the median session length of around 100 seconds. Videos with a
medium popularity seem to have longer session times. An advanced caching and
prefetching policy [29] should utilize this difference to be able to improve the
QoS while reducing wasted resources, e.g., by caching the first 16 to 20 minutes
for videos with medium popularity, streaming the first 3 minutes for videos
with low popularity and caching and prefetching the first 10 minutes for videos
with high popularity. This caching strategy is suitable when users do not seek
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Figure 10: Video popularity versus the median time between two streams of
the video.

forward and backward while watching a video to get to a more interesting part
of the video [26].
In order to further understand better how to improve the caching strategy,

we plot Figure 10. The X-axis of the figure represents the rank of the videos
based on the number of times it has been streamed starting from least popular
(with rank 1) to the most popular (with rank 17506). We then plot the median
time between the arrivals of two consecutive streaming sessions for the same
video (the blue dots). We also plot the total number of times the video has been
streamed (the red line). The least popular 5791 videos were streamed only one
time during the whole period. It is therefore useless to cache these videos since
they are seldom streamed.
Looking at Figure 9, the median time for a session for these videos is less than

200 seconds. As the video popularity increases, the median time between two
streaming sessions decreases considerably. Video popularity is volatile. Many of
the higher ranked videos are streamed many times for a short period and never
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Figure 11: CCDF of the streaming bit-rate in Mbps (Log-Log plot).

streamed again, e.g., football matches are mostly streamed live in the dataset.
Their popularity decay right after the match.

3.4 Bit-rates

Figure 11 shows the CCDF of the distribution of the average bit-rate transfer
speed in Mbps. More than 90% of the VoD service users were streaming at a bit
rate equal to or greater than one Mbps. More than 99% of the service users were
streaming at a bit rate less than 3 Mbps. The bit-rate is highly correlated with
the length of the session. Extremely low average bit-rate measurements should
be correlated to the session length in order not to draw the wrong conclusions
about the network performance.
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Figure 12: CCDF of the distribution of the number of videos viewed per
user (Log-Log plot).

3.5 Video views per user

Figure 12 shows the CCDF of distribution of the number of videos viewed per
user. More than 90% of the service users view less than 70 videos during the
period of the study, i.e., less than one video per day. Many of these sessions last
for less than 10 minutes. To see how long a user uses the VoD service, Figure 13
shows the CCDF of the total time a user used the VoD service. Some users have
used the service for just a few minutes, with more than 25% of the users using
the service for 45 minutes or less during the span of the three months which the
workload covers. Other users have used the service heavily. The longest usage
was by a customer who used the service for a total of 45 days and a few hours.
This can be either a user who has the service running for over 15 hours per day,
like a restaurant using the service, or a customer who has multiple devices all
connected to the service using the same ID.
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Figure 13: CCDF of the distribution of the number of seconds viewed per
user (Log-Log plot).

3.6 Impatient users

To better understand why users abandon streams early, we investigated two
hypotheses. The first hypothesis was that users abandon sessions due to low
quality of the streaming, i.e., low bit-rate. Figure 14 shows how the average
median session length of all users changes with the average streaming bit-rate.
The figure shows that across most of the seen average bit-rates, the behavior of
impatient users does not change. From Figure 11, average bit-rates more than 3
Mbps are rare, and thus the variation seen when the bit-rates are more than 3
Mbps in Figure 14 should not be interpreted as a change in the user-behavior
but rather as outliers.
The second hypothesis was that users who use the service more will have a

different average median session length. Figure 15 shows that the session length
does not differ between users who use the service very often from those who do
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Figure 14: The bit-rate does not correlate with the decision of a user to
abandon a session early (Log-Log plot).

not. Thus, both hypotheses are not true. The session length distribution is an
invariant in the system.

4 Related work
Several server workloads for different services have been analyzed in depth
previously [7,8,24,41,47]. Many of these studies focused on online video services
and video streaming. One of the first and largest studies was conducted by
Yu et al. [48] on a VoD system deployed by China Telecom, covering a total
of 1.5 million unique users for a period of seven months in 2004. They focus
their analysis on logs from a single representative city with a total user base
of 150,000 users. They study the user arrival rates, session lengths and video
popularity dynamics, and how they can affect the caching strategy used. While
our study is for a much smaller dataset, we still believe there is value in studying
VoD workloads for small and medium VoD providers with a very local user base.
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Figure 15: Users have an almost homogeneous median session lengths no
matter how often do they use the service (Log-Log plot).

Choi et al. analyzed service logs generated for every VoD request or VoIP
call made on a day in April, 2009 in a nationwide commercial IP network in
Korea [12]. The number of subscribers for both services is over 1.2 million
generating over 10.5 million requests in total during that day. The authors focus
on workload characteristics having a direct effect on the performance of IP
networks such as session arrivals and session holding times.
A recent study analyzed both sender and receiver side logging data provided

by a popular Norwegian streaming provider [32]. The logs are 24-hour logs
collected for 8 soccer games with 1328 unique client IP addresses. The authors
deduce from the segments downloaded multiple times that at least 3% of the
bytes downloaded could have been saved if more HTTP caches or a different
adaptation strategy had been used.
Multiple studies have crawled and analyzed traces from YouTube, Yahoo!

videos and DailyMotion. Video streaming from an ISP perspective has been
studied by Pilssonneau and Biersack by analyzing 10 packet traces from a
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residential ISP network [40]. They focus on video streams from YouTube and
DailyMotion with a focus on analyzing the flow performance of the videos and
the user behavior of the two services. The authors study the influence of the
reception quality on the users ans show that videos with bad reception quality
are seldom fully downloaded.
Khemmarat et al. [29] collect user browsing pattern data for YouTube. They

show that video buffering affects the QoS for YouTube users due to disruptions for
buffering. The authors propose a video prefetching approach for user-generated
video sharing sites like YouTube based on the site’s recommended videos list
for any video. They show that prefetching considerably improves the QoS of
YouTube.
Kang et. al. crawled Yahoo! videos website for 46 days [27]. Around 76% of

the videos crawled are shorter than 5 minutes and almost 92% are shorter than
10 minutes. They discuss the predictability of the arrival rate with different time
granularities. A load spike typically lasted for no more than one hour and the
load spikes are dispersed widely in time making them hard to predict. Gill et
al. [19] collected data on all YouTube usage at the University of Calgary network
for 85 consecutive days, starting January 14, 2007. In addition, they monitored
the 100 most popular videos on YouTube for the same period. They examined
the usefulness of caching and content distribution networks for improving
performance and scalability of similar applications. Similarly, Chang et al.
crawled YouTube for four months in early 2007 collecting data for more than
3 million videos [11]. Their study did not consider the rate of request arrivals
for the different videos but rather focused on some statistics such as the video
category, length, size and bitrate. They also discuss some of the social networking
aspects of YouTube.
Barker and Shenoy studied the effect of background workloads on the QoS of

a multimedia service hosted on a cloud system [9]. They show that co-located
applications can affect the QoS perceived by the multimedia service customer
considerably. The degree of interference variations is most pronounced for disk-
bound latency-sensitive tasks, which can degrade by nearly 75% under sustained
background load. Their experiments revealed two main insights, the lack of
proper disk isolation mechanisms in the hypervisor between co-located VMs
can hurt performance, and that network isolation mechanisms in the hypervisor
present a trade-off between mean latency and metrics such as jitter and timeouts.
Having dedicated caps on the network usage yield lower average latency, while
fair sharing the network between the VMs yields lower timeouts and somewhat
lower jitter.
The impact of video streaming quality on user engagement and abandonment

rates has been studied by Dobrian et al. [16] and Krishnan and Sitaraman [31].
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Both studies assert the effect of buffering on user engagement. Dobrian et al.
also show the significance of the average streaming bit-rate on live content.

5 conclusion
Video-on-Demand workloads are not well studied in the literature. Our analysis
of VoD traces from a Swedish service provider is aimed to provide some insights
to better understand and design VoD systems. The results of our analysis show
that the user and request arrival rates can not be modeled as a Poisson process
in the analyzed traces. The arrival rates can be modeled using a lognormal
distribution while the inter-arrival time can be modeled using an extended
exponential distribution. There are four spikes in the workload caused due to
football matches that interested the Swedish audience. Three of these matches
were played in foreign football leagues, unrelated or weakly related to Sweden,
making the spikes in the load hard to plan for without extensive social analysis
of what attracts the local population. Comparing the user behavior in our study
to the user behavior in Yu et al.’s study [48], we can conclude that the rate
of users abandoning streaming sessions a few minutes from when they start it
seems to be an invariant in VoD workloads. In both studies, 50% of the sessions
started were abandoned after less than 12 minutes from their beginning by
the highly “impatient users” of the VoD services. That is despite of our study
being conducted on a Swedish VoD service and their study being conducted
on a Chinese VoD Service with almost six years between the two studies. This
impatient behavior can be used to improve prefetching and caching of the videos
provided by the VoD service provider.
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Karl Erik Årzén†, Johan Tordsson‡, and Erik Elmroth‡

Abstract

Numerous auto-scaling strategies have been proposed in the last few years for improv-
ing various Quality of Service (QoS) indicators of cloud applications, e.g., response
time and throughput, by adapting the amount of resources assigned to the application
to meet the workload demand. However, the evaluation of a proposed auto-scaler is
usually achieved through experiments under specific conditions, and seldom includes
extensive testing to account for uncertainties in the workloads, and unexpected behav-
iors of the system. These tests by no means can provide guarantees about the behavior
of the system in general conditions. In this paper, we present PEAS, a Performance
Evaluation framework for Auto-Scaling strategies in the presence of uncertainties.
The evaluation is formulated as a chance constrained optimization problem, which is
solved using scenario theory. The adoption of such a technique allows one to give
probabilistic guarantees of the obtainable performance. Six different auto-scaling
strategies have been selected from the literature for extensive test evaluation, and
compared using the proposed framework. We build a discrete event simulator and
parameterize it based on real experiments. Using the simulator, each auto-scaler’s
performance is evaluated using 796 distinct real workload traces from projects hosted
on the Wikimedia foundations’ servers, and their performance is compared using
PEAS. The evaluation is carried out using different performance metrics, highlighting
the flexibility of the framework, while providing probabilistic bounds on the evalu-
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ation and the performance of the algorithms. Our results highlight the problem of
generalizing the conclusions of the original published studies and show that based on
the evaluation criteria, a controller can be shown to be better than other controllers.

1 Introduction

Elasticity can be defined as the property of a cloud infrastructure (datacenter) or a
cloud application to dynamically adjust the amount of allocated resources to meet
changes in workload demands. In principle, resources allocated to a running service
should be varied such that the Quality of Service (QoS) requirements are preserved
at minimum cost. A large number of auto-scalers have been designed for this pur-
pose, using different approaches such as control theory [41], neural networks [33],
second order regression [32], histograms [63], time-series models [29], the secant
method [47], and look-ahead control [58]. While very different in nature, all of these
controllers have one thing in common: They are designed to provision resources
according to the changing workloads of the applications deployed in a cloud.

Cloud (and datacenter) workloads may have very different characteristics. They
vary in mean, variance, burstiness, periodicity, type of required resources, and many
other aspects. When studying workload periodicity and burstiness profiles, one can
find workloads that have repetitive patterns with daily, weekly, monthly and/or annual
cycles, e.g., the Wikipedia workload shown in Figure 1(a) has diurnal patterns with
small deviations in the pattern from one day to the other [5]. Other workloads may
have uncorrelated spikes and bursts that occur due to an unusual event, e.g., Figure 1(b)
shows the load on the Wikipedia page about Michael Jackson with two significant
spikes that occurred immediately after his death and during his memorial service.
On the other hand, some workloads have weak or no recognizable patterns at all,
e.g., the workload shown in Figure 1(c) for tasks submitted to a Google cluster [67].
Most often, the characteristics of the workloads of new applications are unknown in
advance.

Unfortunately, most of the state-of-the-art auto-scalers have been evaluated using
less than three real workload traces – in a real deployment or in simulation – which
makes it impossible to generalize the obtained results [29, 32, 41, 59, 63]. In addition,
the traces used for testing are typically short spanning a few minutes, hours or
days [29,58,63]. As the workload profile is well known to affect the performance of a
controller and the running application, it is not possible to tell whether one auto-scaler
is better than the other for a certain workload [7, 24].

This paper presents PEAS (Performance Evaluation framework for Auto-Scaling
strategies), a framework for the evaluation of auto-scaling techniques. PEAS refor-
mulates the performance evaluation problem into a chance constrained optimization
problem, whose solution requires an extensive yet targeted testing of the auto-scaling
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Figure 1: Different workloads have different burstiness. Plot (a) shows a workload
with little burstiness and strong periodicity. Plot (b) shows sudden spikes in a mostly

periodic workload due to an event. Plot (c) shows a bursty workload.

techniques. The solution of the chance constrained optimization is carried out through
scenario theory [14, 16, 49], which has been recently applied to control theory prob-
lems related to complex, stochastic, or uncertain systems [15, 17, 53]. With the
adoption of the scenario theory, PEAS can be used to extensively evaluate the perfor-
mance of different auto-scaling strategies, providing probabilistic guarantees on the
obtained results.

To show the feasibility of using scenario theory to compare auto-scalers, we ob-
tained the implementations of three state-of-the-art auto-scalers from their design-
ers [6, 25, 51]. In addition, we reimplemented three other auto-scalers from the
literature [20, 32, 63]. We used a publicly available workload from the Wikimedia
foundation spanning roughly six years [48] to evaluate the six algorithms. The work-
load traces are composed of more than 3500 streams comprising all requests to all
Wikimedia foundation’s projects with all 287 supported languages, of which a subset
of 796 streams is selected.
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In summary, the contribution of this work is twofold. First, we introduce a frame-
work that provides probabilistic guarantees on the QoS achieved by auto-scalers
while permitting to compare their performance in worst-case scenarios. Secondly, we
compare six state-of-the-art auto-scalers using a large real workload spanning 6 years
from a production system.

The rest of the paper is organized as follows. Section 2 discusses the problem of
evaluating different auto-scalers and comparing them along with the tradeoffs of
choosing one auto-scaler over another. Section 3 discusses some of the auto-scaling
techniques that have been proposed in the literature. We give special attention to the
six algorithms we evaluate with the proposed framework. Section 4 introduces PEAS,
focusing on its theoretical aspects. Section 5 discusses the experimental results. We
conclude in Section 6.

2 The case for PEAS

While cloud computing is a relatively new technology that was enabled recently by
the advances in virtualization; elasticity control and auto-scaling of cloud resources
is an incarnation of the dynamic resource provisioning problems in clusters, grids
and datacenters. The dynamic resource provisioning problem – and its variants –
have been discussed over the past two decades with initially some patents in the
early 1990s [23, 42], followed by an interest from the research community later in
the late 1990s and early 2000s [19, 64]. During this period, many algorithms have
been proposed for dynamic provisioning with different flavors before and after the
term cloud computing was coined [20, 25, 27, 63]. Since then, many new auto-scaling
techniques have been proposed.

As for the performance assessment of auto-scalers, many published solutions have
not been compared to previously proposed ones so far, but have been rather compared
with a predefined required response time for the tested application or against static
provisioning [2, 20, 29, 32, 40, 58]. In addition, many of the published work have not
been tested with more than one real workload [2, 25, 29, 33, 37, 44, 46, 47, 59]. Even
when algorithms are tested with more than one workload, many of these workloads are
typically quite old, from systems and services that are not even used today [6, 27, 28].
While all published previous work show that “the proposed algorithm” works in
certain scenarios, the results in many of these papers cannot be generalized.

Many proposed state-of-the-art auto-scalers use the desired response time or service
latency as a reference signal to a controller. A proposed approach then works if it
meets the experiments’ required response times, mostly set by the authors based on
some QoS studies. On the other hand, response time does not show under- and over-
provisioning, i.e., if the allocated capacity is too low or too high with respect to the
actually needed capacity to serve the incoming requests within the desired response
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Figure 2: There are tradeoffs when choosing which auto-scaler to use in order to
control server provisioning.

time. Under- and over-provisioning are indeed extremely important to compare the
performance of different controllers. Two controllers might be achieving the required
response time while one of them uses, for example, on average only one tenth of the
resources used by the other controller. Similarly, one controller can be dropping, on
average, fewer requests than another one [27]. In addition, latencies are in general
nonlinear with respect to the provisioned resources. To give an example, suppose there
are two workloads running on two different machines and each of them experiences
an average service latency of 50ms for a request. If the required QoS is to keep the
average service latency below 100ms, can then the two workloads be handled by a
single server? The answer is likely to be no, since service latencies do not depend
linearly on the amount of resources provisioned. This nonlinear relationship between
resources provisioned and response time has been observed in large-scale distributed
systems [21]. In addition, latency measurements are often extremely noisy with
very high variance, even for constant workloads, [10, 11, 66]. To conclude, request
response times and latencies are by themselves not suitable metrics to compare
auto-scalers [10].

There are tradeoffs between using different auto-scalers in terms of over-provisioning,
under-provisioning, and the time and resources required to compute the required ca-
pacity. Figure 2 shows the output for four different controllers, [6] in blue, [20] in
red, [32] in green, and [63] in cyan, when used to predict the number of servers
required to serve the load on the English Wikipedia pages between October 19th,
2010 and October 28th, 2010. The figure also shows the theoretical optimal number
of servers required to serve such a workload (shown as the black line).1 The first
peaks of the load are part of the bursty period. The rest is when the load begins to

1Section 4.2.1 explain in more details how the optimal and the predicted number of servers are
obtained.
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settle down. One can see that during this transient period, the four auto-scalers show
different behaviors. The behavior does not just depend on the selected auto-scaler,
but also on how they are parameterized. The same auto-scaler with another set of
parameters will typically behave in a different way.

In this work, we have been greatly inspired by the seminal work by Keogh and
Kasetty which shows that many of the proposed algorithms by the time series data
mining community are of very little use [34] due to lack of testing on enough datasets
or due to hidden parametrization pitfalls. Our main motivation for PEAS is to help
organize the design space of auto-scalers. We believe that PEAS will help the research
community to establish a theoretical framework enabling the possibility of comparing
in a systematic way different auto-scalers while providing probabilistic guarantees
on their performance. Such guarantees allow service providers to choose a suitable
auto-scaler that fulfills a desired QoS metric for their infrastructure. We envision that
such an approach to testing auto-scalers may lead to a more mathematically grounded
definition of Service Level Agreements (SLAs) [60] and better design of auto-scalers.

3 Related work

3.1 Selected auto-scaling methods
A significant number of auto-scalers have been proposed in the literature [43]. We
choose six auto-scalers to extensively compare in this work. These six are in our
opinion a representative sample of the state-of-the-art. The selected methods have
been published in the following years 2008 [63] (with an earlier version published
in 2005 [62]), 2009 [20], 2011 [32], 2012 [6], 2013 [51] and 2014 [25]. They thus
represent the development of the field over a period of more than 7 years.

1. Urgaonkar et al. [63] propose a provisioning technique for multi-tier Internet
applications. The proposed methodology adopts a queuing model to determine
how many resources to allocate in each tier of the application. A predictive
technique based on building Histograms of historical request arrival rates is
used to determine the amount of resources to provision at an hourly time scale.
Reactive provisioning is used to correct errors in the long-term predictions or to
react to unanticipated flash crowds. The authors also propose a novel datacenter
architecture that uses Virtual Machine (VM) monitors to reduce provisioning
overheads. The technique is shown to be able to improve responsiveness of the
system, also in the case of a flash crowd. We refer to this technique as Hist. The
authors test their approach using two open source applications, RUBIS which is
an implementation of the core functionality of an auctioning site, and Rubbos a
bulletin-board application modeled after an online news forum. The testing is
performed using 13 VMs running on Xen. Traces from the FIFA 1998 worldcup
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servers are scaled in time and intensity and used in the experiments. We have
implemented this auto-scaler for our experiments.

2. Chieu et al. [20] present a dynamic scaling algorithm for automated provision-
ing of VM resources based on the number of concurrent users, the number of
active connections, the number of requests per second, and the average response
time per request. The algorithm first determines the current web application in-
stances with active sessions above or below a given utilization. If the number of
overloaded instances is greater than a predefined threshold, new web application
instances are provisioned, started, and then added to the front-end load-balancer.
If two instances are underutilized with at least one instance having no active
session, the idle instance is removed from the load-balancer and shutdown from
the system. In each case the technique Reacts to the workload change. For the
rest of the paper, we refer to this technique as React. The authors introduce the
scaling algorithm but provide no experiments to show the performance of the
proposed auto-scaler. The main reason we are including this algorithm in the
analysis is that this algorithm is the baseline algorithm in our opinion since it is
one of the simplest possible workload predictors. We have implemented this
auto-scaler for our experiments.

3. Iqbal et al. [32] propose a methodology for automatic detection of bottlenecks
in a multi-tier web application targeting maximum response time requirements.
The proposed technique uses a reactive approach for scaling up resources, and a
Regression model for predicting the amount of resources needed for the actual
workload, and possibly retract over-provisioned resources. The technique is
tested using RUBIS running on seven physical machines using a EUCALYPTUS
cloud installation. httperf is used to generate a workload that increases and
decreases in predefined steps. The results are compared to static provisioning.
We refer to this technique as Reg. We have implemented this auto-scaler for our
experiments.

4. Ali-Eldin et al. [6] propose an autonomous elasticity controller that changes the
number of VMs allocated to a service based on both monitored load changes
and predictions of future load. The predictions are based on the rate of change
of the request arrival rate, i.e., the slope of the workload, and aims at detecting
the envelope of the workload. The designed controller Adapts to sudden load
changes and prevents premature release of resources, reducing oscillations in
the resource provisioning. Adapt tries to improve the performance in terms of
number of delayed requests, and the average number of queued requests, at
the cost of some resource over-provisioning. The algorithm was tested using a
simulated environment using a non-scaled version of the FIFA 1998 worldcup
server traces, traces from a Google cluster and traces from Wikipedia. We refer
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to this technique as Adapt. We obtained the original code from the authors for
our experiments.

5. Nguyen et al. [51] propose AGILE, a wavelet-based algorithm to provide a
medium-term resource demand prediction with a lead time of about 2 minutes,
a time that allows AGILE to possibly start up new application server instances
before performance falls short. The framework also uses dynamic VM cloning
to reduce application startup times. Its accuracy has been proven to be better
than previous schemes in terms of true positives and false negatives. AGILE was
implemented on top of KVM on a cloud testbed having 10 physical machines.
The algorithm was evaluated using RUBIS and the Apache Cassandra key-value
store. Four workloads were used in the evaluation, namely, the FIFA World
Cup 1998 webserver trace starting at 1998-05-05:00.00; NASA webserver
trace beginning at 1995-07-01:00.00; EPA webserver trace starting at 1995-
08-29:23.53; and ClarkNet web server trace beginning at 1995-08-28:00.00.
The prediction algorithm was also tested using real system resource usage
data collected on a Google cluster. The prediction results are compared to two
previously published algorithms, autoregression [13] and PRESS [28]. The
provisioning results are compared also to a reactive approach and a threshold
based approach that increases and decreases the number of machines based on
preset resource usage levels. We obtained the original code from the authors for
our experiments.

6. Fernandez et al. [25] present a methodology that scales a web application in
response to changes in throughput at fixed intervals of 10 minutes. The proposed
algorithm is based on different components. The Profiler measures the comput-
ing capacity of different hardware configurations when running an application.
The predictor forecasts the future service demand using standard time-series
analysis techniques, e.g., Linear Regression, Auto Regressive Moving Average
(ARMA), etc. The dynamic Load Balancer distributes the requests in the dat-
acenter according to the capacities of the provisioned resources. Finally, the
Scaler uses the predictor and the profiler to find the scaling plan that fulfills
a prescribed Service Level Objective (SLO). For evaluation, the authors test
their technique on two cloud infrastructures, a private one (the DAS-4, a multi-
cluster system hosted by universities in The Netherlands ) and a public one (the
Amazon EC2 cloud). The authors deployed MediaWiki application instances
on both environments using the WikiBench benchmark to run the application.
The benchmark uses a copy of Wikipedia, and replays a fraction of the actual
Wikipedia access traces. The experiments used up to 12 EC2 VMs of different
types and up to 8 machines of varying configurations in the DAS-4 system. In
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our work, we refer to this technique as PLBS. The code for this auto-scaler is
open-sourced. We downloaded the authors’ original implementation.

3.2 Performance evaluation methodologies
Whereas a significant effort was spent by many researchers on designing “efficient”
auto-scalers, not as much effort was spent on defining an evaluation methodology to
compare the designed algorithms. Typically, the designed auto-scalers are evaluated
in an ad hoc way, with a limited number of experiments, that may not be necessarily
representative of the actual workload of a cloud environment, or more generically, of
a service provider.

There is, however, an increasing interest in defining some common practices and
methodologies for the evaluation of auto-scaling techniques [31, 38, 65]. For example,
Ferraris et al. [26] present the results of stressing the auto-scaling mechanisms
implemented by Amazon and Flexiscale cloud providers. Netto et al. [50] introduce
an index for evaluating the performance achieved by an auto-scaling technique. The
index is called “Auto-scaling Demand Index” (ADI), and it is used for penalizing
differences between the actual and the desired resource utilization levels.

To the best of our knowledge, there is no standard methodology for the evaluation
of auto-scaling strategies, that allows also for the definition of probabilistic guarantees
on the performance. The evaluation is typically carried out through few experiments,
but by no means to quantify the confidence that the obtained results will hold also in
other situations. As a result, it is difficult, if not impossible, to use such results for the
definition of performance SLAs.

4 PEAS: the evaluation framework
PEAS is a framework that is able to provide probabilistic guarantees on the perfor-
mance of auto-scaling strategies. The proposed framework is based on recent develop-
ments in the control and optimization community, related to the solution of Chance-
Constrained optimization Problems (CCPs) via scenario theory [14, 16, 49, 56]. Sce-
nario theory represents a systematic theoretical foundation of the “many-experiments”
approach, i.e., when one wants to evaluate the robustness of the system, a certain num-
ber of experiments is performed aimed at quantifying the confidence about the quality
of the system. The scenario optimization approach has been adopted to tackle several
problems in control theory, ranging from systems and control design [17], to robust
control design [15], from model order reduction of stochastic hybrid systems [53] to
game theory [12].

The steps of the framework can be summarized as follows.

1. Definition of the performance measurements.
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2. Definition of a suitable performance metric.

3. Formulation of the CCP.

4. Application of the scenario theory.

(a) Choice of the parameters.

(b) Computation of the experimental results.

(c) Computation of the randomized solution.

The formulation of the performance evaluation problem as a CCP is a nontrivial task,
and is one of the contributions of this paper.

4.1 Chance-constraint optimization and scenario theory
We provide a brief overview of CCP and the main results of the scenario theory before
going into the details of the framework. Consider the optimization problem

min
x∈Rn

φ(x) (1)

subject to: G(x,ξ ) ∈C.

where C ∈Rm is a closed convex set, and φ(x) is a real valued function. The mapping
G : Rn×Rd→Rm depends on uncertain parameters ξ which vary in a set Ξ∈Rd . For
a fixed ξ the constraint is either satisfied or not. If we consider ξ as a random vector
with a probability distribution having support Ξ, finding the optimal value of x would
require to have the constraint G(x,ξ )∈C to be satisfied with probability 1. Intuitively,
this would mean to have an infinite number of constraints, one for each possible
realization of ξ . This is known in the stochastic programming literature as the second
stage feasibility problem that has to be solvable with probability 1 [56]. However,
this is too conservative in most practical situations. A more realistic requirement is
to ensure feasibility with probability close to 1, i.e., at least 1− ε . Hence, we can
formulate problem (1) as a Chance-Constrained optimization Problem (CCP)

CCP : min
x∈Rn

φ(x) (2)

subject to: P{G(x,ξ ) ∈C} ≥ 1− ε.

CCPs have been widely studied in the literature, and are known to be NP-hard [49,56],
thus only approximate solutions can be found.

Scenario theory or the “scenario optimization approach” is a technique for obtaining
approximate solutions to robust optimization and CCPs based on randomization of
the constraints [14, 16, 49]. Scenario theory enables one to decide what is the level
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of confidence required, i.e., the value of the parameter ε in the CCP (2), and it tells
how many experiments one needs to perform in order to find a feasible estimate
solution to the problem. The chance constraints are then replaced with the realizations
G(x,ξ (i)) ∈C, with ξ (i), i = 1, . . . ,N, and thus an approximate solution can be easily
found.

4.2 Performance evaluation

This section presents the theoretical foundations of PEAS. The framework is based on
the idea that one can re-formulate the problem of auto-scalers performance evaluation
as a CCP, that can be solved using scenario theory. The framework assumes that
the arrival rate λ (measured in request per time unit) is stochastic and the goal of
the auto-scaling strategy is to provision the least amount of resources able to serve
the incoming traffic with a required QoS. The proposed method involves using as
input of the different auto-scaling strategies some realizations of the stochastic input.
In practice, this means that either the distribution of the input is known, or some
of its realizations are available as historical time series. Our goal is to introduce a
method for evaluating the performance of different methods with some probability
guarantees, in order to understand which method is behaving better especially in
critical scenarios.

4.2.1 Definition of the performance measurements

The cloud infrastructure is modeled as a G/G/N stable queue in which the number of
servers N is variable [39]. This is a generalization of the model proposed by Khazaei
et al. where a cloud is modeled as an M/G/m queue with a constant m [35]. It is
assumed that the servers are used to serve a non-stationary request mix with varying
request sizes [59]. Figure 3 shows the system model.

We denote with k ∈ N the discrete (slotted) time, that counts the decisions for the
auto-scaler. Let then y(k) be the current capacity allocated to the service at time k,
and y◦(k) the required capacity needed to serve the actual incoming traffic at time k.
The required capacity depends on the specific application and workload considered.
In determining the necessary capacity y◦(·), our model accounts for queuing effects,
load mix variations, and long running requests, i.e., requests requiring long processing
time. The required capacity at any time k is thus the total capacity required to process
the newly arriving load λ (k) , the number of requests that were not served during
the past and are queued q(k), and the requests that have already been assigned to a
server in a previous time unit, k−m,∀m < k, but are still being processed. The total
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Figure 3: Queuing model for a service deployed in the cloud.

required capacity at time unit k is then computed as

y◦(k) =
⌈

λ (k)+q(k)
rapp

⌉
+Clrr(k), (3)

where q(k) is the number of requests that are enqueued in the system and that will be
processed in the next time unit, rapp is the average number of requests per time unit
that a single VM can handle for the specific application with an acceptable service
time, and Clrr(k) is the capacity used for processing the long running requests that
require more than one time unit to be served. We denote with dxe the ceiling function
that returns the smallest integer number greater than or equal to x. An acceptable
service time for a request in this case is the maximum service time that the application
can tolerate and that the service user requires. For a web request to a static web-page,
an acceptable service time is in seconds or even milliseconds. For a Map-Reduce job,
the acceptable service time can be in minutes or even hours. This approach for finding
the required capacity is similar to what has been used in the literature [27, 62, 63], but
it accounts also for queuing effects and long running requests.

Long running requests are any requests that require more than the time interval
between two auto-scaler decisions. Since all auto-scaling algorithms calculate the
required capacity on discrete intervals, e.g., AGILE and Adapt every time unit based
on the sampling interval of the monitoring data, ConPaaS every 10 minutes, and Hist
every hour with corrections on a minutes scale, a long running request is a request
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that needs to be processed by the system for a period that extends beyond such an
interval. The addition of the long running requests effect to the model allows PEAS
to take in to account the effect of workload mix changes [59] since a request that sorts
a Terabyte of data requires more time than a request that fetches a static web page.

We note that Equation 3 does not represent the state of the system when any of
the auto-scaling algorithms is used but rather the requirement to maintain the system
with sufficient capacity to process all requests in the minimum required time. An
auto-scaling algorithm should at least provision y◦(k) resources in order to serve all
requests in an acceptable service time. If an auto-scaling algorithm provisions more
capacity than y◦(k), then it should be able to serve all requests but at a a higher cost.
We later discuss how we parameterize our experiments to choose all the parameters
in Equation 3 and how we handle the different assumptions in the designs of the
different algorithms.

4.2.2 Definition of a suitable performance metric

In order to appropriately evaluate the performance of an auto-scaling strategy, we
define a distance dT (·, ·) that maps each pair of trajectories y(k), k ∈T , and y◦(k),
k ∈T , into a positive real number dT (y,y◦) that represents the extent to which y(·)
is far (as defined below) from the ideal behavior y◦(·) along the finite time interval
T . Note that dT (y,y◦) is a random quantity since it depends on the realization of the
stochastic input λ (k).

We consider different distance metrics in order to obtain synthetic results both on
the overall performance of the algorithms, and of specific aspects that one could be
interested in. The first distance metric that we choose is

dnorm
T (y,y◦) =

1
|T | ∑

k∈T
‖y◦(k)− y(k)‖2, (4)

where |T | is the number of samples contained in the time interval T of the experi-
ment, and ‖X‖2 denotes the squared 2-norm of the matrix X . This distance penalizes
under-provisioning (i.e., when the difference y◦− y is positive) and over-provisioning
(i.e., when the difference y◦− y is negative) in the same way, accounting also for
those situations where the allocated resources are oscillating around the ideal capacity.
Notice that the normalization with respect to |T | is used to account for scenarios
with different length. Notice also, that it is possible to modify (4) in order to weight
differently under- and over-provisioning. Whereas distance (4) is able to give syn-
thetic information about the overall performance, its value is difficult to interpret.
This is the main reason for introducing other more interpretable quantities.

As argued in [1], the directional Hausdorff distance

dhaus
T (y,y◦) = sup

k∈T
inf

κ∈T
‖y◦(k)− y(κ)‖, (5)
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is a sensible choice for dT (y,y◦) when performing probabilistic verification such as,
e.g., estimating the probability that y will enter some set within the time horizon T .
This distance disregards the time spent under- and over-provisioning, thus it cannot be
used for the evaluation of auto-scalers. Therefore, one can choose a slightly different
distance

dsup
T (y,y◦) = sup

k∈T
‖y◦(k)− y(k)‖, (6)

that accounts also for the maximum discrepancy between the ideal and the actual
behavior. This is the second distance that we use for the evaluation.

We here consider also two other metrics that give information about how much the
auto-scaling strategy is over- and under-provisioning. These can be thus expressed as

dover
T (y,y◦) = sup

k∈T
‖max{y(k)− y◦(k),0}‖, (7)

dunder
T (y,y◦) = sup

k∈T
‖max{y◦(k)− y(k),0}‖. (8)

However, it is also desirable that y(·) converges towards y◦(·) as soon as possible,
thus producing an error converging to zero. This is extremely important from the
service provider perspective, since excessive over-provisioning for long time results
in a waste of resources, while excessive under-provisioning results in loss of revenue.
In order to account for the time aspect, we introduce two other metrics

doverT
T (y,y◦) =

1
|T | ∑

k∈T
‖max{y(k)− y◦(k),0}‖∆k, (9)

dunderT
T (y,y◦) =

1
|T | ∑

k∈T
‖max{y◦(k)− y(k),0}‖∆k. (10)

where ∆k is the time interval between two subsequent interventions of the auto-
scaling strategy. The interpretation of these two distance is thus, the average over-
and under-provisioning in a time unit.

The last distance the framework uses is an adapted version of the Auto-scaling
Demand Index (ADI) proposed by Netto et al. [50]. The utilization level can be
defined as

u(k) =
y(k)
y◦(k)

. (11)

Notice that u(k)≥ 0, ∀k ∈N but unlike the ADI measure proposed by Netto et al. [50],
u(k) can be larger than 1, representing a situation of over-provisioning. The adapted
ADI is represented by σ , and defined as

σ = ∑
k∈T

σ(k), (12)
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where

σ(k) =





L−u(k) if u(k)≤ L,
u(k)−U if u(k)≥U,

0 otherwise.
(13)

with 0≤ L≤U representing the required lower and upper bound of the utilization.
The adapted ADI provides information analogous to (4), as it is evaluating over time
the discrepancy between the actual and required capacity. In the following, we set
L = 0.9 and U = 1.1, meaning that we are not penalizing strategies that oscillate in
an interval (L · y◦(k),U · y◦(k)). Since ADI penalizes longer workload traces, for a
fair comparison we consider its normalized version with respect to the length of the
time horizon |T |,

σT =
σ
|T | =

1
|T | ∑

k∈T
σ(k). (14)

4.2.3 Formulation of the CCP

The problem of evaluating the performance of the different auto-scaling strategies
can thus be formulated as the CCP,

CCP :min
ρ

ρ (15)

subject to: P{dT (y,y◦)≤ ρ} ≥ 1− ε.

where the performance is evaluated in a “worst-case” fashion. This form for the CCP
is sometimes referred to as percentile optimization, where ρ can be interpreted as the
(1− ε)−percentile.

4.2.4 Application of the scenario theory

Irrespectively of the choice of dT (y,y◦), finding the optimal solution ρ? of the
CCP (15) is an NP-hard problem. Indeed, it involves determining, among all sets
of realizations of the stochastic input that have a probability 1− ε , the one that
provides the best (lowest) value for dT (y,y◦). We then head for an approximate
solution. Instead of considering all the possible realizations for the stochastic input,
we consider only a finite number N of them, called scenarios, randomly extracted
according to their probability distribution, and treat them as if they were the only
admissible uncertainty instances. This leads to the formulation of Algorithm 1, where
the chance-constrained solution is determined using an empirical violation parameter
η ∈ (0,ε). In the following we denote the realization of a scenario with the superscript
(i), with i = 1,2, . . . ,N.

VI:15



Algorithm 1: Computation of the randomized solution.

1: extract N realizations of the stochastic input λ (i)(k), k = 1,2, . . . , |T |,
i = 1,2, . . . ,N, and let κ = bηNc;

2: determine the N realizations of the output signals y(i)(k) k ∈T , i = 1,2, . . . ,N,
when the policy to be evaluated is fed by the extracted input instances;

3: compute
ρ̂(i) := dT (y(i),y◦,(i)), i = 1,2, . . . ,N;

4: determine the indexes {h1,h2, . . .hκ} ⊂ {1,2, . . . ,N} of the κ largest values of
{ρ̂(i), i = 1,2, . . . ,N}

5: return ρ̂? = max
i∈{1,2,...,N}\{h1,h2,...,hκ}

ρ̂(i).

Hence, the CCP problem (15) is translated into a sample-based optimization pro-
gram

SP :min
ρ

ρ (16)

subject to: dT (y(i),y◦,(i))≤ ρ, i ∈ {1,2, . . . ,N}\{h1,h2, . . . ,hk},

where {h1,h2, . . . ,hκ}⊂{1,2, . . . ,N} of the κ = bηNc largest values of dT (y(i),y◦,(i)).
Notably, if the number N of realizations is appropriately chosen, the obtained esti-

mate of ρ? is chance-constrained feasible, with a priori specified (high) probability.

Theorem 1. Select a confidence parameter β ∈ (0,1) and an empirical violation
parameter η ∈ (0,ε). If N is such that

bηNc
∑
i=0

(
N
i

)
ε i(1− ε)N−i ≤ β , (17)

then, the solution ρ̂? to Algorithm 1 satisfies

P{dT (y,y◦)≤ ρ̂?} ≥ 1− ε, (18)

with probability at least 1−β .

Theorem 1 provides theoretical guarantees that the chance constraints (18) are
satisfied, i.e., that the solution ρ̂? of the optimization program SP (16) obtained
through Algorithm 1 is feasible for the CCP (15). Theorem 1 is a feasibility theorem,
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it was proven in [16], and says that the solution ρ̂? obtained by inspecting bηNc
constraints only is a feasible solution for (15) with high probability 1−β , provided
that N fulfills condition (17). As η tends to ε , ρ̂? approaches the desired optimal
chance constrained solution ρ?. In turn, the computational effort grows unbounded
since N scales as 1/(ε−η) [16], therefore, the value for η depends in practice on
the time available to perform experiments.

As for the confidence parameter β , one should note that ρ̂? is a random quantity
that depends on the randomly extracted input realizations and initial conditions. It
may happen that the extracted samples are not representative enough, in which case
the size of the violation set will be larger than ε . Parameter β controls the probability
that this happens and the final result holds with probability 1−β . N satisfying (17)
depends logarithmically on 1/β [3]. Therefore, β can be chosen as small as 10−10

(and, hence, 1−β ' 1) without N growing significantly.
It is worth mentioning that the sensitivity of this methodology mostly depends on

the value of ε , rather than on β . Indeed, when β is chosen small enough, the number N
of experiments required is not significantly increased, and the only improvement that
we get is the confidence level of the feasibility. On the other hand, slightly changing ε
affects the number of experiments significantly, but it also means that we are changing
the CCP that one wants to solve. A typical use of (17) is thus deciding what is an
acceptable level of risk, ε , choosing a small enough value of β , and computing the
maximum number of experiments needed, according to the computational limits.

Notice that the guarantees provided by Theorem 1 are valid irrespectively of
the underlying probability distribution of the input, which may not even be known
explicitly, e.g., when feeding Algorithm 1 with historical time series as realizations of
the stochastic input λ (i), as we are doing in this work. For the sake of completeness,
we performed a correlation analysis on the input realizations used in the experiments.
The results of the correlation analysis are presented in Appendix C.

5 Experiments and Results: Three case studies

In this section we consider three case studies, in which we want to understand which
is the best algorithm among the ones selected in Section 3.1, according to the metrics
presented in Section 4.2.2. The first and the second case studies assume that there
are no queuing effects, i.e., that delayed requests are dropped, and that all requests
are short and homogeneous, i.e., they require one time unit to be processed. As a
result, q(·) = 0 and Clrr(·) = 0 in (3). The difference between the first and the third
case studies is in the workload used during the experiments as we will discuss later.
The second case study, considers the case when delayed requests are queued in an
infinite buffer, and the requests are non homogeneous with some short requests and
some long running requests that can take up to 60 time units to process.
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Long running requests and requests that can be buffered form a significant per-
centage of cloud workloads [57]. While there are no infinite buffers, assuming an
infinite buffer in our simulations enables us to reason on the algorithm behavior and
detect possible software bugs in the implementation of the algorithms, e.g., both
PLBS and Agile exhibited very bad performance due to queuing effects, leading all
the considered metrics to diverge to infinity in the second case study. After careful
analysis, we found that for some abrupt workload changes, Agile was predicting
negative values for the workload. We have added a check on the predictions from
Agile to make sure that when the predictor predicts a negative value, the predictions
are discarded. We were not able to spot the error in PLBS but we suspect that it is
again a logical error. Spotting the problem with Agile was simplified due to the use
of PEAS as the framework pointed us to where the errors occur in the predictions.

5.1 Solving the CCP
We assume that an acceptable risk is ε = 0.05, meaning that the probability that the
chance constraints are not satisfied is 5%. Since each experiment considers a workload
over almost six years, accepting that 5% of the time we might not able to fulfill (18),
is a reasonable choice for a regular web service. Among all the experiments, we can
choose a fraction η ∈ [0,ε) that can be discarded without affecting the feasibility of
the solution. We here set η = 0.01. As for the choice of the confidence level 1−β that
we have in the obtained result, as discussed in Section 4.2.3, we can take β = 10−10,
without affecting too much the number of experiments required for the evaluation.

Having chosen these parameters, it is possible to compute N such that it satisfies
inequality (17), yielding N = 796. It is thus trivial to compute the number κ =
bηNc = 7 of scenarios that can be discarded according to Algorithm 1. Publicly
available workloads are scarce [11], and finding N = 796 workload traces to solve the
SP might not be always possible. However, one can easily adapt the above parameters
to fit the available dataset, yet keeping similar probabilistic guarantees. For example,
choosing η = 0 and β = 10−6, but keeping ε = 0.05, one requires N = 270 workloads
traces, with no discarded trace. In order to have a high confidence in the feasibility
of the result, and in order to be able to discard possible traces containing sporadic
events that leads to bad performance, we used the parameters leading to N = 796.

5.2 The workloads
Since artificially generated workloads may not be a good representation of real work-
loads and would thus affect the results of our evaluation, we choose to perform the
evaluations with real workloads. Given the scarcity of publicly available workloads,
it is challenging to obtain 796 real commercial workload streams. On the other hand,
the sixth most popular website on the World Wide Web is Wikipedia the open and
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collaborative online encyclopedia, according to Alexa [4]. Wikipedia is hosted on the
servers of the Wikimedia foundation which hosts other projects such as Wikiquotes
and Wikibooks. The Wikipedia foundation provides publicly available workload
traces that logs the per page aggregate number of requests per hour to all services
hosted by the foundation [5, 8].

This workload is interesting since the traces can be separated into independent
streams with each stream representing a project and a language, e.g., one stream can
have the requests to the German Wikipedia pages, another can be for the Swedish
Wikitionary project, and a third can be for the Zulu Wikibooks project, and so on. In
total, the Wikimedia foundation hosts over 888 projects and language combinations.
Many of these project streams can be divided even further into, for example, load
from Mobile users, load generated by editors, load generated on “talk pages” and so
on.

We downloaded the Wikimedia foundation traces for the period between the 9th of
December, 2007 and the 16th of October, 2013. The traces were analyzed and all the
different streams that are present in the load during this period of almost six years
were extracted. The extraction yielded more than 3000 different workload streams. We
chose N = 796 streams to be used to validate our framework. The chosen streams are
mostly of long running projects spanning the whole period of the trace or are streams
which have high request arrival rates. We have performed a correlation analysis on
the selected workloads, and we found that they are practically not correlated. Further
details on the workloads used and the correlation analysis are given in Appendix B
and Appendix C respectively.

5.3 Simulating the cloud
Since it is not feasible to run 796 experiments per auto-scaler on a real testbed –
meaning 4776 experiments in total – each of them using a workload spanning around
6 years with millions of requests per hour, we decided to use a simulator which we
parameterize instead with some real experiments. A summary of some of the main
decisions in our experiments follows.

1. We use a discrete event simulator that we parameterize using real server experi-
ments on our server testbed. The experiments use one real application and one
benchmark.

2. Many of the techniques we test have more components other than auto-scaling
and capacity prediction algorithms for other functionalities. For example, Con-
Paas does not just predict the workload and the required capacity, but also tries
to optimize the choice of the size of the VMs deployed, Agile also has compo-
nents for VM cloning and migration. Since our main target is to evaluate the
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accuracy of the prediction of the capacity required, when needed we have only
focused on evaluating this part of the system as it is the core part of auto-scaling.

3. The traces we have are logged on hourly bases with no smaller logging gran-
ularity available. Using the data as is with the auto-scaling algorithms can
undermine the fairness of the experiments since, with the exception of Hist,
the algorithms are designed to operate on a seconds to few minutes interval.
We have considered two main approaches to use the traces in our experiments.
The first one is to interpolate the values for smaller time granularities based on
either another workload that we have with a finer logging granularity or some
other method such as regression. This approach is similar to the approach taken
by Malkowski et al. [45]. The second approach is to scale down the workload
intensity by dividing the number of requests by a factor, e.g., scaling down the
workload by a factor of 3600 gives for each hour the average arrival rate per
second.

The first approach has a clear disadvantage since the interpolation can distort
the actual workload and thus give wrong performance results. The second
approach has the disadvantage of not capturing the transient workload effects
if the workload is scaled down by a large factor, i.e., by dividing the workload
by a factor, the effect of some extreme spikes that happened at a smaller time
granularity can be reduced due to the down scaling of the workload. Since we
did not want to introduce any artificial behavior in our evaluation, we opted for
the second solution, down sizing the workload by a factor. To show that the
results we obtain are still valid for bursty workloads, we choose two factors
to scale down the workload, with one of the two factors small to capture the
case of bursty workloads, as discussed later. Scaling-down a workload is an
approach taken typically to compensate for the limitations of testbeds as done
by Gandhi et al. [27] and Urgaonkar et al. [63].

To parameterize the simulator, we performed some experiments using C-Mart, an
open-source cloud computing benchmark designed by Turner et al. [61] that emulates
modern cloud applications, and using a MediaWiki installation on which we replicated
the Spanish Wikipedia pages [8].

C-Mart is chosen since it represents a modern and up-to-date web application.
Turner et al. compare C-Mart to RUBIS and TPC-W. They show through experi-
mental evaluation that their benchmark reflects a more realistic cloud application
compared to many benchmarks used in the literature. We have also used another
widely used web application, Mediawiki, to complement our results. There are a few
motivations behind using Mediawiki with a full replica of the Spanish Wikipedia
beside the usage of C-Mart to parameterize the simulator. First, the workloads we are
using are workloads directed to web services using Mediawiki, e.g., Wikipedia, Wiki-
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books and Wikitionary. In addition, this application has recently gained popularity
in the literature as a modern, real, and representative application of cloud and web
services [9, 18, 22, 25, 36]. C-Mart contains both stateful and stateless applications.
Some setups of MediaWiki can also be stateful. Since many of the algorithms tested
and most of the algorithms found in the literature consider stateless applications, we
choose to consider only the stateless case.

The service rate of a VM is modeled to be a Poisson process. Using a set of
experiments where we have run multiple instances of both the chosen applications,
we found that the average number of requests that a VM can serve per second varies
considerably with the workload mix used in the experiment. For our experiments
we set the number of requests that a VM can serve per second to 22 requests for
a VM with one core assigned and two Gigabytes of RAM. Appendix A describes
the experiments done to obtain the average number of requests a VM can serve per
second.

To capture the effect of the spikes in the traces, two different factors are used in
simulations for scaling down the workload. We choose the first factor to scale down
the workloads to be 3600 , i.e, the number of seconds in one hour. This is used in the
first case study and in the second case study. The resulting traces thus correspond
to the average request arrival rate per second for each hour. This way we mainly
capture the long term workload dynamic changes in our evaluation. In the second set
of experiments, we scale down the workload by a factor of 60 only.

We performed additional experiments in order to estimate the startup time and
shutdown time of a VM. The average startup time resulted in 29.7s, with a very low
standard deviation of 0.30s, while the average shutdown time resulted in 6.72s, with
a standard deviation of 0.45s. In both cases the time required to startup or shutdown a
VM is fairly contained, and always less than 1 minute, i.e., the time unit considered
in the simulator. Therefore, without loss of generality, the simulator considers 1 time
unit of delay for the startup of a VM, and 0 time units of delay for shutting down
a VM. All the tested algorithms were tuned according to this information. A more
detailed analysis of the conducted experiments can be found in Appendix D. These
experiments are then used to parametrize a discrete-event python-based simulator to
simulate the cloud infrastructure2. All the auto-scalers are then evaluated using the
simulator instead of the actual application deployments.

When parameterizing the auto-scalers, we followed any guidelines set by the au-
thors in their published papers or any tips we received through direct communication
with the authors. If the authors did not provide such guidelines or tips, we performed
some simple parameter sweeping and sensitivity analysis for the algorithms, and
tuned the algorithms accordingly. The sheer volume of the experiments we conducted

2The code of the simulator will be open-sourced in case this manuscript is accepted. Relevant
technical details of the simulator, however, can be found in Appendix A.
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and the length of the workloads allowed us to find logical errors in the codes we
obtained or implemented, such as not handling division by zero. Whenever we found
such a problem, we tried to fix it, leaving the original algorithm untouched.

5.4 Experimental results
In the experimental evaluation, recall that we are considering distances with respect
to a desired behavior. Therefore, in all the presented results, the lower the value of the
distance, the better the algorithm is performing. The following figures (Figures 4 to 7)
have on the x-axis the considered algorithms, and on the y-axis the value ρ̂? obtained
as a solution of the SP (16), when considering the specified distance.

The solution of the SP (16), when considering distance (4) for the different consid-
ered auto-scaling algorithms and for the three case studies is presented in Figure 4. As
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Figure 4: Results of the scenario approach with distance (4).

discussed above, this norm distance accounts for several aspects, i.e., over- and under-
provisioning, how much the assigned capacity oscillates around the ideal one, and also
for how long the auto-scaler is not behaving in an ideal way. As a result, dnorm

T gives
a general idea of the overall average performance. Adapt shows better performance
than the other algorithms in all three case studies, providing significantly lower values
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of the considered distance. We note the difference in performance between case study
1 and case study 3. Since the scale down factor for the workloads is lower for case
study 3, the workloads are much more bursty. While the performance of all algorithms
for the bursty workloads is much worse, the performance of both Reg and Hist has
relatively decreased more than the other algorithms while the performance of React
has relatively improved, i.e., the ordering of the performance of the algorithms. Reg
and Hist both depend on the regularity in the workload pattern in their predictions.
For very bursty workloads with a lot of unpredictable spikes, React performs well
since the predictions follow the spikes as they occur. Note the lighter blue columns in
the graphs are used to indicate that the value for this algorithm is quite high compared
to the other values.

However, from the service provider viewpoint, the information about the norm is
difficult to interpret, and can only be used for ranking the algorithms. Therefore, other
quantities need to be used for a more interesting and informative evaluation. Indeed,
the service provider wants to know quantitatively how close to optimal the auto-
scaling algorithm is from assigning the ideal amount of resources. This information
can be obtained through distances (6), (7), and (8). If these distances are adopted
for the solution of the SP (16), the service provider can guarantee what will be the
maximum over- and under-provisioning, with a probability of 1− ε .

Figure 5 shows the obtained results with these three distances, and for the three
case studies. For the sake of presentation, we used −ρ̂? for the under-provisioning
case, indicating that the allocated resources are below y◦(·). The computed values
can thus be used similarly to confidence interval extremes.

Analyzing the obtained results, in the first case study Adapt is able to keep the
capacity fairly close to its ideal value, with a maximum bound of 4 servers more, and
of 13 server less than actually needed. On the other hand, in the second case study,
React is the algorithm that exhibits better performance, with a maximum bound of 51
servers more, and of 9 server less than actually needed. Reg and AGILE have very
high values of instantaneous over- and under-provisioning. The third case is similar
to the first two cases except for React which again performs relatively much better
than the first case. Dashed bars represent distances that are significantly higher than
the other methodologies, and for improving the readability of the graph, were left out.
For further details on the raw numbers see Table 1. Notice that using PEAS, we can
guarantee that these bounds hold with a probability 1− ε with a confidence that is
practically 1.

Whereas maximum over- and under-provisioning is of extreme importance, there is
however one aspect that must be considered, i.e., how long an auto-scaling technique
spends in an over- or under-provisioning state. This aspect is somehow orthogonal
to the one discussed above. Indeed, there may be situations in which, in every time
instant, the auto-scaling technique is close to the ideal behavior, but this is never
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Figure 5: Estimate of the maximum Over-Provisioning (OP) and
Under-Provisioning (UP).

reached, resulting in losing revenue (in the case of under-provisioning), or wasted
energy and resources (in the case of over-provisioning). On the other hand, a technique
may have some high yet short “spikes” in the capacity allocation, but generally being
extremely close to the ideal allocation. This last case presents poor performance, for
example, with respect to distance (6), while generally behaving in a very nice way.

In order to take into account this aspect, we here consider distances (9), and (10),
that measure the average over- and under-provisioning in a time unit. Figure 6 shows
the obtained results with the different algorithms. Also in this case we considered
−ρ̂? for distance (10) analogously to Figure 5. It is possible to see from Figure 6
that Adapt is the algorithm providing better performance in both the case studies.
However, if one compares Figures 5 and 6, it is possible to see how AGILE might
have bad instantaneous performance but, when time is taken into account, AGILE
exhibits better performance in all the case studies.

It is worth noting that the majority of the algorithms tends to over-estimate the
needed capacity, rather than under-estimate it. This behavior is desirable from an
auto-scaler, since under-estimation could cause large losses for the service provider,
especially if the auto-scaler keeps under-estimating for long periods. In this respect,
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Figure 6: Worst case average Over-Provisioning (OP) and Under-Provisioning (UP)
in a time unit.

React and Adapt show the best performance in the second case study, which is also
the more realistic one.

As a last metric, we consider the normalized adapted ADI (14). Figure 7 shows the
obtained results. As already mentioned, this metric is similar to the norm (4), since it
considers the overall performance, accounting both for over- and under-provisioning,
and possible oscillations around the desired value. The only qualitative difference is
that it considers an interval of values around the real target, it penalizes only when
the auto-scaler is outside that interval. We here considered L = 0.9 and U = 1.1, thus
not penalizing auto-scalers that are committing an error below 10%. According to
this metric, Adapt is the auto-scaler with the best performance in the first two case
studies, while React is the best one in the third case study.

5.5 Discussion
The experimental results suggest that newly published algorithms do not perform
particularly better than the older ones. React, which is one of the simplest auto-
scalers possible, performs much better than many of the state-of-the-art algorithms
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Figure 7: Normalized adapted ADI for the considered auto-scaling strategies.

and outperforms all of them in the second case study. These results hold for all the
workloads similar to the ones we use. Since we considered 796 different workloads,
each over about six years, the obtained can be generalized, and PEAS allows to
quantify the confidence in the obtained performance. In particular, Adapt is the one
that is almost invariantly better than the other ones both in the first and in the third
case study. On the other hand, in the second case study, React is the auto-scaler
showing better performance in terms of under-provisioning. Since this is a relevant
aspect from the service provider viewpoint, this data would suggest that React could
be a good alternative to Adapt. A summary of the obtained results is presented in
Table 1.

While the chosen 6 controllers are not an exhaustive set of the algorithms proposed
of the state-of-the-art, they are a representative set. The framework is very flexible
in terms of what performance metrics can be integrated and the ease of use to
test an algorithm that has not been tested yet. The framework enables the research
community to compare the performance of published auto-scalers and the contribution
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of newly proposed ones in the future.3 We believe that this is of great value for testing,
quantifying and comparing the performance of auto-scalers.

Table 1: Summary of the obtained results. The best values are highlighted in bold.

Case study 1

d(·)
T Hist React Reg Adapt AGILE PLBS

norm 7.82 15.2 10.9 1.94 5.78 19.7
sup 18.2 78 16.4 14 24 49
under 17.3 20 12.2 13 24 20
over 16.2 78 16 4 17 20
underT 0.0757 0.37 0.133 0.164 0.908 1.4
overT 2.27 1.57 2.22 0.577 0.773 0.939
σT 0.436 0.64 0.555 0.149 0.186 0.445

Case study 2

d(·)
T Hist React Reg Adapt AGILE PLBS

norm 210 471 1.71×104 32.5 2.25×103 Inf
sup 76 51 5.08×103 86 2.49×103 Inf
under 76 9 4.24×103 14 2.49×103 Inf
over 62 51 5.08×103 86 514 Inf
underT 1.22 0.0356 2.59 0.181 3.13 Inf
overT 10.4 20.2 28.4 4.26 9.64 Inf
σT 0.275 0.181 0.819 0.0312 0.135 Inf

Case study 3

d(·)
T Hist React Reg Adapt AGILE PLBS

norm 4.09×103 1.02×103 4.14×103 649 1.86×103 1.38×104

sup 462 389 355 324 386 1.34×103

under 420 316 309 286 331 512
over 290 366 347 90 366 1.1×103

underT 1.98 5.5 4.02 2.99 12.5 28
overT 49.9 17.1 41.5 10.5 18.3 26.2
σT 0.863 0.211 0.752 0.253 0.41 0.694

3The code for the framework and for the simulator will be open-sourced.
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6 Conclusion and future work
In this paper we propose PEAS, a framework for the evaluation of auto-scaling strate-
gies that is able to provide probabilistic guarantees on the obtainable performance. In
particular, we consider three case studies, where we evaluate six different algorithms
and test them against 796 distinct real workload traces from projects hosted on the
Wikimedia foundations’ servers. The considered case studies show the need for a
deeper evaluation of the auto-scaling techniques proposed in the literature. The results
obtained using PEAS highlighted the problem of generalizing the conclusions of the
original published studies. As future work, we are developing a more comprehen-
sive comparative evaluation of auto-scaling strategies using PEAS including more
algorithms.

On the other hand, although PEAS was conceived for evaluating auto-scaling
strategies, the approach is quite general and can be applied to different resource
management problems, especially when stochastic quantities hinder the possibility of
providing performance guarantees for the considered methodologies. We envision
that, in the near future, the proposed framework can be successfully applied also to
a larger class of algorithms, by suitably defining application specific performance
measurements and metrics.
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APPENDIX

A Parametrization of the simulator

In order to validate and parametrize our simulator, we used C-Mart, a recently
published cloud benchmark developed by Turner et al. [61]. The benchmark is
publicly available [55]. C-Mart has been designed with cloud performance testing in
mind. It utilizes modern web technologies, such as JavaScript, CSS, AJAX, HTML5,
SQLite, MongoDB and Memcache DHT, in order to build cloud web applications.

We deployed the benchmark on part of our local 640 cores cluster to emulate a
modern two tiered web service running an online auction and shopping website. The
backend server runs MySQL while the frontend runs Tomcat application servers.
The web application hosted utilizes technologies such as HTML5, AJAX, CSS, rich
multimedia, and SQLite. The utilization of these technologies to build C-Mart is the
main reason for selecting C-Mart over other widely used benchmarks such as RUBiS
and TPC-W.

Both the frontend and backend servers are virtualized KVM images. We used
the images provided by the benchmark authors as is, but modified the workload
generator to accept the number of users from a trace file while keeping the average
number of requests per users bounded. The workload generator run as a standalone
application on a bare-metal server with 32 CPU cores and 56 GB of memory. To
better investigate the tradeoffs between the average number of requests, the average
latencies and the resources allocated to a machine, the database VM also runs on a
separate physical server in order to maintain no interference between the database VM
and the application VM. The database VM has 8 CPU cores and 10GB of memory, in
order to ensure that the database tier is not the bottleneck.

For the frontend VMs, we vary their sizes to obtain the average number of requests
a VM is able to serve per time unit. The load is mixed with 24 different pages a client
can access with a mixture of images, CSS, video, and text. In the beginning, the size
of the front-end machines was kept small, with one CPU and 1GB of memory. This
configuration corresponds to a t2.micro Amazon EC2 instance.

We ran several experiments to measure rapp (see Section 4.2.1), the average number
of requests one VM is capable of serving in an acceptable response time, i.e., below
500ms. This number changed based on the workload mix. For some experiments it
was as high as 100 to 150 requests per second per VM, while for other experiments the
number was as low as 5 to 10 requests per second per VM. These numbers conform
with multiple measurements from online deployed services, for example, Justin.tv
backend servers can handle 10 to 20 requests per second per VM on average [30].
Similar numbers were also obtained for the Play framework on EC2 [54].
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We ran similar experiments using the MediaWiki server. In these experiments we
built a workload generator which generate GET requests for different pages on the
Spanish Wikipedia. Since the pages vary in size, we decided to run the experiment for
the worst case scenario when all requests are directed only to the largest page on the
Spanish Wikipedia, “Alsacia en 1789”. We then stress the VMs to find the maximum
number of requests that a VM can handle with an end-to-end response time – between
a workload generator running on a machine in Lund and the VMs located in Umeå
– of 4 seconds or less for the full page to load. The average number of requests per
second varied between 20 and 25 requests per seconds in different experiments for a
VM with 1 core and 2 GB of RAM. We thus decided to consider the average service
rate of a simulated server to follow a Poisson process with an average of rapp = 22
requests per time unit per VM. In the simulations, the number of VMs provisioned
for a service is then computed using Equation (3).
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Table 2: Description of some of the workloads used for the evaluation.

Name key Language Project
a ar.q Arabic Wikiquote
b de German Wikipedia
c en English Wikipedia
d es.mw Spanish Wikipedia Mobile
e fr.d French Wiktionary
f it Italian Wikipedia
g jp Japanese Wikipedia
h nl.q Dutch Wikiquote
i pl Polish Wikipedia
j pt.d Portuguese Wictionary
k ru.mw Russian Wikipedia Mobile
l sv.d Swedish Wiktionary

m uz Uzbek Wikipedia
n zh Chinese Wikipedia
o zu.b Zulu Wikibooks

B Workload examples
Figure 8 shows some examples of workload streams from the ones used for the
evaluation. The workloads are very diverse in nature, in evolution, in burstiness, and
in magnitude. Almost all of the traces in the dataset show some form of diurnal
pattern where the number of requests increase during some hours of the day. Since
these workloads contain very regional workloads, e.g., the requests on the Vietnamese
Wikipedia, the workloads also differ on when these diurnal patterns occur. The
diversity in the workloads shows the importance of evaluating the performance of
an auto-scaler using many different workloads. It also strengthen our argument for
an evaluation framework that can provide probabilistic guarantees on the evaluation
number. Table 2 gives more information about the workloads shown in Figure 8.
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C Correlation analysis of the workloads
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Figure 9: Distribution of the Pearson correlation coefficients (on the left), and of the
p-values (on the right) for the correlation analysis.

To provide a better understanding of how the workload streams used in this study
are related, we performed a correlation analysis on the 796 workload streams used. We
calculated the Pearson correlation coefficient between all possible pairs of workload
streams, e.g., (jp, pl), (de, en) , (de, es) and so on. Figure 10 shows how the correlation
coefficients, and the corresponding p-values are distributed. Each of the figures shows
the distribution of correlations as a histogram and on top of the histogram a box-
plot representing the spread of the obtained values. The figures indicate that the
correlation coefficients are mostly concentrated close to 0, which is highlighted
also by the box-plots. The p-values confirm that there is not statistical evidence
of correlation between the different workloads, since they are mostly concentrated
close to zero: The 75th percentile is 0.034. When analyzing the correlations more in
detail, there are surprising results. For example, The load on the German Wikipedia
is highly correlated with the load on the Spanish Wikipedia (Correlation coefficient
greater than 0.7) while both are not correlated with almost any other load on any
European language Wikipedia such as the load on the French Wikipedia, the load on
the Italian Wikipeda, the load on the Norwegian Wikipedia, the load on the Portuguese
Wikipedia, or the load on the Swedish Wikipedia.4

4The whole dataset related to the correlation analysis of the workloads will be made publicly available,
in case this manuscript is accepted.
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D Analysis of startup time and shutdown time

To evaluate the statistical characteristics of the startup and shutdown time of VMs,
we have made an experiment where we installed MediaWiki [8] on an Ubuntu Linux
server VM. The VM was assigned 4 cores and 10 GB of RAM on an HP Elitedesk
G1 SFF machine with a quad-core hyper-threaded Intel Core I7 processor. The
VM is controlled using Vagrant [52] running on Virtualbox. The VM is started and
stopped 200 times and the VM startup and shutdown times are recorded from the
time the startup command is issued till the MediaWiki application is responsive. To
make the experiments realistic, the physical machine hosting the MediaWiki VM has
been injected with varying background load. The frequency of the measured startup
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Figure 10: Histograms for startup and shutdown time.

and shutdown times are shown in Figure 10. The average and standard deviation
for the measured startup times are 29.712s, and 0.310s respectively. The average
and standard deviation for the measured shutdown times are 6.721s, and 0.455s
respectively. By inspecting Figure 10, neither the startup nor the shutdown times
appear to be normally distributed. In both cases performing a normality test rejected
the hypothesis that the data is normally distributed. Figure 11 shows the empirical
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Cumulative Distribution Function (CDF) and the standard normal CDF for the two
quantities, indicating also in the top right corner the p-value of the test. Note that
the x axis indicates the normalized time, i.e., the average have been subtracted to the
data, and then divided by the standard deviation. We tried to fit the data to four other
distributions, namely, power law, stretched exponential, exponential, and log-normal,
but none of the tested probability distributions is able to describe these data. For
the purpose of this work, the identification of the right probabilistic distribution is
not relevant, since both the startup and shutdown times are below the time scale in
which the auto-scaler takes its decisions. However, a probabilistic characterization of
the startup and shutdown times deserves deeper investigation, which is left to future
work.
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Figure 11: Empirical cumulative distribution functions versus standard normal
distribution.
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Abstract
Autoscaling algorithms for elastic cloud infrastructures dynamically change the
amount of resources allocated to a service according to the current and predicted
future load. Since there are no perfect predictors, no single autoscaling algorithm is
suitable for accurate predictions of all workloads. To improve the quality of workload
predictions and increase the Quality-of-Service (QoS) guarantees of a cloud service,
multiple autoscalers suitable for different workload classes need to be used. In this
work, we introduce WAC, a Workload Analysis and Classification tool that assigns
workloads to the most suitable elasticity autoscaler out of a set of pre-deployed
autoscalers. The workload assignment is based on the workload characteristics and a
set of user-defined Business-Level-Objectives (BLO). We describe the tool design and
its main components. We implement WAC and evaluate its precision using various
workloads, BLO combinations, and state-of-the-art autoscalers. Our experiments
show that, when the classifier is tuned carefully, WAC assigns between 87% and
98.3% of the workloads to the most suitable elasticity autoscaler.

1 Introduction
Elasticity can be defined as the ability of a cloud infrastructure to dynamically change
the amount of resources allocated to a running application [6]. Resources should be
allocated according to the changing load in order to preserve QoS requirements at a
reduced cost. Typically, a variety of different applications with different workloads
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Figure 1: Different workloads have different burstiness.

and different user behaviors run in a cloud [1]. Some workloads have repetitive
patterns, e.g., the Wikipedia workload shown in Figure 1(a) has diurnal patterns.
Some uncorrelated spikes and bursts can occur in a workload due to an unusual
event [4, 34], e.g., Figure 1(b) shows the load on Michael Jackson’s Wikipedia page
before and after his death with two visible significant spikes that occurred after his
deaths and during his memorial service. On the other hand, some workloads have
some weak patterns or no patterns at all, e.g., the workload shown in Figure 1(c)
for tasks submitted to a Google cluster [53]. Most often, the characteristics of the
workloads of new applications are unknown in advance.

There are tradeoffs between using different auto-scalers in terms of over-provisioning,
under-provisioning, the oscillations in resource allocation and the time and resources
required to compute the required capacity. To understand these tradeoffs, we imple-
mented four autoscalers proposed in the literature. Figure 2 shows the output of the
four implemented controllers, [6] in blue, [15] in red, [26] in green, and [51] in cyan,
when used to predict the number of servers required to serve the load on the English
Wikipedia pages between October 19th, 2010 and October 28th, 2010. The figure also
shows the theoretical optimal number of servers required to serve such a workload
(shown as the black line).1 During this period, the load was unstable with huge bursty
period. The first three peaks of the load are part of the bursty period. The rest is when
the load started to settle down. One can see that during this transient period, the four
auto-scalers show very different behavior and tradeoffs.

Since there are no perfect controllers [38], designing an autoscaler that produces
accurate predictions for all possible datacenter workloads and applications is infeasi-
ble [7]. Elasticity autoscalers’ performance will always vary with different workloads
and changing system dynamics. Thus, workload characterization is an important first
step towards choosing the most appropriate elasticity autoscaler for a workload.

1To calculate the theoretical desired capacity we used an approach similar to the approach described
in Agile [21] to calculate the number of required servers to serve the requests in the workload
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Figure 3: WAC: A Workload Analysis and Classification Tool.

An autoscaler can cause instability and extreme oscillations in resource allocations
if the system dynamics change leading to wrong capacity provisioning decisions [38].
There is a cost if an autoscaler adds more resources to a service than required by the
actual load as these extra resources are underutilized and wasted. Similarly, if the
resources provisioned for a service are not sufficient for its workload, the service
performance deteriorates and parts of the workload may get dropped. The service can
become unresponsive or crash.

This work presents WAC, a Workload Analysis and Classification tool for cloud
infrastructures. The tool analyzes the history of the running/new workloads and
extracts some characteristics. Workloads are then classified and assigned to the most
suitable available elasticity autoscaler based on the extracted characteristics, reducing
the risk of bad predictions and improving the provided QoS. Figure 3 shows the two
main components of WAC; the analyzer and the classifier. The analyzer extracts and
quantifies two characteristics from the workload traces, periodicity and burstiness.
Periodicity describes the similarity between the value of a workload at any point in
time to the workload’s history. Burstiness measures load spikes in the system, when a
running service suddenly experiences huge increases in the number of requests. The
classifier uses these two characteristics and a set of user-defined BLOs to classify the
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workloads and assigns each workload to a suitable elasticity autoscaler. We discuss
our choice of the two properties and the methods used to quantify them in more
details in Section 2.

Classification is a form of supervised learning used to predict the class of an input
data object based on a group of features [18]. A data object can be anything from
a network request to a data stream. For WAC, the data object is a workload, the
classification features are the workload’s periodicity, burstiness and the predefined
BLOs. The classes are the different elasticity autoscalers. Supervised learning algo-
rithms require training using labeled training data, i.e., objects with known classes.
The training data should be sufficient to enable the classifier to generalize to future
inputs that arrive after training, i.e., new applications and workloads which will start
running on the infrastructure in the future. To construct our training set, we collect
and analyze three sets of workloads. The first set contains 14 real workloads from a
diverse set of real applications. The second set consists of almost six years of work-
load traces from Wikimedia foundation with 798 (independent) workload streams for
different Wikimedia projects in different languages. For the third set, we generate 55
synthetic workloads that have different characteristics compared to the real workloads.
Workload analysis and generation are discussed in Section 3 and Appendix B.

Each class maps to an available elasticity autoscaler implemented and provided
by the cloud provider. This enables a cloud provider or a cloud user to choose the
right autoscaler for a certain workload reducing the aggregate prediction errors and
allowing an improvement of the QoS. Many designs for elasticity autoscalers are
suggested in the literature using different approaches such as control theory [36],
neural networks [28], second order regression [26], histograms [51] and time-series
models [7, 22]. Section 4 discusses our selected and implemented autoscalers to use
with WAC.

Plenty of classifiers have been suggested in the machine learning literature, out of
these Support Vector Machines (SVMs) and k-Nearest-Neighbors (kNN) are very
popular [18]. kNN is chosen as the WAC classifier algorithm. We discuss our choice
of kNN over SVMs, the training of the classifier, kNN accuracy and discuss our
results in Section 5.

2 Workload Characterization
Techniques

2.1 Why Periodicity and Burstiness?
Various characteristics can be used to characterize cloud workloads [17]. With respect
to elasticity, the main characteristics are those that affect predictions of the future
values of a workload accurately in order to provision enough resources to maintain
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acceptable QoS. The predictability of a workload is dependent on how much its
future is correlated with its past. For both clusters and grids, Li [35] shows that
statistical measures based on inter-arrivals are of limited usefulness for finding such
correlations and that count based measures, e.g. arrival rates, should be used. He
identifies three main classes for workloads which correspond to workloads with
periodicity, workloads with long-range dependence but not necessarily periodic, and
non-periodic workloads. These findings are not special for grids since most workload
predictors base predictions on either the short-term or the long-term dependence of
the load.

Another aspect that affects the quality of predictions for a workload is the burstiness
of the workload. A burst can cause severe system performance issues [11]. From a
workload prediction point of view, some of these events are completely unpredictable
with respect to both their time of occurrence and their magnitude, e.g., the death of
Michael Jackson. Such events require a robust autoscaler that can handle substantial
changes in the system dynamics. Other spikes are predictable with respect to their
time of occurrence but not in magnitude, e.g, during the FIFA 1998 World Cup, spikes
occurred around the times the games were played.

While there might be other useful features for workload classification, We choose
periodicity and burstiness as the two main characteristics to classify a workload
as they can be calculated for any workload. From our experience, they both have
the ability to capture most of the required characteristics for designing an elasticity
autoscaler and are thus enough to build a proof-of-concept prototype of the tool
without having to deal with the curse of dimensionality [23].

2.2 Measuring Periodicity
A common method to measure periodicity is to use autocorrelation. Autocorrelation is
the cross-correlation of a signal with a time-shifted version of itself [19]. A perfectly
random signal has an autocorrelation of 0 at all time lags. An autocorrelation of 1
at a time lag of τ means that the signal strength is equal at this time lag while an
autocorrelation near −1 means that the signal has an opposite direction of influence.
The autocorrelation function (ACF) describes the autocorrelation as a function of τ .
We use the average ACF as a measure of workload periodicity. While there are other
methods for measuring periodicity such as the Fast-Fourier Transform (FFT), we
chose the ACF because it is a time-domain method. FFT on the other hand converts
the signal to the frequency domain and thus lose all time related information.

2.3 Measuring Burstiness
There are many proposed methods to measure burstiness, none of them prevalent
though [5, 37]. We propose the use of Sample Entropy (SampEn) as a measure of
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burstiness [46]. Sample Entropy is defined as “the negative natural logarithm of the
(empirical) conditional probability that sequences of length m similar point-wise
within a tolerance r are also similar at the next point”. If SampEn is equal to 0 then
the workload has no bursts. The higher the value for SampEn, the more bursty the
workload is. It has been used successfully to classify abnormal physiological signals
for over a decade [46]. There are two main advantages of SampEn over other methods
in the literature, i) SampEn can operate on short data sequences and, ii) it takes into
account gradual workload increases and periodic bursts.

One main limitation of using SampEn is that it is computationally expensive to
calculate both CPU-wise and memory-wise. The computational complexity (in both
time and memory) of SampEn is O(n2) where n is the number of points in the
trace. In addition, workload characteristics can change during operation. If workload
burstiness is characterized for the full history of the workload, recent changes in the
workload dynamics become harder to characterize. To overcome these limitations,
we have modified the original SampEn algorithm to make it better suited for cloud
workloads [5]. In the modified algorithm, AvgSampEn, the trace is divided into
smaller equal sub-traces each with a length of one day. SampEn is then calculated
for each sub-trace. A moving average is then calculated for the obtained values for
the subtraces, giving higher weight to more recent SampEn values. By reducing n,
the speed of the algorithm is significantly improved. 2 Appendix A discusses the
implementation of the modified algorithm, AvgSampEn.

3 Workloads

Typically, cloud providers such as Amazon EC2 host many services with different
workloads. The hosted services use anything from a couple of virtual machines to
a few thousand machines [1]. With the exception of a recently released workload
trace from a production cluster at Google [53], no cloud provider provides publicly
available cloud workloads [11]. On the other hand, there are a few publicly available
workloads for various types of Internet applications. We use some of these workloads
in addition to the Google cluster workload. We believe that these workloads are
representative for many of the workloads running on typical clouds since they include
major web sites and core Internet technologies.

Recently, cloud providers began to host high performance computing applica-
tions [44]. Many similar workloads are publicly available of which we use the DAS-2
system workload, the Grid-5000 workload, NorduGrid traces, SHARCNET traces,
Large hadron collider Computing Grid (LCG) traces and the AuverGrid traces, avail-

2We have also shown in [5] that the modified version of SampEn, AvgSampEn, is stable over a
wide choice of parameters. Due to space constraints, we omit the more detailed explanation about
AvgSampEn since it is out of our current scope. The interested reader is kindly referred to [5].
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able from the grid workload archive [25]. Caching services are another type of
applications running on the cloud [1]. We use traces from the IRCache [27] project as
representative workloads for this class of applications. The IRCache traces maintain
traces from different caching service sites. We only use traces from 4 sites. In addition,
we use a one month trace of PubMed server usage [39], traces from the FIFA 1998
World Cup [8], and traces from Wikipedia on a minutes time scale [4].

In addition to the above workloads, the Wikimedia foundation [10] – which hosts
Wikipedia, the sixth most popular website on the Internet [3] – provides publicly
available workload traces that logs the per page aggregate number of requests per hour
for all hosted projects [2]. These projects include, for example, Wikipedia, Wikibooks
and Wikitionary in various languages. This workload is interesting since the load can
be separated into independent streams with each stream representing a project and
a language, e.g., one stream can have the requests to the English Wikipedia pages,
another can be for the Swedish Wikitionary project, and a third can be for the French
Wikibooks project, and so on. Many of these project streams can be even divided
further into, for example, load from Mobile users and load from non-mobile. We use
the Wikimedia hourly traces logged between the 9th of December, 2007 and the 16th

of October, 2013 and extract 798 workload streams to be used to validate our tool.
While there are more workload streams that we extracted, we choose workloads with
larger dynamics since many of the extracted streams have very few requests, e.g., the
Zulu language Wikipedia. We have performed a correlation analysis on the selected
workloads, and we found that they are practically not correlated.

In addition to the real workloads, we have generated 55 synthetic workloads using
a mixture of sinusoidal functions and probability distributions. Appendix B discusses
some of the details of the the workload generation process used.

3.1 Periodicity of the Real Workloads

The coefficient of determination (R2) is defined as the squared value of the correlation
coefficient at a certain lag. It measures the proportion of variance in a dependent
variable that can be explained by the independent variable, i.e., the dependence
of the future data on the historical data of the workload [47]. Figure 4 shows the
correlograms of some of the analyzed workloads. Figure 4(a) shows high ACF for
short lags in the PubMed traces meaning that the value of the workload depends on
its value in the near past. Figures 4(c), 4(d), 4(e) and 4(b) show high autocorrelation
coefficients meaning that their corresponding workloads have strong periodicity.
Figure 4(f) shows a workload that is almost random. The second column in Table 1
describes the ACFs for some of the workloads qualitatively. To obtain a single
number representing the periodicity of the workload instead of a vector of correlation
coefficients that can bias the classifier, we use the average correlation coefficients per
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(a) IRCache service runnings at Boulder,
Colorado (Bo).
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(b) PubMed access traces.
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(c) IRCache service running at San Diego,
California (SD).
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(d) IRCache service running at Urbana-
Champaign, Illinois (UC).
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(e) The FIFA 1998 world cup server work-
load.
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(f) A workload from a Google cluster.

Figure 4: Correlograms of non-grid workloads.
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Table 1: Workload analysis results.

Workload ACF SampEn
Bo-IRCache Very low 0.0
SV-IRCache Very low 0.0017
SD-IRCache High for small lags. Medium for large lags 1.062
UC-IRCache High for small lags. Medium for large lags 0.0

DAS Random signal 0.0
Grid5000 Random signal 236.16

LCG Random signal 134.0
LPC Random signal 2.827

NorduGrid Random signal 8.43
SharcNet Random signal 2.803

FIFA High for small lags. Medium for large lags 0.0
Google Very low 235.70
PubMed High 0.0

Wikipedia High 0.0014

workload for classification. This approach is similar to the approach taken by Rabiner
and Wilpon [42].

3.2 Burstiness of the Real Workloads

There are two parameters needed to calculate AvgSampEn. The first parameter is the
pattern length m, which is the size of the window in which the algorithm searches for
repetitive bursty patterns. The second parameter is the deviation tolerance r which is
the maximum increase in load between two consecutive time units before considering
this increase as a burst. The pattern length m is set to 1 hour. The deviation tolerance
r is set to 30% of the 70th percentile of the workload values or to double the average
number of requests served by a server per unit time for extremely low traffic, since
30% of the maximum workload can be less than the load handled by one server. The
third column in Table 1 shows the average SampEn values computed for the different
workloads. From the table we can see that workloads vary greatly in the degree of
burstiness they have. With the exception of the DAS workload, workloads with ACFs
around zero have significant burstiness as SampEn is greater than 1 for all of them,
while the ones with high or medium ACFs do not show significant burstiness.
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4 On the performance of different autoscalers

4.1 Chosen autoscalers
Since different autoscalers exhibit varying performance with different workloads, a
number of autoscalers have to be selected for implementation. These autoscalers are
the classes to which WAC assigns the workloads. For this work, we choose autoscalers
that can be used on a wide range of scenarios with no human tuning. We implement
four state-of-the-art autoscalers that fall in this criteria. In addition, we acquire the
source codes of two other state-of-the-art autoscalers from their designer. The four
implemented autoscalers are:

1. The first autoscaler implemented is the step controller as described by Chieu et.
al. [15] (hereafter called React). It is a reactive autoscaler where the capacity
provisioned follows the load changes when they happen with no predictions of
future capacity. If the load is constant, resources are kept constant. If the load
increases by ∆Load, the autoscaler reacts to the load increase by provisioning
S servers that can handle this load increase. Similarly if the load decreases by
∆Load which is less than a certain threshold, the autoscaler reacts by removing
the extra machines. As the autoscaler computes the required capacity every time
the load changes, it never allocates more resources than required as resources are
only allocated when the load increases and are removed once the load decreases
below a certain threshold.

2. The second implemented autoscaler is a histogram based controller as described
by Urgaonkar et. al. [51] (henceforth called Hist). This autoscaler builds
histograms for the workload history observed within a defined time interval (e.g.
between 9:00 and 10:00 on Monday). The autoscaler estimates the peak demand
of the workload to occur within the defined time interval before that interval
begins, as follows. For each period there is a corresponding histogram that can
be used to find the probability distribution of the arrival rate for that period.
The autoscaler can predict the capacity required based on a higher percentile of
the distribution tail, e.g., the 99th percentile. This design allows the autoscaler
to capture seasonal patterns such as diurnal or weekly patterns. The period
length chosen for the histogram is one hour. The autoscaler has a correction
mechanism in case the provisioned capacity is less than the actual required
capacity. When the service load becomes more than the provisioned capacity
can handle, the correction mechanism provisions more resources to the service.

3. The third implemented autoscaler is the regression controller (hereafter called
Reg) described by Iqbal et. al. [26]. The autoscaler has a reactive component for
scale-up decisions and a predictive component for scale-down decisions. When
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the capacity is less than the load, a scale up decision is taken and new VMs are
added to the service in a way similar to React. For scale down, the predictive
component uses second order regression to predict the future workload. The
regression model is recomputed using the complete history of the workload
when a new measurement is available. If the current load is less than the
provisioned capacity, a scale down decision is taken using the regression model.

4. The last implemented autoscaler is an adaptive hybrid controller (hereafter
called Adapt) described in our previous work [6] that uses the workload slope
to predict the future workload. The autoscaler has two components, a reactive
component similar to React and a predictive component that predicts the future
workload from the rate of change of the workload. The slope calculations
are adaptive depending on the rate of change of the workload. If the load is
increasing or decreasing rapidly and thus the rate of change is high, then the
rate at which the autoscaler makes decisions is increased in order to adapt to
rapid workload changes.

The two autoscalers for which we got the source codes are:

1. AGILE, proposed by Nguyen et al. [40] a wavelet-based algorithm to provide a
medium-term resource demand prediction with a lead time of about 2 minutes,
a time that allows AGILE to possibly start up new application server instances
before performance falls short. We obtained the original source code from the
authors for our experiments.

2. ConPaaS, proposed by Fernandez et al. [20]. The algorithm scales a web ap-
plication in response to changes in throughput at fixed intervals of 10 minutes.
The predictor forecasts the future service demand using standard time-series
analysis techniques, e.g., Linear Regression, Auto Regressive Moving Average
(ARMA), etc. The code for this auto-scaler is open-sourced. We downloaded
the authors’ original implementation.

4.2 How to Compare Elasticity autoscalers’ Performance?
Many proposed state-of-the-art auto-scalers use the desired response time or service
latency as a reference signal to a controller. A proposed approach then works if it
meets the experiments’ required response times, mostly set by the authors based on
some QoS studies. Bodik [11] argues that this is not the correct reference an autoscaler
should use. Even for fixed workloads, response time is noisy and non-linear with very
high variance [12, 52]. This nonlinear relationship between resources provisioned
and response time has been observed in large-scale distributed systems [16]. Latency
does not also show under-provisioning and over-provisioning levels which is even
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more important to compare the performance of different controllers. Two controllers
might be achieving the required latency but one of them uses on average one tenth of
the resources used by the other controller. Similarly, one controller can be dropping,
on average, fewer requests than another one.

We add to Bodik’s analysis that different applications have different processing
requirements and a cloud infrastructure provider should not make any assumptions
on how the resources are used, e.g., serving a static webpage hosted on the cloud
is different from sorting a terabyte of data. In addition, any change in the workload
mix changes the achievable latency [49]. The cloud paradigm is centered around
resources on demand, so the measure of performance should be resource usage, e.g.,
average CPU and memory consumption or network utilization, or a metric that can be
mapped to resource usage, which is not the case for latency. These metrics enable the
provider to be as generic as possible when specifying the QoS in the Service Level
Agreements (SLAs) with the customers.

To compare the performance of the autoscalers with the different workloads, we
use the following cost metrics:

• Average Overprovisioning (OP) is the average number of overprovisioned VMs
by the autoscaler per unit time. It is calculated by summing the number of over-
provisioned VMs over time (OP) and dividing the number by the total time for
which the autoscaler was running. A machine is considered overprovisioned if it
is of no use for the next 10 minutes. This time window reduces the penalty if an
algorithm predicts the future workload well in advance.

• Average Underprovisioning (UP) is the average number of underprovisioned
VMs by the autoscaler per unit time. It is calculated by summing the number
of underprovisioned VMs over time (UP) and dividing the number by the total
time for which the autoscaler was running. Underprovisioning means that the
autoscaler failed to provision the resources required to serve all requests on time.

• Average number of Oscillations (O) which is the average number of VMs started or
shut-down (O) per unit time. The reason to consider (O) as an important parameter
is the cost of starting/stopping a VM. From our experience, starting a machine
(physical or virtual) takes from one minute up to several minutes depending on
the application running (almost 20 minutes for an ERP application server). This
time does not include the time required to transfer the images and any data needed
but is rather the time for (virtual) machine boot, network setup and application
initiation. Similar time may be required when a machine is shutdown for workload
migration and load balancer reconfiguration.

Table 2 shows the cost metrics’ values for the French Wikipedia workload using the
six autoscalers with the average number of servers each autoscaler will deploy. These
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Table 2: The difference between the best performing autoscaler and the worst performing
autoscaler can be quite large. For the French Wikipedia workload, when looking at UP, the

worst performing autoscaler is 28 folds worse than the best performing one.

OP UP O
React 0.8 -0.53 0.04
Reg 1.26 -0.56 0.03

Adapt 0.7 -0.18 0.047
Hist 1.08 -0.28 0.04

AGILE 1.4 -3.5 0.065
ConPaaS 1.07 -5.1 0.038

numbers are obtained for a server system similar to the system described by Gandhi
et al. [21]. The table shows clearly that the best performing server with respect to one
metric can be multiple times better than the worst performing one. A service provider
who deploys only one autoscaler can thus be doing orders of magnitude worse than
others with a different autoscaler for a given workload. Since different applications
have different requirements, application owners will give different priorities to the
three parameters. For example, a traditional database system might be affected more
by O since each change in the number of machines results in a heavy penalty in
order to preserve consistency. Other applications might be affected more by UP.
Therefore, when comparing the autoscalers’ performance, the values of OP, UP and
O are weighted by multiplying them by weighting factors α , β and γ respectively.
In real deployments, the weights should be set based on the BLOs [32] and the QoS
requirements by application owner.

We refer to the set of implemented autoscalers as CI . To choose the best performing
autoscaler for a given workload and a given set of weights, the cost metrics have to be
calculated for each implemented autoscaler X . The total cost for using that autoscaler
is,

CostX = αOP+βUP+ γO. (1)

The best autoscaler for the given setup CZ is thus,

CZ = {χ|χ ∈CI & Costχ ≤CostY ∀ Y ∈CI}. (2)

4.3 Performance of the autoscalers
The WAC classes are the implemented autoscalers described in Section 4. In order
to label each workload in the training set, we need to know the best performing
autoscaler for that workload. Since it is infeasible to run the experiments using more
than 800 workloads on a real testbed, we have built a discrete event simulator using
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Python, numpy and scipy [41] to simulate a cloud provider and test the autoscalers’
performance with the various workloads. The simulator was parameterized using real
experiments on our local cluster. In the real experiments, we replicate the Spanish
Wikipedia in a VM on our local testbed. In addition, we ran experiments using C-Mart,
a Cloud benchmark that has been developed recently [50].3

We divide the workloads described earlier into four sets, the first one is the set of
real workloads with fine grained monitoring, the second one is the set of generated
workloads, the third set is a combination of the previous two sets and the fourth
one is the set with the 798 Wikimedia streams. In order to test a wide set of BLOs
and scenarios in our experiments, we set the parameters in Equation 1 such that α
varies between 0 to 1 (with a step of 0.01) for the real workloads with fine grained
monitoring, 0 to 0.5 (with a step of 0.01) for the generated workloads, and 0 to 10
(with a step of 0.5) for the Wikimedia projects workloads. β varies between 1 to
10 for the real workloads with fine grained monitoring, 1 to 20 for the generated
workloads and 1 to 5 for the Wikimedia streams, all with a step of 1. γ varies between
0 to 10 for the real workloads with fine grained monitoring, 0 to 20 for the generated
workloads (both with a step of 0.5) and 0 to 5 for the Wikimedia stream.

Note that, we choose larger weights for β and γ for the first two workload sets (and
their combination) since typically UP and O are more costly for most applications,
the reason why almost all services were in the past run with static over-provisioning
leading to low utilization on most datacenters. In order to show the wide applicability
of the tool and that it is independent on the cost function, the fourth data set has cases
with higher weights for α than the other two parameters.

The combinations of these values with the ACFs and the SampEn of the different
workloads form the different scenarios with which we test WAC. For the real work-
loads with fine grained monitoring, there are in total 280,000 scenarios, while for
the generated workloads there are in total 2,090,000 scenarios. For the Wikimedia
streams there are 639200 scenarios in total.

Each combination is labeled with the best performing autoscaler. The second and
third columns in Table 3 show the percentages of scenarios in which one of the four
autoscaler we implemented outperforms the other three autoscalers for the real work-
loads with fine granularity of monitoring data and for the generated workloads. From
the table we see that, Reg and Adapt outperform the other autoscalers considerably
for both the real and the synthetic traces. React is the worst performing autoscaler for
both workload types. Note that we have decided not to include the results for AGILE
and ConPaaS for the first two sets in order to test the tool under different cases and
with different autoscalers deployed. Similarly, the last column in Table 3 shows the
percentages of scenarios in which one of five autoscalers outperforms the other four.

3Due to lack of space, we will not discuss the simulator here. The simulator source code along with
all the tests will be open sourced.
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Table 3: Percentage of scenarios in which every autoscaler outperforms the other autoscalers
for the different workload sets.

autoscaler Real work-
loads (fine
grained)

Generated
workloads

Wikimedia

React 6.55% 0.10% NA
Reg 33.72% 61.33% 19.2%
Adapt 47.17% 34.30% 47%
Hist 12.56% 4.27% 29.5%
AGILE NA NA 1%
ConPaaS NA NA 3%

We attribute the performance of the autoscalers to the way they are designed. Adapt
is designed with the aim of reducing UP and O at the cost of higher OP. Hist is
designed for workloads that have periodical patterns and low burstiness. Hist does not
give any importance to OP as scale down mechanisms are absent in case the autoscaler
provisions extra resources. React has no predictive component. It provisions resources
after they are needed. This reduces the amount of OP at the cost of increased UP and
O. The modified Reg uses a second order regressor which is suitable for capturing
patterns in the workload. Reg scales down resources faster than Hist, thus reducing
OP, but slower than React. Due to lack of space, we do not include deeper analysis
or quantify OP, UP and O values for different scenarios.

5 Workload Classification

5.1 Classifiers
The kNN and the SVM classifiers are among the most widely used classifiers [18,48].
SVM is a supervised learning method introduced by Boser et. al. [13]. It constructs
separating hyperplanes to separate the training data so that the distance between
the constructed hyperplanes and any training point is maximized. Training an SVM
classifier and tuning its different parameters is complex [9]. We have tried using an
SVM classifier but the training was very time consuming. We choose to use kNN
instead since it is less complex, fast to train and fast to calculate an assignment once
trained.

The kNN algorithm is quite simple. A training set is used to train the classifier. The
training set is a set of samples for which the correct classification in known. When
a new unknown sample arrives, a majority vote of its K-nearest neighbors is taken.
The new sample is then assigned to the class with a majority vote. K is a configurable
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parameter. The distance to a neighbor is usually the Euclidean distance between the
sample and that point. There are two versions of the kNN algorithm. One version
gives more weights to votes of closer neighbors while the second version gives equal
weights to all k neighbors [18].

5.2 Experiment Design
In the experiments, we consider the case when only two autoscalers deployed, the
case when only two autoscalers, Adapt and Reg, are deployed, and the case when
five autoscalers are deployed. Adapt and Reg perform better than Hist and React
for more than 80% of the workload scenarios considered when looking at the fine
grained real workloads set, the generated workloads set and the combination of these
two sets. For each experiment, each scenario in the training set is labeled with the
top performing autoscaler. The scenarios described in Section 4 are randomly split
into a training set and a test set. In some experiments, the training set contains 75%
of all the scenarios (for both training and cross-validation) while the test set has the
remaining 25%. In other experiments 90% of the scenarios are used as a training set
(for both training and cross-validation), while the remaining 10% is used for testing.
This division is plausible since our data set is large enough [18]. We note that for both
divisions, the accuracy of prediction results are very close. Both the training set and
the test set have no single class dominating or skewing the training set.

Both sets are labeled with the right answer for each scenario. When the classifier
assigns a workload to an elasticity autoscaler, the assignment is compared to the label.
If the assignment matches the label, then the classification is correct. The accuracy of
the classifier is calculated by calculating the ratio of correct classifications of the test
set to the total size of the test set. We test the kNN classifier using both its versions,
the one that gives equal weights to all K neighbors and the one that gives more weight
to closer neighbors. For each version, we repeat the experiment for increasing K and
calculate the classification accuracy.

5.3 Results
5.3.1 Classification of Real Workloads with fine grained monitoring

Figure 5(a) shows the classification accuracy of the classifier when there are only
two classes, Adapt and Reg. The x axis of the figure is the value of K. The y axis of
the figure is the accuracy of classification. The black squares shows the accuracy of
the classifier with changing K when all k neighbors’ votes are given equal weights.
Significant oscillations occur in the accuracy as K increases until K is around 50.
When closer neighbors’ votes are given higher weight, oscillations are much smaller
as the green triangles show where the accuracy stabilizes at around 0.92 when K is
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equal to 25. The maximum accuracy achieved is 0.983 using equal weights for all
neighbors for K = 5.

Figure 5(b) shows the classification accuracy of the classifier when there are four
classes, Adapt, React, Histo and Reg, against K when K is varied from 1 to 200.
The figure shows less oscillations compared to Figure 5(a). The maximum accuracy
achieved is 0.91 using equal weights for all neighbors for K = 4. The accuracy of
classification is reduced by more than 7% when more autoscalers are available. This
might be due to not having enough training data in the training set for the classifier to
be able to generalize for four classes. An accuracy of 91% is still considered good. For
the service provider it means that instead of having just one autoscaler, the provider
can have 4 autoscalers with only 9% of the workloads assigned in a non-optimal way.
Since more training data, means more experience, the provider can further decrease
the percentage of workloads assigned sup-optimally by constantly adding feedback
to the classifier by adding more training points based on new workload behaviors
observed. Figures 5(a) and 5(b) show that accuracy decreases with increasing K
when all K neighbors’ votes are given equal weights. When neighbors’ votes are
weighted such that closer neighbors have a higher weight, the accuracy stabilizes as
K increases.

5.3.2 Classification of Generated Workloads

We repeat the tests described above using only the generated workloads. Figure 6(a)
shows the classification accuracy of the classifier when there are only two classes,
Adapt and Reg, against K. The maximum accuracy achieved is 0.92 using equal
weights for all neighbors for K = 3. Figure 6(b) shows the classification accuracy of
the classifier when there are four classes, Adapt, React, Histo and Reg, against K.
The maximum accuracy achieved is 0.94 using equal weights for all neighbors for
K = 3. Comparing Figure 5 to Figure 6, oscillations in the classifier’s accuracy with
increasing K is much lower when classifying synthetic workloads compared to when
classifying real workloads.

5.3.3 Classification of Mixed Workloads

In our last experiment, we combine the scenarios using real and generated workloads
in a single set. This set is again randomly shuffled and divided into a training set and
a test set. Figure 7(a) shows the classification accuracy of the classifier when there
are only two classes, Adapt and Reg, against K. The maximum accuracy achieved
is 0.92 using any of the two versions of the kNN for K = 5. Figure 7(b) shows the
classification accuracy of the classifier when there are four classes, Adapt, React,
Histo and Reg, against K. The maximum accuracy achieved is 0.92 using equal
weights for all neighbors for K = 3. We note that the oscillations in the classifier’s
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(a) Effect of changing K on the classifier accuracy with two autoscalers Adapt and Reg (real workloads).
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(b) Effect of changing K on the classifier accuracy with four autoscalers (real workloads).

Figure 5: Choosing K affects the accuracy of the classifier.
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(a) Effect of changing K on the classifier accuracy with two autoscalers (generated workloads).
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(b) Effect of changing K on the classifier accuracy with four autoscalers (generated workloads).

Figure 6: Classifier accuracy is lower for the generated workloads compared to the
real workloads, but more stable with changing K.
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accuracy with changing K in Figure 7 are not as severe as in the case of classifying
real workloads.

5.3.4 Classification of the Wikimedia projects workloads

In our last experiment, we use five autoscalers, namely, Reg, Adapt, Hist, ConPaaS,
and AGILE. The workload set used is the Wikimedia projects workloads. The set
is again randomly shuffled and divided into a training set and a test set. Figure 8
shows the classification accuracy of the classifier against changing K. The maximum
accuracy achieved is 0.87 using the proportional version of the kNN for K = 5.
Since AGILE and ConPaaS are only performing well on a small fraction of this
workload set, the classifier is unable in many cases to assign workloads to the two
autoscalers. We have tried different parameterization of the autoscalers to improve
their performance, but were unable to achieve any improvements.

5.4 Discussion of the Results
The oscillations in the figures (except for Figure 8) for lower values of K are at-
tributed to the nature of the kNN algorithm. If F is the number of features used
for classification, kNN constructs an F-dimensional space and places each training
object in that space based on the object’s features values. It divides the F-dimensional
space into neighborhoods according to their classes. These neighborhoods can be
scattered in the constructed space. Some of these neighborhoods can be small and
surrounded completely by larger neighborhoods of a different class. When the number
of workloads in the training set increase, e.g., in the Wikimedia streams case where
we have more than 700 independent workloads, these oscillations disappear since the
classifier is able to construct better classes.

Picking a small value for K results in correct classification of these smaller neigh-
borhoods for the training data. On the other hand, it can result in over-fitting the
training data and forming small neighborhoods laying completely surrounded within
large neighborhoods of a different class. This makes the classifier sensitive to noise
in the training set. A large value of K results in a less noise sensitive classifier and
smoother decision boundaries but at the cost of increased training error, increased
computational burden and loss of locality of the estimations since far away points
affect the decision [29].

Oscillations are more obvious when the distance to all K neighbors have equal
weights. When closer neighbors are given higher weight, the classification accuracy is
more stable with increasing K. By looking at figs. 5 to 7, we observe that the accuracy
of classification decreases with increasing K. The stabilization for the kNN version
with weighted distance is faster and with a stable accuracy higher than the other
version. When setting K in real life deployments, if the training set is comprehensive
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(a) Effect of changing K on the classifier accuracy with two autoscalers (mixed workloads).

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60  70  80  90  100

Ac
cu

ra
cy

K

Uniform
Proportional

(b) Effect of changing K on the classifier accuracy with four autoscalers (mixed workloads).

Figure 7: Training the classifier with a mixed workload set of real and generated
workloads makes the classification more robust with changing K compared to only

training the classifier with real workloads.
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Figure 8: Effect of changing K on the classifier accuracy with five autoscalers and
the Wikimedia streams.

with most workload variations expected, K can be chosen to be the one that gives
best accuracy on the training set regardless of the stability. Otherwise, if the training
set is not comprehensive K should be chosen to be the least K with the highest stable
accuracy.

6 Related Work

AutoFlex is a framework for the implementation of auto-scaling services that follows
both reactive and proactive approaches [7]. The proactive approach is based on the use
of a set of predictors of the future demand of services deployed over IaaS resources,
and a selection mechanism that chooses, over time, what is the best predictor to be
used. while AutoFlex has some similarities to WAC, the systems are different in many
ways. In principle, AutoFlex simulates the performance of the different predictors
using the past two weeks of data and chooses the predictor with the least violations.
WAC analyzes the historical workload and based on the workload characteristics,
assigns the workload streams to autoscalers according to the analysis. There is no
way in Autoflex to incorporate BLOs easily. In addition, we have tested WAC with
elasticity autoscalers proposed in the literature while AutoFlex was tested using 6
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of-the-shelf statistical predictors, most of them are not suitable for non-stationary
workloads.

Previous work on workload characterization can be classified into two main direc-
tions. The first studies the methodologies used for workload characterization [14, 19,
35]. The second is the analysis and characterization of real workload traces [4, 8, 54].
Among the research done in the first direction is the work by Calzarossa and Ser-
azzi [14] on the steps required to model a workload and the work by Downey and
Feitelson [17] on modeling issues for parallel workloads that result in building unre-
alistic models.

Several workloads for various internet services have been analyzed previously. Arlit
and Jin presented a detailed workload study of the 1998 FIFA World Cup website [8]
between May 1st, 1998 until July 23rd, 1998 were analyzed. The logs contain 1.35
Billion requests and almost 5 TB of data were sent to the clients. Data was accessed
by more than 2 million unique IP addresses. There has also been a rising interest to
characterize Map-reduce workloads from production clusters [30, 43, 45] and grid
workloads [24]. A long trace provided by Google spanning 29 days for a backend
cluster was analyzed by Reiss et. al. [43]. The workload is dominated by ’normal
production’ tasks which have regular patterns. Lower priority tasks make up between
10% to 20% of the CPU usage in the cluster. These tasks have no regular patterns
and are very bursty. Iosup and Epema analyze 15 different grid workloads [24].
They report that the average system utilization of some research grids was as low
as 10 to 15% but considerably high on production grids. All 15 grids experienced
overloads during some short term periods. They note that loosely coupled jobs are
dominating most of the workloads. Loosely coupled jobs are suitable to run on the
cloud. Similar findings are reported by Zhang et. al. [55]. Khan et. al. study workloads
running on different servers in a cluster in order to find which servers frequently
have correlated workload patterns [33]. They use a greedy algorithm to solve a
computationally intractable problem to find the clusters that constitute correlated
workloads on different servers.

Keogh and Kasetty discuss the published work on time-series data mining [31].
They show that much of the published work is of very little utility. They implement
the contributions of more than two dozen papers and test them on 50 real workloads.
For classification, they implement 11 published similarity measures and compare their
performance to the Euclidean distance measure. None of the 11 proposed similarity
measures is able to outperform the Euclidean distance.

7 Conclusions, Limitations and Future Work

In this work, we show the feasibility of designing and building an automated workload
analysis and classification tool for cloud workloads where the tool assigns a workload
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to the most suitable elasticity autoscaler based on a set of workload characteristics.
While we only used two workload characteristics as features for the classification, the
workload periodicity and burstiness, the tool (if tuned carefully) achieves an accuracy
of assignment ranging between 0.87 up to 0.98, i.e., between 87% and 98% of the
workloads are assigned to the most suitable elasticity autoscaler. Among the current
limitations of our work is the way we choose the autoscalers. The six autoscalers we
tested WAC with are chosen empirically. While the literature has a very rich selection
of proposed elasticity autoscalers, there is a lack of understanding on how a designed
autoscaler works with different workload scenarios. Most of the autoscalers are either
designed ad-hoc or for a very special model/case. A related limitation is the lack
of understanding of the cloud workload space. For future work, we intend to cover
described limitations. In addition, we plan to design an online version of WAC able
to change the assignment of the autoscaler to a workload whenever the workload
characteristics change.
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A Sample Entropy Algorithm

The sample entropy algorithm as shown in Algorithm 1. W is the workload for which
SampEn is calculated. The first loop in the algorithm calculates Bm(r), the probability
that two sequences in the workload having m measurements do not have bursts. The
second loop in the algorithm calculates Am(r), the probability that two sequences
in the workload having m+ 1 measurements do not have bursts. Then SampEn is
calculated as the negative logarithm of the conditional probability that two workloads
sequences of length m that do not have bursts, have no bursts when the sequence
length is increased by 1.
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Data: r, m, T , L
Result: AvgSampEn

N← Length(L);
Pdivided ←{T (L.k).....T (L.(k+1)} ∀k ∈ {0,N};
TotSampEn← 0;
for W in Pdivided do

n← Length(W );
Bi← 0;
Ai← 0;
Xm←{Xm(i)|Xm(i) = [x(i), ...x(i+m−1)] ∀ 1 < i < n−m+1};
for (Xm(i),Xm( j)) in Xm: i 6= j do

Calculate d[Xm(i),Xm( j)] = max(|x(i+ k)− x( j+ k)|) ∀ 0≤ k < m;
if d[Xm(i),Xm( j)]≤ r then

Bi← Bi +1;
end

end
Bm(r)← 1

n−m ∑n−m
i=1

1
n−m−1Bi;

m = m+1
Xm←{Xm(i)|Xm(i) = [x(i), ...x(i+m−1)] ∀ 1 < i < n−m+1};
for (Xm(i),Xm( j)) in Xm: i 6= j do

Calculate d[Xm(i),Xm( j)] = max(|x(i+ k)− x( j+ k)|) ∀ 0≤ k < m;
if d[Xm(i),Xm( j)]≤ r then

Ai← Ai +1;
end

end
Am(r)← 1

n−m ∑n−m
i=1

1
n−m−1Ai;

TotSampEn← |− log[Am(r)
Bm(r) ]|+a×TotSampEn;

end
AvgSampEn← TotSampEn/N;

Algorithm 1: The algorithm for calculating AvgSampEn.
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(a) Sample generated workload WL1.(b) Sample generated workload
WL2.

Figure 9: Correlograms of two of the generated workloads.

B Workload generation
Equation 3 shows how WL1 whose ACF is shown in Figure 9(a) is generated.

x(i) = log(i+103)(|sin(
3i

104 )+100|)(|sin(
i

104 ))+2∗104|)
+W (0.3), ∀ i ∈ [0,n],

(3)

where x(i) is the workload value at time i, W (0.3) is Weibull distribution with a shape
parameter equal to 0.3 and n is the length of the synthetic workload required. The
log function is used to simulate a workload evolving with time but having similar
periodicity. The sinusoids are used to give the workload a pattern similar to diurnal
patterns and the Weibull distribution adds some uncertainty in the workload. This
is similar to the pattern seen in the Wikipedia workload trace. Figure 9(b) shows
the correlograms for WL2 . The two workloads are generated with an equation
similar to Equation 3, but with an added component that increases the uncertainty
(SampEn) in the workload thus decreasing the ACF. Figure 9(b) shows that the ACFs
for WL2 and WL4 resemble the ACFs of the DAS, Grid5000 and LCG real workloads
respectively. Some of the generated workloads have ACFs different from the ones
seen in the real workloads. The equations used to generate the 55 synthetic workloads
have mostly similar structures, but using different periods for the sinusoids, different
amplitudes and different probability distributions such as log normal distributions,
gamma distributions and chi-squared distributions as sources of uncertainty. Table 4
shows the SampEn values for the six generated workloads above. Similar to the real
workloads, the generated workloads have burstiness levels ranging from no burstiness
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Table 4: Average Sample Entropy computed for the sample generated workloads.

Workload WL1 WL2 WL3 WL4 WL5 WL6
SampEn 0.0 236.0 2.5 0.002 0.0014 0.069

to very bursty. Due to lack of space and since this is not the focus of this work, we
omit further details on workload generation.
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Appendix

This appendix is divided into two sections. In the first section, Section A, we show
the results of some of our real experiments used to parametrize the simulations. Since
the Wikipedia workload is central to this thesis, we add some further analysis to the
analysis done in Paper III, we extend the analysis in Paper III in Appendix B.

A Experiments

We have setup an experimental testbed with replicas of some Wikimedia services. In
this Section, we use a setup with the German Wikipedia as our replicated application.
1 The German Wikipedia is the second largest language Wikipedia by number of
views per hour coming only after the English Wikipedia [2]. It is also the third largest
language considering the number of articles [2]. For the purpose of our experiments,
we have designed a workload generator that randomly accesses a set of pages from
the replicated German Wikipedia. The generator is able to generate synthetic traces
in addition to replaying workload traces from the Wikipedia logs.

Figure 1 shows the results of an experiment where a single VM was loaded gradually
using the workload generator. The Figure shows the trade-off between the QoS
achieved in terms of response time and the load on the machine. Every 10 seconds, the
workload generator generates a new batch of requests starting from 1 request to 100
requests with a 1 request increase in each following batch, i.e., when the experiment
starts, the generator generates 1 request, waits for 10 seconds and generates 2 requests,
until 100 requests are generated. If the machine is congested and any of the requests is
delayed, the request is buffered for 10 seconds before it gets dropped. We choose this
gap between request generation times to reduce any queuing effects in the system and
thus measure the response time for the machine unloaded. We choose the 10 seconds
period before dropping requests since many usability experts argue that users will
lose interest or abandon a website if the response time is beyond 10 seconds [4, 7, 8].

In Figure 1, we plot the number of requests served before some requests started
being dropped due to congestion and the maximum response time in any batch of

1For instructions on how to replicate any Wiki, please refer to the MediaWiki documentation and to
[1]
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Figure 1: Response time and maximum number of requests a Virtual machine with

2 cores and 3 GB of memory can serve.

requests. As the number of requests sent increases, the response time increases until
the VM becomes completely congested. When the machine becomes completely
congested, most requests are dropped, and very few requests are served. We note that
many of the autoscalers discussed in this thesis require as a parameter an average
number of requests that a server can serve per unit time.

B Modeling a workload as a Markov Chain

Markov Models are stochastic models that have been used for modeling systems that
exhibit the Markovian property [10]. Given a system in a state Xn, the Markovian
property states that the conditional distribution of any future state Xn+1 depends only
on the present state Xn with a certain probability P(Xn+1|Xn) and not on any past
state Xn−m∀m ∈ {1,2,3, ..}, i.e, P(Xn+1|Xn−m) = 0 [6]. Markov chains are stochastic
processes exhibiting the Markovian property [6]. The transition probabilities between
the current state and all possible future states are typically represented in a matrix
form. The matrix is called the transition matrix [6]. Markov chains are widely used in
system modeling, control, and optimization [9]. The Markovian property is usually
stated as an assumption during system modeling. While there has been some work in
the literature on testing for the property [3], these methods are seldom used.
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Assuming the Markovian property holds for a workload, we model three major
language request streams as Markov Chains, namely English, Swedish and Spanish.
In this Appendix, we discuss only the results for the English and the Swedish request
streams shown in Figure 2. The x-axis represents the time in hours while the y-axis
represents the number of requests. We define a state of the system to be the percentile
range in which the workload intensity is, i.e., if the y-axis is divided equally in 10
percentile ranges where the lowest range – State 1 – represents all times the load
intensity falls within 10% of the maximum number of requests. Any spike occurring
in the load means that the number of requests at the time the spike occurs falls within
State 10, i.e., the number of requests is between 90% and 100% of the value of
the maximum load seen. We have thus refined the 10th state into two more states,
one representing the 95th percentile and one representing the 97th percentile of the
maximum number of requests in the load. This approach is similar to the approach
used by PRESS to predict the future workload [5].

In order to build the transition matrix, using Python we use part of the data as a
training set used build an initial transition matrix that gets updated as new monitoring
data is available. For the training set, we use the first 1000 measurements in our trace
which contains more than 50000 measurements. The trace is then replayed using the
Python script and the transition matrix updated with each new measurement. Figure 3
shows the histograms for the transitions between the different states given a certain
state for the English Stream. We note that, for any state, the workload stays in the
same state with a higher probability. The probability to move from th current state
to a state that is far away, i.e., from State 1 to State 9, is minimal. This is expected
since the English Wikipedia workload is repetitive with very few abrupt changes in
the trace. Designing a predictor for this workload is thus easies than a workload with
high probabilities of transition between the different states.

To show an example of a workload with more abrupt changes, the histograms for
the state transition probabilities for the Swedish Wikipedia workload is shown in
Figure 4. Looking at the transition probabilities in the Figure, it is clear that the
probability of transition from the current state to another far away state is higher than
such a probability in the English workload. For example, Figures 3(g) and 4(g) show
the transition probabilities form the 7th state to all other states. It is clear that moving
from State 7 to State 4 is very unlikely in the English Wikipedia workload but likely
in the Swedish Wikipedia Workload. The probability of moving from State 7 to State
6 or State 8 is more likely in the English Wikipedia workload than for the Swedish
Wikipedia.

We have done this analysis on multiple workloads and have obtained similar results.
These results can be further refined by increasing the number of states at the cost of
complicating the model. These models give us a better understanding of the workloads.
As future work, We are currently developing a tool for integrated service admission
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Figure 2: The English and Swedish Wikipedia Workload streams.
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(a) State 1: 10th percentile. (b) State 2: 20th percentile. (c) State 3: 30th percentile.

(d) State 4: 40th percentile. (e) State 5: 50th percentile. (f) State 6: 60th percentile.

(g) State 7: 70th percentile. (h) State 8: 80th percentile. (i) State 9: 90th percentile

(j) State 10: 95th percentile. (k) State 11: 99th percentile. (l) State 1: 97th percentile.

Figure 3: Transition probabilities for the English Wikipedia Workload.
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(a) State 1: 10th percentile. (b) State 2: 20th percentile. (c) State 3: 30th percentile.

(d) State 4: 40th percentile. (e) State 5: 50th percentile. (f) State 6: 60th percentile.

(g) State 7: 70th percentile. (h) State 8: 80th percentile. (i) State 9: 90th percentile

(j) State 10: 95th percentile. (k) State 11: 99th percentile. (l) State 1: 97th percentile.

Figure 4: Transition probabilities for the Swedish Wikipedia workload.
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control and autoscaling using the Markov chain models discussed here and Markov
Decision Process2 3.
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