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Abstract. The n'th binary digit of the real number ξ in (0, 1) is 1 if and
only if n is in the monotonic sequence S, then ξ is the binary map of S. This
mapping is an isomorphism between the set of positive monotonic sequences
and a subset of the real numbers in the interval (0, 1). Due to this mapping,
any automorphism over the set of monotonic sequences corresponds to some
kind of a function (0, 1) → (0, 1). For example, Cloitre et al. in 2003
introduced the Aronson transform B of a monotonic integer sequence A as
�n is in B if and only if bn is in A�, which is an automorphism. Hence, the
binary mapping transforms it to a function � the Aronson function �, which
exhibits a delicate fractal structure. The author shows that the analogous
function related to the inverse Aronson transformation is the inverse of the
Aronson function. Due to the binary mapping, it is possible to introduce
a simple arithmetics among the monotonic sequences, increasing vastly the
amount of de�nable sequences. The binary mapping and its inverse makes
also possible to de�ne functions � as well as sequence transformations � by
using cellular automata.
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1. Notations, definitions

Throughout this paper:

• sequence means an in�nite integer sequence with initial index of 1;
• monotonic sequence means a strictly monotonically increasing sequence;
• any lower case Latin symbol stands for an integer,
• any lower case Greek symbol stands for a real number.

Bold capitals, e.g., X, are used to denote an in�nite integer sequence. The
corresponding lower case symbol with lower index, xi, denotes the ith member
of X.
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N denotes the sequence of (positive) natural numbers and P denotes the se-
quence of primes.

Double lined capitals, like S, denote sets.

2. Mapping the monotonic sequences into the interval (0, 1)

In general, a positive monotonic sequence A is an in�nite ordered subset of N.
Thus, one can identify the selection of numbers from N by an in�nite sequence
of 1s and 0s, so that if i (the ith member of N) is member of A, then the
ith element is 1, otherwise 0. This in�nite sequence of 1s and 0s can also be
regarded as the fractional part of the binary representation of a real number in
the interval of (0, 1). In other words, we create a real number in (0, 1) from the
characteristic function [2] of the monotonic sequence.

De�nition 1. Binary mapping. Let Sm be the set of positive monotonic integer
sequences and R(0,1) the open interval of real numbers (0, 1) then there exists
the injective mapping M : Sm → R(0,1), which is de�ned so that the real
numberM(A) = ρ � the picture of A � is such that in its binary representation
the ith binary digit of the fractional part is equal to [i ∈ A]. Here, [statement]
is the Iverson bracket [2], i.e., 1 if statement is true, 0 otherwise.

Remark 1. Clearly, the binary mapping M(A) always exists and is well de�ned
if A ∈ Sm. It is also obvious thatM−1(ρ) for some ρ ∈ (0, 1) is not necessarily
element of Sm, since ρ may have only a �nite number of non-zero binary digits.
Thus, the image of Sm is Rm(0,1) ⊂ R(0,1), which consists of the real numbers

with in�nite number of non-zero binary digits: Rm(0,1) = {ρ ∈ (0, 1) | ρ 6= a/2b},
where {a, b} ∈ N.

Remark 2. It is also clear, that it is not necessary to restrict De�nition 1 to
monotonic sequences, it is readily applicable to any monotonic subset of natural

numbers, �nite or in�nite. Thus, the mappingM∗ : M↔ R(0,1) with analogous
de�nition � where M is the set of monotonic subsets of naturals (both �nite and
in�nite) � is a bijective mapping. Note that Sm ∈ M. Clearly, M is the image

set ofM∗(−1), if its argument covers R(0,1).

Remark. For brevity, we will use the R = R(0,1) and the Rm = Rm(0,1) shorthand.

Example 1. One case of such a mapping is quite well known and studied
without calling it �binary mapping�: the sequence A000069 in [3] is the so called
�odious numbers� (the positive integers having odd number 1 digits in their
binary expansion). Its binary map (as de�ned in De�nition 1) is eventually
2-times the so called �Thue-Morse constant� (see e.g., [2], or A014571 in [3]):

0.4124540336401075977833613682....

The factor 2 only comes from the di�erence in the indexing convention of the
�rst term of a sequence. The odious sequence O is related to the famous Thue-
Morse (or Prouhet-Thue-Morse) sequence T so that ti = [i ∈ O]. The Thue-
Morse sequence (A010060 in [3]) � as well as the several related sequences � have
been quite extensively studied recently, e.g., by J. P-. Allouche and J. Shallit
[4, 5] or by R. Astudillo [6].
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Example 2. When Liouville � in connection with the Liouville theorem � in-
troduced the Liouville number λ = 0.11000100..., having a fractional part such
that in its decimal representation it contains 1 at the r'th decimal place if and
only if r = m! for some positive m, he applied a similar mapping as M (see
A12245 in [3]). Thus, if F is the sequence of factorials (A00142 in [3]), then
the M(F) = λ2 = 0.11000100...2 binary number is the binary analogue of λ,
exhibiting similar transcendental features (see A92874 in [3]).

De�nition 2. Let us call A the complement sequence of A ∈ Sm, if A∪A = N
and A ∩A = ∅.

De�nition 3. If both A and A ∈ Sm, then A is called non-trivial. The set of
non-trivial monotonic sequences is denoted by S∗m, or shortly by S∗. The image
of S∗in R by the mappingM, we will denote by R∗.
Theorem 1. The sets S∗ and R∗ are isomorphic, and the cardinality of the set

of positive monotonic non-trivial sequences, S∗ is ℵ1, i.e., continuum.

Proof. The mapping M : S∗ → R∗ is an isomorphism, which clearly follows
from De�nitions 1 and 3.

R∗ can be obtained from R(0,1) by removing the set Q = {ξ ∈ (0, 1) | ξ = a/2b}
for every possible pairs of {a, b | a < 2b} ∈ N, and also by removing the set of
binary complements of the elements of Q, which is denoted by Q, the image
of the trivial monotonic sequences. Since both Q and Q are subsets of the
rationals, therefore the cardinality of Q∪Q is ≤ ℵ0. Hence, both R∗and S∗ have
continuum, ℵ1 cardinality. �

Remark 3. The set R∗, under the multiplication forms a semigroup. It is left to
the reader to see that if {α, β} ∈ R∗ then α · β ∈ R∗. Due to the isomorphism,
this also means that the set of positive monotonic sequences also forms a semi-
group under the operation which is de�ned as A⊗B =M−1(M(A) · M(B)).
Due to this, it is possible to de�ne powers of monotonic sequences (Note, that
in this sense A2 is totally di�erent from the notion of the �square� of a sequence
as introduced by Cloitre et al.[1])

De�nition 4. The set R̂ = R(0,1) ∪ ω, where ω = 0.1111...2, the binary num-
ber with in�nite number of all �1� digits, forms an Abelian group under the

composition for {α, β} ∈ R̂:

α⊕ β =
{

if α+ β ≤ ω; (α+ β),
if α+ β > ω; (α+ β)− ω

i.e., basically the fractional part of the �normal� sum of the two elements.

Lemma 1. The set R̂ according to De�nition 4 forms an Abelian group.

Proof. a) The addition is associative and commutative: it follows from the def-
inition.

b) There exists a zero element θ ∈ R̂, and for every α ∈ R̂ there is a unique

element β ∈ R̂, such that α⊕β = θ: if we chose θ = ω, then clearly the negative
of an element α is its binary complement.

3



Let de�ne deliberately that the negative of ω is � by de�nition � itself. �

Remark 4. Due to the fact that R∗and S∗ are isomorphic and R∗ ∈ R̂, the set Ŝ =
M−1(R̂) is an Abelian group under the operationA⊕B =M−1(M(A)⊕M(B))
for {A,B} ∈ Ŝ. Note however, that Ŝ contains not only the true monotonic
sequences, but also the trivial ones, as well as the �nite monotonic ordered sets

of integers. It is also easy to show that from {A,B} ∈ S∗, it does not necessarily
follow that A⊕B ∈ S∗.

Remark 5. The author tried to �nd a way to unify the semigroup and the
Abelian group structure into a consistent �eld or ring structure for the true
monotonic sequences, but failed to �nd a suitable de�nition.

In Section 4 we will show some sequences resulted from the arithmetics utilizing
the semigroup and Abelian group compositions on sequences, such as sums,
di�erences and powers of some basic sequences.

3. The Aronson transformation and the Aronson function

Cloitre et al. in 2003 studied [1] the numerical analogues of the �Aronson se-
quence� [7, 8], which is playfully de�ned by the in�nite English sentence: �T is

the �rst, fourth, eleventh, ... letter of this sentence.� As an important general-
ization of this logic, they introduced the Aronson transformation of monotonic
sequences.

De�nition 5. Aronson transform. As it was introduced by Cloitre et al. [1],
if A ∈ S∗ then B = A(A), the Aronson transform of A, is de�ned so that
the conditionn ∈ B ⇐⇒ bn ∈ A (referred later on as the condition) must
be satis�ed, and for any i ∈ N, bi+1is the smallest positive number k > bi,
consistent with the condition.

Theorem 2. If A ∈ S∗ then B = A(A) uniquely exists and B ∈ S∗, i.e., B is

a non-trivial monotonic sequence.

Proof. The proof below is basically identical to the proof given by Cloitre et al.
in [1], apart from a minor correction � at Case (ii) � and from the addition of
the non-triviality of B.

The proof of the �rst part goes by induction.

Let us �rst determine b1, as follows:

Case (a), if a1 = 1 then b1 = 1, since this satis�es �the condition� in both
directions and 1 is the least such positive number.

Case (b), if a1 = 2 then b1 = ak + 1, where k is the largest index such that
ak = a1 + k − 1, since it is easy to see that if b1 = 1 then according to the
condition b1 ∈ A should have been true. If b1 ∈ {a1, ..., ak} then the reverse
condition is not satis�ed, since 1 /∈ B. Whereas, if the b1 = ak + 1 selection is
taken, then the condition bak+1 ∈ A can easily be satis�ed later on.
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Case (c), if a1 > 2 then b1 = 2 is the proper choice, since the forward part of
the condition can be satis�ed easily by choosing b2 = a1, while the reverse part
of the condition is automatically satis�ed in negative sense.

Now the induction:

Assuming that S = {b1, ..., bk} non-empty ordered set � containing the �rst
k ≥ 1 elements of B � is known , then bk+1 is uniquely determined, as follows:

Case (i), bk = k. If k + 1 ∈ A then bk+1 = k + 1, otherwise bk+1 is the least
number x > k + 1, such that x /∈ A (due to the reverse condition).

Case (ii), bk > k. Then, due to the forward condition, if k + 1 ∈ S then bk+1

is the least member aj of A, such that aj > bk. Whereas, if k + 1 /∈ S then
bk+1 = x > bk, so that x is the least such number, satisfying that x /∈ A.

To see the non-triviality of B, let us assume that B is trivial, i.e., ∃m such that,
∀ i > m, then bi = bm+ i−m. This means � in other words � that every number
n ≥ bm is member of B. From the condition, it is required then that bn ∈ A. It
is clear that bn ≥ n, therefore ∀ ` > bm −m, b` ∈ A, from what it follows that
A must also be trivial, which is contradicting to the initial assumptions. �

Remark 6. Note that, unless the non-triviality of A is assumed, one can not

ful�ll the second sub-case in Case (ii) of the proof, with the exception of A = N,
the sequence of naturals. In fact, as it easily follows from the proof, that the
Aronson transformation can be applied for the elements of Q = S∗ ∪ N, and
the only �eigen-sequence� of A is N, i.e., A(N) = N. Thus, the Aronson
transformation A : Q→ Q is an automorphism.

De�nition 6. The inverse of Aronson transform of sequence A is de�ned as
A−1(A(A)) = A. Cloitre et al. [1] have provided a constructive proof on the
existence and uniqueness of the transformation of A−1 : Q→ Q, alike A itself.

Now, everything is together to de�ne the Aronson function:

De�nition 7. The Aronson function. The function arf : R∗ → R∗ is de�ned
as arf(ρ) =M(A(M−1(ρ))), where ρ ∈ R∗.

In Figure 1, one can see the graph of the Aronson function. The author
calculated the function at 4095 points and to avoid the arguments with �-
nite (and short) binary representation, the argument points were chosen as
{ξk = k/4096 + 10−7 · π | k = 1, 2, ..., 4095}. The calculation was carried out
by the PARI/GP code [11], using 50 decimal digits accuracy. Note, that the
characteristic shape of the function is insensitive to the applied arbitrary shift
(10−7 · π). The delicate fractal structure is striking, however. The fractal char-
acter is further illustrated in Figure 2, which presents the zoomed section of the
function in the range of (0.25, 0.3125) = (1/22, 5/24) which looks much like a
featureless straight line in Fig. 1.
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Figure 1. The Aronson function. The fractal structure � due
to the in�nite number of discontinuities � is well visible .
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Figure 2. The Aronson function in the range of (1/4, 5/16).
Seemingly, this section is quite similar to the section of (0, 1/22)
in Fig. 1, though this section seems to be even more complex.
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Remark 7. By analyzing the Aronson function just by the naked eye, it looks like
consisting of characteristic sections in the intervals: (0, 1/2), (1/2, 3/4), (3/4, 7/8), ....
The general formula for the boundaries of the kth section is

(1)

(
2k−1 − 1

2k−1
,

2k − 1
2k

)
.

The shape of the function looks identical within these sections, apart from be-
ing scaled to �t into the sections, i.e., scaled down by a factor of two at each
subsequent intervals. This observation can easily be demonstrated to be true,
since e.g., the sequences being isomorphic with the numbers in the second sec-
tion, (1/2, 3/4) are almost the same as those corresponding to the �rst section
(0, 1/2) with the only di�erence that all the sequences corresponding to the sec-
ond section contain the number �1�, while none does it have in the �rst section
(since no number in section one contains the �rst fractional binary digit). Sim-
ilarly, the sequences corresponding to the numbers in the kth section start with
the �rst k − 1 consecutive natural numbers, since the corresponding numbers
start with k − 1 �1� digits. Thus, if a number in the kth section is at δ/2k dis-
tance from the section`s starting point for some δ ∈ R∗, then the binary pattern
of that number starts with k − 1 digits of �1� , and then continues with the
same binary digit pattern as that of δ. In the domain of sequences this means
that the corresponding sequence in the section k starts with the �rst k− 1 con-
secutive naturals and then continues similarly to the sequence corresponding to
the number δ, with the only di�erence that the value of k − 1 is added to the
every member of the original sequence. In mathematical terms: if A =M−1(δ)
for some δ ∈ R∗, and in the kth section A(k) =M−1

(
(2k−1 − 1)/2k−1 + δ/2k

)
,

then the term with index i > k of A(k) is

a
(k)
i = ai−k+1 + k − 1,

where ai−k+1 is the (i − k + 1)-th term of A. Hence, due to the features of
the Aronson transformation (cf. with the proof of Theorem 2), the transform

of A(k)will also start with k − 1 binary digits of �1� and then will continue
analogously to the transform of A.

It is also notable that the co-domain corresponding to a section � as de�ned in
equation (1) � in the domain of the Aronson function is identical to the domain
section itself. By scrutinizing the constructive proof of the Theorem 2, this
behavior can be understood.

Clearly, by using the inverse Aronson transformation A−1 and the M binary
mapping analogously to De�nition 7, a di�erent function can be obtained:

De�nition 8. The Aronson inverse function. The function arfi : R∗ → R∗ is
de�ned as arfi(ρ) =M(A−1(M−1(ρ))), where ρ ∈ R∗.

Theorem 3. The inverse of the Aronson function is the Aronson inverse func-

tion: arfi(ρ) = arf−1(ρ).
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Figure 3. The Aronson function (arf) (continuous line) and the
Aronson inverse function (arf−1) (dashed line)
(Note that the vertical lines are not parts of the functions!)

Proof. The claim follows from Theorem 2, since A(A) is an automorphism in
S∗, therefore arf(ρ) = M(A(M−1(ρ))) is automorphism in R∗ and M is iso-
morphism between S∗ and R∗.

More explicitely: in general, for f : X→ X automorphism the inverse f−1(x) =
{x∗| f(x∗) = x} exists if x∗ ∈ X is unique and exists for every x ∈ X. Thus,
arf−1(ρ) = {ρ∗| arf(ρ∗) = ρ}. Let denote the sequence M−1(ρ) = B and let
assume that ρ∗ =M(A−1(B)). Then

arf(ρ∗) =M(A(M−1(ρ∗))) =M(A(M−1(M(A−1(B))))) =M(B) = ρ .

�

Another consequence of the fact that the Aronson transformation A(A) is auto-
morphism in S∗, is that the transformation can be iterated, i.e., A(A(A)) is also
in S∗. Without going deeply into the iterative behavior of the Aronson trans-
formation, we present in Figure 4 the function related to the second iteration of
the transformation: arf2(ρ) =M(A(A(M−1(ρ)))).
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Figure 4. The shape of the function arf2(ρ), related to the
second iteration of the Aronson transform

It is notable that the scaled repetitive part of the function arf2(ρ) is also in the
range (0, 0.5) but it is subdivided into two subsections which look more similar
to each other than in the case of the arf(ρ) function.

By looking at the graphs on Figures 1 through 4, their fractal-like character
seems plausible. Note, however that the graphs of the functions themselves are
not fractals, since they do not form compact sets due to the in�nite number of
discontinuities. It is easy to see that by using the function points themselves,
then the Hausdor� dimension of the points can be calculated and it turns out
to be exactly 1.0. However, if one calculates the points of the functions at some
resolution then connects the discontinuous points by straight line sections and
then repeats this process until the limit of in�nitesimally �ne resolution, then
one gets true fractals. In other words, this limit curve is the boundary curve of
the compact 2-dimensional set of the points under the discontinuous set of points
of the function`s graph. In the table below we give relatively rough estimates of
the fractal dimension of these curves, by using the �box counting� method:

arf 1.104
arfsec 1.134
arf−1 1.133
arf2 1.130
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where arfsec corresponds to the section of the arf function presented in Figure
2, which � due to the �ner resolution � provided a somewhat higher value then
the whole function. It can be seen that the fractal dimension of these curves is
rather similar, probably identical.

Remark. Without proving the Lebesgue integrability of arf, arf−1 and arf2 func-
tions, computational evidence supports that their Lebesgue integral for the open
interval of (0, 1) is equal to 1/2.

4. Arithmetics with monotonic sequences

We have seen in Section 2 that the positive monotonic sequences are isomorphic
to a subset of the real interval (0, 1), namely to R∗. Thus, for example the
sequence of primes corresponds to the real number µ =M(P) (see A092856 in
[3]):

0.41468250985111166024810962215430770836577423813791697786824541448864096...

what is quite close to
√

2 − 1 but it is not identical. Also note that the real
number above is identical to the real number created from the characteristic
function of the sequence of primes (A010051 in [3]) as binary fractional digits.

Conversely, every irrational number in (0, 1) (and also many rationals) cor-
responds to some monotonic integer sequence, e.g., M−1(

√
2 − 1) yields the

sequence (A092855 in [3]):

2, 3, 5, 7, 13, 16, 17, 18, 19, 22, 23, 26, 27, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 43, 44, 45,

46, 49, 50, 53, 56, 61, 65, 67, 68, 71, 73, 74, 75, 76, 77, 79, 80, 84, 87, 88, 90, 91, 94, 95, 97,

98, 99, 101, 103, 105, 108, 110, 112, 114, 115, 116, 117, 118, 120, 123, 124, 125, 126, 127, 131,

132, 133, 135, 137, 138, 140, 141, 142, 143, 145, 146, 152, 154, 155, 156, 158, 160, 164, 167,

170, 171, 172, 174, 175, 176, 178, 180, 185, 188, 189, 192, 193, 194, 196, 197, 199, 203, 205,

206, 207, 208, 210, 212, 213, 216, 221, 223, 224, 230, 231, 234, 235, 238, 239, 240, 243, 244,

247, 251, 253, 255... .

This sequence, alike a completely di�erent sequence, the Aronson transform of
the �evil� sequence (A092863 in [3]), looks quite reach in primes. This peculiarity
is deceiving, however in both cases, since by checking further the sequences, the
excess prime content vanishes.

Just one more example of mapping a mathematical constant into an integer
sequence is theM−1(1/

√
2π) (A092857 in [3]):

2, 3, 6, 7, 11, 16, 20, 22, 25, 26, 29, 30, 31, 32, 34, 36, 41, 42, 44, 45, 48, 50, 55, 59, 60, 62, 67,

68, 69, 70, 71, 72, 75, 77, 78, 81, 82, 83, 84, 88, 90, 99, 101, 102, 103, 105, 107, 109, 110, 111,

115, 116, 117, 121, 123, 124, 125, 126, 127, 128,... .

Obviously, a sequence mapped from some mathematical constant may not be
very interesting, unless somebody �nds some known real constant γ, such that
M−1(γ) is an otherwise known sequence. Though the author made some e�orts
in this direction, they were unsuccessful, so far.

As it was mentioned in Section 2, an arithmetics of the sequences can be in-
troduced corresponding to the arithmetics in its isomorphic map within the
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interval (0, 1). Recalling: A ⊕B = M−1 (M(A)⊕M(B)) and also A ⊗B =
M−1 (M(A) · M(B)).

Note that for the �addition�, as it is de�ned in De�nition 4, some restrictions
apply to make sure that the resulting set of integers is a �non-trivial� integer
sequence (cf. Def. 3). It is easy to see, that for two non-trivial sequences A
and B, A⊕B ∈ S∗, unless there is an index i in A and an index j in B, such
that ∀ k > 0, ai+k = bj+k.

Thus, one can create e.g., the �sum� of the sequence of primesP and the sequence
of triangular numbers (A00217 in [3]) T, where ti = i(i+ 1)/2 (A092858 in [3]):

P⊕T =[5, 6, 7, 10, 11, 13, 15, 17, 19, 21, 23, 28, 29, 31, 36,...].

Similarly, the di�erence between T and P can also be given (A092859 in [3]):

T⊕P =[3, 4, 5, 7, 12, 13, 16, 18, 19, 22, 23, 30, 31, 38, 39, 40,...].

It is a direct consequence of having a de�ned addition that we can also multiply
the monotonic sequences by natural numbers. Obviously, 2P = P⊕P = X and
then xi = pi − 1. The sequence 3P (A092860 in [3]) is not so simple:

3P =[3, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23, 28, 29, 30, 31, 36, 37,
40, 41, 42, 43, 46, 47, 52, 53, 58, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 82,
83, 88, 89, 96, 97,...],

in which sequence due to the truncation (fractional part of the sum) in De�nition
1, one term is eliminated. Due to this e�ect, the inverse of integer multiplication
in general, does not exist.

As we have seen, the positive monotonic sequences form a semigroup over the
�multiplication� as de�ned in Remark 3. The sequence A092861 in [3] illustrates
this:

P⊗E =[4, 7, 9, 12, 14, 15, 18, 19, 21, 25, 26, 33, 35, 36, 37, 40, 41, 42, 44, 47,
48, 50, 54, 55, 58, 59, 60, 64, 65, 66, 69, 72, 77, 78, 79, 80, 84, 86, 87, 88, 89,
90, 91, 97, 99, 100, 105, 106, 107, 108, 110, 111,...],

where E is the sequence of �evil numbers� (A001969 in [3]), containing the
numbers having even number of non-zero binary digits.

By having a well de�ned multiplication among the monotonic sequences, we also
can create the integer powers of the sequences. Thus, for example, the square
of the prime sequence, P2 =M−1(M2(P)) (A092862 in [3]):

P2 =[3, 5, 6, 14, 16, 17, 19, 21, 22, 25, 27, 31, 32, 34, 36, 37, 41, 42, 44, 45, 48,
49, 52, 54, 57, 59, 60, 62, 64, 65, 69, 74, 75, 78, 81, 88, 90, 91, 92, 94, 97, 98,
100,...]

It is obvious, that this can be generalized for real exponents, as well. Thus, for
example, we can have the π as exponent for P (A092863 in [3]):

Pπ =[4, 7, 10, 16, 18, 20, 22, 23, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 42,
46, 51, 57, 60, 65, 66, 67, 68, 69, 70, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 89,
91, 92, 93, 94, 95, 99, 101, 103, 107, 108, 110, 111, ...].
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In general, it is easy to realize that for any function which is an automorphism
in (0, 1), the inverse binary mapping de�nes uniquely an automorphic transfor-
mation over the monotonic positive sequences.

5. Cellular Automaton Functions and Transformations

The cellular automata are known since the middle of the 20th century, though
systematic studies appeared only at the beginning of the 21st century, e.g., by
Ilachinski [10]. Also a very broad coverage of the topic � along with many
other types of recursive mappings � can be found in the book of S. Wolfram
[9]. In that book (see p. 53) the individual one-dimensional cellular automata
� where the next state of a cell is determined by itself and by its two neighbors
� are identi�ed by 8-digit binary numbers (or an integer in the range of 0-255),
where each of the digits determine the resulting state of the cell as function of
the initial state of the 3 parent cells. For example the rule of the automaton
identi�ed by the number �30� is as follows:

111 110 101 100 011 010 001 000
0 0 0 1 1 1 1 0 = 3010

.

This particular automaton � along with a few (13) others from among the pos-
sible 255 di�erent kinds � exhibits a peculiar random-like behavior when it is
applied recursively, starting from a single cell. These kinds of automata are
categorized as �Class 3� and �Class 4� by S. Wolfram (p. 231 in [9]). Note
that about the half of all possible such automata are �trivial�, and many others
produce regular, repetitive patterns.

De�nition 9. Cellular automaton mapping. Concerning a generic de�nition of
the cellular automata, we refer to for example Ilachinski's book [10], but the
most readily accessible resource is Eric W. Weisstein's MathWorld [2]. Here we
restrict ourselves to the �one-dimensional, two-states, �rst neighbors� automata,
which are also referred as elementary cellular automata in [2]. Let D denote an
in�nite ordered set of discrete elements of two di�erent kinds (states): one of
the kinds is identi�ed by �0� and the other by �1�. The ordering of the set D is
one-dimensional, hence every member di has two neighbors: di−1 and di+1. Let
D denote the set of such sets. The mapping C : D → D is a (one-dimensional,
�rst-neighbors) cellular automaton maping if the member d′i of the image set
D′ is determined from the members di−1, di, di+1 of D by applying the �rule�
of the automaton, which uniquely de�nes the image value for every possible
combination of the values di−1, di, di+1. Note that i ∈ (−∞,∞). Notaion:D′ =
fC(D).

Remark 8. The de�nition above is applicable for �two-ways� in�nite ordered
sets of binary digits � because this corresponds to the usual de�nitions �, but
it is easily adaptable to ordered sets which are only �one-way� in�nite: i.e., for
monotonic integer sequences. From among the three possible obvious ways, we
have chosen the one where d′i is determined by the set of di−2, di−1, di, along
with postulating �0� values for the non-existent elements of d−1 and d0.
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According to De�nition 1, we can map any monotonic sequence into an in�nite
sequence of binary 1's and 0's. This suggests to introduce a transformation by
applying some cellular automaton such a way that after mapping the sequence
into the form of a binary number, one applies the selected cellular automaton
rule by shifting a 3-digit window over the binary digits of the number one-by-
one, yielding the digits of the new number. Then, this new number is to be
mapped back into the realm of integer sequences by using the inverse binary

mapping (De�nition 1).

De�nition 10. CA transformation of monotonic sequences. Due to the injec-
tive character of binary mapping (as de�ned in Def. 1), any monotonic sequence
can be transformed according to any simple (and also other) cellular automaton
C by the

CC(S) =M−1(fC(M(S)))
formula, where fC(M(S)) is the cellural automaton mapping by using the au-
tomaton C ofM(S), according to De�nition 9.

As an example for this, let us see the cellular automaton transform with code
110 of the sequence of primes (A093515 in [3]):

C110(P) =[2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 23, 24, 29, 30, 31, 32,
37, 38, 41, 42, 43, 44, 47, 48, 53, 54, 59, 60, 61, 62, 67, 68, 71, 72, 73, 74, 79,
80, 83, 84, 89, 90, 97, 98, 101, 102, 103, 104, 107, 108, 109, 110, 113, 114, 127,
128, 131, 132, 137, 138, 139, 140, 149, 150, 151, 152, 157, 158, 163, 164, 167,
168, 173,...]

Note, that this sequence contains all primes in the range. This is a provable
consequence of the actual form of the rule 110 and the fact that the gap be-
tween subsequent primes is at least 2. You can also see the sequences C30(P),
C45(P),C73(P),C89(P), C90(P), C137(P), C225(P) as A093510, A093511, A093512,
A093513, A093514, A093516, A093517 in [3], respectively.

De�nition 11. Cellular automaton function � CA function. The function fC :
R(0,1) → R(0,1) is de�ned according the following construction:

Let ρ ∈ R(0,1) be an arbitrary number in the domain, then the binary digits of
fC(ρ) are obtained by applying the rule of the one-dimensional cellular automa-
ton identi�ed by the code C on the binary digits of ρ. C is de�ned according to
De�nition 9 with the slight modi�cation given in Remark 8. Thus, the left-most
digit of the fractional part of fC(ρ) comes from two 0s and the �rst fractional
digit of ρ by applying the rule of C, etc.

Remark 9. Clearly, � unlike we have seen with the Aronson function � the
domain of the CA functions is the whole R(0,1).

In Figure 5 we can see four examples of CA functions. First of all, one can notice
the similar fractal character of these functions to the earlier de�ned Aronson
function (cf. Def. 7 and Fig. 1). The main similarity between all of these func-
tions is the in�nite number discontinuous points and also the identical positions
of the points of discontinuities (see eq. (1) in Remark 7). This character comes
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Figure 5. The graph of four di�erent cellular automaton func-
tions (code 30: green, code 45: purple, code 110: blue, and code
169: red)

quite obviously from the fact that all of these functions operate on the binary
representation of the argument.

We have seen that the Aronson function has its inverse. The situation with
the CA functions is not so easy, however. While for some of the CA rules the
inverse can be de�ned, for many others (e.g., for some trivial ones) it is not
possible. From among the four CA functions presented in Fig. 5 three probably
have their inverses. The function f110(ρ), however certainly has no inverse, since
it takes in�nitely many times in�nitely several di�erent values (e.g., 0.5, 1.0,
etc.). This is illustrated in Figure 6. Proving this statement goes beyond this
paper, but it can be demonstrated easily in numerical ways that identical values
occur at di�erent � both at rational and irrational � arguments. Also note that
from among the CA functions presented in Fig. 5, f110(ρ) is the only one in
which the embedded CA rule is categorized by S. Wolfram as �Class 4�, and he
� together with M. Cook � has also proven the universality of that particular
rule (see pages 675 and 1115 in [9]). One may suspect that the non-existence of
an inverse of the corresponding CA function may be related to the universality
of the embedded automaton (see also Rule110, as well as Universality in [2]) .

Similarly to the case of the arf function, we evaluated the fractal dimension of
the selected CA functions (in the same sense as it is explained in Section 3).
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Figure 6. A zoomed section of the f110(ρ) function

The results of the rough evaluation by box counting method are as follows:

f30 1.099
f45 1.136
f110 1.127
f169 1.112

These values are also rather close to each other and also close to the values we
have seen in the case of the arf function. If there are characteristic di�erences
between the fractal dimensions, it can be evaluated only by some much more
accurate methodology.

In case of the CA functions the Lebesgue integrability is quite obvious, and for
the selected four functions their estimate is as follows:

∫
(0,1) f30(ρ) ≈ 0.563...∫
(0,1) f45(ρ) ≈ 0.563...∫
(0,1) f110(ρ) ≈ 0.594...∫
(0,1) f169(ρ) ≈ 0.4998... .

It is notable that the most simple of the selected CA rules (Rule169) yielded the
lowest value (the author believes, it is exactly equal to 1/2) and the Rule110 �
which is rated as Class 4 � gave the highest value.
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6. Conclusion

The isomorphism � named as binary mapping � as de�ned in De�nition 1 made
possible to map any monotonically increasing integer sequence to a real number
in (0, 1). Hence, having an automorphism over the monotonic sequences, we
obtain a function with domain and codomain in (0, 1). Conversely, any auto-
morphic function over (0, 1) corresponds to an automorphic transformation over
the set of monotonic sequences. The simple arithmetics de�ned between the se-
quences potentially yields an immense number of new sequences and hopefully
some of them will exhibit important features. Perhaps, the isomorphism may
help exploring or even proving some peculiarities of some transformations of the
integer sequences, as well as some peculiarities of speci�c sequences.

The presented examples related to cellular automata provide new hints for con-
tinuing the exploration of this relatively newly approached realm.
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Appendix:

A set of PARI/GP [11] functions is given below, to realize the binary map-

ping and its inverse, the Aronson transformation and its inverse, as well as the
Aronson function with its inverse:

{mt(v)= /*Returns the binary mapping of v */

local(a=0,p=1,q=0.0,l,m);l=matsize(v)[2];m=v[l];

for(i=1,m,p=isin(i,v,l,p);if(p>0,a+=2^(-i)));

q=0.+a;return(q)}

/****/

{mtinv(x)= /*Returns the inverse binary mapping of x */

local(z,q,v=[],r=[],l);

z=frac(x);v=binary(z)[2];l=matsize(v)[2];

for(i=1,l,if(v[i]==1,r=concat(r,i)));return(r)}

{farons(x)= /* The Aronson`s function...*/

return(mt(arons(mtinv(x))))}

/****/

{frarons(x)= /* The inverse Aronson`s function */

return(mt(rarons(mtinv(x))))}

/****/

{/* Returns the Aronson transform of v */

arons(v)=

local(x=[],pv=1,px=1,n=1,i=0,k,l);

l=matsize(v)[2];

/*The initial terms: */

if(n<v[pv],n+=1;while(n==v[pv],n+=1;pv+=1);x=concat(x,n);n+=1;i+=1,

while((n<l)&&(v[pv]==n),x=concat(x,n);n+=1;pv+=1;i+=1));

/*The induction:*/

while(abs(pv)<=l&&n<v[l],k=x[i];n=k; pv=isin(i+1,v,l,pv);
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/* pv>0 if (i+1) is in v */

if(k==i,n+=1;if(pv<0,pv=abs(pv); while(pv>0,n+=1; pv=isin(n,v,l,pv))),

px=isin(i+1,x,i,px); if(px>0,pv=-abs(pv);while(pv<0,n+=1;pv=isin(n,v,l,pv)),

pv=abs(pv);while(pv>0,n+=1;pv=isin(n,v,l,pv))));

x=concat(x,n);i+=1);/*print(i);*/ return(x) }

/****/

{ /* Returns the inverse Aronson transform of v */

rarons(v)=

local(h=[],c=[],x=[],pv=1,px=1,n=1,i,j=1,l,m=0,f);

l=matsize(v)[2];h=vector(l);c=vector(l);for(i=1,l,h[i]=[];c[i]=[]);

while(n<=l,while((n<v[j])&&(n<=l),c[n]=concat(c[n],v[n]);n+=1);

if(n<=l,h[n]=concat(h[n],v[n]);j+=1;n+=1));

n=1;while(n<=l,f=matsize(h[n])[2];

for(i=m+1,v[n]-1,if(f, c[n]=concat(c[n],i),

if((m<>n-1)||(i<>n), h[n]=concat(h[n],i), c[n]=concat(c[n],i)))); m=v[n];n+=1);

for(i=1,l,x=concat(x,h[i]));return(x) }

/****/

{isin(x,v,l,poi)=

/*If x integer is in v monotonic vector of length l,

the function returns a positive 'poi',

else a negative one. (�poi� is also used for acceleration,

the last returned value is recommended in the input) */

poi=abs(poi);if(poi==1&&x<v[1], return(-poi),

if(x<v[poi],while(x<v[poi]&&poi>1,poi-=1);

if(x<>v[poi],poi*=-1),

if(x>v[poi],while(x>v[poi]&&poi<l,poi+=1);

if(x<>v[poi],poi*=-1)));return(poi))}
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