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Abstract. A permutomino of size n is a polyomino determined by particular pairs (π1, π2) of permutations of length
n, such that π1(i) 6= π2(i), for 1 ≤ i ≤ n. In this paper we consider the class of convex permutominoes which are
symmetric with respect to the diagonal x = y. We determine the number of these permutominoes according to their size
and we characterize the class of permutations associated to these objects as particular involutions of length n. To do
this we need to introduce a larger class of objects, called symmetric permutominides, and to study their combinatorial
properties.
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1 Introduction and basic de�nitions
In the plane Z× Z a cell is a unit square, and a polyomino is a �nite connected union of cells having
no cut point. Polyominoes are de�ned up to translations. A column (row) of a polyomino is the
intersection between the polyomino and an in�nite strip of cells lying on a vertical (horizontal) line. A
polyomino is said to be column convex (respectively row convex) if all of its columns (respectively row)
are connected. A polyomino is said to be convex, if it is both row and column convex (see Fig. 1 (a)).
The semi-perimeter of a polyomino is just half the number of edges of cells in its boundary; thus, for
any convex polyomino the semi-perimeter is the sum of the numbers of its rows and columns.

Moreover, any convex polyomino is contained in a rectangle in the square lattice which has the same
semi-perimeter, called minimal bounding rectangle. For the main results concerning the enumeration
and combinatorial properties of convex polyominoes we refer to [3, 4, 6, 8].

A polyomino is said to be directed when each of its cells can be reached from a distinguished cell,
called the root, by a path which is contained in the polyomino and uses only north and east unitary
steps. A polyomino is directed convex if it is both directed and convex (see Fig. 1 (b)). It is known [17]
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Figure 1: (a) A convex polyomino; (b) a directed convex polyomino; (c) a parallelogram polyomino.

that the number of directed convex polyominoes of semi-perimeter n + 2 is equal to the nth central
binomial coe�cient, i.e., bn =

(
2n
n

)
, sequence A000984 in [16].

Finally, parallelogram polyominoes are a special subset of the directed convex ones, de�ned by two
lattice paths that use north and east unit steps, and intersect only at their origin and extremity. These
paths are called the upper and the lower path (see Fig. 1 (c)). It is known [17] that the number of
parallelogram polyominoes having semi-perimeter n+1 is the n-th Catalan number (sequence A000108
in [16]), cn = 1

n+1

(
2n
n

)
.

Permutominoes. In this paper we will always deal with polyominoes having no �holes�, i.e. poly-
ominoes where the boundary is made exactly of one component. Let us start by brie�y recalling the
main de�nitions and results concerning permutominoes. For further reading we refer to [1, 10, 9].

So, let P be a polyomino without holes, having n rows and columns, n ≥ 1; we assume without
loss of generality that the south-west corner of its minimal bounding rectangle is placed in (1, 1). Let
A =

(
A1, . . . , A2(r+1)

)
be the list of its vertices (i.e., corners of its boundary) ordered in a clockwise

sense starting from the lowest leftmost vertex, with Ai = (xi, yi). We say that P is a permutomino
if P1 = (A1, A3, . . . , A2r+1) and P2 = (A2, A4, . . . , A2r+2) represent two permutations of length n.
Obviously, if P is a permutomino, then r = n, see Fig. 2.

More formally, we can de�ne π1(P ) and π2(P ) (brie�y, π1 and π2), as follows:

π1(i) = yj such that xj = 2i + 1

π2(i) = yj such that xj = 2i.

Now, P is a permutomino of size n+1 if and only if π1, π2 ∈ Sn+1 (as usual Sn denotes the symmetric
group of size n).

From the de�nition any permutomino P of size n has the property that, for each abscissa (ordi-
nate) between 1 and n there is exactly one vertical (horizontal) side in the boundary of P with that
coordinate. It is simple to observe that this property is also a su�cient condition for a polyomino to
be a permutomino.

Permutominoes can be viewed as special types of permutation diagrams, and they have been intro-
duced by Kassel et al. [13] and then studied by F. Incitti while studying the problem of determining
the R̃-polynomials associated with a pair (π1, π2) of permutations [12].

During the last years, a particular class of permutominoes, i.e. convex permutominoes �as the one
depicted in Fig. 2� have been widely studied, and here we recall the main results:
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1π  = ( 2, 5, 6, 1, 7, 3, 4 ) π  = ( 5, 6, 7, 2, 4, 1, 3 )2

Figure 2: A convex permutomino of size 7 and the two associated permutations.

1. the number of parallelogram permutominoes of size n is equal to cn−1 [10],

2. the number of directed convex permutominoes of size n is equal to 1
2 bn−1 [10],

3. the number of convex permutominoes of size n + 1 is [2, 9]:

2 (n + 3) 4n−2 − n

2

(
2n

n

)
n ≥ 1, (1)

the �rst few terms being 1, 4, 18, 84, 394, 1836, 8468, . . . (sequence A126020 in [16]).

Permutations de�ning convex permutominoes. Let us denote by Cn the set of convex permu-
tominoes of size n. In [1] the authors considered the following sets of permutations of length n:

C̃n = {π1(P ) : P ∈ Cn }, C̃′n = {π2(P ) : P ∈ Cn }.
Easily we have that |C̃n| = |C̃′n|, and that π ∈ C̃n if and only if πR ∈ C̃′n, where for any π = (π1, . . . , πn),
its reversal is πR = (πn, . . . , π1).

It is then reasonable to study, without loss of generality, the class C̃n. In particular, if a permutation
π ∈ C̃n (i.e. there is at least a permutomino P such that if π = π1(P )) we say that π is π1-associated
(brie�y associated) with a convex permutomino.

The main problem investigated in [1] concerns the characterization of the permutations of C̃n. Let
π be a permutation of Sn, we de�ne µ(π) (brie�y, µ) as the maximal upper unimodal sublist of π, and
σ(π) (brie�y, σ) as the sublist of π beginning with π(1), ending with π(n), and containing the elements
not in µ (by convention µ and σ retain the indexing of π). For instance, for the convex permutomino
in Fig. 2, we have π1 = (2, 5, 6, 1, 7, 3, 4), and the two subsequences µ and σ are

1 2 3 4 5 6 7
µ 2 5 6 - 7 - 4
σ 2 - - 1 - 3 4

For the sake of brevity we will represent the two sequences omitting the empty spaces, as µ =
(2, 5, 6, 7, 4), σ = (2, 1, 3, 4). The following theorem [1] gives a characterization of the permutations of
C̃n.
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Theorem 1.1 Let π ∈ Sn be a permutation. Then π ∈ C̃n if and only if:

1. σ is lower unimodal, and

2. there are no two permutations, θ ∈ Sm , and θ′ ∈ S ′m, such that m + m′ = n, and π = θ ª θ′.

We recall that, given two permutations θ = (θ1, . . . , θm) ∈ Sm and θ′ = (θ′1, . . . , θ
′
m′) ∈ Sm′ , θ ª θ′

is de�ned as (θ1 + m′, . . . , θm + m′, θ′1, . . . , θ
′
m′).

So, for instance (2, 5, 6, 1, 7, 3, 4) satis�es conditions 1. and 2. and it de�nes at least one convex
permutomino (as the one in Fig. 2). The reader can check that there is no convex permutomino
associated with (2, 5, 3, 7, 4, 1, 6) since σ = (2, 3, 4, 1, 6) is not lower unimodal; there is no convex
permutomino associated with π = (5, 9, 8, 7, 6, 3, 1, 2, 4) since π = (1, 5, 4, 3, 2)ª (3, 2, 1, 4).

In [1] it is also proved that the cardinality of C̃n+1 is

2 (n + 2) 4n−2 − n

4

(
3− 4n

1− 2n

) (
2n

n

)
, n ≥ 2. (2)

de�ning the sequence 1, 3, 13, 62, 301, 1450, . . ., sequence A122122 in [16].

Figure 3: The four convex permutominoes associated with (2, 1, 3, 4, 7, 6, 5). The two free �xed points
are encircled.

Remark. The permutations π for which σ(π) is lower unimodal are the so called square permu-
tations, introduced and enumerated by Mansour and Severini [15]. Moreover, these object have been
studied also by Waton in [18], who characterized them as the set of permutations avoiding 16 patterns
of length 5.

Convex permutominoes associated with a permutation. For any π ∈ C̃n, let us consider

[π] = {P ∈ Cn : π1(P ) = π},

i.e., the set of convex permutominoes associated with π. We say that a �xed point i of π, with
1 < i < n, is a free �xed point if π can be decomposed as the direct sum π = σ1 ⊕ (1) ⊕ σ2, where
σ1 ∈ Si−1, and σ2 ∈ Sn−i. Let F(π) (brie�y F) denote the set of free �xed points of π. By de�nition,
the free �xed points of π are precisely the �xed points�di�erent from 1 and n� lying in the ascending
subsequence of µ. In [10] it was proved the following.

Theorem 1.2 Let π ∈ C̃n, and let F(π) be the set of free �xed points of π. Then we have | [ π ] | =
2|F(π)|.
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For instance, let π = (2, 1, 3, 4, 7, 6, 5) we have µ = (2, 3, 4, 7, 6, 5), σ = (2, 1, 5), and π = (2, 1) ⊕
(1) ⊕ (1) ⊕ (3, 2, 1). Hence F(π) = {3, 4}, and then there are four convex permutominoes associated
with π, as shown in Fig. 3.

Main results. In this paper we study the convex permutominoes which are symmetric with respect
to the diagonal x = y. Since we will always assume that the objects we treat satisfy the convexity
constrain, by abuse of notation we will often speak of symmetric permutominoes in place of symmetric
convex permutominoes.

The interest in this class of permutominoes lies in the fact they are de�ned by a pair of involu-
tions, and vice versa, a convex permutomino de�ned by a pair of involutions in necessarily symmetric.
Therefore, studying these objects we can obtain interesting properties on the associated involutions.

At the beginning of Section 2 we give a simple characterization of the pairs of involutions (π1, π2)
de�ning symmetric permutominoes. Moreover we prove that, if P is a symmetric permutomino, then it
is uniquely determined by π1(P ). Hence there is a trivial bijection between symmetric permutominoes
of size n and a class of involutions of length n.

The problem of the enumeration of symmetric permutominoes according to the size turns out to
be more complex. As a matter of fact, the approach used in [9], based on the ECO method, and the
classical decomposition strategy (as in [3]), are here not easily applicable, since the objects we deal
with must satisfy the two constraints of being permutominoes, and of being symmetric. The method
we show in this paper to solve enumeration is almost entirely bijective, and resembles the method used
in [4] for the enumeration of three dimensional convex polygons. It can be brie�y explained in the
following steps:

1. we consider a larger class of objects, namely the symmetric permutominides, which have the same
properties of permutominoes, apart from the fact that the boundary needs not be self-avoiding.
The symmetric permutominides can be of three types: proper symmetric permutominoes, south-
east oriented, or north-east oriented permutominides (Section 2.1). We show that if a permuto-
minide is of the �rst or of the second type, then its reentrant points form a permutation matrix.
To do this, we need to apply, and then slightly extend, a result of discrete geometry recently
established by Brlek et al. [5];

2. using the previous result, we are able to map the objects of the �rst and of the second type into
a subset of 2-colored Motzkin paths, satisfying some special conditions (Section 2.2). Such paths
can be easily treated with standard generating function methods. The bijection strongly uses
the fact that these objects are symmetric according to the diagonal x = y;

3. using the generating functions of the previously considered 2-colored Motzkin paths and of south-
east oriented permutominides, by di�erence we determine the generating function of symmetric
permutominoes (Sections 2.3 and 2.4). The main result states that the number of symmetric
permutominoes of size n is

(n + 2) 2n−3 − (n− 1)
(

n− 2
bn−2

2 c
)
− (n− 2)

(
n− 3
bn−3

2 c
)

n ≥ 2.
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Our bijective approach allows us to determine some further combinatorial properties of symmetric
permutominoes. Moreover, we can prove that the number of symmetric permutominides of size n is
n 2n−3. Such a result is quite surprising, since it states that the class of symmetric permutominides is
rational, while it is obtained as the disjoint union of three algebraic (not rational) classes.

2 Symmetric permutominoes
Let Symn denote the class of symmetric permutominoes of size n, and let

S̃ymn = {π1(P ) : P ∈ Symn }.
Figure 4 shows a symmetric permutomino of size 15. It is easy to prove the following fact.

Proposition 2.1 Let P be a convex permutomino; then P ∈ Symn if and only if both π1(P ) and
π2(P ) are involutions.

Figure 3 shows that if only π1(P ) is an involution, then P is not symmetric.

Proposition 2.2 If P is a symmetric permutomino, then π1(P ) has no free �xed points.

Proof. Assume that i is a free �xed point of π1(P ), then π1(P ) = θ ⊕ (1)⊕ θ′. Since the boundary of
P must necessarily contain the point I = (i, π1(i)), and P is symmetric with respect to x = y, then
the boundary of P intersects itself in I. Hence P is not a permutomino. 2

As a consequence of Proposition 2.2, if P is symmetric, then π1(P ) has at most two �xed points.

Figure 4: A symmetric permutomino of size 15 and the two associated involutions π1 =
(10, 9, 11, 7, 14, 6, 4, 15, 2, 1, 3, 13, 12, 5, 8), π2 = (11, 10, 14, 9, 15, 7, 6, 13, 4, 2, 1, 12, 8, 3, 5) .

In practice, according to Proposition 2.1 and Theorem 1.2, a symmetric permutomino is uniquely
determined by one of the two de�ning permutations, i.e. there is a trivial bijection between Symn and
S̃ymn. Thus, if π ∈ S̃ymn, we can legitimately say that π de�nes a symmetric permutomino. The
following result is straightforward.

Theorem 2.3 A permutation π de�nes a symmetric permutomino if and only if π ∈ C̃n and it is an
involution without free �xed points.
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Summarizing, a permutation π of length n belongs to S̃ymn if and only if: (1) σ(π) is lower
unimodal; (2) π 6= θ1 ª θ2 for some θ1, θ2; (3) π is an involution; (4) π does not contain free �xed
points.

For instance, if π = (10, 9, 11, 7, 14, 6, 4, 15, 2, 1, 3, 13, 12, 5, 8), we have µ = (10, 11, 14, 15, 13, 12, 8),
σ = (10, 9, 7, 6, 2, 1, 3, 5, 8). Moreover π is an involution, and the unique �xed point is 6 (not a free
�xed point), therefore π de�nes a symmetric permutomino, precisely the one depicted in Fig. 4. For
n = 2, . . . , 4:

S̃ym2 = {12}, S̃ym3 = {132, 213}, S̃ym4 = {1324, 1432, 2143, 3214}.

The 4 symmetric permutominoes of size 4 are depicted in Figure 12.

2.1 Symmetric permutominides: a larger class of objects
Our aim in this section is to consider a larger class of objects, containing the class of symmetric
permutominoes and preserving its main features. In practice, the idea is to enlarge this class including
a more general class of diagrams having the basic properties of symmetric permutominoes, except
for the fact that the boundary is now allowed to cross itself. These objects have nice combinatorial
properties and will help us in the enumeration of symmetric permutominoes.

A set of cells is said to be convex if each of its rows and columns is non empty and connected (see
Fig. 5 (a)). A convex set of cells P naturally de�nes a boundary, and the vertices of P are the points at
the extremities of each side of maximal length in the boundary of P . To the set P we associate a closed
(possibly self-intersecting) path p(P ) following the boundary of P and connecting all its vertices. Such
a path uses north N = (0, 1), south S = (0,−1), east E = (1, 0) and west W = (−1, 0) steps. It starts
with a north step from the lowest leftmost vertex of P , and connects a generic vertex X to the unique
vertex Y , never visited before, which can be reached from X following an horizontal or a vertical side
of the boundary of P (thus Y has the same abscissa or ordinate of X). This path naturally de�nes an
order on the vertices of P (see Fig. 5 (b)).

So let A =
(
A1, . . . , A2(r+1)

)
be the list of vertices of P . Similarly to the de�nition of a per-

mutomino, we say that P is a symmetric permutominide if P1 = (A1, A3, . . . , A2r+1) and P2 =
(A2, A4, . . . , A2r+2) represent two involutions of Sr+1, indicated as usual by π1(P ) and π2(P ), re-
spectively. We say that n + 1 is the size of the permutominide. For instance, Figure 5 (c) presents a
permutominide and the two involutions de�ning it.

In this paper we will study the class of convex symmetric permutominides (brie�y symmetric per-
mutominides), and we will denote with Pn be the class of symmetric permutominides of size n. Clearly,
concerning polyominoes, the de�nitions of symmetric permutominide and of symmetric permutomino
coincide, whence Symn is strictly included in Pn. Indeed permutominides retain some properties of
symmetric permutominoes.

Proposition 2.4 If P ∈ Pn then

1. P is symmetric with respect to the diagonal x = y.

2. There is exactly one horizontal (vertical) side of P for each ordinate (abscissa) between 1 and n.
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Figure 5: (a) a convex set of cells P ; (b) the path p(P ), starting from O; (b) a permutominide of size
5, and its two de�ning involutions.
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Figure 6: (a),(b) Two symmetric permutominides, and the associated paths and involutions; observe
that they have the same π1; (c) a permutominide which is symmetric with respect to x = y, but is not
a symmetric permutominide.

In Figure 6 (c) we see that conditions 1. and 2. are not su�cient for a permutominide P to be a
symmetric permutominide. In contrast to what happened for symmetric permutominoes, a symmetric
permutominide P is not uniquely determined by simply π1(P ). For instance, Figure 6 (a) and (b) show
two distinct symmetric permutominides P1 and P2 such that π1(P1) = π1(P2). In this section we give
the main properties of symmetric permutominides and of the associated permutations.

Three classes of symmetric permutominides.
The class Pn can be partitioned into three disjoint subsets:

1. the set Symn of the symmetric permutominoes,

2. the set NEn of the symmetric permutominides of size n, which are not permutominoes and such
that π1(1) < π1(n); these objects are called, for obvious graphical reasons, north-east oriented
permutominides (brie�y ne-permutominides), (see Fig. 5 (c));

3. the set SEn of the symmetric permutominides of size n, which are not permutominoes and
such that π1(1) > π1(n); these objects are called south-east oriented permutominides (brie�y
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se-permutominides), as the one in Fig. 7.

The ne-permutominides and the se-permutominides have a simple and rather predictable charac-
terization, which relates the problem of their enumeration to the problem of the enumeration of some
special subclasses of symmetric permutominoes.

Proposition 2.5 Let P be a symmetric permutominide of size n. We have:
(i) P is a ne-permutominide if and only if P can be uniquely decomposed into a sequence V1 . . . Vh of
symmetric permutominoes concatenated along the diagonal x = y, with h ≥ 2, starting from the point
(1, 1), and where

1. V1 is the re�ection of a directed convex permutomino with respect to x + y = 0,

2. V2, . . . , Vh−1 are parallelogram permutominoes,

3. Vh is a directed convex permutomino (see for instance Fig. 7 (a)).

(ii) P is a se-permutominide if and only if P can be uniquely decomposed into a sequence of 2h + 1
permutominoes V1 . . . Vh W V ′

h . . . V ′
1, with h ≥ 1, concatenated along the diagonal x + y = n, starting

from the point (1, n), and where,

1. V1 is the re�ection of a directed convex permutomino with respect to the y-axis,

2. V2, . . . , Vh are the re�ection of parallelogram permutominoes with respect to to the y-axis,

3. W is symmetric with respect to x = y and is the re�ection with respect to the y-axis of a paral-
lelogram permutomino,

4. each V ′
i is the re�ection of Vi with respect to x = y (the decomposition of a south-east oriented

permutominide is shown in Fig. 7 (b)).

2.2 A path representation for symmetric permutominides
Our aim in this section is to enumerate permutominides, and in particular symmetric permutominoes,
according to their size. To do this we will encode permutominides in terms of paths in the plane.

Reentrant points in a symmetric permutominide. For any P ∈ Pn we consider the path
p(P ), already de�ned in the previous section, represented by a word in the alphabet {N, E, S, W}.

Any occurrence of a sequence NE, ES, SW , or WN in the word p(P ) de�nes a salient point
of P , while any occurrence of a sequence EN , SE, WS, or NW de�nes a reentrant point of P (see
for instance, Figure 7). Reentrant and salient points were considered in [7], and successively in [5],
in a more general context, and it was proved that in any closed path (hence in any permutominide)
the di�erence between the number of salient and reentrant points is congruous to 0 mod 4. More
speci�cally, Brlek at al. [5] proved that in any polyomino (hence in any permutomino) the di�erence
between the number of salient and reentrant points is equal to 4.

Hence, a permutomino of size n ≥ 2 has exactly n− 2 reentrant and n+2 salient points. Moreover
if P is a convex permutomino, then there is exactly one reentrant point for each abscissa and ordinate
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O

(b)(a)

Figure 7: (a) A north-east oriented permutominide; (b) A south-east oriented permutominide and its
reentrant points. The path determined by its boundary, starting from O, has been put in evidence by
means of arrows.

O
(b)(a)

O

Figure 8: (a) A column-convex permutominide and its reentrant points; (b) a north-east oriented
permutominide and its reentrant points.

between 2 and n (see also [9]). Equivalently, the set of reentrant points of P de�nes a permutation
matrix of dimension n− 2.

This property is true a fortiori if P is a symmetric convex permutomino. Observe that the statement
does not hold if the permutomino is not convex (see Fig. 8 (a)). We will prove that instead this property
holds for se-permutominides.

Proposition 2.6 If P ∈ SEn then there is exactly one reentrant point for each abscissa and ordinate
between 2 and n. Equivalently, R(P ) de�nes a permutation matrix of dimension n− 2.

Proof. By Proposition 2.5, P can be uniquely decomposed in the concatenation of 2h+1 permutominoes
V1 . . . Vh Vh+1 Vh+2 . . . V2h+1, with h ≥ 1, concatenated along the diagonal x + y = n. By the results
we quoted above, for each of these components the statement of the Proposition holds.

Let R(P ) and S(P ) denote, respectively, the sets of reentrant and salient points of P . Moreover,
with 1 ≤ i ≤ 2h + 1, let R(Vi) and S(Vi) denote, respectively, the sets of reentrant and salient points
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of the component Vi, seen as a single permutomino. By the decomposition given in Proposition 2.5,
each of the components V2, . . . , V2h is the re�ection of a parallelogram permutomino according to the
y-axis. For each of these objects Vi, we denote with Ŝ(Vi) the set of the salient points of Vi except the
two points in the leftmost upper corner and in the rightmost lower corner of Vi.

Looking at Figures 8 (b), and 9, one easily sees that R(P ) can be obtained as

R(P ) = R(V1) ∪ . . . ∪ Ŝ(Vi) ∪R(Vi+1) ∪ . . . ∪R(V2h+1), 2 ≤ i ≤ 2h.

This simply brings to the proof of the proposition. 2

Observe that the result of Proposition 2.6 does not hold for ne-permutominides (see Fig. 8 (b)).
From the previous characterization we have the following.

Corollary 2.7 If P ∈ Symn ∪ SEn then P is uniquely determined by the set R(P ) of its reentrant
points.

Finally, one can easily prove that if P ∈ Symn ∪ SEn, then its reentrant points are regularly
distributed in the path p(P ). Let us consider the following points on p(P ) (see Fig. 9):

- A is the vertex of P with maximal ordinate among the two with abscissa 1;

- B is the vertex of P with minimal abscissa among the two with ordinate n;

- C is the vertex of P with minimal ordinate among the two with abscissa n;

- D is the vertex of P with maximal abscissa among the two with ordinate 1.

The following proposition describes the positions of the reentrant points of P within the path p(P ):

Corollary 2.8 Let P ∈ Symn ∪ SEn. Then
- the reentrant points of type EN lie in the subpath of p(P ) from A to B;
- the reentrant points of type SE lie in the subpath of p(P ) from B to C;
- the reentrant points of type WS lie in the subpath of p(P ) from C to D;
- the reentrant points of type NW lie in the subpath of p(P ) from D to A.

A path encoding for symmetric permutominides. Let us consider paths in the plane using
up steps U = (1, 1), down steps D = (1,−1), and two types of horizontal steps, (1, 0), namely α and
β steps, graphically represented by solid and dotted horizontal steps, respectively. Let Mn be the set
of these paths running from (0, 0) to (n, 0), remaining weakly above the x-axis and with the further
requirements that:

(1) an α (solid) step can never occur after the �rst occurrence of a down step;

(2) a β (dotted) step can never occur before the last occurrence of an up step.

Examples of paths of this class are given in Fig. 11, 13, 16.
Now we de�ne the mapping ϕ : Symn ∪SEn → Mn−2. Let P be a permutominide in Symn ∪SEn.

The function ϕ maps each type of reentrant point of P into a di�erent type of step (as sketched in
Fig. 10):
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O

A

B

C

D

Figure 9: The distribution of the reentrant points of a se-permutominide.

ϕ(a) (b)

Figure 10: (a) The four types of reentrant points of a permutominide; (b) the coding of each reentrant
point through the mapping ϕ.

• a reentrant point EN is mapped to an up step U ;

• a reentrant point SE is mapped to a horizontal dotted step β;

• a reentrant point WS is mapped to a down step D;

• a reentrant point NW is mapped to an up a horizontal solid step α.

The path ϕ(P ) is obtained as the concatenation, starting from (0, 0) of the steps encoding the
reentrant points of P read from left to right. This is possible since, by Proposition 2.6 there is exactly
one reentrant point for each abscissa of P . For instance, the permutomino in Fig. 4 is mapped to the
path in Fig. 11 (a), while the south-east oriented crossing permutomino in Fig. 7 is mapped to the
path in Fig. 11 (b).

The images trough ϕ of elements of Sym4 ∪ SE4 are depicted in Fig. 12.

We �rst ensure the reader that, if P ∈ Symn ∪ SEn, then ϕ(P ) ∈ Mn−2:
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(b)

(a)

Figure 11: The image, through ϕ, of the permutominoes of Fig. 4 (a), and Fig. 7 (b).

se−orientedsymmetric permutominoes

Figure 12: The image of the symmetric permutominides in Sym4 ∪ SE4 through ϕ .

i. it is clear that ϕ(P ) is a path made of n − 2 steps; moreover, since P is symmetric, ϕ(P ) has the
same number of up and down steps;

ii. we know from Corollary 2.8 that the reentrant points of type EN�giving up steps�are located in
the subpath from A to B, while those of type WS�giving down steps�are located in the subpath
from C to D. Hence, if P is a permutomino, then clearly ϕ(P ) cannot pass below the x-axis. On
the other side, if P ∈ SEn, the decomposition of Proposition 2.5 suggests that all the up steps
in ϕ(P ) must come before its down steps, so ϕ(P ) remains strictly above the x-axis;

iii. using the same arguments, we see that, from left to right, the reentrant points of type EN must
all come before the �rst reentrant point of type SE, and similarly, the reentrant points of type
NW must all come before the �rst reentrant point of type WS. Therefore an α step in ϕ(P ) can
never occur after the leftmost occurrence of a down step, and a β step in ϕ(P ) can never occur
before the rightmost occurrence of an up step.

Proposition 2.9 For any n ≥ 2, the function ϕ is a bijection between the sets Symn ∪ SEn and
Mn−2.

Proof. We prove the statement de�ning a function ξ : Mn−2 → Symn ∪ SEn such that, for all
P ∈ Symn ∪ SEn, we have ξ(ϕ(P )) = P . Let w = w1 . . . wn−2 ∈ Mn−2, and let r (respectively q) be
the number of the horizontal solid α steps (respectively horizontal dotted steps β) in w. The �rst step
to build ξ(P ) is to place its reentrant points, then we will collect them in the unique possible way in
order to obtain the associated permutominide.
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Figure 13: A path w ∈ M13.

For simplicity, we represent the path w = w1 . . . wn−2 as a sequence of points on a line as, for
example, it is shown below

13

ββααβαααα U U D D

w w w w w w w w w w w w w1 2 3 4 5 6 7 8 9 10 11 12

Now we build a matching of the points {1, . . . , n− 2} following the rules:

- connect the k-th up step to the k-th down step,

- connect the k-th solid step (α) to the (r − k + 1)-th solid step;

- connect the k-th dotted step (β) to the (q − k + 1)-th dotted step.

13

ββ
w

ααβαααα U U D D

w w w w w w w w w w w w1 2 3 4 5 6 7 8 9 10 11 12

Figure 14: The matching obtained from the path in Fig.13.

Now everything is set to obtain the symmetric permutominide P = ξ(w) such that ϕ(P ) = w:

• For each up-down edge, starting in wi and ending in wl, we place a reentrant point of type EN
in the position (i + 1, l + 1) and a reentrant point of type WS in (l + 1, i + 1).

• For each dotted-dotted edge, starting in wi and ending in wl, we place a reentrant point of type
SE in the positions (i + 1, l + 1) and (l + 1, i + 1).

• For each solid-solid edge, starting in wi and ending in wl, we place a reentrant point of type NW
in the positions (i + 1, l + 1) and (l + 1, i + 1).

The example in Fig. 15 shows the path w and the reentrant points it determines. Once the n− 2
reentrant points have been placed, by connecting them we can easily build the unique permutominide
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of size n having these points as reentrant points. By the construction of ξ the reader can easily prove
that ξ = ϕ−1. 2

De�nitively, Proposition 2.9 ensures that

|Symn| + |SEn| = |Symn ∪ SEn| = |Mn−2| . (3)

Remark. We would like to point out that we may naturally de�ne the function ϕ also on the class
of convex permutominoes of size n. The image through ϕ of a convex permutomino is still a path in
Mn−2, but in this case ϕ is not injective. For instance the two convex permutominoes below

are both mapped into the path UD.

14

2

3

4

5

6

7

8

9

10

11

12

13

(b)

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

Figure 15: (a) The path w ∈ M13; (b) the set of the reentrant points of ϕ−1(w); joining these points
in the natural way we obtain the permutomino of size 15 depicted in Fig. 7.
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2.3 Enumeration of various classes of symmetric permutominoes
Here we consider some subclasses of symmetric permutominoes and enumerate them using the bijection
ϕ.
Proposition 2.10 Let P ∈ Symn. Then:

1. P is directed convex if and only if ϕ(P ) does not contain α steps (see Fig. 16 (a));

2. P is parallelogram if and only if ϕ(P ) does not contain α or β steps, i.e. it is a Dyck path (see
Fig. 16 (b)).

The enumeration of these two classes is then straightforward, using standard combinatorial tech-
niques. The generating function of directed convex symmetric permutominoes is

Dir(x) =
x (1− 2x−√1− 4x2)

2 (2x− 1)
. (4)

The number of symmetric directed convex permutominoes of size n is therefore
(

n− 2
bn−2

2 c
)

.

The generating function of parallelogram symmetric permutominoes is

Par(x) =
1−√1− 4x2

2
, (5)

and the number of parallelogram symmetric permutominoes of size 2n is equal to the Catalan number
cn−2.

(b) (c)(a)

Figure 16: (a) a symmetric directed convex permutomino; (b) A symmetric parallelogram permu-
tomino; (c) a symmetric re�ected parallelogram permutomino, and their encoding path.

In this section we are also interested in the class of symmetric permutominoes which are the
re�ection of a parallelogram permutomino with respect to the x-axis, which we will call re�ected
parallelogram symmetric permutominoes. Clearly, such permutominoes can only have reentrant points
of type SE or NW , and ϕ maps them into paths without up or down steps (see Fig. 16 (c)).
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Proposition 2.11 The number of re�ected parallelogram symmetric permutominoes having size n is
equal to

( n−1
bn−1

2
c
)
.

Proof. A re�ected parallelogram symmetric permutomino of size n is uniquely determined by the sub-
path p of its boundary running from (1, n) to the diagonal x = y, and remaining weakly above the
diagonal x + y = n + 1, as shown in Fig. 17. Such a path p is (up to a rotation) a pre�x of a Dyck
path of length n − 1. Since the number of pre�xes of Dyck paths of length n − 1 is equal to

( n−1
bn−1

2
c
)

[17], we obtain the thesis. 2

(c)(b)(a)

Figure 17: (a) The path p; (b) the symmetric of p with respect to the diagonal x = y; (c) the unique
permutomino obtained from p.

2.4 Enumeration results
To obtain the enumeration of symmetric permutominoes, we plan to use identity (3), and then we need
to count the sets SEn and Mn. Using the decomposition given in Proposition 2.5, and the generating
functions of the various classes involved in such a decomposition � determined in the previous section
� it is a simple exercise to compute the generating function of SEn. We also need to recall from [10]
that the generating functions of directed convex permutominoes and of parallelogram permutominoes
are, respectively,

D(x) =
x

(
1−√1− 4x

)

2
√

1− 4x
P (x) =

1− 2x−√1− 4x

2
.

Proposition 2.12 The generating function of south-east oriented permutominides according to the
size is

SE(x) =
x2

2(1− 2x)

(
1√

1− 4x2
− 1

)
. (6)

Proof. By the decomposition in Proposition 2.5, the generating function is

Ref(x)
D(x2)

x2

(
1 +

P (x2)
x2

+
P (x2)2

x4
+ . . . +

P (x2)k

x2k
+ . . .

)
=

Ref(x) D(x2)
x2 − P (x2)

,

where Ref(x) is the generating function of re�ected parallelogram symmetric permutominoes. Hence
the assertion of the proposition follows. 2
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Consequently, the number of south east oriented permutominides of size n is:

|SEn| =
n− 1

2

(
n− 2
bn−2

2 c
)
− 2n−3,

with n ≥ 4. Using standard combinatorial techniques we can then determine the generating function
of the class Mn.

Proposition 2.13 The generating function of the class Mn is

M(x) =
3 − 4x − √

1− 4x2

2 (1− 2 x)2
. (7)

Now we have all ingredients to count symmetric permutominoes.

Theorem 2.14 The generating function of the class Symn is

Sym(x) =
x (1− x)2

(1− 2x)2
− x2 (1 + x)

(1− 2x)
√

1− 4x2
− x, (8)

and therefore the number of symmetric permutominoes of size n is equal to:

|Symn| = (n + 2) 2n−3 − (n− 1)
(

n− 2
bn−2

2 c
)
− (n− 2)

(
n− 3
bn−3

2 c
)

n ≥ 2. (9)

The sequence begins with 1, 2, 4, 10, 22, 54, 120, 284, . . . and it is not in [16]. Due to the decompo-
sition given in Proposition 2.5, the generating function of north-east oriented permutominides is given
by Dir2(x)

x−Par(x)
, hence it is equal to

NE(x) =
x2(2x− 1 +

√
1− 4x2)

2(1− 2x)2
.

Finally, recalling that |Pn| = |Symn| + |SEn| + |NEn|, we have

Theorem 2.15 The generating function of the class Pn is

P(x) =
x2(1− x)
(1− 2x)2

, (10)

therefore the number of symmetric permutominides of size n is n 2n−3, n ≥ 2.

The result in Theorem 2.15 is quite surprising, since it states that symmetric permutominides are a
rational class of objects, while symmetric permutominoes are an algebraic class. The table below lists
the �rst terms of the main sequences treated in the paper, and their identifying number in the Sloane
database [16]. We point out that diagonally symmetric polyominoes were �rst studied in [14], where
the sequence Refn was also determined.
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n 2 3 4 5 6 7 8 9 10 . . . Sequence in [16]
Pn 1 3 8 20 48 112 256 576 1280 . . . A001792

Mn−2 1 2 5 12 29 68 158 360 813 . . . - - -
Symn 1 2 4 10 22 54 120 284 626 . . . - - -
SEn 0 0 1 2 7 14 38 76 187 . . . A107373
NEn 0 1 3 8 19 44 98 216 467 . . . - - -
Dirn 1 1 2 3 6 10 20 35 70 . . . A001405
Parn 1 0 1 0 2 0 5 0 14 . . . A000108
Refn 1 2 3 6 10 20 35 70 126 . . . A001405

3 Further work and open problems
We start presenting some minor studies related to the arguments treated in the paper. Since the results
are quite simple, we will not provide detailed proofs to the following statements.

Involutions associated with symmetric permutominides. We have considered the problem
of establishing if a given involution of length n belongs to the set

P̃n = {π1(P ) : P is a symmetric permutominide }.

It is convenient to partition this set into three subsets: S̃ymn, which has already been studied, and

1. ÑEn = {π1(P ) : P ∈ NEn},

2. S̃En = {π1(P ) : P ∈ SEn}.

1. If π ∈ ÑEn then we can easily build a symmetric permutomino P such that π1(P ) = π, hence
π ∈ Symn; however there are permutations in S̃ym\ÑE (the simplest one is (2, 1, 3)). Then
ÑEn ⊂ S̃ym.

2. If π ∈ S̃En then π is necessarily a square involution which can be decomposed as π = θ ª θ′.
Moreover, for every square involution which can be decomposed as the direct di�erence of two
permutations, unless π = (1) ª θ (which is the same as π(1) = n), it is possible to construct at
least a south-east oriented symmetric permutominide P such that π1(P ) = π.

Hence, referring to the conditions (1), (2), (3), (4) characterizing the permutations of S̃ymn, and
presented in the Section 2, we can easily give a characterization of the set P̃n.

Proposition 3.1 A permutation π ∈ P̃n if and only if π satis�es (1), (3), (4), and (2) is replaced by
the weaker

(2′) π 6= (1)ª π′.
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Clearly, since π is an involution, (2′) implies that π 6= π′ ª (1). For instance, the permutation

(9, 11, 12, 10, 7, 8, 5, 6, 1, 3, 4, 2) = (1, 3, 4, 2)ª (1, 2)ª (1, 2)ª (1, 3, 4, 2)

is in P̃11 but not in S̃ym11.

Permutominides symmetric according to the main diagonal. Using the results in the last
section it is now simple to determine the number of permutominides which are symmetric according
to x = y. In practice, to symmetric permutominides we must add those permutominides which can be
decomposed�along the diagonal x+y = n+1� into a sequence of 2h permutominoes V1 . . . Vh V ′

h . . . V ′
1 ,

with properties given in Proposition 2.5 (ii) (such as for instance, the permutominide 6 (c)). In terms
of generating functions, to P(x), we must add the generating function D(x2)

x2−P (x2)
= x2

1−4x2 .
Then the number of permutominides symmetric according to the main diagonal, and having size n

is n 2n−3, if n is odd, and n 2n−3 + 4
n
2
−1, if n is even.

Some open problems. There are some problems related to the study of symmetric permutomi-
noes, which we plan to consider in some further research. Below we give a brief list of the problems in
which we are more interested:

1. It would be interesting and useful to prove in a bijective way that the number of symmetric
permutominides of size n is n 2n−3. This proof should be related to some bijective proof that the
number of convex permutominides (not necessarily symmetric) of size n is 2n 4n−3. We believe
that such proofs should give us many information on the properties of symmetric permutominoes,
and of convex permutominoes.

2. Involutions of the symmetric group have been studied by several authors and by various points
of view. We would like to study some algebraic properties of the involutions de�ning symmetric
permutominoes, and particularly, to see if these involutions inherit some well-known properties of
involutions. For instance we could consider the poset de�ned on these involutions by the Bruhat
order (also referring to the poset de�ned by involutions [11]), or some classical statistics such as
number of descents, excedencees, �xed points, and many others.

3. In this paper we have considered the class of convex symmetric permutominoes. It would be
interesting to determine similar results for some larger classes of symmetric permutominoes, for
instance the directed symmetric permutominoes.
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