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An holomorphic study of the Smarandache
concept in loops

Tèmı́tópé Gbóláhàn Jáıyéo. lá1

Department of Mathematics, Obafemi Awolowo University

Ile Ife, Nigeria.

Abstract If two loops are isomorphic, then it is shown that their holomorphs are also

isomorphic. Conversely, it is shown that if their holomorphs are isomorphic, then the loops

are isotopic. It is shown that a loop is a Smarandache loop if and only if its holomorph is

a Smarandache loop. This statement is also shown to be true for some weak Smarandache

loops (inverse property, weak inverse property) but false for others (conjugacy closed, Bol,

central, extra, Burn, A-, homogeneous) except if their holomorphs are nuclear or central. A

necessary and sufficient condition for the Nuclear-holomorph of a Smarandache Bol loop to be

a Smarandache Bruck loop is shown. Whence, it is found also to be a Smarandache Kikkawa

loop if in addition the loop is a Smarandache A-loop with a centrum holomorph. Under this

same necessary and sufficient condition, the Central-holomorph of a Smarandache A-loop is

shown to be a Smarandache K-loop.

Keywords Holomorph of loops; Smarandache loops.

§1. Introduction

The study of Smarandache loops was initiated by W.B. Vasantha Kandasamy in 2002.
In her book [19], she defined a Smarandache loop (S-loop) as a loop with at least a subloop
which forms a subgroup under the binary operation of the loop. For more on loops and their
properties, readers should check [16], [3], [5], [8], [9] and [19]. In her book, she introduced
over 75 Smarandache concepts on loops. In her first paper [20], she introduced Smarandache
: left(right) alternative loops, Bol loops, Moufang loops, and Bruck loops. But in this paper,
Smarandache : inverse property loops (IPL), weak inverse property loops (WIPL), G-loops,
conjugacy closed loops (CC-loop), central loops, extra loops, A-loops, K-loops, Bruck loops,
Kikkawa loops, Burn loops and homogeneous loops will be introduced and studied relative to
the holomorphs of loops. Interestingly, Adeniran [1] and Robinson [17], Oyebo [15], Chiboka
and Solarin [6], Bruck [2], Bruck and Paige [4], Robinson [18], Huthnance [11] and Adeniran [1]
have respectively studied the holomorphs of Bol loops, central loops, conjugacy closed loops,
inverse property loops, A-loops, extra loops, weak inverse property loops and Bruck loops.

In this study, if two loops are isomorphic then it is shown that their holomorphs are also
isomorphic. Conversely, it is shown that if their holomorphs are isomorphic, then the loops are
isotopic.

It will be shown that a loop is a Smarandache loop if and only if its holomorph is a
Smarandache loop. This statement is also shown to be true for some weak Smarandache loops
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(inverse property, weak inverse property) but false for others (conjugacy closed, Bol, central,
extra, Burn, A-, homogeneous) except if their holomorphs are nuclear or central. A necessary
and sufficient condition for the Nuclear-holomorph of a Smarandache Bol loop to be a Smaran-
dache Bruck loop is shown. Whence, it is found also to be a Smarandache Kikkawa loop if
in addition the loop is a Smarandache A-loop with a centrum holomorph. Under this same
necessary and sufficient condition, the Central-holomorph of a Smarandache A-loop is shown
to be a Smarandache K-loop.

§2. Definitions and Notations

Let (L, ·) be a loop. Let Aum(L, ·) be the automorphism group of (L, ·), and the set H =
(L, ·)×Aum(L, ·). If we define ’◦’ on H such that (α, x)◦(β, y) = (αβ, xβ ·y) ∀ (α, x), (β, y) ∈ H,
then H(L, ·) = (H, ◦) is a loop as shown in Bruck [2] and is called the Holomorph of (L, ·).

The nucleus of (L, ·) is denoted by N(L, ·) = N(L), its centrum by C(L, ·) = C(L) and
center by Z(L, ·) = N(L, ·) ∩ C(L, ·) = Z(L). For the meaning of these three sets, readers
should check earlier citations on loop theory.

If in L, x−1 · xα ∈ N(L) or xα · x−1 ∈ N(L) ∀ x ∈ L and α ∈ Aum(L, ·), (H, ◦) is called
a Nuclear-holomorph of L, if x−1 · xα ∈ C(L) or xα · x−1 ∈ C(L) ∀ x ∈ L and α ∈ Aum(L, ·),
(H, ◦) is called a Centrum-holomorph of L hence a Central-holomorph if x−1 · xα ∈ Z(L) or
xα · x−1 ∈ Z(L) ∀ x ∈ L and α ∈ Aum(L, ·).

For the definitions of automorphic inverse property loop (AIPL), anti-automorphic inverse
property loop (AAIPL), weak inverse property loop (WIPL), inverse property loop (IPL), Bol
loop, Moufang loop, central loop, extra loop, A-loop, conjugacy closed loop (CC-loop) and
G-loop, readers can check earlier references on loop theory.

Here, a K-loop is an A-loop with the AIP, a Bruck loop is a Bol loop with the AIP, a Burn
loop is Bol loop with the conjugacy closed property, an homogeneous loop is an A-loop with
the IP and a Kikkawa loop is an A-loop with the IP and AIP.

Definition 2.1. A loop is called a Smarandache inverse property loop (SIPL) if it has at
least a non-trivial subloop with the IP.

A loop is called a Smarandache weak inverse property loop (SWIPL) if it has at least a
non-trivial subloop with the WIP.

A loop is called a Smarandache G-loop (SG-loop) if it has at least a non-trivial subloop that
is a G-loop.

A loop is called a Smarandache CC-loop (SCCL) if it has at least a non-trivial subloop that
is a CC-loop.

A loop is called a Smarandache Bol-loop (SBL) if it has at least a non-trivial subloop that
is a Bol-loop.

A loop is called a Smarandache central-loop (SCL) if it has at least a non-trivial subloop
that is a central-loop.

A loop is called a Smarandache extra-loop (SEL) if it has at least a non-trivial subloop that
is a extra-loop.
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A loop is called a Smarandache A-loop (SAL) if it has at least a non-trivial subloop that is
a A-loop.

A loop is called a Smarandache K-loop (SKL) if it has at least a non-trivial subloop that is
a K-loop.

A loop is called a Smarandache Moufang-loop (SML) if it has at least a non-trivial subloop
that is a Moufang-loop.

A loop is called a Smarandache Bruck-loop (SBRL) if it has at least a non-trivial subloop
that is a Bruck-loop.

A loop is called a Smarandache Kikkawa-loop (SKWL) if it has at least a non-trivial subloop
that is a Kikkawa-loop.

A loop is called a Smarandache Burn-loop (SBNL) if it has at least a non-trivial subloop
that is a Burn-loop.

A loop is called a Smarandache homogeneous-loop (SHL) if it has at least a non-trivial
subloop that is a homogeneous-loop.

§3. Main Results

Holomorph of Smarandache Loops

Theorem 3.1. Let (L, ·) be a Smarandanche loop with subgroup (S, ·). The holomorph
HS of S is a group.

Theorem 3.2. A loop is a Smarandache loop if and only if its holomorph is a Smarandache
loop.

Proof. Let L be a Smarandache loop with subgroup S. By Theorem 3.1, (HS , ◦) is a group
where HS = Aum(S, ·) × (S, ·). Clearly, HS 6⊂ H(L, ·). So, let us replace Aum(S, ·) in HS by
A(S, ·) = {α ∈ Aum(L, ·) : sα ∈ S ∀ s ∈ S}, the group of Smarandache loop automorphisms
on S as defined in [19]. A(S, ·) ≤ Aum(L, ·) hence, HS = A(S, ·) × (S, ·) remains a group. In
fact, (HS , ◦) ⊂ (H, ◦) and (HS , ◦) ≤ (H, ◦). Thence, the holomorph of a Smarandache loop is
a Smarandache loop.

To prove the converse, recall that H(L) = Aum(L) × L. If H(L) is a Smarandache
loop then ∃ SH ⊂ H(L) 3 SH ≤ H(L). SH ⊂ H(L) ⇒ ∃ Bum(L) ⊂ Aum(L) and
B ⊂ L 3 SH = Bum(L) × B. Let us choose Bum(L) = {α ∈ Aum(L) : bα ∈ B ∀ b ∈ B},
this is the Smarandache loop automorphisms on B. So, (SH , ◦) = (Bum(L)×B, ◦) is expected
to be a group.

Thus, (α, x) ◦ [(β, y) ◦ (γ, z)] = [(α, x) ◦ (β, y)] ◦ (γ, z) ∀ x, y, z ∈ B, α, β, γ ∈ Bum(L) ⇔
xβγ · (yγ · z) = (xβγ · yγ) · z ⇔ x′ · (y′ · z) = (x′ · y′) · z ∀ x′, y′, z ∈ B. So, (B, ·) must be a
group. Hence, L is a Smarandache loop.

Remark 3.1. It must be noted that if Aum(L, ·) = A(S, ·), then S is a characteristic
subloop.

Theorem 3.3. Let L and L′ be loops. L ∼= L′ implies H(L) ∼= H(L′).
Proof. If L ∼= L′ then ∃ a bijection α : L → L′ 3 (α, α, α) : L → L′ is an

isotopism. According to [16], if two loops are isotopic, then their groups of autotopism are
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isomorphic. The automorphism group is one of such since it is a form of autotopism. Thus ;
Aum(L) ∼= Aum(L′) ⇒ H(L) = Aum(L)× L ∼= Aum(L′)× L′ = H(L′).

Theorem 3.4. Let (L,⊕) and (L′,⊗) be loops. H(L) ∼= H(L′) ⇔ xδ ⊗ yγ = (xβ ⊕
y)δ ∀ x, y ∈ L, β ∈ Aum(L) and some δ, γ ∈ Sym(L′). Hence, γLeδ = δ, δReγ = βδ where e is
the identity element in L and Lx, Rx are respectively the left and right translations mappings
of x ∈ L′.

Proof. Let H(L,⊕) = (H, ◦) and H(L′,⊗) = (H,¯). H(L) ∼= H(L′) ⇔ ∃ φ : H(L) →
H(L′) 3 [(α, x) ◦ (β, y)]φ = (α, x)φ ¯ (β, y)φ. Define (α, x)φ = (ψ−1αψ, xψ−1αψ) ∀ (α, x) ∈
(H, ◦) and where ψ : L → L′ is a bijection.
H(L) ∼= H(L′) ⇔ (αβ, xβ ⊕ y)φ = (ψ−1αψ, xψ−1αψ)¯ (ψ−1βψ, yψ−1βψ) ⇔ (ψ−1αβψ, (xβ ⊕
y)ψ−1αβψ) = (ψ−1αβψ, xψ−1αβψ ⊗ yψ−1βψ) ⇔ (xβ ⊕ y)ψ−1αβψ = xψ−1αβψ ⊗ yψ−1βψ ⇔
xδ ⊗ yγ = (xβ ⊕ y)δ where δ = ψ−1αβψ, γ = ψ−1βψ.

Furthermore, γLxδ = Lxβδ and δRyγ = βRyδ ∀ x, y ∈ L. Thus, with x = y = e, γLeδ = δ

and δReγ = βδ.

Corollary 3.1. Let L and L′ be loops. H(L) ∼= H(L′) implies L and L′ are isotopic under
a triple of the form (δ, I, δ).

Proof. In Theorem 3.4, let β = I, then γ = I. The conclusion follows immediately.

Remark 3.2. By Theorem 3.3 and Corollary 3.1, any two distinct isomorphic loops are
non-trivialy isotopic.

Corollary 3.2. Let L be a Smarandache loop. If L is isomorphic to L′, then {H(L),H(L′)}
and {L,L′} are both systems of isomorphic Smarandache loops.

Proof. This follows from Theorem 3.2, Theorem 3.3, Corollary 3.1 and the obvious fact
that the Smarandache loop property in loops is isomorphic invariant.

Remark 3.3. The fact in Corollary 3.2 that H(L) and H(L′) are isomorphic Smarandache
loops could be a clue to solve one of the problems posed in [20]. The problem required us to
prove or disprove that every Smarandache loop has a Smarandache loop isomorph.

Smarandache Inverse Properties

Theorem 3.5. Let L be a loop with holomorph H(L). L is an IP-SIPL if and only if
H(L) is an IP-SIPL.

Proof. In an IPL, every subloop is an IPL. So if L is an IPL, then it is an IP-SIPL. From
[2], it can be stated that L is an IPL if and only if H(L) is an IPL. Hence, H(L) is an IP-SIPL.
Conversely assuming that H(L) is an IP-SIPL and using the same argument L is an IP-SIPL.

Theorem 3.6. Let L be a loop with holomorph H(L). L is a WIP-SWIPL if and only if
H(L) is a WIP-SWIPL.

Proof. In a WIPL, every subloop is a WIPL. So if L is a WIPL, then it is a WIP-SWIPL.
From [11], it can be stated that L is a WIPL if and only if H(L) is a WIPL. Hence, H(L) is a
WIP-SWIPL. Conversely assuming that H(L) is a WIP-SWIPL and using the same argument
L is a WIP-SWIPL.
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Smarandache G-Loops

Theorem 3.7. Every G-loop is a SG-loop.
Proof. As shown in [Lemma 2.2, [7]], every subloop in a G-loop is a G-loop. Hence, the

claim follows.
Corollary 3.3. CC-loops are SG-loops.
Proof. In [10], CC-loops were shown to be G-loops. Hence, the result follows by Theorem

3.7.
Theorem 3.8. Let G be a CC-loop with normal subloop H. G/H is a SG-loop.
Proof. According to [Theorem 2.1, [7]], G/H is a G-loop. Hence, by Theorem 3.7, the

result follows.

Smarandache Conjugacy closed Loops

Theorem 3.9. Every SCCL is a SG-loop.
Proof. If a loop L is a SCCL, then there exist a subloop H of L that is a CC-loop.

CC-loops are G-loops, hence, H is a G-loop which implies L is a SG-loop.
Theorem 3.10 Every CC-loop is a SCCL.
Proof. By the definition of CC-loop in [13], [12] and [14], every subloop of a CC-loop is a

CC-loop. Hence, the conclusion follows.
Remark 3.4. The fact in Corollary 3.3 that CC-loops are SG-loops can be seen from

Theorem 3.9 and Theorem 3.10.
Theorem 3.11. Let L be a loop with Nuclear-holomorph H(L). L is an IP-CC-SIP-SCCL

if and only if H(L) is an IP-CC-SIP-SCCL.
Proof. If L is an IP-CCL, then by Theorem 3.5, H(L) is an IP-SIPL and hence by

[Theorem 2.1, [6]] and Theorem 3.10, H(L) is an IP-CC-SIP-SCCL. The converse is true by
assuming that H(L) is an IP-CC-SIP-SCCL and using the same reasoning.

Smarandache : Bol loops, central loops, extra loops and Burn loops

Theorem 3.12. Let L be a loop with Nuclear-holomorph H(L). L is a Bol-SBL if and
only if H(L) is a Bol-SBL.

Proof. If L is a Bol-loop, then by [17] and [1], H(L) is a Bol-loop. According to [Theo-
rem 6, [20]], every Bol-loop is a SBL. Hence, H(L) is a Bol-SBL. The Converse is true by using
the same argument.

Theorem 3.13. Let L be a loop with Nuclear-holomorph H(L). L is a central-SCL if and
only if H(L) is a central-SCL.

Proof. If L is a central-loop, then by [15], H(L) is a central-loop. Every central-loop is a
SCL. Hence, H(L) is a central-SCL. The Converse is true by using the same argument.

Theorem 3.14. Let L be a loop with Nuclear-holomorph H(L). L is a extra-SEL if and
only if H(L) is an extra-SEL.

Proof. If L is a extra-loop, then by [18], H(L) is a extra-loop. Every extra-loop is a SEL.
Hence, H(L) is a extra-SEL. The Converse is true by using the same argument.
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Corollary 3.4. Let L be a loop with Nuclear-holomorph H(L). L is a IP-Burn-SIP-SBNL
if and only if H(L) is an IP-Burn-SIP-SBNL.

Proof. This follows by combining Theorem 3.11 and Theorem 3.12.

Smarandache : A-loops, homogeneous loops

Theorem 3.15. Every A-loop is a SAL.
Proof. According to [Theorem 2.2, [4]], every subloop of an A-loop is an A-loop. Hence,

the conclusion follows.
Theorem 3.16. Let L be a loop with Central-holomorph H(L). L is an A-SAL if and

only if H(L) is an A-SAL.
Proof. If L is an A-loop, then by [Theorem 5.3, [4]], H(L) is a A-loop. By Theorem 3.15,

every A-loop is a SAL. Hence, H(L) is an A-SAL. The Converse is true by using the same
argument.

Corollary 3.5. Let L be a loop with Central-holomorph H(L). L is an homogeneous-SHL
if and only if H(L) is an homogeneous-SHL.

Proof. This can be seen by combining Theorem 3.5 and Theorem 3.16.

Smarandache : K-loops, Bruck-loops and Kikkawa-loops

Theorem 3.17. Let (L, ·) be a loop with holomorph H(L). H(L) is an AIPL if and
only if xβ−1J · yJ = (x · yα−1)J ∀ x, y ∈ L and αβ = βα ∀ α, β ∈ Aum(L, ·). Hence,
xJ · yJ = (z · w)J , xJ · yJ = (x · w)J , xJ · yJ = (y · w)J , xJ · yJ = (z · x)J , xJ · yJ =
(z · y)J , xJ · yJ = (x · y)J , xJ · yJ = (y · x)J ∀ x, y, z, w ∈ S.

Proof. H(L) is an AIPL ⇔ ∀ (α, x), (β, y) ∈ H(L) , [(α, x) ◦ (β, y)]−1 = (α, x)−1 ◦
(β, y)−1 ⇔ (αβ, xβ ·y)−1 = (α−1, (xα−1)−1)◦(β−1, (yβ−1)−1) ⇔ ((αβ)−1, [(xβ ·y)(αβ)−1]−1) =
(α−1β−1, (xα−1)−1β−1·(yβ−1)−1) ⇔ αβ = βα ∀ α, β ∈ Aum(L, ·) and (x(βα)−1)−1·(yβ−1)−1 =
[xα−1 · y(αβ)−1]−1 ⇔ Aum(L, ·) is abelian and (x(βα)−1)J · yβ−1J = [xα−1 · y(αβ)−1]J ⇔
Aum(L, ·) is abelian and (xα−1β−1)J ·yβ−1J = [xα−1 ·yβ−1α−1]J ⇔ Aum(L, ·) is abelian and
(x(βα)−1)J ·yβ−1J = [xα−1 ·y(αβ)−1]J ⇔ Aum(L, ·) is abelian and x′β−1J ·y′J = (x′ ·y′α−1)J
where x′ = xα−1, y′ = yβ.

What follows can be deduced from the last proof.
Theorem 3.18. Let (L, ·) be a Bol-SBL with Nuclear-holomorph H(L). H(L) is a Bruck-

SBRL if and only if xβ−1J · yJ = (x · yα−1)J ∀ x, y ∈ L and αβ = βα ∀ α, β ∈ Aum(L, ·).
Hence,

1. L is a Moufang-SML and a Bruck-SBRL.

2. H(L) is a Moufang-SML.

3. if L is also an A-SAL with Centrum-holomorph H(L) then L is a Kikkawa-SKWL and so
is H(L).

Proof. By Theorem 3.12, H(L) is a Bol-SBL. So by Theorem 3.17, H(L) is a Bruck-SBRL
⇔ Aum(L, ·) is abelian and xβ−1J · yJ = (x · yα−1)J ∀ x, y ∈ L.
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1. From Theorem 3.17, L is a Bruck-SBRL. From Theorem 3.17, L is an AAIPL, hence L is
a Moufang loop since it is a Bol-loop thus L is a Moufang-SML.

2. L is an AAIPL implies H(L) is an AAIPL hence a Moufang loop. Thus, H(L) is a
Moufang-SML.

3. If L is also a A-SAL with Centrum-holomorph, then by Theorem 3.5, L and H(L) are
both Kikkawa-Smarandache Kikkawa-loops.

Theorem 3.19. Let (L, ·) be a SAL with an A-subloop S and Central-holomorph H(L).
H(L) is a SKL if and only if xβ−1J · yJ = (x · yα−1)J ∀ x, y ∈ S and αβ = βα ∀ α, β ∈ A(S, ·).
Hence, L is a SKL.

Proof. By Theorem 3.16, H(L) is a SAL with A-subloop HS = A(S, ·)× (S, ·). So H(L) is
a SKL if and only if HS is a K-loop ⇔ A(S, ·) is abelian and xβ−1J · yJ = (x · yα−1)J ∀ x, y ∈
S , α, β ∈ A(S, ·) by Theorem 3.17. Following Theorem 3.17, S is an AIPL hence a K-loop
which makes L to be a SKL.
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Abstract The main purpose of this paper is to study the arithmetical properties of the

primitive numbers of power p by using the elementary method, and give some interesting

identities and asymptotic formulae.

Keywords Primitive numbers of power p; Smarandache function; Asymptotic formula.

§1. Introduction

Let p be a fixed prime and n be a positive integer. The primitive numbers of power p,
denoted as Sp(n), is defined as following:

Sp(n) = min{m : m ∈ N, pn|m!}.
In problem 47,48 and 49 of [1], Professor F.Smarandache asked us to study the properties of
the primitive numbers sequences {Sp(n)}(n = 1, 2, · · · ). It is clear that {Sp(n)}(n = 1, 2, · · · )
is the sequence of multiples of prime p and each number being repeated as many times as its
exponent of power p is. What’s more, there is a very close relationship between this sequence
and the famous Smarandache function S(n), where

S(n) = min{m : m ∈ N, n|m!}.
Many scholars have studied the properties of S(n), see [2], [3], [4], [5] and [6]. It is easily to
show that S(p) = p and S(n) < n except for the cases n = 4 and n = p. Hence, the following
relationship formula is obviously:

π(x) = −1 +
[x]∑

n=2

[
S(n)

n

]
,

where π(x) denotes the number of primes up to x, and [x] denotes the greatest integer less
than or equal to x. However, it seems no one has given some nontrivial properties about the
primitive number sequences before. In this paper, we studied the relationship between the
Riemann zeta-function and an infinite series involving Sp(n), and obtained some interesting
identities and asymptotic formulae for Sp(n). That is, we shall prove the following conclusions:

Theorem 1. For any prime p and complex number s, we have the identity:
∞∑

n=1

1
Ss

p(n)
=

ζ(s)
ps − 1

,

1This work is supported by the N.S.F(60472068) and P.N.S.F(2004A09) of P.R.China
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where ζ(s) is the Riemann zeta-function.
Specially, taking s = 2, 4 and p = 2, 3, 5, we have the
Corollary. The following identities hold:

∞∑
n=1

1
S2

2(n)
=

π2

18
;

∞∑
n=1

1
S2

3(n)
=

π2

48
;

∞∑
n=1

1
S2

5(n)
=

π2

144
;

∞∑
n=1

1
S4

2(n)
=

π4

1350
;

∞∑
n=1

1
S4

3(n)
=

π4

7200
;

∞∑
n=1

1
S4

5(n)
=

π4

56160
.

Theorem 2. Let p be any fixed prime. Then for any real number x ≥ 1, we have the
asymptotic formula:

∞∑
n=1

Sp(n)≤x

1
Sp(n)

=
1

p− 1

(
lnx + γ +

p ln p

p− 1

)
+ O(x−

1
2+ε),

where γ is the Euler constant, ε denotes any fixed positive number.
Theorem 3. Let k be any positive integer. Then for any prime p and real number x ≥ 1,

we have the asymptotic formula:

∞∑
n=1

Sp(n)≤x

Sk
p (n) =

xk+1

(k + 1)(p− 1)
+ O(xk+ 1

2+ε).

§2. Proof of the theorems

To complete the proof of the theorems, we need a simple Lemma.
Lemma. Let b, T are two positive numbers, then we have

1
2πi

∫ b+iT

b−iT

as

s
ds =





1 + O
(
ab min

(
1, 1

T ln a

))
, if a > 1;

O
(
ab min

(
1, 1

T ln a

))
, if 0 < a < 1;

1
2 + O

(
b
T

)
, if a = 1.

Proof. See Lemma 6.5.1 of [8].
Now we prove the theorems. First, we prove Theorem 1. Let m = Sp(n), if pα‖m, then the

same number m will repeat α times in the sequence Sp(n) (n = 1, 2, · · · ). Noting that Sp(n)
(n = 1, 2, · · · ) is the sequence of multiples of prime p, we can write

∞∑
n=1

1
Ss

p(n)
=

∞∑
m=1
pα‖m

α

ms
=

∑
pα

∞∑
m=1

(m,p)=1

α

pαsms

=
∞∑

α=1

α

pαs
ζ(s)

(
1− 1

ps

)
=

(
1− 1

ps

)
ζ(s)

∞∑
α=1

α

pαs
.

Since (
1− 1

ps

) ∞∑
α=1

α

pαs
=

1
ps

+
∞∑

α=1

1
p(α+1)s

=
1
ps

+
1
ps

(
1

ps − 1

)
=

1
ps − 1

,
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we have the identity
∞∑

n=1

1
Ss

p(n)
=

ζ(s)
ps − 1

.

This completes the proof of Theorem 1.
Now we prove Theorem 2 and Theorem 3. Let x ≥ 1 be any real number. If we set

a = x
Sp(n) in the lemma, then we can write

1
2πi

∫ b+iT

b−iT

∞∑
n=1

Sp(n)≤x

xs

Ss−k
p (n)s

ds

=
∞∑

n=1
Sp(n)≤x

Sk
p (n) + O




∞∑
n=1

Sp(n)≤x

xb

Sb−k
p (n)

min


1,

1

T ln
(

x
Sp(n)

)




 , (1)

1
2πi

∫ b+iT

b−iT

∞∑
n=1

Sp(n)>x

xs

Ss−k
p (n)s

ds = O




∞∑
n=1

Sp(n)≤x

xb

Sb−k
p (n)

min


1,

1

T ln
(

x
Sp(n)

)




 , (2)

where k is any integer. Combining (1) and (2), we find

1
2πi

∫ b+iT

b−iT

xs

s

∞∑
n=1

1
Ss−k

p (n)
ds

=
∞∑

n=1
Sp(n)≤x

Sk
p (n) + O




∞∑
n=1

xb

Sb−k
p (n)

min


1,

1

T ln
(

x
Sp(n)

)




 . (3)

Then from Theorem 1, we can get

∞∑
n=1

Sp(n)≤x

Sk
p (n) =

1
2πi

∫ b+iT

b−iT

ζ(s− k)xs

(ps−k − 1)s
ds + O


xb min


1,

1

T ln
(

x
Sp(n)

)




 (4)

Now we calculate the first term in the right side of (4).
When k = −1, taking b = 1

2 and T = x, we move the integral line from s = 1
2 + iT to

s = − 1
2 + iT . This time, the function

f(s) =
ζ(s + 1)xs

(ps+1 − 1)s

have a second order pole point at s = 0. Its residue is 1
p−1

(
lnx + γ − p ln p

p−1

)
. Hence, we can

write

1
2πi

∫ 1
2+iT

1
2−iT

ζ(s + 1)xs

(ps+1 − 1)s
ds

=
1

p− 1

(
lnx + γ − p ln p

p− 1

)
+

1
2πi

(∫ − 1
2−iT

1
2−iT

+
∫ − 1

2+iT

− 1
2−iT

+
∫ 1

2+iT

− 1
2+iT

)
ζ(s + 1)xs

(ps+1 − 1)s
ds. (5)
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We can easily get the estimate
∣∣∣∣∣

1
2πi

(∫ − 1
2−iT

1
2−iT

+
∫ 1

2+iT

− 1
2+iT

)
ζ(s + 1)xs

(ps+1 − 1)s
ds

∣∣∣∣∣

¿
∫ 1

2

− 1
2

∣∣∣∣∣
ζ(σ + 1 + iT )x

1
2

(pσ+1+iT − 1)T

∣∣∣∣∣ dσ ¿ x
1
2

T
= x−

1
2 , (6)

and ∣∣∣∣∣
1

2πi

∫ − 1
2+iT

− 1
2−iT

ζ(s + 1)xs

(ps+1 − 1)s
ds

∣∣∣∣∣ ¿
∫ T

0

∣∣∣∣∣
ζ( 1

2 + it)x−
1
2

(p
1
2+it − 1)( 1

2 + t)

∣∣∣∣∣ dt ¿ x−
1
2+ε. (7)

Combining (4), (5), (6) and (7), we have
∞∑

n=1
Sp(n)≤x

1
Sp(n)

=
1

p− 1

(
lnx + γ +

p ln p

p− 1

)
+ O(x−

1
2+ε).

This is the result of Theorem 2.
When k ≥ 1, taking b = k + 3

2 and T = x, we move the integral line of (4) from s = k + 3
2

to s = k + 1
2 . Now the function

g(s) =
ζ(s− k)xs

(ps−k − 1)s

have a simple pole point at s = k + 1 with residue xk+1

(p−1)(k+1) . Using the same method we can
also get

∞∑
n=1

Sp(n)≤x

Sk
p (n) =

xk+1

(k + 1)(p− 1)
+ O(xk+ 1

2+ε).

This completes the proofs of the theorems.
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Abstract In this paper, we have introduced Smarandache quasigroups which are Smaran-

dache non-associative structures. W.B.Kandasamy [2] has studied Smarandache groupoids

and Smarandache semigroups etc. Substructure of Smarandache quasigroups are also studied.

Keywords Quasigroup; Smarandache Quasigroup.

1. Introduction

W.B.Kandasamy has already defined and studied Smarandache groupoids, Smarandache semi-

groups etc. A quasigroup is a groupoid whose composition table is LATIN SQUARE. We define

Smarandache quasigroup as a quasigroup which contains a group properly.

2. Preliminaries

Definition 2.1. A groupoid S such that for all a, b ∈ S there exist unique x, y ∈ S such that

ax = b and ya = b is called a quasigroup.

Thus a quasigroup does not have an identity element and it is also non-associative.

Example 2.1. Here is a quasigroup that is not a loop.

* 1 2 3 4 5

1 3 1 4 2 5

2 5 2 3 1 4

3 1 4 2 5 3

4 4 5 1 3 2

5 2 3 5 4 1

We note that the definition of quasigroup Q forces it to have a property that every element of Q appears

exactly once in every row and column of its operation tables. Such a table is called a LATIN SQUARE.

Thus, quasigroup is precisely a groupoid whose multiplication table is a LATIN SQUARE.

Definition 2.2. If a quasigroup (Q, ∗) contains a group (G, ∗) properly then the quasigroup is

said to be Smarandache quasigroup.

A Smarandache quasigroup is also denoted by S-quasigroup.
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Example 2.2. Let Q be a quasigroup defined by the following table;

* a0 a1 a2 a3 a4

a0 a0 a1 a3 a4 a2

a1 a1 a0 a2 a3 a4

a2 a3 a4 a1 a2 a0

a3 a4 a2 a0 a1 a3

a4 a2 a3 a4 a0 a1

Clearly, A = {a0, a1} is a group w.r.t. ∗ which is a proper subset of Q. Therefore Q is a Smarandache

quasigroup.

Definition 2.3. A quasigroup Q is idempotent if every element x in Q satisfies x ∗ x = x.

Theorem 2.1. If a quasigroup contains a Smarandache quasigroup then the quasigroup is a

Smarandache quasigroup.

Proof. Follows from definition of Smarandache quasigroup.

Example 2.3. (Q, ∗) defined by the following table is a quasigroup.

* 1 2 3 4

1 1 3 4 2

2 4 2 1 3

3 2 4 3 1

4 3 1 2 4

(Q, ∗) is an idempotent quasigroup.

Definition 2.4. An element x in a quasigroup Q is called idempotent if x.x = x.

Consider a quasigroup;

* 1 2 3 4 5

1 3 1 4 2 5

2 5 2 3 1 4

3 1 4 2 5 3

4 4 5 1 3 2

5 2 3 5 4 1

Here 2 is an idempotent element.

Example 2.4. The smallest quasigroup which is neither a group nor a loop is a quasigroup of

order 3 as given by the following table;

* q1 q2 q3

q1 q1 q2 q3

q2 q3 q1 q2

q3 q2 q3 q1
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3. A new class of Quasigroups

V.B.Kandasamy [2] has defined a new class of groupoids as follows;

Definition 3.1. Let Zn = {0, 1, 2, · · · , n− 1}, n ≥ 3. For a, b ∈ Zn define a binary operation ∗
on Zn as: a ∗ b = ta + ub (mod n) where t, u are two distinct element in Zn \ {0} and (t, u) = 1. Here

+ is the usual addition of two integers and ta means the product of two integers t and a. We denote

this groupoid by Zn(t, u).

Theorem 3.1. Let Zn(t, u) be a groupoid. If n = t + u where both t and u are primes then

Zn(t, u) is a quasigroup.

Proof. When t and u are primes every row and column in the composition table will have distinct

n element. As a result Zn(t, u) is a quasigroup.

Corollary 3.1. If Zp(t, u) is a groupoid and t + u = p, (t, u) = 1 then Zp(t, u) is a quasigroup.

Proof. Follows from the theorem.

Example 3.1. Consider Z5 = {0, 1, 2, 3, 4}. Let t = 2 and u = 3. Then 5 = 2 + 3, (2, 3) = 1 and

the composition table is:

* 0 1 2 3 4

0 0 3 1 4 2

1 2 0 3 1 4

2 4 2 0 3 1

3 1 4 2 0 3

4 3 1 4 2 0

Thus Z5(2, 3) is a quasigroup.

Definition 3.2. Let Zn = {0, 1, 2, · · · , n− 1}, n ≥ 3, n < ∞. Define ∗ on Zn as a ∗ b = ta + ub

(mod n) where t and u ∈ Zn \ {0} and t = u. For a fixed integer n and varying t and u we get a class

of quasigroups of order n.

Example 3.2. Consider Z5 = {0, 1, 2, 3, 4}. Then Z5(3, 3) is a quasigroup as given by the

following table:

* 0 1 2 3 4

0 0 3 1 4 2

1 3 1 4 2 0

2 1 4 2 0 3

3 4 2 0 3 1

4 2 0 3 1 4

Definition 3.3. Let Zn = {0, 1, 2, · · · , n− 1}, n ≥ 3, n < ∞. Define ∗ on Zn as a ∗ b = ta + ub

(mod n) where t and u ∈ Zn \ {0} and t = 1 and u = n− 1. For a fixed integer n and varying t and u

we get a class of quasigroups of order n.



16 Arun S. Muktibodh No. 1

Example 3.3. Consider Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. Then Z8(1, 7) is a quasigroup as given by the

following table:

* 0 1 2 3 4 5 6 7

0 0 7 6 5 4 3 2 1

1 1 0 7 6 5 4 3 2

2 2 1 0 7 6 5 4 3

3 3 2 1 0 7 6 5 4

4 4 3 2 1 0 7 6 5

5 5 4 3 2 1 0 7 6

6 6 5 4 3 2 1 0 7

7 7 6 5 4 3 2 1 0

Definition 3.4. Let Zn = {0, 1, 2, · · · , n− 1}, n ≥ 3, n < ∞. Define ∗ on Zn as a ∗ b = ta + ub

(mod n) where t and u ∈ Zn \ {0} and (t, u) = 1, t + u = n and |t − u| is a minimum. For a fixed

integer n and varying t and u we get a class of quasigroups of order n.

Example 3.4. Consider Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. Then Z8(3, 5) is a quasigroup as given by the

following table:

* 0 1 2 3 4 5 6 7

0 0 5 2 7 4 1 6 3

1 3 0 5 2 7 4 1 6

2 6 3 0 5 2 7 4 1

3 1 6 3 0 5 2 7 4

4 4 1 6 3 0 5 2 7

5 7 4 1 6 3 0 5 2

6 2 7 4 1 6 3 0 5

7 5 2 7 4 1 6 3 0

Definition 3.5. Let (Q, ∗) be a quasigroup. A proper subset V of Q is called a subquaisgroup

of Q if V itself is a quasigroup under ∗.
Definition 3.6. Let Q be a quasigroup. A subquaisgroup V of Q is said to be normal subquais-

group of Q if:

1. aV = V a

2. (V x)y = V (xy)

3. y(xV ) = (yx)V

for all a, x, y ∈ Q.
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Example 3.5. Let Q be a quasigroup defined by the following table:

* 1 2 3 4 5 6 7 8

1 1 4 3 2 6 5 8 7

2 2 1 4 3 5 6 7 8

3 3 2 1 4 7 8 6 5

4 4 3 2 1 8 7 5 6

5 6 5 7 8 1 2 3 4

6 5 6 8 7 2 3 4 1

7 8 7 6 5 3 4 1 2

8 7 8 5 6 4 1 2 3

Here V = {1, 2, 3, 4} is a normal subquasigroup of Q.

Definition 3.7. A subquasigroup is said to be simple if it has no proper nontrivial normal

subgroup.

4. Substructures of Smarandache Quasigroups

Definition 4.1. Let (Q, ∗) be a Smarandache quasigroup. A nonempty subset H of Q is said to

be a Smarandache subquasigroup if H contains a proper subset K such that k is a group under ∗.
Example 4.1. Let Q = {1, 2, 3, 4, 5, 6, 7, 8} be the quasigroup defined by the following table:

* 1 2 3 4 5 6 7 8

1 1 2 3 4 6 5 8 7

2 2 1 4 3 5 6 7 8

3 3 4 1 2 7 8 6 5

4 4 3 2 1 8 7 5 6

5 6 5 7 8 1 2 3 4

6 5 6 8 7 2 3 4 1

7 8 7 6 5 3 4 1 2

8 7 8 5 6 4 1 2 3

Consider S = {1, 2, 3, 4} then S is a subquasigroup which contains a group G = {1, 2}. Therefore S is

a Smarandache subquasigroup.

Example 4.2. There do exist Smarandache quasigroup which do not posses any Smarandache

subquasigroup. Consider the quasigroup Q defined by the following table:

* 1 2 3 4 5

1 3 1 4 2 5

2 5 2 3 1 4

3 1 4 2 5 3

4 4 5 1 3 2

5 2 3 5 4 1
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Clearly, Q is Smarandache quasigroup as it contains a group G = {2}. But there is no subquasigroup,

not to talk of Smarandache subquasigroup.

Definition 4.2. Let Q be a S-quasigroup. If A ⊂ Q is a proper subset of Q and A is a subgroup

which can not be contained in any proper subquasigroup of Q we say A is the largest subgroup of Q.

Example 4.3. Let Q = {1, 2, 3, 4, 5, 6, 7, 8} be the quasigroup defined by the following table:

* 1 2 3 4 5 6 7 8

1 1 2 3 4 6 5 8 7

2 2 1 4 3 5 6 7 8

3 3 4 1 2 7 8 6 5

4 4 3 2 1 8 7 5 6

5 6 5 7 8 1 2 3 4

6 5 6 8 7 2 3 4 1

7 8 7 6 5 3 4 1 2

8 7 8 5 6 4 1 2 3

Clearly, A = {1, 2, 3, 4} is the largest subgroup of Q.

Definition 4.3. Let Q be a S-quasigroup. If A is a proper subset of Q which is subquasigroup of

Q and A contains the largest group of Q then we say A to be the Smarandache hyper subquasigroup

of Q.

Example 4.4. Let Q be a quasigroup defined by the following table:

* 1 2 3 4 5 6 7 8

1 1 2 4 3 6 5 8 7

2 2 1 3 4 5 6 7 8

3 3 4 1 2 7 8 6 5

4 4 3 2 1 8 7 5 6

5 6 5 7 8 1 2 3 4

6 5 6 8 7 2 3 4 1

7 8 7 6 5 3 4 1 2

8 7 8 5 6 4 1 2 3

Here A = {1, 2, 3, 4} is the subquasigroup of Q which contains the largest group {1, 2} of Q. A is a

Smarandache hyper subquasigroup of Q.

Definition 4.4. Let Q be a finite S-quasigroup. If the order of every subgroup of Q divides the

order of the S-quasigroup Q then we say Q is a Smarandache Lagrange quasigroup.

Example 4.5. In the above example 4.4, Q is a S-quasigroup whose only subgroup are {1}
and {1, 2}. Clearly, order of these subgroups divide the order of the quasigroup Q. Thus Q is the

Smarandache Lagrange quasigroup.

Definition 4.5. Let Q be a finite S-quasigroup. p is the prime such that p divides the order of

Q. If there exist a subgroup A of Q of order p or pl, (l > 1) we say Q has a Smarandache p-Sylow

subgroup.
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Example 4.6. Let Q = {1, 2, 3, 4, 5, 6, 7, 8} be the quasigroup defined by the following table:

* 1 2 3 4 5 6 7 8

1 1 2 3 4 6 5 8 7

2 2 1 4 3 5 6 7 8

3 3 4 1 2 7 8 6 5

4 4 3 2 1 8 7 5 6

5 6 5 7 8 1 2 3 4

6 5 6 8 7 2 3 4 1

7 8 7 6 5 3 4 1 2

8 7 8 5 6 4 1 2 3

Consider A = {1, 2, 3, 4} then A is a subgroup of Q whose order 22 divides order of Q. Therefore Q

has a Smarandache 2-Sylow subgroup.

Definition 4.6. Let Q be a finite S-quasigroup. An element a ∈ A, a ⊂ Q (A a proper subset

of Q and A is the subgroup under the operation of Q) is said to be a Smarandache Cauchy element of

Q if ar = 1, (r > 1) and 1 is the unit element of A and r divides the order of Q otherwise a is not a

Smarandache Cauchy element of Q.

Definition 4.7. Let Q be a finite S-quasigroup if every element in every subgroup of Q is a

Smarandache Cauchy element of Q then we say that Q is a Smarandache Cauchy quasigroup.

Example 4.6. In the above example 4.6 there are three subgroup of Q. They are {1}, {1, 2} and

{1, 2, 3, 4}. Each element in each subgroup is a Smarandache Cauchy element as 12 = 22 = 32 = 42 = 1

in each respective subgroup. Thus Q is a Smarandache Cauchy group.
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§1. Smarandache cyclic determinants

For any positive integer n, then n× n determinant

1 2 · · · n− 1 n

2 3 · · · n 1

· · · · · · · · · · · · · · ·
n− 1 n · · · n− 3 n− 2

n 1 · · · n− 2 n− 1

(1)

is called the nth Smarandache cyclic natural determinant, and denote by SCND(n). in[1],
Murthy given the following conjecture.

Conjecture 1.1. SCND(n) = (−1)[n/2]nn−1(n + 1)/2, where [n/2] is the interger part
of the n/2.

Let a, d be complex numbers. The n× n determinant

a a + d · · · a + (n− 2)d a + (n− 1)d

a + d a + 2d · · · a + (n− 1)d a

· · · · · · · · · · · · · · ·
a + (n− 2)d a + (n− 1)d · · · a + (n− 4)d a + (n− 3)d

a + (n− 1)d a · · · a + (n− 3)d a + (n− 2)d

(2)

is called the nth Smarandache cyclic arithmetic determinant with parameters (a, d), and de-
noted by SCAD(n; a, d). In this respect, Murthy [1] give the following conjecture.

Conjecture 1.2. SCAD(n; a, d) = (−1)[n/2](nd)n−1(a + (n− 1)d)/2.
In this section we shall show that Conjecture 1.1 is true and Conjecture 1.2 is false. We

now prove the following two results.
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Theorem 1.1. For any positive integer n,

SCND(n) = (−1)[n/2]nn−1(n + 1)/2. (3)

Theorem 1.2. For any positive integer n and any complex numbers a, d,

SCAD(n; a, d) =





a if n = 1

(−1)[n/2](nd)n−1(a + (n− 1)d)/2 if n > 1
(4)

The proofs of our theorems depend on a well known result concerned cyclic determinants.
Let a1, a2, · · · , an be complex numbers. Then the n× n determinant

a1 a2 · · · an−1 an

an a1 · · · an−2 an−1

· · · · · · · · · · · · · · ·
a3 a4 · · · a1 a2

a2 a3 · · · an a1

(5)

is called the n-th cyclic determinant with parameters (a1, a2, · · · , an), and denoted by CD(a1,
a2, · · · , an). Then we have

Lemma 1.1.

CD(a1, a2, · · · , an) =
∏

xn=1

(a1 + a2x + · · ·+ anxn)

where the product
∏

xn=1

means x through over all complex numbers with xn = 1.

Proof of Theorem 1.1. We see from (1) and (5) that

SCND(n) = (−1)rCD(1, 2, · · · , n), (6)

Where

r =





n
2 − 1, if n is even
n−1

2 , if n is odd
(7)

By Lemma1.1, we get

D(1, 2, · · · , n) =
∏

xn=1

(1 + 2x + · · ·+ nxn−1) (8)

Notice that if xn = 1, then

(1 + 2x + · · ·+ nxn−1)(1− x) = 1 + x + · · ·+ xn−1 − n (9)

=





0 if x = 1,

−n if x 6= 1.
(10)
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By (8) and (10), we obtain

D(1, 2, · · · , n)
∏

xn=1
x6=1

(1− x) = (−1)n−1nn

(
n + 1

2

)
, (11)

where the product
∏

xn=1
x6=1

means x through over all complex numbers satisfying xn = 1 and x 6= 1.

Since

∏
xn=1
x6=1

(1− x) = n (12)

we get from (11) that

D(1, 2, · · · , n) = (−1)n−1nn−1(n + 1)/2. (13)

Further, by (7), we get

r + n− 1 ≡ [
n

2
] ( mod 2). (14)

Thus, by (6), (13) and (14), we obtain (3). The theorem is proved.

Proof of Theorem 1.2. By (2), if n = 1, then (4) holds. We may therefore assume that
n > 1. We see from (2) and (5) that

SCAD(n; a, d) = (−1)rCD(a, a + d, · · · , a + (n− 1)d), (15)

where r satisfies (7). By Lemme 1.1, we get

CD(a, a + d, · · · , a + (n− 1)d) =
∏

xn=1

(
a + (a + d)x + · · ·+ (a + (n− 1)d)xn−1

)
. (16)

Notice that if xn = 1, then

(a + (a + d)x + · · ·+ (a + (n− 1)d)xn−1)(1− x)

= a + dx + · · ·+ dxn−1 − (a + (n− 1)d) (17)

=





0 if x = 1,

−nd if x 6= 1.
(18)

Hence, by (16) and (18), we get

CD(a, a + d, · · · , a + (n− 1)d)
∏

xn=1
x6=1

(1− x) = (−1)n−1(nd)n−1

(
na +

n(n− 1)
2

d

)
(19)

Thus, by (12), (14), (16) and (19), we obtain (4). The theorem is proved.
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§2. Smarandache bisymmetric determinants

For any positive integer n, the n× n determinant

1 2 3 · · · n− 2 n− 1 n

2 3 4 · · · n− 1 n 1

· · · · · · · · · · · · · · · · · · · · ·
n− 2 n− 1 n · · · 5 4 3

n− 1 n n− 1 · · · 4 3 2

n n− 1 n− 2 · · · 3 2 1

(20)

is called the nth Smarandache bisymmetric natural determinant, and denoted by SBND(n). In
[1], Murthy given the following conjecture.

Conjecture 2.1. SBND(n) = (−1)[n/2]2n−3n(n + 1).

Let a, d be complex numbers, then the n× n determinant

a a + d a + 2d · · · a + (n− 3)d a + (n− 2)d a + (n− 1)d

a + d a + 2d a + 3d · · · a + (n− 2)d a + (n− 1)d a + (n− 2)d

a + 2d a + 3d a + 4d · · · a + (n− 1)d a + (n− 2)d a + (n− 3)d

· · · · · · · · · · · · · · · · · · · · ·
a + (n− 2)d a + (n− 1)d a + (n− 2)d · · · a + 3d a + 2d a + d

a + (n− 1)d a + (n− 2)d a + (n− 3)d · · · a + 2d a + d a

(21)

is called the nth Smarandache bisymmetric arithmetic determinant with parameters (a, d), and
denoted by SBND(n; a, d). In this respect, Murthy [1] given the following conjecture.

Conjecture 2.2. SBAD(n; a, d) = (−1)[n/2]2n−3dn−1(a + (n− 1)d).

Unfortunately, we shall show that both Conjecture 2.1 and 2.2 are false. In this paper we
will prove the following two results.

Theorem 2.1. For any positive integer n,

SBND(n) = (−1)n(n−1)/22n−2(n + 1) (22)

Theorem 2.2. For any positive integer n and any complex numbers a, d,

SBAD(n; a, d) = (−1)n(n−1)/22n−2dn−1(2a + (n− 1)d). (23)

Proof of Theorem 2.1. Let R(m)(m = 1, 2, · · · , n) denote the mth row of SBND(n).
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We first successively add −R(i) to R(i + 1) for i = n− 1, n− 2, · · · , 1. Then, by (20), we get

SBND(n) =

1 2 3 · · · n− 2 n− 1 n

1 1 1 · · · 1 1 −1

1 1 1 · · · 1 −1 −1

· · · · · · · · · · · · · · · · · · · · ·
1 1 1 · · · −1 −1 −1

1 1 −1 · · · −1 −1 −1

1 −1 −1 · · · −1 −1 −1

(24)

Let C(m)(m = 1, 2, · · · , n) be the mth column of the determinant in (24). Next, we successively
add C(1) to C(j) for j = 2, · · · , n. Then we get

SBND(n) =

1 3 4 · · · n− 1 n n + 1

1 2 2 · · · 2 2 0

1 2 2 · · · 2 0 0

· · · · · · · · · · · · · · · · · · · · ·
1 2 2 · · · 0 0 0

1 2 0 · · · 0 0 0

1 0 0 · · · 0 0 0

= (−1)n(n−1)2n−2(n + 1). (25)

Thus, the theorem if proved.

Proof of Theorem 2.2. Let R(m)(m = 1, 2, · · · , n) denote the mth row of SBAD(n; a, d).
We first successively add −R(i) to R(i + 1) for i = n− 1, n− 2, · · · , 1. Then, by (21), we get

SBAD(n; a, d) =

a a + d a + 2d · · · a + (n− 3)d a + (n− 2)d a + (n− 1)d

d d d · · · d d −d

d d d · · · d −d −d

· · · · · · · · · · · · · · · · · · · · ·
d d d · · · −d −d −d

d d −d · · · −d −d −d

d −d −d · · · −d −d −d

(26)

Let C(m)(m = 1, 2, · · · , n) denote the mth column of the determinant in (26). Next, we
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successively add C(1) to C(j) for j = 2, · · · , n. Then we get

SBAD(n; a, d) =

a 2a + d 2a + 2d · · · 2a + (n− 2)d 2a + (n− 1)d

d 2d 2d · · · 2d 0

d 2d 2d · · · 0 0

· · · · · · · · · · · · · · · · · ·
d 2d 2d · · · 0 0

d 2d 0 · · · 0 0

d 0 0 · · · 0 0

(27)

= (−1)n(n−1)/22n−2dn−1(2a + (n− 1)d) (28)

Thus, the theorem is proved.
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Abstract For any band variety V, V̇∩
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S` denotes the variety consisting of the semir-
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+
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+
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+

S`.
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§1. Introduction

A semigroup (S, ·) is said to be a band , it means that S satisfies the identity x2 ≈ x, we
denote the class of all bands by I. Suppose S is a band. If S satisfy the identity xyx ≈ x, then
S is called a rectangular band,we denote by ReB the class of all rectangular bands. If S satisfy
the identity axyz ≈ ayxz,then S is said to be normal band. We denote the class of all normal
bands by NB. Especially,we denote the class of all bands S in which S satisfies the identity
xy ≈ yx, i.e.,S is a semilattice by S`. We can easily obtain from well-known Birkoff theorem
that above classes of bands are subvarieties of band variety I.

A semiring is an algebra (S, +, ·) with two binary operations + and · such that both the
reducts (S, +) and (S, ·) are semigroups and such that the distributive laws x(y + z) ≈ xy + xz

and (x + y)z ≈ xz + yz hold. The semiring is said to be an idempotent semiring if the two
reducts are bands, that is, semirings where every element is an idempotent.

Suppose V is a subvariety of I,we denote by V̇ the variety of all idempotent semirings
S in which the multiplicative reduct (S, ·) of S belongs to V. The variety consisting of all

the idempotent semirings with commutative addition will be denoted by
+

S`. The additive

reducts of the members of
+

S` are semilattices. V̇∩
+

S` denotes the variety consisting of the
semirings whose additive reduct is a semilattice and whose multiplicative reduct belongs to V.

In particularly, if V is the subvariety S`, then Ṡ`
⋂ +

S` denotes the variety of all idempotent
semirings in which both the additive reduct and multiplicative reduct are semilattice. We note

that Bi = Ṡ`
⋂ +

S`,we call the member of Bi bi-semilattice. Let S be a bi-semilattice, if S
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satisfies the additional identity x + xy ≈ x and x + yz ≈ (x + y)(x + z), then S is said to
be a distributive lattice. We denote by D the class of all distributive lattices. Clearly, D is a
subvariety of Bi.

In [3], Professor F.Pastijn and the second author have described the lattice L(
+

S`) of sub-

varieties of
+

S`. In this paper, we mainly describe a certain subvariety of
+

S` in view of semir-
ing congruences and get some interesting results. we prove that if a semiring S belongs to

D
∨

(ṘeB∩
+

S`) if and only if S a subdirect product of a distributive lattice and a member in

ṘeB∩
+

S`.

§2. Characterization of D
∨

(ṘeB∩
+
S`)

In this section,we mainly study the subvariety D
∨

(ṘeB∩
+

S`) and get some interesting
results.

We denote by Con(S) the set of all congruences on semiring S. Let A is a class of semirings
and ρ ∈ Con(S),if S/ρ ∈ A,then ρ is called an A-congruence. If there exist another congruences
θ such that S/θ ∈ A and ρ ⊆ θ,then ρ is called the least A-congruence on S. So we have the
following lemma

Lemma 2.1. Let semiring S belong to ṄB∩
+

S`, define the relations µ on S by

xµy ⇐⇒ (∃a ∈ S) xay = yax,

then µ is the least ṘeB∩
+

S` congruence on S.
Proof. By lemma IV.5.5 in [2],we know that µ is the congruence on multiplicative reduct

(S, ·) of semiring S, here we need show µ is the congruence on the additive reduct (S, +) of S.
Assume that a, b ∈ S and aµb. By the definition we have that ∃x ∈ S such that axb = bxa, for
any c ∈ S,we have

(a + c)axb(b + c) = (axb + caxb)(b + c)

= axb + axbc + caxb + caxbc

= bxa + bxac + cbxa + cbxac

= b(bxa)(a + c) + c(bxa)(a + c)

= (b + c)bxa(a + c)

= (b + c)axb(a + c).

Thus (a+c)µ(b+c), further, (S, +) is a semilattice, hence µ is a congruence on (S, +), thus µ is

a semiring congruence. Since xx(xyx) = (xyx)xx, it follows that xµxyx, that is,µ is ṘeB∩
+

S`-

congruence on S. If θ is any ṘeB∩
+

S`-congruence and xµy, then there exists a ∈ S such that
xay = yax, thus xayθyax, which implies xθy. Consequently, µ ⊆ θ. Therefore, we obtain that

µ is the least ṘeB∩
+

S`-congruence on S. ¤
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From [3],we know that D
∨

(ṘeB∩
+

S`) is the proper subvariety of N∩
+

S` which is deter-
mined by the additional identity

x + xyx ≈ x (1)

So D
∨

(ṘeB∩
+

S`) also satisfy the additional identity x + xyx ≈ x. It obvious that both

D and ṘeB∩
+

S` satisfy the additional identity xy + yzx ≈ yx + xzy,therefore, the subvariety

D
∨

(ṘeB∩
+

S`) of
+

S` satisfy the additional identity

xy + yzx ≈ yx + xzy. (2)

Green’s relation play an very important role in studying the theory of semigroup, some
authors have studied semirngs from the Green’s relation of additive and multiplicative reducts
and have gotten many beautiful results. In this paper, we denote Ḋ the Green-D relation of
multiplicative reduct of a semiring. We have the main result of this section.

Theorem 2.2. S is a semiring, then S ∈ D
∨

(ṘeB∩
+

S`) ⇐⇒ S is a subdirect product of

a distributive lattice and a member in ṘeB∩
+

S`.

Proof. ⇐= . It is trivial.

=⇒ . It is obvious that D
∨

(ṘeB∩
+

S`) is a subvariety of ṄB∩
+

S` . From lemma 3.2
in [4] and lemma 2.1, we have that both Ḋ and Ḋ ∩ µ are semiring congruences on S. Assume
a, b ∈ S and a(Ḋ ∩µ)b. By the definition of µ, there exists c in S such that acb = bca, therefore
cacb = cbca. From Ḋ is a congruence we have acḊbc, thus ac = bc. Similarly, we have ca = cb.

Since S ∈ D
∨

(ṘeB∩
+

S`), from above we know that S satisfies the additional identity (2). We
have

ab + bca = ba + acb. (3)

By multiplying b on the right to the (3), we obtain ab + bcab = b + acb = b + bcb. From (S, ·)
is a normal band we have ab + bcab = ab + b · c · ab · b = ab + bcb, thus ab + bcb = b + bcb.

By multiplying a on the left to the (3),we have

a + acb = ab + abca

= ab + a · ab · c · a
= ab + aca ((S, ·) is a normal band and aḊb)

= ab + bcb (ac = bc, ca = cb),

thus a + acb = ab + bcb = ab + bcab = b + bcb, i.e.,a + aca = b + bcb. By (2), we obtain a = b,
therefore, (Ḋ ∩ µ) is a equality relation on S. By lemma 3.2 in [4] and (1), quotient semiring
(S/Ḋ, +, ·) is a distributive lattice. By lemma 2.1 we know that quotient semiring (S/µ, +, ·)
is a member in ṘeB∩

+

S`, thus S is a subdirect product of a distributive lattice and a member

in ṘeB∩
+

S`. ¤



Vol. 2 On a Subvariety of
+
S` 29

References

[1] J. M. Howie, Fundamentals of Semigroup Theory, Oxford Science Publications, Oxford,
1995.

[2] M. Ptrich, and N.R.Reilly, Completely Regular Semigroups, Wiley, New York, 1999.
[3] F. Pastijn and X.Z.Zhao, Varieties of idempotent semirings with a commutative addi-

tion, Algebra Universal, to appear.
[4] X. Z. Zhao, Y. Q. Guo, and K. P. Shum, D-subvariety of idempotent semirings, Algebra

Colloquium, 9 (2002), 15-28.
[5] F. Pastijn, Idempotent distributive semirings II, Semigroup Forum, 26 (1983), 153-166.
[6] F. Pastijn, and Y. Q. Guo, The lattice of idempotent distributive semiring varieties,

Science in China (Ser. A), 48(1999), No. 8, 785-804.
[7] F. Pastijn, and A. Romanowska, Idempotent distributive semirings, Acta Sci. Math.

(Szeged), 44(1982), 239-253.
[8] F. Pastijn, and X. Z. Zhao, Green’s D-relation for the multiplicative reduct of an

idempotent semiring, Arch. Math. (Brno), 36(2000), 77-93.
[9] M. Petrich, Lectures in Semigroups, Wiley, London, 1977.
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§1. Introduction

The additive analogues of Smarandache functions S and S∗ have been introduced by Sándor
[5] as follows:

S(x) = min{m ∈ N : x ≤ m!}, x ∈ (1,∞),

and

S∗(x) = max{m ∈ N : m! ≤ x}, x ∈ [1,∞),

He has studied many important properties of S∗ relating to continuity, differentiability and
Riemann integrability and also p roved the following theorems:

Theorem 1.1.

S∗ ∼ log x

log log x
(x →∞).

Theorem 1.2. The series
∞∑

n=1

1
n(S∗(n))α

,

is convergent for α > 1 and divergent for α ≤ 1.
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In [1], Adiga and Kim have obtained generalizations of Theorems 1.1 and 1.2 by the use of
Euler’s gamma function. Recently Adiga-Kim-Somashekara-Fathima [2] have established a q-
analogues of these results on employing analogues of Pseudo-Smarandache, Smarandache-simple
functions and their duals as follows:

Z(x) = min
{

m ∈ N : x ≤ m(m + 1)
2

}
, x ∈ (0,∞),

Z∗(x) = max
{

m ∈ N :
m(m + 1)

2
≤ x

}
, x ∈ [1,∞),

P (x) = min{m ∈ N : px ≤ m!}, p > 1, x ∈ (0,∞),

P∗(x) = max{m ∈ N : m! ≤ px}, p > 1, x ∈ [1,∞).

He has also proved the following theorems:
Theorem 1.3.

Z∗ ∼ 1
2
√

8x + 1 (x →∞).

Theorem 1.4. The series ∞∑
n=1

1
(Z∗(n))α

,

is convergent for α > 2 and divergent for α ≤ 2. The series
∞∑

n=1

1
n(Z∗(n))α

,

is convergent for all α > 0.
Theorem 1.5.

log P∗(x) ∼ log x (x →∞),

Theorem 1.6. The series ∞∑
n=1

1
n

(
log log n

log P∗(n)

)α

is convergent for all α > 1 and divergent for α ≤ 1.
The main purpose of this note is to obtain q-analogues of Sándor’s Theorems 1.3 and 1.5.

In what follows, we make u se of the following notations and definitions. F. H. Jackson defined
a q-analogues of the gamma function which extends the q-factorial

(n!)q = 1(1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1), cf [3],

which becomes the ordinary factorial as q → 1. He defined the q-analogue of the gamma
function as

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1,
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and

Γq(x) =
(q−1; q−1)∞
(q−x; q−1)∞

(1− q)1−xq(
x
2), q > 1,

where

(a; q)∞ =
∞∏

n=0

(1− aqn).

It is well known that Γq(x) → Γ(x) as q → 1, where Γ(x) is the ordinary gamma function.

§2. Main Theorems

We now defined the q-analogues of Z and Z∗ as follows:

Zq(x) = min
{

1− qm

1− q
: x ≤ Γq(m + 2)

2Γq(m)

}
, m ∈ N, x ∈ (0,∞),

and

Z∗q (x) = max
{

1− qm

1− q
:

Γq(m + 2)
2Γq(m)

≤ x

}
, m ∈ N, x ∈

[
Γq(m + 2)

2Γq(1)
,∞

)
,

where 0 < q < 1. Clearly, Zq(x) → Z(x) and Z∗q (x) → Z∗(x) as q → 1−. From the definitions
of Zq and Z∗q , it is clear that

Zq(x) =





1, if x ∈
(
0,

Γq(3)
2Γq(1)

]

1−qm

1−q , ifx ∈
(

Γq(m+1)
2Γq(m−1) ,

Γq(m+2)
2Γq(m)

]
,m ≥ 2,


 (1)

and

Z∗q =
1− qm

1− q
if x ∈

[
Γq(m + 2)
2Γq(m)

,
Γq(m + 3)
2Γq(m + 1)

)
. (2)

Since

1− qm−1

1− q
≤ 1− qm

1− q
=

1− qm−1

1− q
+ qm−1 ≤ 1− qm−1

1− q
+ 1,

(1) and (2) imply that for x >
Γq(3)
2Γq(1) ,

Z∗q ≤ Zq ≤ Z∗q + 1.

Hence it suffices to study the function Z∗q . We now prove our main theorems.
Theorem 2.1. If 0 < q < 1, then

√
1 + 8xq − (1 + 2q)

2q2
< Z∗q ≤

√
1 + 8xq − 1

2q
, x ≥ Γq(3)

2Γq(1)
.

Proof. If

Γq(k + 2)
2Γq(k)

≤ x <
Γq(k + 3)
2Γq(k + 1)

, (3)
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then

Z∗q =
1− qk

1− q

and

(1− qk)(1− qk+1)− 2x(1− q)2 ≤ 0 < (1− qk+1)(1− qk+2)− 2x(1− q)2. (4)

Consider the functions f and g defined by

f(y) = (1− y)(1− yq)− 2x(1− q)2

and
g(y) = (1− yq)(1− yq2)− 2x(1− q)2.

Note that f is monotonically decreasing for y ≤ 1+q
2q and g is strictly decreasing for y ≤ 1+q

2q2 .
Also f(y1) = 0 = g(y2) where

y1 =
(1 + q)− (1− q)

√
1 + 8xq

2q
,

y2 =
(q + q2)− q(1− q)

√
1 + 8xq

2q3
.

Since y1 ≤ 1+q
2q , y2 ≤ 1+q

2q2 and qk < 1+q
2q < 1+q

2q2 , from (4), it follows that

f(qk) ≤ f(y1) = 0 = g(y2) < g(qk).

Thus y1 < qk < y2 and hence

1− y2

1− q
<

1− qk

1− q
<

1− y1

1− q
.

i.e. √
1 + 8xq − (1 + 2q)

2q2
< Z∗q ≤

√
1 + 8xq − 1

2q
.

This completes the proof.
Remark. Letting q − 1− in the above theorem, we obtain Sándor’s Theorem 1.3.
We define the q-analogues of P and P∗ as follows:

Pq(x) = min{m ∈ N : px ≤ Γq(m + 1)}, p > 1, x ∈ (0,∞),

and
P ∗q (x) = max{m ∈ N : Γq(m + 1) ≤ px}, p > 1, x ∈ [1,∞),

where 0 < q < 1. Clearly, Pq(x) → P (x) and P ∗q → P∗(x) as q → 1−. From the definitions of
Pq and P ∗q , we have

P ∗q (x) ≤ Pq(x) ≤ P ∗q (x) + 1.

Hence it is enough to study the function P ∗q .
Theorem 2.2. If 0 < q < 1, then

P∗(x) ∼ x log p

log
(

1
1−q

) (x →∞).
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Proof. If Γq(n + 1) ≤ px < Γq(n + 2), then

P ∗q (x) = n

and

log Γq(n + 1) ≤ log px < log Γq(n + 2). (5)

But by the q-analogue of Stirling’s formula established by Moak [4], we have

log Γq(n + 1) ∼
(

n +
1
2

)
log

(
qn+1

q − 1

)
∼ n log

(
1

1− q

)
. (6)

Dividing (5) throughout by n log
(

1
1−q

)
, we obtain

log Γq(n + 1)

n log
(

1
1−q

) ≤ x log p

P ∗q (x) log
(

1
1−q

) <
log Γq(n + 2)

n log
(

1
1−q

) . (7)

Using (6) and (7), we deduce

lim
x→∞

x log p

P ∗q (x) log
(

1
1−q

) = 1.

This completes the proof.
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§1. Introduction

A positive integer n is called simple number if the product of its all proper divisors is
less than or equal to n. In problem 23 of [1], Professor F.Smarandache asked us to study the
properties of the sequence of the simple numbers. About this problem, many scholars have
studied it before. For example, in [2], Liu Hongyan and Zhang Wenpeng studied the mean
value properties of 1/n and 1/φ(n) (where n is a simple number), and obtained two asymptotic
formulae for them. For convenient, let A denotes the set of all simple numbers, they proved
that ∑

n∈A
n≤x

1
n

= (ln lnx)2 + B1 ln lnx + B2 + O

(
ln lnx

lnx

)

and ∑

n∈A
n≤x

1
φ(n)

= (ln lnx)2 + C1 ln lnx + C2 + O

(
ln lnx

lnx

)
,

where B1, B2, C1, C2 are constants, and φ(n) is the Euler function.
For n > 1, let n = pα1

1 pα2
2 · · · pαk

k denotes the factorization of n into prime powers. If one of
the divisor d of n satisfing τ(d) ≤ 4 (where τ(n) denotes the numbers of all divisors of n), then
we call d as a simple number divisor. In this paper, we introduce a new arithmetic function

τsp(n) =
∑

d|n
τ(d)≤4

1,

which we called the simple divisor function. The main purpose of this paper is to study the
asymptotic property of the mean value of τsp(n) by using the elementary methods, and obtain
an interesting asymptotic formula for it. That is, we will prove the following:
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Theorem. For any real number x ≥ 1, we have the asymptotic formula
∑

n≤x

τsp(n) =
1
2
x(log log x)2 +

1
2
(a + 1)x log log x +

(
b + A

2
+ B + C

)
x + O

(
x log log x

log x

)
,

where a and b are two computable constants, A = γ +
∑

p

(log(1 − 1/p) + 1/p), γ is the Euler

constant, B =
∑

p

1
p2

and C =
∑

p

1
p3

.

§2. Two Lemmas

Before the proof of Theorem, two useful Lemmas will be introduced which we will use
subsequently.

Lemma 1. For any real number x ≥ 1, we have the asymptotic formula

(a)
∑

n≤x

ω(n) = x log log x + Ax + O

(
x

log x

)
,

(b)
∑

n≤x

ω2(n) = x(log log x)2 + ax log log x + bx + O

(
x log log x

log x

)
,

where A = γ +
∑

p

(log(1 − 1/p) + 1/p), γ is the Euler constant, a and b are two computable

constants.
Proof. See references [3] and [4].
Lemma 2. For any positive integer n ≥ 1, we have

τsp(n) =
1
2
ω2(n) +

1
2
ω(n) +

∑

p2|n
1 +

∑

p3|n
1,

where ω(n) denotes the number of all different prime divisors of n,
∑

p2|n
1 denotes the number

of all primes such that p2 | n,
∑

p3|n
1 denotes the number of all primes such that p3 | n.

Proof. Let n > 1, we can write n = pα1
1 pα2

2 · · · pαk

k , then from the definition of τsp(n) we
know that there are only four kinds of divisors d such that the number of the divisors of d less
or equal to 4. That is p | n, pipj | n, p2 | n and p3 | n, where pi 6= pj .

Hence, we have

τsp(n) =
∑

p|n
1 +

∑

pipj |n
pi 6=pj

1 +
∑

p2|n
1 +

∑

p3|n
1

= ω(n) +
1
2
ω(n)(ω(n)− 1) +

∑

p2|n
1 +

∑

p3|n
1

=
1
2
ω2(n) +

1
2
ω(n) +

∑

p2|n
1 +

∑

p3|n
1

This proves Lemma 2.



Vol. 2 On the mean value of the F.Smarandache simple divisor function 37

§3. Proof of the theorem

Now we completes the proof of Theorem. From the definition of the simple divisor function,
Lemma 1 and Lemma 2, we can write

∑

n≤x

τsp(n) =
∑

n≤x


1

2
ω2(n) +

1
2
ω(n) +

∑

p2|n
1 +

∑

p3|n
1




=
1
2

∑

n≤x

ω2(n) +
1
2

∑

n≤x

ω(n) +
∑

n≤x

∑

p2|n
1 +

∑

n≤x

∑

p3|n
1

=
1
2

(
x(log log x)2 + ax log log x + bx + O

(
x log log x

log x

))

+
1
2

(
x log log x + Ax + O

(
x

log x

))
+

∑

p≤x

[
x

p2

]
+

∑

p≤x

[
x

p3

]

=
1
2

(
x(log log x)2 + (a + 1)x log log x + (b + A)x + O

(
x log log x

log x

))

+ x
∑

p≤x

1
p2

+ O

(
x

log x

)
+ x

∑

p≤x

1
p3

+ O

(
x

log x

)

=
1
2

(
x(log log x)2 + (a + 1)x log log x + (b + A)x + O

(
x log log x

log x

))

+ (B + C)x + O

(
x

log x

)

=
1
2
x(log log x)2 +

1
2
(a + 1)x log log x +

(
b + A

2
+ B + C

)
x + O

(
x log log x

log x

)
.

where B =
∑

p

1
p2

and C =
∑

p

1
p3

.

This completes the proof of Theorem.
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§1. Introduction and results

For any positive integer n, we define the function δk(n) as following:

δk(n) = max{d : d|n, (d, k) = 1},

am(n) denotes the m-th power free part of n ( if n = pα1
1 pα2

2 · · · pαs
s · · · pαq

q , where αi < m

(i = 1, 2 · · · , s), αj ≥ m (j = s + 1, · · · , q), then am(n) = pα1
1 pα2

2 · · · pαs
s ). Let A denotes the

set of all solutions of the equation δk(n) = am(n). In this paper, we study the asymptotic
properties of the set A, and use the analytic method to obtain several interesting asymptotic
formulas for it. That is, we shall prove the following conclusions:

Theorem 1. For any complex number s with Re(s) > 1, we have the identity:

∑

n∈A

1
ns

=
ζ(s)

ζ(ms)

∏

p|k

pms − p(m−1)s + 1
pms − 1

,

where
∏

p|k
denotes the product over all different prime divisors of k, ζ(s) is the Riemann zeta

function.
Theorem 2. For any real number x ≥ 1, we have the asymptotic formula:

∑

n≤x
n∈A

1 =
1

ζ(m)
x

∏

p|k

pm − pm−1 + 1
pm − 1

+ O
(
x

1
2+ε

)
,

where ε is any fixed positive number, m ≥ 2 is a positive integer.
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Corollary. Let B denote the set of all solutions of the equation δk(n) = a2(n). Then we
have the identity: ∑

n∈B

1
n2

=
15
π2

∏

p|k

p6 + 1
(p4 − 1)(p2 + 1)

.

§2. Proof of the theorems

Now we complete the proof of the theorems.
Let positive number n = n1u = pα1

1 pα2
2 · · · pαs

s · · · pαq
q , where n1 = pα1

1 pα2
2 · · · pαs

s does
not contain the m − th power part of n, u = p

αs+1
s+1 · · · pαq

q is a m-full number. Obviously,
αi < m(i = 1, 2 · · · s) and αj ≥ m(j = s + 1 · · · q). From the definitions of functions δk(n) and
am(n) we know that both of them are multiplicative functions. That is,

δk(n) = δk(n1)δk(u)

am(n) = am(n1)am(u) = n1,

According to the discussion above, the solutions of the equation δk(n) = am(n) transfer itself
to the solutions of equation δk(n1)δk(u) = n1.

Noting that: If αj ≥ m, pj |k (j = s + 1, · · · , q), we have δk(u) = 1. At this time, if
αi < m, pi†k, (i = 1, 2, · · · , s) ,we get δk(n1) = n1. This shows the existing of equation
δk(n1)δk(u) = n1. Define arithmetic function b(n) as follows:

b(n) =





1 if n is the solution of equation δk(n) = am(n);

if n > 1
(1)

Now we have ∑

n∈A

1
ns

=
∞∑

n=1

b(n)
ns

From the definition of b(n), we know it is a multiplicative function. Then from the Euler
product formula(see [1]), we can write:

∞∑
n=1

b(n)
ns

=
∏
p

(
1 +

b(p)
ps

+
b(p2)
p2s

+ · · ·
)

=
∏

p†k

(
1 +

1
ps

+
1

p2s
+ · · ·+ 1

p(m−1)s

) ∏

p|k

(
1 +

1
pms

+
1

p(m+1)s
+ · · ·

)

=
∏

p†k

1− 1
pms

1− 1
ps

∏

p|k

(
1 +

1
pms

· 1
1− 1

ps

)

=
∏
p

1− 1
pms

1− 1
ps

∏

p|k

1− 1
ps

1− 1
pms

·
(

1 +
1

pms
· 1
1− 1

ps

)

=
ζ(s)

ζ(ms)

∏

p|k

pms − p(m−1)s + 1
pms − 1
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This completes the proof of Theorem 1.
Now we come to prove Theorem 2. From the definition of the function b(n) we can write:

∑

n≤x
n∈A

1 =
∑

n≤x

b(n)

Let Dirichlet series

f(s) =
∞∑

n=1

b(n)
ns

,

from Theorem 1, we know that

f(s) =
ζ(s)

ζ(ms)

∏

p|k

pms − p(m−1)s + 1
pms − 1

,

and this function has a simple pole point at s = 1 with residue

1
ζ(m)

∏

p|k

pm − pm−1 + 1
pm − 1

,

because

|b(n)| ≤ 1, |
∞∑

n=1

b(n)
nσ

| ≤ ζ(σ)

where σ > 1 is the real part of s, so by Perron’s formula(see [2]), we have:

∑

n≤x

a(n)
ns0

=
1

2πi

∫ b+iT

b−iT

f(s + s0)
xs

s
ds + O

(
xbB (b + σ0)

T

)

+ O

(
x1−σ0H(2x)min

(
1,

log x

T

))
+ O

(
x−σ0H(2x)min

(
1,

x

T‖x‖
))

,

where N is the nearest integer to x, and ‖x‖ = |x−N |.
Taking a(n) = b(n), s0 = 0, b = 2, T = x

3
2 , H(x) = 1, B(σ) = ζ(σ) in above, then we

have: ∑

n≤x

b(n) =
1

2πi

∫ 2+iT

2−iT

ζ(s)
ζ(ms)

R(s)
xs

s
ds + O

(
x

1
2+ε

)
,

where

R(s) =
∏

p|k

pms − p(m−1)s + 1
pms − 1

,

we move the integral line from s = 2± iT to s = 1
2 ± iT , this time the function

ζ(s)
ζ(ms)

· xs

s
R(s)

has a simple pole point at s = 1 with residue R(1)
ζ(m)x, so we have

1
2πi

(∫ 2+iT

2−iT

+
∫ 1

2+iT

2+iT

+
∫ 1

2−iT

1
2+iT

+
∫ 2−iT

1
2−iT

)
ζ(s)

ζ(ms)
xs

s
R(s)ds =

R(1)
ζ(m)

x,
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Now taking T = x
3
2 , we have the estimate

| 1
2πi

(∫ 1
2+iT

2+iT

+
∫ 2−iT

1
2−iT

)
ζ(s)

ζ(ms)
xs

s
R(s)ds |¿ x2

T
= x

1
2

and

| 1
2πi

∫ 1
2−iT

1
2+iT

ζ(s)
ζ(ms)

xs

s
R(s)ds |¿ x

1
2+ε.

Note that

R(1) =
∏

p|k

pm − pm−1 + 1
pm − 1

we get ∑

n≤x

b(n) =
1

ζ(m)
x

∏

p|k

pm − pm−1 + 1
pm − 1

+ O
(
x

1
2+ε

)
.

That is ∑

n≤x
n∈A

1 =
1

ζ(m)
x

∏

p|k

pm − pm−1 + 1
pm − 1

+ O
(
x

1
2+ε

)
.

This completes the proof of Theorem 2.
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In this paper, we study the mean value properties of the Smarandache ceil function, and give

a sharp asymptotic formula for it.
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§1. Introduction

For any fixed positive integer n, the Smarandache ceil function of order k is denoted by
N∗ → N and has the following definition:

Sk(n) = min{x ∈ N : n | xk}, ∀n ∈ N∗.

For example, S2(1) = 1, S2(2) = 2, S2(3) = 3, S2(4) = 2, S2(5) = 5, S2(6) = 6, S2(7) = 7,
S2(8) = 4, S2(9) = 3, · · · . This was introduced by Smarandache who proposed many problems
in [1]. There are many papers on the Smarandache ceil function. For example, Ibstedt [2] [3]
studied this function both theoretically and computationally, and got the following conclusions:

(a, b) = 1 ⇒ Sk(ab) = Sk(a)Sk(b), a, b ∈ N∗.

Sk(pα1
1 pα2

2 · · · pαr
r ) = Sk (pα1

1 ) · · ·Sk (pαr
r ) .

In this paper, we study the mean value properties of the Smarandache ceil function, and
give a sharp asymptotic formula for it. That is, we shall prove the following:

Theorem. For any real number x ≥ 2, we have the asymptotic formula

∑

n≤x

1
S2(n)

=
3

2π2
ln2 x + A1 lnx + A2 + O(x−

1
4+ε),

where A1 and A2 are two computable constants, ε is any fixed positive integer.

1This work is supported by the N.S.F(10271093) and P.N.S.F of P.R.China
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§2. Proof of the theorem

To complete the proof of the theorem, we need the following Lemma, which is called the
Perron’s formula (See reference [4]):

Lemma. Suppose that the Dirichlet series f(s) =
∞∑

n=1

a(n)n−s, s = σ + it, convergent

absolutely for σ > σa, and that there exist a positive increasing function H(u) and a function
B(u) such that

a(n) ≤ H(n), n = 1, 2, · · · ,

and
∞∑

n=1

|a(n)|n−σ ≤ B(σ), σ > σa.

Then for any s0 = σ0 + it0, b0 > σa, b0 ≥ b > 0 , b0 ≥ σ0 + b > σa, T ≥ 1 and x ≥ 1, x not to
be an integer, we have

∑

n≤x

a(n)n−s0 =
1

2πi

∫ b+iT

b−iT

f(s0 + s)
xs

s
ds + O

(
xbB(b + σ0)

T

)

+ O

(
x1−σ0H(2x)min

(
1,

log x

T

))
+ O

(
x−σ0H(N)min

(
1,

x

T || x ||
))

,

where N is the nearest integer to x, || x ||= |N − x|.
Now we complete the proof of the theorem. Let s = σ + it be a complex number and

f(s) =
∞∑

n=1

1
S2(n)ns

.

Note that | 1
S2(n) | ≤ 1√

n
, so it is clear that f(s) is a Dirichlet series absolutely convergent for

Re(s) > 1
2 , by Euler product formula [5] and the definition of S2(n) we have

f(s) =
∏
p

(
1 +

1
S2(p)ps

+
1

S2(p2)p2s
+

1
S2(p3)p3s

+
1

S2(p4)p4s
+ · · ·+ 1

S2(p2k)p2ks
+

1
S2(p2k+1)p(2k+1)s

+ · · ·
)

=
∏
p

(
1 +

1
ps+1

+
1

p2s+1
+

1
p3s+2

+
1

p4s+2
+ · · ·+ 1

p2ks+k
+

1
p(2k+1)s+k+1

+
1

p2(k+1)s+k+1
+

1
p(2(k+2)+1)s+k+2

+ · · ·
)

=
∏
p

1
1− 1

p2s+1

(
1 +

1
ps+1

)

=
ζ(2s + 1)ζ(s + 1)

ζ(2s + 2)
,

where ζ(s) is the Riemann zeta-function and
∏
p

denotes the product over all primes.
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Taking

H(x) = 1; B(σ) =
2

2σ − 1
, σ >

1
2
;

s0 = 0; b = 1; T = x
5
4 in the above Lemma we may get

∑

n≤x

1
S2(n)

=
1

2iπ

∫ 1+ix
5
4

1−ix
5
4

f(s)
xs

s
ds + O(x−

1
4+ε).

To estimate the main term, we move the integral line in the above formula from s = 1±ix
5
4

to s = − 1
4 ± ix

5
4 . This time, the function f(s)xs

s have a third order pole point at s = 0 with
residue

3
2π2

ln2 x + A1 lnx + A2,

where A1 and A2 are two computable constants.
Hence, we have

1
2πi




∫ 1+ix
5
4

1−ix
5
4

+
∫ − 1

4+ix
5
4

1+ix
5
4

+
∫ − 1

4−ix
5
4

− 1
4+ix

5
4

+
∫ 1−ix

5
4

− 1
4−ix

5
4


 ζ(2s + 1)ζ(s + 1)xs

ζ(2s + 2)s
ds

=
3

2π2
ln2 x + A1 lnx + A2.

We can easily get the estimate

∣∣∣∣∣∣
1

2πi




∫ − 1
4+ix

5
4

1+ix
5
4

+
∫ − 1

4−i 5
4

− 1
4+i 5

4

+
∫ 1−ix

5
4

− 1
4−ix

5
4


 ζ(2s + 1)ζ(s + 1)xs

ζ(2s + 2)s
ds

∣∣∣∣∣∣
¿ x−

1
4+ε.

From above we may immediately get the asymptotic formula:

∑

n≤x

1
S2(n)

=
3

2π2
ln2 x + A1 lnx + A2 + O(x−

1
4+ε).

This completes the proof of the theorem.
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§1. Introduction

For any fixed positive integer n, the Smarandache ceil function of order k is denoted by
N∗ → N and has the following definition:

Sk(n) = min{x ∈ N : n | xk} (∀n ∈ N∗) .

For example, S2(1) = 1, S2(2) = 2, S2(3) = 3, S2(4) = 2, S2(5) = 5, S2(6) = 6, S2(7) = 7,
S2(8) = 4, S2(9) = 3, · · · · · · . S3(1) = 1, S3(2) = 2, S3(3) = 3, S3(4) = 2, S3(5) = 5, S3(6) = 6,
S3(7) = 7, S3(8) = 2, · · · · · · .

The dual function of Sk(n) is defined as

Sk(n) = max{x ∈ N : xk | n} (∀n ∈ N∗) .

For example, S2(1) = 1, S2(2) = 1, S2(3) = 1, S2(4) = 2, · · · . For any primes p and q with
p 6= q, S2(p2) = p, S2(p2m+1) = pm and S2(pmqn) = S2(pm)S2(qn).

These functions were introduced by F.Smarandache who proposed many problems in [1].
There are many papers on the Smarandache ceil function and its dual. For example, Ibstedt [2]
and [3] studied these functions both theoretically and computationally, and got the following
conclusions:

(∀a, b ∈ N∗)(a, b) = 1 ⇒ Sk(ab) = Sk(a)Sk(b),

Sk(pα1
1 pα2

2 . · · · .pαr
r ) = Sk(pα1

1 ). · · · .Sk(pαr
r ).

Ding Liping [4] studied the mean value properties of the Smarandache ceil function, and ob-
tained a sharp asymptotic formula for it. That is, she proved the following conclusion:
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Let real number x ≥ 2, then for any fixed positive integer k ≥ 2, we have the asymptotic
formula

∑

n≤x

Sk(n) =
x2

2
ζ(2k − 1)

∏
p

[
1− 1

p(p + 1)

(
1 +

1
p2k−3

)]
+ O

(
x

3
2+ε

)
,

where ζ(s) is the Riemann zeta-function,
∏
p

denotes the product over all prime p, and ε denotes

any fixed positive number.
Lu Yaming [7] studied the hybrid mean value involving Sk(n) and d(n), and obtained the

following asymptotic formula:

∑

n≤x

d(Sk(n)) = ζ(k)x + ζ

(
1
k

)
+ O

(
x

1
k+1

)
,

where ζ(s) is the Riemann zeta-function and d(n) is the Dirichlet divisor function.
In this paper, we use the elementary methods to study the arithmetical properties of

Smarandache ceil function and its dual, and give some interesting identities involving these
functions. That is, we shall prove the following:

Theorem 1. For any real number α > 1 and integer k ≥ 2, we have the identity:

∞∑
n=1

(−1)n−1

Sα
k (n)

=
2α − k − 1
2α + k − 1

∏
p

(
1 +

k

pα − 1

)
,

where
∏
p

denotes the product over all prime p.

Theorem 2. For any real number α > 1 and integer k ≥ 2, we also have the identities:

∞∑
n=1

Sk(n)
nα

=
ζ(α)ζ(kα− 1)

ζ(kα)

and ∞∑
n=1

(−1)n−1Sk(n)
nα

=
ζ(α)ζ(kα− 1)

ζ(kα)

[
(2α − 1)(2kα−1 − 1)

2α−2(2kα − 1)
− 1

]
,

where ζ(s) is the Riemann zeta-function.
Taking k = 2, α = 2 and 4, from our Theorems we may immediately deduce the following:

Corollary 1. Let Sk(n) denotes the Smarandache ceil function, then we have the identities:

∞∑
n=1

(−1)n−1

S2
2(n)

=
1
2

and ∞∑
n=1

(−1)n−1

S4
2(n)

=
91
102

.

Corollary 2. Let Sk(n) denotes the dual function of the Smarandache ceil function, then
we have the identities: ∞∑

n=1

S2(n)
n2

=
15
π2
· ζ(3)
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and ∞∑
n=1

(−1)n−1S2(n)
n2

=
6
π2
· ζ(3).

§2. Proof of the theorems

In this section, we shall complete the proof of Theorems. First we prove Theorem 1. For
any real number α with α > 1, let

f(α) =
∞∑

n=1

(−1)n−1

Sα
k (n)

.

Then from the multiplicative property of Sk(n) we may get

f(α) =
∞∑

n=1

1
Sα

k (2n− 1)
−

∞∑
t=1

∞∑
n=1

1
Sα

k (2n− 1)Sα
k (2t)

=

( ∞∑
n=1

1
Sα

k (2n− 1)

)(
1−

∞∑
t=1

1
Sα

k (2t)

)
. (1)

For any prime p, note that Sk(p) = p, Sk(p2) = p, · · · , Sk(pk) = p, Sk(pk+1) = p2,
Sk(ptk+r) = pt+1 for any integers t ≥ 0 and 1 ≤ r ≤ k. So from the Euler product formula [6]
we have

( ∞∑
n=1

1
Sα

k (2n− 1)

)
=

∏
p

p6=2

(
1 +

1
Sα

k (p)
+

1
Sα

k (p2)
+ · · ·+ 1

Sα
k (pk)

+ · · ·
)

=
∏
p

p6=2

(
1 +

k

pα
+

k

p2α
+ · · ·+ k

pnα
+

k

p(n+1)α
+ · · ·

)

=
∏
p

p6=2

(
1 +

k

pα − 1

)

=
2α − 1

2α + k − 1

∏
p

(
1 +

k

pα − 1

)
. (2)

Similarly, we also have

1−
∞∑

t=1

1
Sα

k (2t)
= 1− k

2α − 1
. (3)

Combining (1), (2) and (3) we may immediately get the identity

∞∑
n=1

(−1)n−1

Sα
k (n)

=
2α − k − 1
2α + k − 1

∏
p

(
1 +

k

pα − 1

)
.

This proves Theorem 1.
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Now we prove Theorem 2. For any real number α with α > 1 and integer k ≥ 2, let

g(α) =
∞∑

n=1

Sk(n)
nα

.

Then from the multiplicative property of Sk(n) and the Euler product formula [6] we have

g(α) =
∏
p

(
1 +

Sk(p)
pα

+
Sk(p2)

p2α
+

Sk(p3)
p3α

+ · · ·
)

=
∏
p

(
1 +

1
pα

+
1

p2α
+ · · ·+ 1

p(k−1)α
+

p

pkα
+ · · ·+ p

p(2k−1)α
+ · · ·

)

=
∏
p

(
1− 1

pkα

1− 1
pα

+
p

pkα

1− 1
pkα

1− 1
pα

+
p2

p2kα

1− 1
pkα

1− 1
pα

+ · · ·
)

=
∏
p

(
1− 1

pkα

1− 1
pα

)∏
p

(
1 +

p

pkα
+

p2

p2kα
+ · · ·

)

=
∏
p

(
1− 1

pkα

1− 1
pα

)∏
p

1
1− 1

pkα−1

=
ζ(α)ζ(kα− 1)

ζ(kα)
.

This proves the first formula of Theorem 2.
Similarly, we can also get

∞∑
n=1

(−1)n−1Sk(n)
nα

=
∞∑

n=1

Sk(2n− 1)
(2n− 1)α

−
∞∑

n=1

∞∑
t=1

Sk(2n− 1)
(2n− 1)α

Sk(2t)
2tα

=

( ∞∑
n=1

Sk(2n− 1)
(2n− 1)α

)(
1−

∞∑
t=1

Sk(2t)
2tα

)

=

(
1−

∞∑
t=1

Sk(2t)
2tα

) ∏
p

p6=2

(
1 +

Sk(p)
pα

+
Sk(p2)

p2α
+

Sk(p3)
p3α

+ · · ·
)

=
ζ(α)ζ(kα− 1)

ζ(kα)

1−
∞∑

t=1

Sk(2t)
2tα

1 +
∞∑

t=1

Sk(2t)
2tα

=
ζ(α)ζ(kα− 1)

ζ(kα)

[
(2α − 1)(2kα−1 − 1)

2α−2(2kα − 1)
− 1

]
.

This completes the proof of Theorem 2.
Taking k = 2, then from Theorem 1 we have

∞∑
n=1

(−1)n−1

Sα
2 (n)

=
2α − 3
2α + 1

∏
p

(
1 +

2
pα − 1

)
=

2α − 3
2α + 1

∏
p

pα + 1
pα − 1

=
2α − 3
2α + 1

ζ2(α)
ζ(2α)

, (4)
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where ζ(α) is the Riemann zeta-function.
Note that ζ(2) = π2/6, ζ(4) = π4/90 and ζ(8) = π8/9450, from (4) we may immediately

deduce Corollary 1.
Corollary 2 follows from Theorem 2 with k = 2.
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Abstract The structure of principal filters on any po-semigroup S is investigated by using

the relation N which is the smallest complete semilattice congruence on S. In particular,

we prove that for any po-semigroup S, N is the equality relation on S if and only if S is a

semilattice, and N is the universal relation on S if and only if S is the only principal filter.

We also investigate the complete semilattice congruence classes of S.

Keywords Principal filters; Complete semilattice congruence; Po-semigroups.

A po-semigroup is a semigroup S with a partial ordered “ ≤ ” such that

(∀a, b, c ∈ S) a ≤ b ⇒ ac ≤ bc and ca ≤ cb.

Various kinds of po-semigroups have been widely studied by many authors (see [1-5]). In [8],
the authors have proved that every principal filter of any po-semigroup S can be uniquely
expressed by the N -classes of S. In this paper, we will consider a structure of principal filter on
po-semigroups. By using the relation N which is the smallest complete semilattice congruence
on any po-semigroup S, we will observe that N on any po-semigroup S is the equality relation
if and only if S is a semilattice and N is the universal relation if and only if S is the only
principal filter.

We first recall some basic notions and terminologies from [2] and [7].
Suppose that S is a po-semigroup and T a subsemigroup of S. For a non-empty subset H

of T , we use (H]T and [H)T to denote the following subsets of S, respectively,

(H]T = {x ∈ T | (∃y ∈ H)x ≤ y},

[H)T = {x ∈ T | (∃y ∈ H)x ≥ y}.
In particular, (H]T is denoted by (H] and [H)T by [H) when T = S. A filter F of a po-semigroup
S is a subsemigroup of S satisfying the following conditions

(i) a, b ∈ S, ab ∈ F implies that a ∈ F and b ∈ F ,

(ii) [F ) ⊆ F .

1This research is supported by the NSF of Shaanxi province (2004A10) and the SF of education department of

Shaanxi province (05JK240), P.R.China
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For every a ∈ S there is a unique smallest filter of S containing a, denoted by N(a), which is
called the principal filter generated by a. The relation N on a po-semigroup S is defined by the
rule that for any x, y ∈ S, xN y if and only if N(x) = N(y). A congruence σ on a po-semigroup
S is a semilattice congruence if for any a, b ∈ S, (a2, a) ∈ σ and (ab, ba) ∈ σ. A semilattice
congruence σ on S is called a complete semilattice congruence if for any a, b ∈ S, a ≤ b implies
(a, ab) ∈ σ.

According to [3], N on a po-semigroup S is the smallest complete semilattice congruence
on S. Of course, S/N is a semilattice Y . We also denote by ≤Y the natural partial order on
the semilattice Y (= S/N ).

Lemma 1. ([8]) Let S be a po-semigroup and a ∈ S. Then Na is a semiprime ideal of
N(a).

Lemma 2. ([8]) Let S be a po-semigroup and a in S, then N(a) =
⋃{Nb : Nb ≥Y Na} =

{b ∈ S : Nb ≥Y Na}.
Theorem 3. Let S be a po-semigroup. Then the following are equivalent:

(i) S is a semilattice;

(ii) For every a ∈ S, N(a) = [a);

(iii) N is the equality relation on S.

Proof. (i)⇒ (ii). Let S be a semilattice. For any a ∈ S and x, y ∈ [a), we have x ≥ a, y ≥ a.
This implies that xy ≥ a2 = a and xy ∈ [a). Hence, [a) is a subsemigroup of S.

To prove that [a) is a filter containing a, we suppose that b, c ∈ S such that bc ∈ [a). Then
we have bc ≥ a and abc = bca = a. Hence,

ab = ba = abcb = abc = a, ac = ca = abcc = abc = a,

and so b ≥ a, c ≥ a. This shows that b ∈ [a), c ∈ [a). Since [a) ⊆ [a) always holds, [a) is a filter
containing a, as required.

Let T be a filter containing a. By the definition of filters, we have [T ) ⊆ T . Since a ∈ T ,
then [a) ⊆ [T ) ⊆ T . Consequently, [a) is the smallest filter containing a and then N(a) = [a).

(ii) ⇒ (iii). Suppose that aN b for a, b ∈ S. Then [a) = N(a) = N(b) = [b). Since
a ∈ [a) = [b) and b ∈ [b) = [a), we have that a ≥ b, b ≥ a and so a = b. This implies that
N = 1S .

(iii) ⇒ (i). For any a, b ∈ S, we have Na = {a}, Nb = {b}. Since Na and Nb are both
semilattice congruence classes of S, it is easy to see that NaNa ⊆ Na and NaNb = NbNa.
Clearly, a2 = a, ab = ba. This shows that S is a semilattice as required.

Moreover, the partial order on S is the natural order of semilattice. In fact, Na ≤Y Nb if
and only if NaNb = NbNa = Na. Since N = 1S , we have that a ≤ b if and only if ab = ba = a.

¤
Theorem 4. Let S be a po-semigroup. Then the following are equivalent:

(i) N is the universal relation on S;

(ii) S has only one filter and N(a) = S, for any a ∈ S;
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(iii) S has only one complete semilattice congruence on S.

Proof. Since N is the smallest complete semilattice congruence on S, it is trivial that (i)
⇔(iii).

(i) ⇒ (ii). Since N is the universal relation on S which means that for every a ∈ S,Na = S,
we have that Na ⊆ N(a) ⊆ S by Lemma 1. Hence N(a) = S as required.

(ii) ⇒ (i). For any a, b ∈ S, we have N(a) = S = N(b). This shows that aN b and N = ωS ,
as required. ¤

Theorem 5. Let σ be a complete semilattice congruence on a po-semigroup S and Y the
semilattice S/σ. Then for any α ∈ Y , we have

(i) Sα is the union of some N -classes;

(ii) The set T =
⋃{Sβ : β ≥Y α, β ∈ Y } is a filter;

(iii) For any a ∈ Sα, N(a) = T if and only if σ is the smallest complete semilattice congruence
on S.

Proof. (i) Since N is the smallest complete semilattice congruence on S, we have that
(a, b) ∈ N ⊆ σ for every a ∈ Sα and b ∈ Na. It is clear that Sα is a semilattice congruence
class of S and so b ∈ Sα. We have proved that Na ⊆ Sα. Consequently,

⋃
a∈Sα

Na ⊆ Sα. Clearly,

Sα ⊆
⋃

a∈Sα

Na. Hence we have Sα =
⋃

a∈Sα

Na. This is exactly the union of some N -classes.

(ii) To see that T is a filter, we first prove that T is a subsemigroup of S. Since ∅ 6= Sα ⊆ T ,
T is not empty. For any x, y ∈ T , we have β and γ in Y such that x ∈ Sβ , y ∈ Sγ , β ≥Y α

and γ ≥Y α. This implies that xy ∈ SβSγ ⊆ Sβγ and βγ ≥Y α. Hence, xy ∈ T and T is a
subsemigroup of S.

Suppose that xy ∈ T and x, y ∈ S, we have β, γ and δ in Y such that x ∈ Sγ , y ∈ Sδ,
xy ∈ Sβ and β ≥Y α. This implies that xy ∈ SγSδ ⊆ Sγδ and γδ = β ≥Y α. Since Y is a
semilattice, it is easy to see that γ ≥Y α and δ ≥Y α. Thus, we have x ∈ T and y ∈ T .

For any x ∈ [T ), there exists an element β in Y such that x ∈ Sβ and an element y in Sγ

such that x ≥ y, where γ ∈ Y and γ ≥Y α. This shows that xy ∈ SβSγ ⊆ Sβγ . Since σ is a
complete semilattice congruence, we can see that (xy, y) ∈ σ. From y ∈ Sγ , we immediately
have xy ∈ Sγ . Then we have βγ = γ and so β ≥Y γ ≥Y α in Y . Hence, x ∈ T and [T ) ⊆ T as
required. We have shown that T is a filter.

(iii) If σ is the smallest complete semilattice congruence on S, we have σ = N and Sα is
a N -class for every α ∈ Y . Then we have Sα = Na for any a ∈ Sα. T is the union of all the
N -classes which are greater than Na. This is exactly the set

⋃{Nb : Nb ≥Y Na}. By Lemma
2, N(a) =

⋃{Sβ : β ≥Y α, β ∈ Y }.
Conversely, suppose that (a, b) ∈ σ and a ∈ Sα, then we have b ∈ Sα. Since N(a) =

⋃{Sβ :
β ≥Y α, β ∈ Y } for any a ∈ Sα, we now have N(a) = N(b) and (a, b) ∈ N , then σ ⊆ N . We
have known that N is the smallest complete semilattice congruence on S, so σ = N and σ is
the smallest complete semilattice congruence on S. ¤

The following Corollary is a direct result of Theorem 5.
Corollary 6. Let σ be a complete semilattice congruence on a po-semigroup S and Y the

semilattice S/σ. For any α ∈ Y and a ∈ Sα, N(a) ⊆ ⋃{Sβ : β ≥Y α, β ∈ Y }.
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Corollary 7. Let σ be a complete semilattice congruence on a po-semigroup S and Y

the semilattice S/σ. If there exists a maximal element α in Y such that Sα has no proper
subsemigroups, we have N(a) = Sα for any a ∈ Sα.

Proof. Suppose that α is a maximal element in Y . By Corollary 6, we have N(a) ⊆⋃{Sβ : β ≥Y α, β ∈ Y } = Sα for any a ∈ Sα. This shows that N(a) is a subsemigroup of Sα.
From a ∈ Sα we know that Sα is not empty. Since Sα has no proper subsemigroups, we have
N(a) = Sα. ¤

Remark. Suppose that α is a maximal element in Y . If Sα is finite, there must exists
an idempotent e such that {e} is a subsemigroup of Sα. If e is a maximal element in Sα and
ab = e if and only if a = b = e, we know that{e} is a filter. If e isn’t a maximal element in Sα

and Sα has no proper subsemigroups except {e}, we have Sα = N(a) for every a ∈ Sα.

Example.The set S = {a, b, c, d, e, f, g} with the multiplication “ ∗ ” and the order “ ≤ ”
below is a po-semigroup.

∗ a b c d e f g

a a b a b a b a

b b b b b b b b

c a b c d a b a

d b b d d b b b

e a b a b e f e

f b b b b f f f

g a b a b e f g

≤:= 1S

⋃
{(a, c), (a, e), (a, g), (b, a), (b, c), (b, d),

(b, e), (b, f), (b, g), (d, c), (e, g), (f, e), (f, g)}.

The Hasse diagram of S is shown below.

◦ a

◦c ◦ e

◦g

◦d

◦
b

◦ f¡
¡

¡¡

@
@

@@
@

@
@@

@
@

@@

¡
¡

¡¡

We now define a complete semilattice congruence σ on S as follow:

σ := 1S

⋃{(a, b), (b, a), (c, d), (d, c), (e, f), (f, e)}.
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Then S/σ = {{a, b}, {c, d}, {e, f}, {g}}. If we denote Sα = {a, b}, Sβ = {c, d}, Sγ = {e, f},
Sδ = {g}, the order on semilattice Y = S/σ is shown below.

≤Y = {(α, α), (β, β), (γ, γ), (δ, δ),

(α, β), (α, γ), (α, δ), (γ, δ)}.

From the Cayley table above, we know that S is a semilattice. By Theorem 3, we can
easily see that N(a) = {a, c, e, g}, N(b) = {a, b, c, d, e, f, g}, N(c) = {c}, N(d) = {c, d}, N(e) =
{e, g}, N(f) = {e, f, g}, N(g) = {g} and N = 1S . By Corollary 6, we can see that N(a) ⊆
Sα

⋃
Sβ

⋃
Sγ

⋃
Sδ, N(b) ⊆ Sα

⋃
Sβ

⋃
Sγ

⋃
Sδ, N(c) ⊆ Sβ , N(d) ⊆ Sβ , N(e) ⊆ Sγ

⋃
Sδ,

N(f) ⊆ Sγ

⋃
Sδ and N(g) = Sδ by Corollary 7.
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as a k-th power complement number of n if ak(n) denotes the smallest non-negative integer

such that n+ak(n) is a perfect k-th power. In this paper, we studied the convergent property

of the series

∞∑
n=1

1

(n + ak(n))α
by using the elementary methods, and obtained an interesting

identity for it.
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§1. Introduction

For any given natural number k ≥ 2 and any positive integer n, we call bk(n) as the
Smarandache k-th power complement number of n if bk(n) denotes the smallest positive integer
such that nbk(n) is a perfect k-th power, if k = 2, then we called b2(n) as the square complements
of n. In problem 27 of [1], Professor F.Smarandache ask us to study the properties of b2(n).
About this problem, some authors have studied it, for example, Liu Hongyan and Gou Su [2]
used the elementary method to study the mean value properties of b2(n) and 1

b2(n) . Zhang
Hongli and Wang Yang [3] studied the mean value of τ(b2(n)), and obtained an asymptotic
formula by using the analytic method.

Similarly, we define the additive k-th power complements ak(n) of n as follows: ak(n) is
the smallest non-negative integer such that ak(n) + n is a complete k-th power. That is

ak(n) = min{l | n + l = mk, l ≥ 0,m ∈ N+}.

If k = 2, we call a2(n) as the additive square complements of n which is defined as the
smallest positive integer l such that n+ l is a perfect square. For example, a2(1) = 0, a2(2) = 2,
a2(3) = 1, a2(5) = 4, a2(6) = 3, a2(7) = 2, · · · .

About this problem, many scholars have studied it and obtained some interesting results.
For example, Xu Zhefeng [4] proved the following asymptotic formula:

∑

n≤x

ak(n) =
k2

4k − 2
x2−1/k + O(x2−2/k), x ≥ 3.

1This work is supported by the Education Department Foundation of Shaanxi Province (05JK189) and the

Foundation of Weinan Teacher’s College (06JKS027).
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Yi Yuan [5] studied the mean value properties of d(n + a(n)), and got the following conclusion:
∑

n≤x

d(n + a(n)) =
3

4π2
x ln2 x + A1x lnx + A2x + O(x

3
4 + ε),

where d(n) is the Dirichlet divisor function, A1 and A2 are computable constants, ε denotes
any fixed positive number.

In this paper, we studied the convergent property of the series
∞∑

n=1

1
(n + ak(n))α

by using

the elementary methods, and obtained an interesting identity for it. That is, we will prove the
following:

Theorem. Let k ≥ 2 be an integer, then for any real number α ≤ 1, the infinity series
∞∑

n=1

1
(n + ak(n))α

is divergent, it is convergent if α > 1, and
∞∑

n=1

1
(n + ak(n))α

=
(
k
1

)
ζ(kα− k + 1)− (

k
2

)
ζ(kα− k + 2) +

(
k
3

)
ζ(kα− k + 3)

− · · · − (−1)k−1
(
k
1

)
ζ(kα− 1)− (−1)kζ(kα),

where ζ(s) is the Riemann zeta-function.
Taking k = 2, α = 2 and k = 3, α = 3 in our Theorem, we may immediately deduce the

following:
Corollary. For additive square complements and additive cubic complements, we have the

identities ∞∑
n=1

1
(n + a2(n))2

= 2ζ(3)− ζ(4)

and ∞∑
n=1

1
(n + a3(n))3

= 3ζ(7)− 3ζ(8) + ζ(9).

§2. Proof of the theorem

In this section, we will complete the proof of Theorem. For any positive integer n ≥ 1,
there must be a positive integer m such that

(m− 1)k < n ≤ mk.

So the number of all such n is mk − (m− 1)k which satisfying ak(n) + n = mk, then from the
definition of ak(n), we have
∞∑

n=1

1
(n + ak(n))α

=
∞∑

m=1

mk − (m− 1)k

mkα

=
∞∑

m=1

(
k
1

)
mk−1 − (

k
2

)
mk−2 +

(
k
3

)
mk−3 − · · · − (−1)k−1

(
k
1

)
m− (−1)k

mkα

=
(
k
1

)
ζ(kα− k + 1)− (

k
2

)
ζ(kα− k + 2) +

(
k
3

)
ζ(kα− k + 3)

− · · · − (−1)k−1
(
k
1

)
ζ(kα− 1)− (−1)kζ(kα).
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This completes the proof of Theorem.

References

[1] F. Smarandache. Only problems, not Solutions, Xiquan Publ. House, Chicago, 1993,
pp. 23.

[2] Liu H.Y and Gou S. On a problem of F.Smarandache, Journal of Yanan University
(Natural Science Edition), 20(2001), 5-6.

[3] Zhang H.L. and Wang Y. On the mean value of divisor function for square complements,
Basic Science Journal of Textile University, 15(2002), 44-46.

[4] Xu Zhefeng. On the additive k-th power complements, Research on Smarandache
problems in number theory (Collected papers), Hexis, 2004, pp. 13-16.

[5] Yi Yuan. On the asymptotic property of divisor function for additive complement,
Research on Smarandache problems in number theory (Collected papers), Hexis, 2004, pp.
65-68.

[6] Tom M.Apostol. Introduction to Analytic Number Theory, Springer-Verlag, New York,
1976.



Scientia Magna
Vol. 2 (2006), No. 1, 58-59

The Smarandache Reverse Auto Correlated
Sequences of Natural Numbers

Maohue Le

Department of Mathematics, Zhanjiang Normal College

Zhanjiang, Guangdong, P.R.China

Abstract In this paper we give an explicit formula for the n times Smarandache reverse

auto correlated sequence of natural numbers.

Keywords Smarandache reverse auto correlated sequence, natural number.

Let A = {a(m)}∞m=1 be a sequence. If the sequence B = {b(m)}∞m=1 satisfying

b(m) =

m∑

k=1

a(k)a(m− k + 1), m ≥ 1, (1)

then B is called the Smarandache reverse auto correlated sequence of A, and denoted by SRACS(A).

Further, for any positive integer n, let SRACS(n, A) denote the n times Smarandache reverse auto cor-

related sequence of A. Then we have SRACS(1, A) = SRACS(A), SRACS(2, A) = SRACS(SRACS(A))

and

SRACS(n, A) = SRACS(SRACS(n− 1, A)), n ≥ 1. (2)

Recentely, Muthy [1] proposed the following conjecture:

Conjecture. For any positive integer n, if a(m) = m (m ≥ 1) and SRACS(n, A) = B =

{b(m)}∞m=1, then

b(m) =


2n+1 + m− 1

2n+1 − 1


 , m ≥ 1 (3)

In this paper we completely verify the above-mentioned conjecture as follows.

Theorem. For any positive integer n, if a(m) = m (m ≥ 1) and SRACS(n, A) = B = {b(m)}∞m=1,

then b(m) (m ≥ 1) satisfy (3).

Proof. For a fixed sequence A = {a(m)}∞m=1, let

f(A; x) = a(1) + a(2)x + a(3)x2 + · · · =
∞∑

m=1

a(m)xm−1. (4)

Further, let B = {b(m)}∞m=1 be the Smarandache reverse auto correlated sequence of A, and let

g(A; x) = b(1) + b(2)x + b(3)x2 + · · · =
∞∑

m=1

b(m)xm−1. (5)
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Then, by the definition of multiplication of power series (see [2]), we see from (1), (4) and (5) that

g(A; x) = (f(A; x))2. (6)

Furthermore, for a fixed positive integer n, if SRACS(n, A) = B = {b(m)}∞m=1, and

g(n, A; x) = b(1) + b(2)x + b(3)x2 + · · · =
∞∑

m=1

b(m)xm−1, (7)

then from (2) and (6) we obtain

g(n, A; x) = (f(A; x))2
n

. (8)

If a(m) = m for m ≥ 1, then we get

f(A; x) = 1 + 2x + 3x2 + · · · =
∞∑

m=1

mxm−1 = (1− x)−2, (9)

by (4). Therefore, by (8), if SRACS(n, A) = B = {b(m)}∞m=1 and g(n, A; x) satisfies (7), then from

(9) we obtain

g(n, A; x) = (1− x)−2n+1
=

∞∑
m=1


2n+1 + m− 1

2n+1 − 1


 xm−1, (10)

Thus, by (7) and (10), we get (3). The theorem is proved.
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Abstract I study Smarandache numbers partitions, and the partitions set of these numbers.

This study conducted by Computer Algebra System namely, Maple 8.
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§1.1 The procedure

Using the following procedure, we can verify the number of unrestricted partitions of the
Smarandache numbers n is denoted by P (s(n)). With the Maple ( V. 8 )[see, 2] definitions.

S:= proc(n::nonnegint)
option remember;
local i, j, fact:
fact:=1:
for i from 2 while irem ( fact, n)<> 0 do
fact := fact *i:
od :
return i− 1:
end proc:
b:= proc(n::nonnegint)
option remember;
with (combstruct):
count (Partition(n));
end proc:
This procedure can verify the number of partitions, very fast, for example, it can verify the

number of partitions of 200 in 0.2 second, while George Andrews said that ”Actual enumeration
of the P (200) = 3972999029388 would certainly take more than a lifetime, [1, p 150].”

Below the first 100 Smarandache numbers verifying by the above procedure:

§1.2 Partition counting of Smarandache numbers

By using the above procedure, we can got the first 100 partitions of Smarandache numbers
as follows:
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P (s(1)) = 1 P (s(2)) = 2 P (s(3)) = 3 P (s(4)) = 5

P (s(5)) = 7 P (s(6)) = 3 P (s(7)) = 15 P (s(8)) = 5

P (s(9)) = 11 P (s(10)) = 7 P (s(11)) = 56 P (s(12)) = 5

P (s(13)) = 101 P (s(14)) = 15 P (s(15)) = 7 P (s(16)) = 11

P (s(17)) = 297 P (s(18)) = 11 P (s(19)) = 490 P (s(20)) = 7

P (s(21)) = 15 P (s(22)) = 56 P (s(23)) = 1255 P (s(24)) = 5

P (s(25)) = 42 P (s(26)) = 101 P (s(27)) = 30 P (s(28)) = 15

P (s(29)) = 4565 P (s(30)) = 7 P (s(31)) = 6842 P (s(32)) = 22

P (s(33)) = 56 P (s(35)) = 297 P (s(35)) = 15 P (s(36)) = 11

P (s(37)) = 21637 P (s(38)) = 490 P (s(39)) = 101 P (s(40)) = 7

P (s(41)) = 44583 P (s(42)) = 15 P (s(43)) = 63261 P (s(44)) = 56

P (s(45)) = 11 P (s(46)) = 1255 P (s(47)) = 124754 P (s(48)) = 11

P (s(49)) = 135 P (s(50)) = 42 P (s(51)) = 297 P (s(52)) = 101

P (s(53)) = 329931 P (s(54)) = 30 P (s(55)) = 56 P (s(56)) = 15

P (s(57)) = 490 P (s(58)) = 4565 P (s(59)) = 831820 P (s(60)) = 7

P (s(61)) = 1121505 P (s(62)) = 6842 P (s(63)) = 15 P (s(64)) = 22

P (s(65)) = 101 P (s(66)) = 56 P (s(67)) = 2679689 P (s(68)) = 297

P (s(69)) = 1255 P (s(70)) = 15 P (s(71)) = 4697205 P (s(72)) = 11

P (s(73)) = 6185689 P (s(74)) = 21637 P (s(75)) = 42 P (s(76)) = 490

P (s(77)) = 56 P (s(78)) = 101 P (s(79)) = 13848650 P (s(80)) = 11

P (s(81)) = 30 P (s(82)) = 44583 P (s(83)) = 23338469 P (s(84)) = 15

P (s(85)) = 297 P (s(86)) = 63261 P (s(87)) = 4565 P (s(88)) = 56

P (s(89)) = 49995925 P (s(90)) = 11 P (s(91)) = 101 P (s(92)) = 1255

P (s(93)) = 6842 P (s(94)) = 124754 P (s(95)) = 490 P (s(96)) = 22

P (s(97)) = 133230930 P (s(98)) = 135 P (s(99)) = 56 P (s(100)) = 42

We can not (without lose of generality )that: P (s(4)) = P (s(8)) = P (s(12)) = P (s(24)),
this is because s(4) = s(8) = s(12) = s(24) = 4, and so on.

§2.1 The procedure of partitions sets

Now, the following procedure, we can verify the unrestricted partitions of the Smarandache
numbers. With the Maple ( V. 8 ) definitions.

S:= proc (n::nonnegint)
option remember;
local i, j, fact:
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fact := 1:
for i from 2 while irem ( fact, n)<> 0 do
fact:= fact *i:
od :
return i− 1:
end proc:
b:= proc (n::nonnegint)
option remember;
with (combstruct):
allstructs (Partition(n));
end proc:

§2.2 Partition Sets of Smarandache numbers

By using the above procedure, we can got the first 15 partition sets of Smarandache
numbers as follows:

PartitionSetOf (s(1)) = [[1]],
PartitionSetOf (s(2)) = [[1, 1], [2]],
PartitionSetOf (s(3)) = [[[1, 1, 1], [1, 2], [3]],
PartitionSetOf (s(4)) = [[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]],
PartitionSetOf (s(5)) = {[ [1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], [1, 1, 3], [2, 3], [1, 4], [5] ]},
PartitionSetOf (s(6)) = {[ [1, 1, 1], [1, 2], [3] ]},
PartitionSetOf (s(7)) = {[ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 2], [1, 1, 1, 2, 2], [1, 2, 2, 2], [1, 1, 1, 1, 3],

[1, 1, 2, 3], [2, 2, 3], [1, 3, 3], [1, 1, 1, 1, 4], [1, 2, 4], [3, 4], [1, 1, 5], [2, 5], [1, 6], [7] ]},
PartitionSetOf (s(8)) = {[ [1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4] ]},
PartitionSetOf (s(9)) = {[ [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 2, 2], [2, 2, 2], [1, 1, 1, 3], [1, 2, 3],

[3, 3], [1, 1, 4], [2, 4], [1, 5], [6] ]},
PartitionSetOf (s(10)) = {[ [1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], [1, 1, 3], [2, 3], [1, 4], [5] ]},
PartitionSetOf (s(11)) = {[ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 2], [1, 1, 1, 1, 1, 1, 1, 2, 2],

[1, 1, 1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2, 2], [1, 2, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 1, 3], [1, 1, 1, 1, 1, 1, 2, 3],
[1, 1, 1, 1, 2, 2, 3], [1, 1, 2, 2, 2, 3], [2, 2, 2, 2, 3], [1, 1, 1, 1, 1, 3, 3], [1, 1, 1, 2, 3, 3], [1, 2, 2, 3, 3, ],
[1, 1, 3, 3, 3], [2, 3, 3, 3], [1, 1, 1, 1, 1, 1, 1, 4], [1, 1, 1, 1, 1, 2, 4], [1, 1, 1, 2, 2, 4], [1, 2, 2, 2, 4],
[1, 1, 1, 1, 3, 4], [1, 1, 2, 3, 4], [2, 2, 3, 4], [1, 3, 3, 4], [1, 1, 1, 4, 4], [1, 2, 4, 4], [3, 4, 4], [1, 1, 1, 1, 1, 5],
[1, 1, 1, 1, 2, 5], [1, 1, 2, 2, 5], [2, 2, 2, 5], [1, 1, 1, 3, 5], [1, 2, 3, 5], [3, 3, 5], [1, 1, 4, 5], [2, 4, 5], [1, 5, 5, ],
[1, 1, 1, 1, 1, 6], [1, 1, 1, 2, 6], [1, 2, 2, 6], [1, 1, 3, 6], [2, 3, 6], [1, 4, 6], [5, 6], [1, 1, 1, 1, 7], [1, 1, 2, 7], [2, 2, 7],
[1, 3, 7], [4, 7], [1, 1, 1, 8], [1, 2, 8], [3, 8], [1, 1, 9], [2, 9], [1, 10], [11] ]},

PartitionSetOf (s(12)) = {[ [1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4] ]},
PartitionSetOf (s(13)) = {[ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2], [1, 1, 1, 1, 1, 1, 1, 2, 2, 2], [1, 1, 1, 1, 1, 2, 2, 2, 2], [1, 1, 1, 2, 2, 2, 2, 2],
[1, 2, 2, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3], [1, 1, 1, 1, 1, 1, 1, 1, 2, 3], [1, 1, 1, 1, 1, 1, 2, 2, 3],
[1, 1, 1, 1, 2, 2, 2, 3], [1, 1, 2, 2, 2, 2, 3], [2, 2, 2, 2, 2, 3], [1, 1, 1, 1, 1, 1, 1, 3, 3], [1, 1, 1, 1, 1, 2, 3, 3],
[1, 1, 1, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [1, 1, 1, 1, 3, 3, 3], [1, 1, 2, 3, 3, 3], [2, 2, 3, 3, 3], [1, 3, 3, 3, 3],
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[1, 1, 1, 1, 1, 1, 1, 1, 1, 4], [1, 1, 1, 1, 1, 1, 1, 2, 4], [1, 1, 1, 1, 1, 2, 2, 4], [1, 1, 1, 2, 2, 2, 4], [1, 2, 2, 2, 2, 4],
[1, 1, 1, 1, 1, 1, 3, 4], [1, 1, 1, 1, 2, 3, 4], [1, 1, 2, 2, 3, 4], [2, 2, 2, 3, 4], [1, 1, 1, 3, 3, 4], [1, 2, 3, 3, 4],
[3, 3, 3, 4], [1, 1, 1, 1, 1, 4, 4], [1, 1, 1, 2, 4, 4], [1, 2, 2, 4, 4], [1, 1, 3, 4, 4], [2, 3, 4, 4], [1, 4, 4, 4],
[1, 1, 1, 1, 1, 1, 1, 1, 5], [1, 1, 1, 1, 1, 1, 2, 5], [1, 1, 1, 1, 2, 2, 5], [1, 1, 2, 2, 2, 5], [2, 2, 2, 2, 5],
[1, 1, 1, 1, 1, 3, 5], [1, 1, 1, 2, 3, 5], [1, 2, 2, 3, 5], [1, 1, 3, 3, 5][2, 3, 3, 5], [1, 1, 1, 1, 4, 5], [1, 1, 2, 4, 5],
[2, 2, 4, 5], [1, 3, 4, 5], [4, 4, 5], [1, 1, 1, 5, 5], [1, 2, 5, 5], [3, 5, 5] ], [1, 1, 1, 1, 1, 1, 1, 6], [1, 1, 1, 1, 1, 2, 6],
[1, 1, 1, 2, 2, 6], [1, 2, 2, 2, 6], [1, 1, 1, 1, 3, 6], [1, 1, 2, 3, 6], [2, 2, 3, 6, ], [1, 3, 3, 6], [1, 1, 1, 4, 6],
[1, 2, 4, 6], [3, 4, 6], [1, 1, 5, 6], [2, 5, 6], [1, 6, 6], [1, 1, 1, 1, 1, 1, 7], [1, 1, 1, 1, 2, 7], [1, 1, 2, 2, 7], ,
[2, 2, 2, 7], [1, 1, 1, 3, 7][1, 2, 3, 7], [3, 3, 7], [1, 1, 4, 7], [2, 4, 7], [1, 5, 7], [6, 7], [1, 1, 1, 1, 1, 8],
[1, 1, 1, 2, 8], [1, 2, 2, 8], [1, 1, 3, 8], [2, 3, 8], [1, 4, 8], [5, 8], [1, 1, 1, 1, 9], [1, 1, 2, 9], [2, 2, 9], [1, 3, 9],
[4, 9], [1, 1, 1, 10], [1, 2, 10], [3, 10], [1, 1, 11], [2, 11], [1, 12], [13]]},

PartitionSetOf (s(14)) = {[ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 2], [1, 1, 1, 2, 2], [1, 2, 2, 2],
[1, 1, 1, 1, 3], [1, 1, 2, 3], [2, 2, 3], [1, 3, 3], [1, 1, 1, 4], [1, 2, 4], [3, 4], [1, 1, 5], [2, 5], [1, 6], [7] ]},

PartitionSetOf (s(15)) = {[ [1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], [1, 1, 3], [2, 3], [1, 4], [5] ]},
We can not (without lose of generality ) that: Partitions of P (s(4)) = P (s(8)) = P (s(12)) =

P (s(24)), this is because all of them have the same Smarandache numbers and the same parti-
tions sets, and so on.
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Abstract A Smarandache multi-space is a union of n, n ≥ 2 spaces A1, A2, · · · , An with

some additional conditions. Combining classical groups with Smarandache multi-spaces, the

conception of multi-group spaces is introduced in this paper, which is a generalization of the

classical algebraic structures, such as the group, the filed, the body, · · · , etc.. Similar to

groups, some characteristics of multi-group spaces are obtained in this paper.
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§1. Introduction

The notion of multi-spaces is introduced by Smarandache in [5] under his idea of hybrid
mathematics: combining different fields into a unifying field ([6]). Today, this idea is widely
accepted by the world of sciences. For mathematics, definite or exact solution under a given
condition is not the only object for mathematician. New creation power has emerged. New era
for mathematics has come now.

A Smarandache multi-space is defined by
Definition 1.1 For any integer i, 1 ≤ i ≤ n, let Ai be a set with ensemble of law Li,

and the intersection of k sets Ai1 , Ai2 , · · · , Aik
of them constrains the law I(Ai1 , Ai2 , · · · , Aik

).
Then the union of Ai, 1 ≤ i ≤ n

Ã =
n⋃

i=1

Ai

is called a multi-space.
The conception of multi-group spaces is a generalization of the classical algebraic structures,

such as the group, the filed, the body, · · · , etc., which is defined as follows.

Definition 1.2 Let G̃ =
n⋃

i=1

Gi be a complete multi-space with a binary operation set

O(G̃) = {×i, 1 ≤ i ≤ n}. If for any integer i, 1 ≤ i ≤ n, (Gi;×i) is a group and for ∀x, y, z ∈ G̃

and any two binary operations “×”and “◦”, × 6= ◦, there is one operation, for example
the operation × satisfying the distribution law to the operation “◦”provided their operation
results exist , i.e.,

x× (y ◦ z) = (x× y) ◦ (x× z),
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(y ◦ z)× x = (y × x) ◦ (z × x),

then G̃ is called a multi-group space.
Remark: The following special cases convince us that the multi-group spaces are gener-

alization of the group, the field and the body, · · · , etc..

(i) If n = 1, then G̃ = (G1;×1) is just a group.
(ii) If n = 2, G1 = G2 = G̃, Then G̃ is a body. If (G1;×1) and (G2;×2) are commutative

groups, then G̃ is a field.

Notice that in [7]and[8] various bispaces, such as bigroup, bisemigroup, biquasigroup,
biloop, bigroupoid, biring, bisemiring, bivector, bisemivector, binear-ring, · · · , etc., consider
two operations on two different sets are introduced.

§2. Characteristics of multi-group spaces

For a multi-group space G̃ and a subset G̃1 ⊂ G̃, if G̃1 is also a multi-group space under
a subset O(G̃1), O(G̃1) ⊂ O(G̃), then G̃ is called a multi-group subspace, denoted by G̃1 ¹ G̃.
We have the following criterion for the multi-group subspaces.

Theorem 2.1. For a multi-group space G̃ =
n⋃

i=1

Gi with an operation set O(G̃) = {×i|1 ≤
i ≤ n}, a subset G̃1 ⊂ G̃ is a multi-group subspace if and only if for any integer k, 1 ≤ k ≤ n,
(G̃1

⋂
Gk;×k) is a subgroup of (Gk;×k) or G̃1

⋂
Gk = ∅.

Proof. If G̃1 is a multi-group space with the operation set O(G̃1) = {×ij |1 ≤ j ≤ s} ⊂
O(G̃), then

G̃1 =
n⋃

i=1

(G̃1

⋂
Gi) =

s⋃

j=1

G′ij

where G′ij
¹ Gij

and (Gij
;×ij

) is a group. Whence, if G̃1

⋂
Gk 6= ∅, then there exist an

integer l, k = il such that G̃1

⋂
Gk = G′il

, i.e., (G̃1

⋂
Gk;×k) is a subgroup of (Gk;×k).

Now if for any integer k, (G̃1

⋂
Gk;×k) is a subgroup of (Gk;×k) or G̃1

⋂
Gk = ∅, let N

denote the index set k with G̃1

⋂
Gk 6= ∅. Then

G̃1 =
⋃

j∈N

(G̃1

⋂
Gj)

and (G̃1

⋂
Gj ,×j) is a group. Since G̃1 ⊂ G̃ and O(G̃1) ⊂ O(G̃), the associative law and

distribute law are also true for the G̃1. Therefore, G̃1 is a multi-group subspace of G̃.
For a finite multi-group subspace, we get the following criterion.
Theorem 2.2. Let G̃ be a finite multi-group space with an operation set O(G̃) = {×i|1 ≤

i ≤ n}. A subset G̃1 of G̃ is a multi-group subspace under an operation subset O(G̃1) ⊂ O(G̃)
if and only if for each operation “×”in O(G̃1), (G̃1;×) is complete.

Proof. Notice that for a multi-group space G̃, its each multi-group subspace G̃1 is
complete.
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Now if G̃1 is a complete set under each operation“×i”in O(G̃1), we know that (G̃1

⋂
Gi;×i)

is a group (see also [9]) or an empty set. Whence, we get that

G̃1 =
n⋃

i=1

(G̃1

⋂
Gi).

Therefore, G̃1 is a multi-group subspace of G̃ under the operation set O(G̃1).
For a multi-group subspace H̃ of the multi-group space G̃, g ∈ G̃, define

gH̃ = {g × h|h ∈ H̃,× ∈ O(H̃)}.
Then for ∀x, y ∈ G̃,

xH̃
⋂

yH̃ = ∅ or xH̃ = yH̃.

In fact, if xH̃
⋂

yH̃ 6= ∅, let z ∈ xH̃
⋂

yH̃, then there exist elements h1, h2 ∈ H̃ and
operations “×i”and “×j”such that

z = x×i h1 = y ×j h2.

Since H̃ is a multi-group subspace, (H̃
⋂

Gi;×i) is a subgroup. Whence, there exists an
inverse element h−1

1 in (H̃
⋂

Gi;×i). We get that

x×i h1 ×i h−1
1 = y ×j h2 ×i h−1

1 .

That is,

x = y ×j h2 ×i h−1
1 .

Whence,

xH̃ ⊆ yH̃.

Similarly, we can also get that

xH̃ ⊇ yH̃.

Therefore, we get that

xH̃ = yH̃.

Denote the union of two sets A and B by A
⊕

B if A
⋂

B = ∅. Then we get the following
result by the previous proof.

Theorem 2.3. For any multi-group subspace H̃ of a multi-group space G̃, there is a
representation set T , T ⊂ G̃, such that

G̃ =
⊕

x∈T

xH̃.
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For the case of finite groups, since there is only one binary operation“×”and |xH̃| = |yH̃|
for any x, y ∈ G̃, we get the following corollary, which is just the Lagrange theorem for finite
groups.

Corollary 2.1. (Lagrange theorem) For any finite group G, if H is a subgroup of G, then
|H| is a divisor of |G|.

For a multi-group space G̃ and g ∈ G̃, denote by
−−→
O(g) all the binary operations associative

with g and by G̃(×) the elements associative with the binary operation “×”. For a multi-
group subspace H̃ of G̃, × ∈ O(H̃) and ∀g ∈ G̃(×), if ∀h ∈ H̃,

g × h× g−1 ∈ H̃,

then call H̃ a normal multi-group subspace of G̃, denoted by H̃ / G̃. If H̃ is a normal
multi-group subspace of G̃, similar to the normal subgroup of a group, it can be shown that
g × H̃ = H̃ × g, where g ∈ G̃(×). We have the following result.

Theorem 2.4. Let G̃ =
n⋃

i=1

Gi be a multi-group space with an operation set O(G̃) =

{×i|1 ≤ i ≤ n}. Then a multi-group subspace H̃ of G̃ is normal if and only if for any integer
i, 1 ≤ i ≤ n, (H̃

⋂
Gi;×i) is a normal subgroup of (Gi;×i) or H̃

⋂
Gi = ∅.

Proof. We have known that

H̃ =
n⋃

i=1

(H̃
⋂

Gi).

If for any integer i, 1 ≤ i ≤ n, (H̃
⋂

Gi;×i) is a normal subgroup of (Gi;×i), then we know
that for ∀g ∈ Gi, 1 ≤ i ≤ n,

g ×i (H̃
⋂

Gi)×i g−1 = H̃
⋂

Gi.

Whence, for ∀◦ ∈ O(H̃) and ∀g ∈
−−→
G̃(◦),

g ◦ H̃ ◦ g−1 = H̃.

That is, H̃ is a normal multi-group subspace of G̃.
Now if H̃ is a normal multi-group subspace of G̃, then by definition, we know that for

∀◦ ∈ O(H̃) and ∀g ∈ G̃(◦),

g ◦ H̃ ◦ g−1 = H̃.

Not loss of generality, we assume that ◦ = ×k, then we get that

g ×k (H̃
⋂

Gk)×k g−1 = H̃
⋂

Gk.

Therefore, (H̃
⋂

Gk;×k) is a normal subgroup of (Gk,×k). For the operation “◦”is
chosen arbitrarily, we know that for any integer i, 1 ≤ i ≤ n, (H̃

⋂
Gi;×i) is a normal subgroup

of (Gi;×i) or an empty set.
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For a multi-group space G̃ with an operation set O(G̃) = {×i| 1 ≤ i ≤ n}, an order of
operations in O(G̃) is said an oriented operation sequence, denoted by

−→
O (G̃). For example, if

O(G̃) = {×1,×2×3}, then ×1 Â ×2 Â ×3 is an oriented operation sequence and ×2 Â ×1 Â ×3

is another.
For an oriented operation sequence

−→
O (G̃), we construct a series of normal multi-group

subspaces

G̃ . G̃1 . G̃2 . · · · . G̃m = {1×n}
by the following programming.
STEP 1: Construct a series

G̃ . G̃11 . G̃12 . · · · . G̃1l1

under the operation “×1”.

STEP 2: If a series

G̃(k−1)l1 . G̃k1 . G̃k2 . · · · . G̃klk

has be constructed under the operation “×k”and G̃klk 6= {1×n
}, then construct a series

G̃kl1 . G̃(k+1)1 . G̃(k+1)2 . · · · . G̃(k+1)lk+1

under the operation “×k+1”.
This programming is terminated until the series

G̃(n−1)l1 . G̃n1 . G̃n2 . · · · . G̃nln = {1×n}
has be constructed under the operation “×n”.
The number m is called the length of the series of normal multi-group subspaces. For a

series

G̃ . G̃1 . G̃2 . · · · . G̃n = {1×n}
of normal multi-group subspaces, if for any integer k, s, 1 ≤ k ≤ n, 1 ≤ s ≤ lk, there exists

a normal multi-group subspace H̃ such that

G̃ks . H̃ . G̃k(s+1),

then H̃ = G̃ks or H̃ = G̃k(s+1), we call this series is maximal. For a maximal series of finite
normal multi-group subspaces, we have the following result.

Theorem 2.5. For a finite multi-group space G̃ =
n⋃

i=1

Gi and an oriented operation

sequence
−→
O (G̃), the length of maximal series of normal multi-group subspaces is a constant,

only dependent on G̃ itself.
Proof. The proof is by the induction on the integer n.
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For n = 1, the maximal series of normal multi-group subspaces is just a composition series
of a finite group. By Jordan-Hölder theorem (see [1] or [3]), we know the length of a composition
series is a constant, only dependent on G̃. Whence, the assertion is true in the case of n = 1.

Assume the assertion is true for cases of n ≤ k. We prove it is also true in the case
of n = k + 1. Not loss of generality, assume the order of binary operations in

−→
O (G̃) being

×1 Â ×2 Â · · · Â ×n and the composition series of the group (G1,×1) being

G1 . G2 . · · · . Gs = {1×1}.

By Jordan-Hölder theorem, we know the length of this composition series is a constant,
dependent only on (G1;×1). According to Theorem 3.6, we know a maximal series of normal
multi-group subspace of G̃ gotten by the STEP 1 under the operation “×1”is

G̃ . G̃ \ (G1 \G2) . G̃ \ (G1 \G3) . · · · . G̃ \ (G1 \ {1×1}).

Notice that G̃ \ (G1 \ {1×1}) is still a multi-group space with less or equal to k operations.
By the induction assumption, we know the length of its maximal series of normal multi-group
subspaces is only dependent on G̃ \ (G1 \ {1×1}), is a constant. Therefore, the length of a
maximal series of normal multi-group subspaces is also a constant, only dependent on G̃.

Applying the induction principle, we know that the length of a maximal series of normal
multi-group subspaces of G̃ is a constant under an oriented operations

−→
O (G̃), only dependent

on G̃ itself.
As a special case, we get the following corollary.
Corollary 2.2. (Jordan-Hölder theorem) For a finite group G, the length of the compo-

sition series is a constant, only dependent on G.

§3. Open Problems on Multi-group Spaces

Problem 3.1 Establish a decomposition theory for multi-group spaces.
In group theory, we know the following decomposition results( [1] and [3] ) for a group.

Let G be a finite Ω-group. Then G can be uniquely decomposed as a direct product of finite
non-decomposition Ω-subgroups.

Each finite Abelian group is a direct product of its Sylow p-subgroups.

Then Problem 3.1 can be restated as follows.

Whether can we establish a decomposition theory for multi-group spaces similar to above
two results in group theory, especially, for finite multi-group spaces?

Problem 3.2 Define the conception of simple multi-group spaces for multi-group spaces.
For finite multi-group spaces, whether can we find all simple multi-group spaces?

For finite groups, we know that there are four simple group classes ([9]):

Class 1: the cyclic groups of prime order;
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Class 2: the alternating groups An, n ≥ 5;

Class 3: the 16 groups of Lie types;

Class 4: the 26 sporadic simple groups.

Problem 2.3 Determine the structure properties of a multi-group space generated by finite
elements.

For a subset A of a multi-group space G̃, define its spanning set by

〈A〉 = {a ◦ b|a, b ∈ A and ◦ ∈ O(G̃)}.
If there exists a subset A ⊂ G̃ such that G̃ = 〈A〉, then call G̃ is generated by A. Call G̃

is finitely generated if there exist a finite set A such that G̃ = 〈A〉. Then Problem 2.3 can be
restated by

Can we establish a finite generated multi-group theory similar to the finite generated group
theory?

References

[1] G.Birkhoff and S.Mac Lane, A Survey of Modern Algebra, Macmillan Publishing Co.,
Inc, 1977.

[2] Daniel Deleanu, A Dictionary of Smarandache Mathematics, Buxton University Press,
London, New York, 2004.

[3] Lingzhao Nie and Shishun Ding, Introduction to Algebra, Higher Education Publishing
Press, 1994.

[4] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries,
American Research Press, 2005.

[5] Smarandache F., Mixed noneuclidean geometries, eprint arXiv: math/0010119, 10/2000.
[6] Smarandache F., A Unifying Field in Logics, Neturosophic Probability, Set, and Logic,

American research Press, Rehoboth, 1999.
[7] W.B.Vasantha Kandasamy, Bialgebraic structures and Smarandache bialgebraic struc-

tures, American Research Press, 2003.
[8] W.B.Vasantha Kandasamy and F.Smarandache, Basic Neutrosophic Algebraic Struc-

tures and Their Applications to Fuzzy and Neutrosophic Models, Hexis, Church Rock, 2004.
[9] Mingyao Xu, Introduction to Group Theory (I)(II), Science Publish Press, Beijing ,1999.



Scientia Magna
Vol. 1 (2006), No. 2, 71-75

The Smarandache P and S persistence of a
prime

Felice Russo

Micron Technology Italy

67051 Avezzano (AQ), Italy

In [1], Sloane has defined the multiplicative persistence of a number in the following man-
ner. Let’s N be any n-digits number with N = x1x2x3 · · ·xn in base 10. Multiplying together
the digits of that number (x1 ·x2 · · · · ·xn), another number N ′ results. If this process is iterated,
eventually a single digit number will be produced. The number of steps to reach a single digit
number is referred to as the persistence of the original number N . Here is an example:

679 → 378 → 168 → 48 → 32 → 6.

In this case, the persistence of 679 is 5.
Of course, that concept can be extended to any base b. In [1], Sloane conjectured that, in

base 10, there is a number c such that no number has persistence greater than c. According to a
computer search no number smaller than 1050 with persistence greater than 11 has been found.
In [2], Hinden defined in a similar way the additive persistence of a number where, instead of
multiplication, the addition of the digits of a number is considered. For example, the additive
persistence of 679 is equal to 2.

679 → 22 → 4.

Following the same spirit, in this article we introduce two new concepts: the Smarandache
P -persistence and the Smarandache S-persistence of a prime number. Let X be any n-digits
prime number and suppose that X = x1x2x3 · · ·xn in base 10. If we multiply together the
digits of that prime (x1 · x2 · · · · · xn) and add them to the original prime (X + x1 · x2 · · · · · xn)
a new number results, which may be a prime. If it is a prime then the process will be iterated
otherwise not. The number of steps required to X to collapse in a composite number is called
the Smarandache P -persistence of prime X. As an example, let’s calculate the Smarandache
P -persistence of the primes 43 and 23:

43 → 55;

23 → 29 → 47 → 75,

which is 1 and 3, respectively. Of course, the Smarandache P -persistence minus 1 is equal
to the number of primes that we can generate starting with the original prime X. Before
proceeding, we must highlight that there will be a class of primes with an infinite Smarandache
P -persistence; that is, primes that will never collapse in a composite number. Let’s give an



72 Felice Russo No. 2

example:
61 → 67 → 109 → 109 → 109 · · · .

In this case, being the product of the digits of the prime 109 always zero, the prime 61 will
never reach a composite number. In this article, we shall not consider that class of primes since
it is not interesting. The following table gives the smallest multidigit primes with Smarandache
P -persistence less than or equal to 8:

Smarandache P -persistence Prime

1 11

2 29

3 23

4 347

5 293

6 239

7 57487

8 486193

By looking in a greater detail at the above table, we can see that, for example, the second
term of the sequence (29) is implicitly inside the chain generated by the prime 23. In fact:

29 → 47 → 75

23 → 29 → 47 → 75

We can slightly modify the above table in order to avoid any prime that implicitly is inside
other terms of the sequence.

Smarandache P -persistence Prime

1 11

2 163

3 23

4 563

5 1451

6 239

7 57487

8 486193

Now, for example, the prime 163 will generate a chain that isn’t already inside any other
chain generated by the primes listed in the above table. What about primes with Smarandache
P -persistence greater than 8? Is the above sequence infinite? We will try to give an answer
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to the above question by using a statistical approach. Let’s indicate with L the Smarandache
P -persistence of a prime. Thanks to an u-basic code the occurrrencies of L for different values
of N have been calculated. Here an example for N = 107 and N = 108:

Figure 1. Plot of the occurrencies for each P -persistence at two different values of N .

The interpolating function for that family of curves is given by:

a(N) · e−b(N)·L

where a(n) and b(n) are two function of N . To determine the behaviour of those two functions,
the values obtained interpolating the histogram of occurencies for different N have been used:

N a b

1.00E + 04 2238.8 1.3131

1.00E + 05 17408 1.4329

1.00E + 06 121216 1.5339

1.00E + 07 1.00E + 06 1.6991

1.00E + 08 1.00E + 07 1.968



74 Felice Russo No. 2

Figure 2. Plot of the two functions a(N) and b(N) versus N

According to those data we can see that :

a(N) ≈ k ·N b(N) ≈ h · ln(N) + c

where k, h and c are constants (see Figure 2).
So the probability that L ≥ M (where M is any integer) for a fixed N is given by:

P (L ≥ M) ≈
∫∞

M
kN · e−(h ln N+c)·LdL∫∞

0
kN · e−(h ln N+c)·LdL

= e−(h·ln N+c)·M

and the counting function of the primes with Smarandache P -persistence L = M below N is
given by N · P (L = M). In Figure 3, the plot of counting function versus N for 4 different L

values is reported. As we can see, for L < 15 and L ≥ 15 there is a breaking in the behaviour of
the occurrencies. For L ≥ 15, the number of primes is very very small (less than 1) regardless
the value of N and it becomes even smaller as N increases. The experimental data seem to
support that L cannot take any value and that most likely the maximum value should be L = 14
or close to it. So the following conjecture can be posed:

Conjecture 1. There is an integer M such that no prime has a Smarandache P -persistence
greater than M . In other words the maximum value of Smarandache P -persistence is finite

Figure 3. Counting function for the P -persistence for difference values of N
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Following a similar argumentation the Smarandache S-persistence of a prime can be de-
fined. In particular it is the number of steps before a prime number collapse to a composite
number considering the sum of the digits instead of the product as done above. For example
let’s calculate the Smarandache S-persistence of the prime 277:

277 → 293 → 307 → 317 → 328.

In this case we have a Smarandache S-persistence equal to 4. The sequence of the smallest multi-
digit prime with Smarandache S-persistence equal to 1, 2, 3, 4 · · · has been found by Rivera [3].
Anyway no prime has been found with the Smarandache S-persistence greater than 8 up to
N = 18038439735. Moreover by following the same statistical approach used above for the
Smarandache P -persistence the author has found a result similar to that obtained for the
Smarandache P -persistence(see [3] for details). Since the statistical approach applied to the
Smarandache P and S persistence gives the same result (counting function always smaller than
1 for L ≥ 15 ) we can be confident enough to pose the following conjecture:

Conjecture 2. The maximum value of the Smarandache P and S persistence is the same.
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Abstract Let n be any positive integer, the Smarandache function S(n) is defined as

S(n) = min{m : n|m!}. In this paper, we discussed the solutions of the following equation

involving the Smarandache function: S(m1)+S(m2)+ · · ·+S(mk) = S(m1 +m2 + · · ·+mk),

and proved that the equation has infinity positive integer solutions.
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§1. Introduction

For any positive integer n, the Smarandache function S(n) is defined as follows:

S(n) = min{m : n|m!}.
From this definition we know that S(n) = max

1≤i≤r
{S(pαi

i )}, if n has the prime powers factoriza-

tion: n = pα1
1 pα2

2 · · · pαr
r . Of course, this function has many arithmetical properties, and they

are studied by many people (see references [1], [4] and [5]).
In this paper, we shall use the elementary methods to study the solvability of the equation

S(m1) + S(m2) + · · ·+ S(mk) = S(m1 + m2 + · · ·+ mk),

and prove that it has infinity positive integer solutions for any positive integer k. That is, we
shall prove the following main conclusion:

Theorem. For any integer k ≥ 1, the equation

S(m1) + S(m2) + · · ·+ S(mk) = S(m1 + m2 + · · ·+ mk) (1)

has infinity positive integer solutions.

§2. Proof of the theorem

In this section, we shall give the proof of the theorem in two ways, the first proof of the
theorem is based on the following:

Lemma 1. For any positive integer m, there exist positive integers a
(m)
1 , a

(m)
2 , · · · , a

(m)
m

which are independent of x, satisfying

xm = (x− 1)(x− 2) · · · (x−m) +
m−1∑

l=1

a
(m)
l (x− 1)(x− 2) · · · (x−m + l) + a(m)

m , (2)

1This work is supported by the N.S.F(60472068) of P.R.China
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where x is an arbitrary real number.
Proof. We use induction to prove this Lemma. It is clear that the lemma holds if m = 1.

That is, x = (x− 1) + 1 holds for any real number x, so we get

a
(1)
1 = 1.

Now we assume that the lemma holds for m = k (k ≥ 1), then for m = k + 1, we have

xk+1 = x(x− 1)(x− 2) · · · (x− k) +
k−1∑

l=1

a
(k)
l x(x− 1)(x− 2) · · · (x− k + l) + a

(k)
k x

= (x− 1)(x− 2) · · · (x− k − 1) + (k + 1)(x− 1)(x− 2) · · · (x− k) +

+
k−1∑

l=1

a
(k)
l (x− 1)(x− 2) · · · (x− k + l)(x− k + l − 1) +

+
k−1∑

l=1

a
(k)
l (k − l + 1)(x− 1)(x− 2) · · · (x− k + l) + a

(k)
k (x− 1) + a

(k)
k

= (x− 1)(x− 2) · · · (x− k − 1) + (k + 1 + a
(k)
1 )(x− 1)(x− 2) · · · (x− k) +

+
k−2∑

l=1

a
(k)
l+1(x− 1)(x− 2) · · · (x− k + l) +

+
k−2∑

l=1

a
(k)
l (k − l + 1)(x− 1)(x− 2) · · · (x− k + l) + (2a

(k)
k−1 + a

(k)
k )(x− 1) + a

(k)
k

= (x− 1)(x− 2) · · · (x− k − 1) + (k + 1 + a
(k)
1 )(x− 1)(x− 2) · · · (x− k) +

+
k−2∑

l=1

(a(k)
l+1 + a

(k)
l (k − l + 1))(x− 1)(x− 2) · · · (x− k + l) +

+(2a
(k)
k−1 + a

(k)
k )(x− 1) + a

(k)
k

so we can take
a
(k+1)
1 = k + 1 + a

(k)
1 , (3)

a
(k+1)
l = a

(k)
l + a

(k)
l−1(k − l + 2), (2 ≤ l ≤ k), (4)

a
(k+1)
k+1 = a

(k)
k , (5)

and it is obvious from the inductive assumption and (3), (4), (5) that a
(k+1)
1 , a

(k+1)
2 , · · · , a

(k+1)
k+1

are positive integers which are independent of x, and so the lemma holds for m = k + 1. This
completes the proof of Lemma 1.

Now we complete the proof of the theorem. From Lemma 1 we know that for any positive
integer k, there exist positive integers a1, a2, · · · , ak−1 such that

pk−1 = (p− 1)(p− 2) · · · (p− k + 1) +
k−2∑

l=1

al(p− 1)(p− 2) · · · (p− k + l + 1) + ak−1.

Hence

pk = p(p− 1)(p− 2) · · · (p− k + 1) +
k−2∑

l=1

alp(p− 1)(p− 2) · · · (p− k + l + 1) + ak−1p. (6)
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Note that a1, a2, · · · , ak−1 are independent of p and p is a prime large enough, from the definition
of S(n) we have

S(pk) = kp,

S(p(p− 1)(p− 2) · · · (p− k + 1)) = p,

S(alp(p− 1)(p− 2) · · · (p− k + l + 1)) = p, (1 ≤ l ≤ k − 2)

S(ak−1p) = p.

From these equations and (6) we know that m1 = p(p − 1)(p − 2) · · · (p − k + 1), ml+1 =
alp(p − 1)(p − 2) · · · (p − k + l + 1) (1 ≤ l ≤ k − 2), mk = ak−1p is a solution of (1), and (1)
has infinity positive integer solutions because p is arbitrary.

The second proof of the theorem is based on the Vinogradov’s three-primes theorem which
we describle as the following:

Lemma 2. Every odd integer bigger than c can be expressed as sum of three odd primes,
where c is a constant large enough.

Proof. (see §20.2 and §20.3 of [2]).
Lemma 3. Let odd integer k ≥ 3, then any sufficiently large odd integer n can be expressed

as sum of k odd primes
n = p1 + p2 + · · ·+ pk. (7)

Proof. We will prove this lemma by induction. From Lemma 2 we know that it is true
for k = 3. If it is true for odd integer k, then we will prove that it is also true for k + 2. In
fact, from Lemma 2 we know that every sufficient large odd integer n can be expressed as

n = p(1) + p(2) + p(3),

and we can assume that p(1) is also sufficiently large and then satisfying

p(1) = p1 + p2 + · · ·+ pk,

so we have
n = p1 + p2 + · · ·+ pk + p(2) + p(3).

This means that n can be expressed as sum of k + 2 odd primes, and Lemma 3 follows from
the induction.

Now we give the second proof of the theorem. From Lemma 3 we know that for any odd
integer k ≥ 3, every sufficient large prime p can be expressed as

p = p1 + p2 + · · ·+ pk.

So we have
S(p) = S(p1) + S(p2) + · · ·+ S(pk).

This means that the theorem is true for odd integer k ≥ 3.
If k ≥ 4 is even, then for every sufficiently large prime p, p − 2 is odd, and by Lemma 3,

we have
p− 2 = p1 + p2 + · · ·+ pk−1,
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so
p = 2 + p1 + p2 + · · ·+ pk−1,

or
S(p) = S(2) + S(p1) + S(p2) + · · ·+ S(pk−1).

This means that the theorem is true for even integer k ≥ 4.
At last, for any prime p ≥ 3, we have

S(p2) = S(p2 − p) + S(p),

so the theorem is also true for k = 2.
This completes the second proof of Theorem.
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§1. Introduction

In one of my many experiments with numbers I found an interesting property which I will

describe in everyday terms before going into a more formal analysis. Imagine a circular putting

green on a golf course. A golfer wants to practice putting from the edge of the green. He

therefore drops a large number of golf balls on the very edge of the green. He then stands on

the edge of the green and is struck by the thought What might be the average distance from

here to all these golf balls? We measure with the radius of the green as unit and consider the

diameter of a golf ball as negligible. The amazing result is that: the average distance is A ≈ 4

π
.

Of course, this result was not obtained by experimentation but through formal treatment of a

related problem [1]. But its similarity with the famous Buffon’s needle experiment [2] makes it

interesting to compare the estimation of obtained by simulating the two experiments. This

will be done at the end of the article.

§2. A problem and its solution

From a fixed point A(a, 0) of a circle C, what is the average distance of all points on the

circumference of C?

Figure 1. Figure 2.

With notations in figure 1 we have (with r = 1)
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d = (a2 + 1 − 2a cosγ)
1

2 . (1)

To begin with let’s consider discrete points on the periphery by dividing the circumference

into n equal arcs, each occupying the angle α = 2π

n
. Let dk be the kth arc.

dk =

(

a2 + 1 − 2a cos
2kπ

n

)
1

2

. (2)

For the average distance we have

An =
1

n

n
∑

k=1

dk. (3)

The result of implementing (3) for a = {0, 0.1, · · · , 0.9, 1.0} with n = 1024 is shown in

table 1. The convergence of the average with increasing values of n for a = 1 corresponding to

figure 2 is shown in table 2 and figure 3. As is seen An converges rapidly. Five correct decimals

are obtained already for n = 1024.

a 0.00 0.10 0.20 0.30 0.40 0.50

A1024 1.00000 1.00250 1.01003 1.02263 1.04042 1.06354

a 0.60 0.70 0.80 0.90 1.00

A1024 1.09224 1.12683 1.16781 1.21600 1.27324

Table 1.

n 4 8 16 32 64 128 256 1024 2048

An 1.20711 1.25683 1.26915 1.27222 1.27298 1.27318 1.27322 1.27324 1.27324

Table 2.

Figure 3. Average distances corresponding to n = 4, 8, 16, 32, · · · , 2048.
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For a=1, which corresponds to figure 2, formula (2) takes the form

dk = 2 sin
kπ

n
. (4)

Consequently, we have the following expression for the average

An =
2

n

n
∑

k=1

sin
kπ

n
. (5)

We can now leave our discrete points and obtain a general expression for the average A

A = lim
n→∞

2

n

n
∑

k=1

sin
kπ

n
(6)

Figure 4.

As P moves along the periphery of the semi-circle in figure 4 the angle v moves from 0 to

π. If we choose v randomly in the interval 0 ≤ v ≤ π what value do we expect for AP = d? This

expectation value E corresponds to the classical average which deals with a discrete random

variable. In our case we have d = 2 sin v. E is calculated from

E =
2

∫

π

0
d sin vdv

∫

π

0
dv

=
4

π
≈ 1.2732. (7)

From (6) and (7) we now obtain the interesting result

lim
n→∞

1

n

n
∑

k=1

sin
kπ

n
=

2

π
. (8)

This result has been obtained through a geometric consideration and a simple integration.

It would be interesting to compare this with a proof of this formula by analytical means.

§3. Analytical proof of (8)

Consider the complex expression

S =
1

n

n
∑

k=1

(

cos
kπ

n
+ i sin

kπ

n

)
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to which we apply Euler’s formula

S =
1

n

n
∑

k=1

(

cos
kπ

n
+ i sin

kπ

n

)

=
1

n

n
∑

k=1

e
ikπ

n . (9)

Adding the geometric series we get

S =
1

n

n
∑

k=1

(

cos
kπ

n
+ i sin

kπ

n

)

=
e

iπ

n (eiπ − 1)

n(e
iπ

n − 1)
=

2

n(e
−iπ

n − 1)
(10)

It remains to consider lim
n→∞

n(e
−iπ

n − 1). We apply Euler’s formula again.

lim
n→∞

n(e
−iπ

n − 1) = lim
n→∞

n
(

cos
π

n
− 1 − i sin

π

n

)

(11)

We only need to the first two terms of each power series of the trigonometric functions to obtain

our result

lim
n→∞

n(e
−iπ

n − 1) = lim
n→∞

n

(

1 −
π2

n22!
+ · · · − 1 − i

(

π

n
−

π3

n33!
+ · · ·

))

= 0 − iπ.

Inserting this and taking the limit as n → ∞ in (10) we get

lim
n→∞

S =
2

0 − iπ
=

2(0 + iπ)

0 − i2π2
=

2i

π
(12)

and as it is the imaginary part we have

lim
n→∞

1

n

n
∑

k=1

sin
kπ

n
=

2

π
. (8)

Comparing this with the simple way in which the result was found earlier it’s like using a sledge

hammer to kill a mosquito.

§4. Simulation experiments

A frame work in which we can compare simulation experiments for Buffon’s needle ex-

periment, which will be described below, and our golf ball experiments will be set up. I will

henceforth refer to the two cases as Needles and Golf Balls respectively. The same random

number generator is used and randomized in the same way in the two experiments. Programs

are written in UBASIC. Ten experiments were carried out in each case. In each experiment

1000000 needles respectively 1000000 golf balls were dropped.

4.1 Buffon’s needle experiment and simulation of π

A needle of length L is tossed at random onto a plane ruled with parallel lines a distance

d apart. L ≤ d. If the needle is tossed a sufficiently large number of times then the ratio A

between the number of times the needle intersects a line and the total number of tosses will be

described by

A =
2L

πd
or π =

2L

Ad
(12)
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Refer to figure 5. The problem is invariant on horizontal translations P → Q of the type

x′ = x ± nd, where d is the distance between the lines parallel to the Y -axis and n is any

integer. The problem is also invariant on vertical translations (Q → R) in the system OXY .

Without affecting the problem we can therefore perform the translations P → Q → R(r, 0) so

that 0 ≤ r < d with conservation of the angle v which lies in the interval −π/2 ≤ v < π/2. No

restriction is imposed on the problem by putting the length of the needle L = 1 and consequently

d ≥ 1.

Figure 5.

The needle intersects the Y -axis iff

r ≤ δ cos v. (13)

Our random variables are r and v. For each toss of the needle we have r = d × rnd and

v = π×rnd− π

2
where rnd are computer generated random numbers in the interval 0 ≤ rnd < 1.

In the program below the number of times M the needles intersects the Y − axis is counted

for N tosses A = M/N is calculated and π is calculated from (12). The approximate value for

π is denoted G in the UBASIC program listed below.

10 ’simbuf, 040821

20 open ”simbuf.dat” for create as #1

30 D = 1.2 : L = 1 : N = 1000000

40 for J = 1 to 10

50 pause:randomize

60 M = 0

70 for I = 1 to N

80 V = pi(1) ∗ rnd − pi(0.5)

90 X = D ∗ rnd

100 if X < L ∗ cos(V ) then inc M

110 next

120 A = M/N

130 G = 2 ∗ L/(D ∗ A)

140 print using(10, 5), G:print #1 using(10, 5), G

150 H = H + G

160 next
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170 P = H/10

180 print:print using(10, 5), P ; pi(1); P − pi(1)

190 print #1:print #1 using(10, 5), P ; pi(1); P − pi(1)

200 close #1:end

This program was implemented 10 times with the following result:

3.1465, 3.1382, 3.1438, 3.1452, 3.1444, 3.1450, 3.1397, 3.1424, 3.1412 and 3.1440.

The average value 3.1430 is an approximation of π which differs with only 0.0014 from the

value of π.

4.2 The golf ball experiment and simulation of π

From figure 4 we have d = 2sinv. Calculation is made for a random distribution of 1000000

balls. The estimated value for π is denoted G in the self-explanatory UBASIC program listed

below.

10 ’simgolf, 040821

20 open ”simgolf.dat” for create as #1

30 M = 10

40 for J = 1 to M

50 pause:S = 0

60 randomize

70 N = 1000000

80 for I = 1 to N

90 V = 2 ∗ pi(1) ∗ rnd

100 if S = S + 2 ∗ sin(V/2)

110 next

120 Ave = S/N

130 G = 4/Ave

140 print #1 using(10, 5), G

150 print using(10, 5), G

160 H = H + G

170 next

180 P = H/M

190 print:print using(10, 5), P ; pi(1); P − pi(1)

200 print #1:print #1 using(10, 5), P ; pi(1); P − pi(1)

210 end

I ran this program 10 times with the following results:

3.1431, 3.1421, 3.1429, 3.1412, 3.1422, 3.1413, 3.1422, 3.1399, 3.1404 and 3.1407.

The average value 3.14162 is correct to 4 decimals, fairly good approximation for π. The

difference from the true value (to 5 decimals) is only 0.00003.

§5. Needles and Golf Balls - Comparison

The simulation programs used earlier were adapted for multiple runs, 100 in each case.

Each run consists of tossing the needle and the golf ball 10000 times each. The average and
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standard deviation were calculated in each case. In addition the frequency of simulation values

of π for each interval of length 0.01 was represented in staple diagrams in figures 6 and 7.

Figure 6 shows the result for needles: Average simulation result for π ≈ 3.1435. Standard

deviation = 0.0287. The difference between the simulation result and π (to four decimals) is

0.0019.

Figure 7 shows the result for golf balls: Average simulation result for π ≈ 3.1413. Standard

deviation = 0.0148. The difference between the simulation result and π (to four decimals) is

0.0003.

At first sight it is surprising that d in (12) can be chosen arbitrarily as long as it is not

smaller that L. The explanation is that the larger we choose d the larger will be the standard

deviation, i.e. the trend curve in figure 6 will be flattened and a very large number of tosses

will be required before ”the needle shows its preference for π”. The simulation program was

executed for d = 1.15 which by experimentation was found a reasonable choice.

The golf ball experiment is much better behaved. For the same number of tosses the

average is much closer to π with a trend curve that is closer to the average.

Figure 6.

Figure 7.
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§1. Introduction

The notion of multi-spaces is introduced by Smarandache in [6] under his idea of hybrid
mathematics: combining different fields into a unifying field ([7]), which is defined as follows.

Definition 1.1 For any integer i, 1 ≤ i ≤ n let Ai be a set with ensemble of law Li, and the
intersection of k sets Ai1 , Ai2 , · · · , Aik

of them constrains the law I(Ai1 , Ai2 , · · · , Aik
). Then

the union of Ai, 1 ≤ i ≤ n

Ã =
n⋃

i=1

Ai

is called a multi-space.
As we known, a set M associative a function ρ : M ×M → R+ = {x | x ∈ R, x ≥ 0} is

called a metric space if for ∀x, y, z ∈ M , the following conditions for the metric function ρ hold:

(1) (definiteness) ρ(x, y) = 0 if and only if x = y;
(ii) (symmetry) ρ(x, y) = ρ(y, x);
(iii) (triangle inequality) ρ(x, y) + ρ(y, z) ≥ ρ(x, z).
By combining Smarandache multi-spaces with classical metric spaces, a new kind of spaces

called multi-metric spaces is found, which is defined in the following.

Definition 1.2 A multi-metric space is a union M̃ =
m⋃

i=1

Mi such that each Mi is a space

with metric ρi for ∀i, 1 ≤ i ≤ m.

When we say a multi-metric space M̃ =
m⋃

i=1

Mi, it means that a multi-metric space with

metrics ρ1, ρ2, · · · , ρm such that (Mi, ρi) is a metric space for any integer i, 1 ≤ i ≤ m. For a

multi-metric space M̃ =
m⋃

i=1

Mi, x ∈ M̃ and a positive number R, a R-disk B(x,R) in M̃ is

defined by
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B(x,R) = { y | there exists an integer k, 1 ≤ k ≤ m such that ρk(y, x) < R, y ∈ M̃}

The main purpose of this paper is to find some characteristics of multi-metric spaces. For
terminology and notations not defined here can be seen in [1]− [2], [4] for terminologies in the
metric space and in [3], [5]− [9] for multi-spaces and logics.

§2. Characteristics of multi-metric spaces

For metrics on spaces, we have the following result.
Theorem 2.1. Let ρ1, ρ2, · · · , ρm be m metrics on a space M and F a function on Em

such that the following conditions hold:
(i) F (x1, x2, · · · , xm) ≥ F (y1, y2, · · · , ym) if for ∀i, 1 ≤ i ≤ m, xi ≥ yi;
(ii) F (x1, x2, · · · , xm) = 0 only if x1 = x2 = · · · = xm = 0;
(iii) For two m-tuples (x1, x2, · · · , xm) and (y1, y2, · · · , ym),

F (x1, x2, · · · , xm) + F (y1, y2, · · · , ym) ≥ F (x1 + y1, x2 + y2, · · · , xm + ym).

Then F (ρ1, ρ2, · · · , ρm) is also a metric on M .
Proof. We only need to prove that F (ρ1, ρ2, · · · , ρm) satisfies the metric conditions for

∀x, y, z ∈ M .
By (ii), F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) = 0 only if for any integer i, ρi(x, y) = 0. Since

ρi is a metric on M , we know that x = y.
For any integer i, 1 ≤ i ≤ m, since ρi is a metric on M , we know that ρi(x, y) = ρi(y, x).

Whence,

F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) = F (ρ1(y, x), ρ2(y, x), · · · , ρm(y, x)).

Now by (i) and (iii), we get that

F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) + F (ρ1(y, z), ρ2(y, z), · · · , ρm(y, z))

≥ F (ρ1(x, y) + ρ1(y, z), ρ2(x, y) + ρ2(y, z), · · · , ρm(x, y) + ρm(y, z))

≥ F (ρ1(x, z), ρ2(x, z), · · · , ρm(x, z)).

Therefore, F (ρ1, ρ2, · · · , ρm) is a metric on M .
Corollary 2.1. If ρ1, ρ2, · · · , ρm are m metrics on a space M , then ρ1 + ρ2 + · · · + ρm

and ρ1
1+ρ1

+ ρ2
1+ρ2

+ · · ·+ ρm

1+ρm
are also metrics on M .

A sequence {xn} in a multi-metric space M̃ =
m⋃

i=1

Mi is said convergence to a point x, x ∈ M̃

if for any positive number ε > 0, there exist numbers N and i, 1 ≤ i ≤ m such that if n ≥ N

then

ρi(xn, x) < ε.
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If {xn} convergence to a point x, x ∈ M̃ , we denote it by lim
n

xn = x.
We have a characteristic for convergent sequences in a multi-metric space.

Theorem 2.2. A sequence {xn} in a multi-metric space M̃ =
m⋃

i=1

Mi is convergent if and

only if there exist integers N and k, 1 ≤ k ≤ m such that the subsequence {xn|n ≥ N} is a
convergent sequence in (Mk, ρk).

Proof. If there exist integers N and k, 1 ≤ k ≤ m, such that {xn|n ≥ N} is a convergent
subsequence in (Mk, ρk), then for any positive number ε > 0, by definition there exists a positive
integer P and a point x, x ∈ Mk such that

ρk(xn, x) < ε

if n ≥ max{N, P}.
Now if {xn} is a convergent sequence in the multi-space M̃ , by definition for any positive

number ε > 0, there exist a point x, x ∈ M̃ and natural numbers N(ε) and k, 1 ≤ k ≤ m such
that if n ≥ N(ε), then

ρk(xn, x) < ε,

that is, {xn|n ≥ N(ε)} ⊂ Mk and {xn|n ≥ N(ε)} is a convergent sequence in (Mk, ρk).

Theorem 2.3. Let M̃ =
m⋃

i=1

Mi be a multi-metric space. For two sequences {xn}, {yn}
in M̃ , if lim

n
xn = x0, lim

n
yn = y0 and there is an integer p such that x0, y0 ∈ Mp, then

lim
n

ρp(xn, yn) = ρp(x0, y0).
Proof. According to Theorem 2.2, there exist integers N1 and N2 such that if n ≥

max{N1, N2}, then xn, yn ∈ Mp. Whence, we have that

ρp(xn, yn) ≤ ρp(xn, x0) + ρp(x0, y0) + ρp(yn, y0)

and

ρp(x0, y0) ≤ ρp(xn, x0) + ρp(xn, yn) + ρp(yn, y0).

Therefore,

|ρp(xn, yn)− ρp(x0, y0)| ≤ ρp(xn, x0) + ρp(yn, y0).

For any positive number ε > 0, since lim
n

xn = x0 and lim
n

yn = y0, there exist numbers

N1(ε), N1(ε) ≥ N1 and N2(ε), N2(ε) ≥ N2 such that ρp(xn, x0) ≤ ε
2 if n ≥ N1(ε) and

ρp(yn, y0) ≤ ε
2 if n ≥ N2(ε). Whence, if n ≥ max{N1(ε), N2(ε)}, then

|ρp(xn, yn)− ρp(x0, y0)| < ε.

Whether a convergent sequence can has more than one limit point? The following result
answers this question.

Theorem 2.4. If {xn} is a convergent sequence in a multi-metric space M̃ =
m⋃

i=1

Mi,

then {xn} has only one limit point.
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Proof. According to Theorem 2.2, there exist integers N and i, 1 ≤ i ≤ m such that
xn ∈ Mi if n ≥ N . Now if

lim
n

xn = x1 and lim
n

xn = x2,

and n ≥ N , by definition,

0 ≤ ρi(x1, x2) ≤ ρi(xn, x1) + ρi(xn, x2).

Whence, we get that ρi(x1, x2) = 0. Therefore, x1 = x2.
Theorem 2.5. Any convergent sequence in a multi-metric space is a bounded points set.
Proof. According to Theorem 2.4, we obtain this result immediately.

A sequence {xn} in a multi-metric space M̃ =
m⋃

i=1

Mi is called a Cauchy sequence if for any

positive number ε > 0, there exist integers N(ε) and s, 1 ≤ s ≤ m such that for any integers
m,n ≥ N(ε), ρs(xm, xn) < ε.

Theorem 2.6. A Cauchy sequence {xn} in a multi-metric space M̃ =
m⋃

i=1

Mi is convergent

if and only if for ∀k, 1 ≤ k ≤ m, |{xn}
⋂

Mk| is finite or infinite but {xn}
⋂

Mk is convergent
in (Mk, ρk).

Proof. The necessity of these conditions is by Theorem 2.2.
Now we prove the sufficiency. By definition, there exist integers s, 1 ≤ s ≤ m and N1 such

that xn ∈ Ms if n ≥ N1. Whence, if |{xn}
⋂

Mk| is infinite and lim
n
{xn}

⋂
Mk = x, then there

must be k = s. Denoted by {xn}
⋂

Mk = {xk1, xk2, · · · , xkn, · · · }.
For any positive number ε > 0, there exists an integer N2, N2 ≥ N1 such that ρk(xm, xn) <

ε
2 and ρk(xkn, x) < ε

2 if m,n ≥ N2. According to Theorem 4.7, we get that

ρk(xn, x) ≤ ρk(xn, xkn) + ρk(xkn, x) < ε

if n ≥ N2. Whence, lim
n

xn = x.

A multi-metric space M̃ is said completed if every Cauchy sequence in this space is con-
vergent. For a completed multi-metric space, we obtain two important results similar to the
metric space theory in classical mathematics.

Theorem 2.7. Let M̃ =
m⋃

i=1

Mi be a completed multi-metric space. For a ε-disk sequence

{B(εn, xn)}, where εn > 0 for n = 1, 2, 3, · · · , the following conditions hold:
(i) B(ε1, x1) ⊃ B(ε2, x2) ⊃ B(ε3, x3) ⊃ · · · ⊃ B(εn, xn) ⊃ · · · ;
(ii) lim

n→+∞
εn = 0.

Then
+∞⋂
n=1

B(εn, xn) only has one point.

Proof. First, we prove that the sequence {xn} is a Cauchy sequence in M̃ . By the
condition (i), we know that if m ≥ n, then xm ∈ B(εm, xm) ⊂ B(εn, xn). Whence, for
∀i, 1 ≤ i ≤ m, ρi(xm, xn) < εn if xm, xn ∈ Mi.

For any positive number ε, since lim
n→+∞

εn = 0, there exists an integer N(ε) such that if n ≥
N(ε), then εn < ε. Therefore, if xn ∈ Ml, then limxm = xn. Whence, there exists an integer
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N such that if m ≥ N , then xm ∈ Ml by Theorem 2.2. Take integers m,n ≥ max{N, N(ε)}.
We know that

ρl(xm, xn) < εn < ε.

So {xn} is a Cauchy sequence.
By the assumption, M̃ is completed. We know that the sequence {xn} is convergence to a

point x0, x0 ∈ M̃ . By conditions (i) and (ii), we have that ρl(x0, xn) < εn if we take m → +∞.

Whence, x0 ∈
+∞⋂
n=1

B(εn, xn).

Now if there a point y ∈
+∞⋂
n=1

B(εn, xn), then there must be y ∈ Ml. We get that

0 ≤ ρl(y, x0) = lim
n

ρl(y, xn) ≤ lim
n→+∞

εn = 0

by Theorem 2.3. Therefore, ρl(y, x0) = 0. By definition of a metric on a space, we get that
y = x0.

Let M̃1 and M̃2 be two multi-metric spaces and f : M̃1 → M̃2 a mapping, x0 ∈ M̃1, f(x0) =
y0. For ∀ε > 0, if there exists a number δ such that for forallx ∈ B(δ, x0), f(x) = y ∈ B(ε, y0) ⊂
M̃2, i.e.,

f(B(δ, x0)) ⊂ B(ε, y0),

then we say f is continuous at point x0. If f is connected at every point of M̃1, then f is
said a continuous mapping from M̃1 to M̃2.

For a continuous mapping f from M̃1 to M̃2 and a convergent sequence {xn} in M̃1,
lim
n

xn = x0, we can prove that

lim
n

f(xn) = f(x0).

For a multi-metric space M̃ =
m⋃

i=1

Mi and a mapping T : M̃ → M̃ , if there is a point

x∗ ∈ M̃ such that Tx∗ = x∗, then x∗ is called a fixed point of T . Denoted by #Φ(T ) the
number of all fixed points of a mapping T in M̃ . If there are a constant α, 1 < α < 1 and
integers i, j, 1 ≤ i, j ≤ m such that for ∀x, y ∈ Mi, Tx, Ty ∈ Mj and

ρj(Tx, Ty) ≤ αρi(x, y),

then T is called a contraction on M̃ .
Theorem 2.8. Let M̃ =

m⋃
i=1

Mi be a completed multi-metric space and T a contraction

on M̃ . Then

1 ≤# Φ(T ) ≤ m.

Proof. Choose arbitrary points x0, y0 ∈ M1 and define recursively

xn+1 = Txn, yn+1 = Txn
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for n = 1, 2, 3, · · · . By definition, we know that for any integer n, n ≥ 1, there exists an
integer i, 1 ≤ i ≤ m such that xn, yn ∈ Mi. Whence, we inductively get that

0 ≤ ρi(xn, yn) ≤ αnρ1(x0, y0).

Notice that 0 < α < 1, we know that lim
n→+∞

αn = 0. Therefore, there exists an integer i0

such that

ρi0(limn xn, lim
n

yn) = 0.

Therefore, there exists an integer N1 such that xn, yn ∈ Mi0 if n ≥ N1. Now if n ≥ N1, we
have that

ρi0(xn+1, xn) = ρi0(Txn, Txn−1)

≤ αρi0(xn, xn−1) = αρi0(Txn−1, Txn−2)

≤ α2ρi0(xn−1, xn−2) ≤ · · · ≤ αn−N1ρi0(xN1+1, xN1).

and generally, for m ≥ n ≥ N1,

ρi0(xm, xn) ≤ ρi0(xn, xn+1) + ρi0(xn+1, xn+2) + · · ·+ ρi0(xn−1, xn)

≤ (αm−1 + αm−2 + · · ·+ αn)ρi0(xN1+1, xN1)

≤ αn

1− α
ρi0(xN1+1, xN1) → 0(m,n → +∞)

Therefore, {xn} is a Cauchy sequence in M̃ . Similarly, we can prove {yn} is also a Cauchy
sequence.

Because M̃ is a completed multi-metric space, we have that

lim
n

xn = lim
n

yn = z∗.

We prove z∗ is a fixed point of T in M̃ . In fact, by ρi0(limn xn, lim
n

yn) = 0, there exists an
integer N such that

xn, yn, Txn, T yn ∈ Mi0

if n ≥ N + 1. Whence, we know that

0 ≤ ρi0(z
∗, T z∗) ≤ ρi0(z

∗, xn) + ρi0(yn, T z∗) + ρi0(xn, yn)

≤ ρi0(z
∗, xn) + αρi0(yn−1, z

∗) + ρi0(xn, yn).

Notice

lim
n→+∞

ρi0(z
∗, xn) = lim

n→+∞
ρi0(yn−1, z

∗) = lim
n→+∞

ρi0(xn, yn) = 0.
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We get that ρi0(z
∗, T z∗) = 0, i.e., Tz∗ = z∗.

For other chosen points u0, v0 ∈ M1, we can also define recursively

un+1 = Tun, vn+1 = Tvn

and get the limit points lim
n

un = lim
n

vn = w∗ ∈ Mi0 , Tu∗ ∈ Mi0 . Since

ρi0(z
∗, u∗) = ρi0(Tz∗, Tu∗) ≤ αρi0(z

∗, u∗)

and 0 < α < 1, there must be z∗ = u∗.
Similar consider the points in Mi, 2 ≤ i ≤ m, we get that

1 ≤# Φ(T ) ≤ m.

Corollary 2.2.(Banach) Let M be a metric space and T a contraction on M . Then T

has just one fixed point.

§3. Open problems for a multi-metric space

On a classical notion, only one metric maybe considered in a space to ensure the same on
all the times and on all the situations. Essentially, this notion is based on an assumption that
spaces are homogeneous. In fact, it is not true in general.

Multi-Metric spaces can be used to simplify or beautify geometrical figures and algebraic
equations. One example is shown in Fig.1, in where the left elliptic curve is transformed to the
right circle by changing the metric along x, y-axes and an elliptic equation

x2

a2
+

y2

b2
= 1

to equation

x2 + y2 = r2

of a circle of radius r.
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Fig.1¸

Generally, in a multi-metric space we can simplify a polynomial similar to the approach
used in projective geometry. Whether this approach can be contributed to mathematics with
metrics?

Problem 3.1 Choose suitable metrics to simplify the equations of surfaces and curves in
E3.

Problem 3.2 Choose suitable metrics to simplify the knot problem. Whether can it be
used for classifying 3-dimensional manifolds?

Problem 3.3 Construct multi-metric spaces or non-linear spaces by Banach spaces. Sim-
plify equations or problems to linear problems.
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Abstract For any positive integer n, let a(n) denotes the square complements of n. That is,

a(n) is the smallest positive integer such that na(n) is a perfect square number. In this paper,

we use the analytic method to study the number of the solutions of the equation involving

the square complements, and obtain its all solutions of this equation.
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§1. Introduction and Result

For any positive integer n, the square complements a(n) is defined as the smallest positive
integer such that na(n) is a perfect square. For example, a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 1,
a(5) = 5 · · · . In problem 27 of [1], Professor F.Smarandache asked us to study the properties
of a(n). About this problem, some authors had studied it before. For example, Liu Hongyan
and Gou Su [2] used the elementary method to study the mean values of a(n) and 1

a(n) ; Yang
Haiwen and Guo Jinbao [3] gave some asymptotic formulae, one of which is:

∑

n≤x

naat(n) =
ζ(2(t + 1))

(a + t + 1)ζ(2)
xa+t+1 + O(xa+t+ 1

2 ),

where a and t are positive integers, ζ(s) is the Riemann zeta-function.
In this paper, we use the analytic method to study the number of the solution of the

equation involving square complements, and give all solutions of the equation. That is, we will
prove the following:

Theorem. The equation
n∑

k=1

a(k) = a

(
n(n + 1)

2

)

has only three solutions, they are n = 1, 2, 3.

§2. Some lemmas

To complete the proof of the theorem, we need the following lemmas.
Lemma 1. Let x be a real number with x > 1 and m be a positive integer with m > 1.

Then we have the following estimate:
∑

n≤x

1
nm

> ζ(m)− m

(m− 1)xm−1
.
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Proof. From the Euler’s summation formula, we can easily obtain
∑

n≤x

1
nm

=
∫ x

1

dt

tm
−m

∫ x

1

t− [t]
tm+1

dt + 1− x− [x]
xm

=
x1−m

1−m
− 1

1−m
+ 1−m

∫ ∞

1

t− [t]
tm+1

dt + m

∫ ∞

x

t− [t]
tm+1

dt− x− [x]
xm

> ζ(m)− m

(m− 1)xm−1
,

where we have used the identity ( see [4])

ζ(m) = 1− 1
1−m

−m

∫ ∞

1

t− [t]
tm+1

dt.

This completes the proof of Lemma 1.
Lemma 2. For any integer number n ≥ 1, we have the estimate:

n∑

k=1

a(k) >
ζ(4)
2ζ(2)

n2 −
(

3
2
ζ(2) +

1
8

)
n

3
2 −

(
2

3ζ(2)

)
n,

Proof. From the definition of a(n), the Euler’s summation formula (see [4]) and the
properties of the Möbius function, we can get
∑

k≤n

a(k) =
∑

m2k≤n

k|µ(k)| =
∑

m2d2h≤n

d2hµ(d) =
∑

m2d2≤n

d2µ(d)
∑

h≤ n
m2d2

h

=
∑

m2d2≤n

d2µ(d)
(

n2

2m4d4
+

n

2m2d2
− n

m2d2
{ n

m2d2
} − 1

2

(
{ n

m2d2
} − { n

m2d2
}2

))

>
n2

2

∑

m2d2≤n

µ(d)
m4d2

− n
∑

m2d2≤n

1
m2

− 1
2

∑

m2d2≤n

d2

4

>
n2

2

∑

m≤√n

1
m4

∑

d≤
√

n
m

µ(d)
d2

− ζ(2)n
3
2 − 1

8
n

3
2

and
∑

d≤
√

n
m

µ(d)
d2

>
∞∑

d=1

µ(d)
d2

−
∑

d>
√

n
m

1
d2

>
1

ζ(2)
− m√

n
>

1
ζ(2)

− m2

√
n

.

So from Lemma 1 we have
∑

k≤n

a(k) >
n2

2

∑

m≤√n

1
m4

(
1

ζ(2)
− m2

√
n

)
− ζ(2)n

3
2 − 1

8
n

3
2

=
n2

2ζ(2)

∑

m≤√n

1
m4

− n
3
2

2

∑

m≤√n

1
m2

− ζ(2)n
3
2 − 1

8
n

3
2

>
n2

2ζ(2)

(
ζ(4)− 4

3n

)
− 3

2
ζ(2)n

3
2 − 1

8
n

3
2

=
ζ(4)
2ζ(2)

n2 −
(

3
2
ζ(2) +

1
8

)
n

3
2 −

(
2

3ζ(2)

)
n.

This completes the proof of Lemma 2.
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§3. Proof of the theorem

Now we complete the proof of the theorem. We will discuss it into two cases:
(i). If n(n+1)

2 is a square free number, then from the definition of a(n) we have

a(
n(n + 1)

2
) =

n(n + 1)
2

.

Note that a(n) ≤ n, so we may immediately obtain

n∑

k=1

a(k) ≤ a

(
n(n + 1)

2

)
,

and the equality holds if and only if each a(n) on the left side satisfying a(n) = n. So we can
easily get three solutions of the equation: n = 1, 2, 3 in this case.

(ii). If n(n+1)
2 has no square divisor, then from the definition of a(n) we have the following

estimate:
a(

n(n + 1)
2

) ≤ n(n + 1)
8

.

From Lemma 2 and note that ζ(2) = π2

6 , ζ(4) = π4

90 , we have

n∑

k=1

a(k) >
ζ(4)
2ζ(2)

n2 −
(

3
2
ζ(2) +

1
8

)
n

3
2 −

(
2

3ζ(2)

)
n >

3
10

n2 − 3n
3
2 − 4

9
n.

We can easily obtain

3
10

n2 − 3n
3
2 − 4

9
n >

n(n + 1)
8

, if n > 361.

Thus there is no solution for the equation

n∑

k=1

a(k) = a

(
n(n + 1)

2

)
, if n > 361.

If n varies from 4 to 361, we can not find any other solutions for the equation.
This completes the proof of the theorem.
Now we give the calculating programm as following:

#include<stdio.h>

#include<math.h>

//function
int get(int n)
{int i,m;
float g;
for(i=1;i≤ n;i++)
{g=sqrt(i*n);m=(int)g;
if(g-m==0)return i;
} }

main()
{int n=361 ;
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int sum;
int i,j;
for(i=1;i≤ n;i++)
{sum=0;
for (j=0;j≤ i;j++) sum=sum+get(j);
if(sum==get(i*(i+1)/2))
printf“%d\n”,i);}}
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§1. Introduction

For any fixed positive integer n, the new arithmetical function has the following definition:

Sk(n) = max{x ∈ N | xk | n} (∀n ∈ N∗) .

Because

(∀a, b ∈ N∗)(a, b) = 1 ⇒ Sk(ab) = max{x ∈ N |xk | a} ·max{x ∈ N |xk | b}
= Sk(a) · Sk(b),

and
Sk(pα) = pb

α
k c,

where bxc denotes the greatest integer not more than x. Therefore, if n = pα1
1 pα2

2 · · · pαr
r is the

prime power decomposition of n, then we have

Sk(pα1
1 pα2

2 · · · pαr
r ) = p

bα1
k c

1 · · · pb
αr
k c

r = Sk(pα1
1 ) · · ·Sk(pαr

r ).

So Sk(n) is a multiplicative function. There are close relations between this function and
the Smarandache ceil function, so we call Sk(n) as the dual function of the Smarandache
ceil function. In this paper, we study the mean value properties of Sk(n), and give a sharp
asymptotic formula for it. That is, we shall prove the following:

Theorem 1. Let x ≥ 2, for any fixed positive integer k > 2, we have the asymptotic
formula ∑

n≤x

Sk(n) =
ζ(k − 1)

ζ(k)
x + O

(
x

1
2+ε

)
,

where ζ(s) is the Riemann zeta-function, ε denotes any fixed positive number.
Theorem 2. For k = 2, we have the asymptotic formula

∑

n≤x

S2(n) = x

(
3
π2

lnx + C

)
+ O

(
x

3
4+ε

)
,

where C is a computable constant.
1This work is supported by the N.S.F(60472068) and P.N.S.F of P.R.China
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§2. A Lemma

To complete the proof of the theorems, we need the following famous Perron’s formula (See
Lemma 8.5 of [1]):

Lemma. Suppose that the Dirichlet series f(s) =
∞∑

n=1

a(n)n−s, s = σ + it, converge

absolutely for σ > β, and that there exist a positive λ and a positive increasing function A(s)
such that

∞∑
n=1

|a(n)|n−σ ¿ (σ − β)−1, σ → β+0

and

a(n) ¿ A(n), n = 1, 2, · · · .

Then for any b > 0, b + σ > β, and x not to be an integer, we have

∑

n≤x

a(n)n−s0 =
1

2πi

∫ b+iT

b−iT

f(s0 + ω)
xω

ω
dω + O

(
xb

T (b + σ − β)λ

)

+O

(
A(2x)x1−σ log x

T || x ||
)

,

where || x || is the nearest integer to x.

§3. Proof of the theorems

In this section, we shall complete the proof of the theorems. For any positive integer k ≥ 2,
let

f(s) =
∞∑

n=1

Sk(n)
ns

.

If <(s) > 1, then from the Euler product formula (See Theorem 11.6 and Theorem 11.7 of [3]),
we have

f(s) =
∏
p

(
1 +

Sk(p)
ps

+
Sk(p2)

p2s
+ · · ·+ Sk(pk)

pks
+ · · ·

)

=
∏
p

(
1 +

1
ps

+ · · ·+ 1
p(k−1)s

+
p

pks
+

p

p(k+1)s
+ · · ·+ p

p(2k−1)s
+

p2

p2ks
+ · · ·

)

=
∏
p

(
1− 1

pks

1− 1
ps

+
p

pks

1− 1
pks

1− 1
ps

+
p2

p2ks

1− 1
pks

1− 1
ps

+ · · ·
)

=
∏
p

(
1− 1

pks

1− 1
ps

)∏
p

(
1 +

p

pks
+

p2

p2ks
+

p3

p3ks
+ · · ·

)

=
ζ(s)ζ(ks− 1)

ζ(ks)
,

where ζ(s) is the Riemann zeta-function.
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So by the Perron’s formula with s0 = 0, b = 3
2 and T = x, we have

∑

n≤x

Sk(n) =
1

2iπ

∫ 3
2+iT

3
2−iT

ζ(s)ζ(ks− 1)
ζ(ks)

xs

s
ds + O(x

1
2+ε).

To estimate the main term
1

2iπ

∫ 3
2+iT

3
2−iT

ζ(s)ζ(ks− 1)
ζ(ks)

xs

s
ds,

we move the integral line from s = 3
2 ± iT to s = 1

2 ± iT . This time, if k > 2, then the function

f(s) =
ζ(s)ζ(ks− 1)

ζ(ks)
xs

s

has a simple pole point at s = 1 with residue ζ(k−1)
ζ(k) x. So we have

1
2iπ

(∫ 3
2+iT

3
2−iT

+
∫ 1

2+iT

3
2+iT

+
∫ 1

2−iT

1
2+iT

+
∫ 3

2−iT

1
2−iT

)
ζ(s)ζ(ks− 1)xs

ζ(ks)s
ds =

ζ(k − 1)
ζ(k)

x.

Note that
1

2iπ

(∫ 1
2+iT

3
2+iT

+
∫ 1

2−iT

1
2+iT

+
∫ 3

2−iT

1
2−iT

)
ζ(s)ζ(ks− 1)xs

ζ(ks)s
ds ¿ x

1
2+ε,

from above we may immediately get the asymptotic formula:

∑

n≤x

Sk(n) =
ζ(k − 1)

ζ(k)
x + O

(
x

1
2+ε

)
.

This completes the proof of Theorem 1.
For k = 2, note that ζ(2) = π2

6 , f(s) = ζ(s)ζ(ks−1)
ζ(ks)

xs

s has a 2 order pole point at s = 1 with
residue x

(
3

π2 lnx + C
)
, from the above we can also deduce that

∑

n≤x

S2(n) = x

(
3
π2

lnx + C

)
+ O

(
x

3
4+ε

)
.

This completes the proof of Theorem 2.
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§1. Introduction

Let z be any complex number with |z| < 2π. The Bernoulli numbers Bn and the Euler
numbers E2n (n = 0, 1, 2, · · · ) are defined by the following generated functions (See [1], [2] and
[3]):

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
, |z| < π

2
(1)

and

1
cos z

=
∞∑

n=0

E2n
z2n

(2n)!
. (2)

For example, B0 = 1, B1 = − 1
2 , B2 = − 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 = − 1
30 , B10 = − 5

66 ,
· · · , B2n+1 = 0 for n ≥ 1, and

r∑

k=0

22kB2k

(2k)!(2r + 1− 2k)!
=

1
(2r)!

holds for any integer r ≥ 1 (See exercise 16 for chapter 12 of [4] ). E0 = 1, E2 = 1, E4 = 5,
E6 = 61, E8 = 11385, E10 = 150521, · · · , and

n∑
s=0

(−1)s
(
2n
2s

)
E2s = 0, n ≥ 1.

The Bernoulli numbers and the Euler numbers have extensive applications in combinational
mathematics and analytic number theory. So there are many scholars have investigated their
arithmetical properties. For example, G.Voronoi first proved a very useful congruence for
Bernoulli numbers, one of its Corollaries ( See [5] Proposition 15.2.3 and its Corollary ) is that
for any prime p ≡ 3 (mod4) with p > 3, we have

2
(

2−
(

2
p

))
Bm ≡ −

m−1∑

j=1

(
j

p

)
(modp),

1This work is Supported by the N.S.F.(60472068) of P.R.China.
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where (x/p) denotes the Legendre symbol and m = (p + 1)/2. Liu Guodong [6] obtained some
identities involving the Bernoulli numbers. That is, for any integers n ≥ 1 and k ≥ 0,

(a)
n∑

j=0

(
2n + 1

2j

)
2− 22j

(2k + 1)2j
B2j =

(2n + 1)22n

(2k + 1)2n+1

k∑
s=0

s2n;

(b)
n∑

j=0

(
2n + 1

2j

)
2− 22j

(2k + 2)2j
B2j =

2n + 1
22n(k + 1)2n+1

k∑
s=0

(2s + 1)2n.

For the Euler numbers, Zhang Wenpeng [3] obtained an important congruence, i.e.,

Ep−1 =





0 (mod p), p ≡ 1 (mod 4),

−2 (mod p), p ≡ 3 (mod 4).

where p be a prime.
Liu Guodong [7] proved that for any positive integers n and k,

E2n ≡ (−1)n+k22n+1
k∑

i=1

(−1)ii2n (mod(2k + 1)2).

Other results involving the Bernoulli numbers and the Euler numbers can also be found in [8],
[9] and [10]. This paper as a note of [6] and [7], we use the elementary method to obtain some
other identities for the Bernoulli numbers and the Euler numbers. That is, we shall prove the
following:

Theorem 1. For any positive integers n and k, we have the identity

n∑
t=0

(
2n + 2

2t

) (
2− 22t

) B2t

(2k)2t
=

4(n + 1)
(2k)2n+2

k∑
m=1

(2m− 1)2n+1.

Theorem 2. For any positive integers n and k, we have

E2n − (2k)2n
n∑

t=0

(−1)n+k−t

(
2n

2t

)
E2t

(2k)2t
= 2

k−1∑
m=0

(−1)m+n(2m + 1)2n.

From Theorem 2 we may immediately deduce the following:
Corollary 1. For any odd prime p, we have the congruence

E p2−1
4

≡




(−1)
p2−1

8 2 (modp), p ≡ 3 (mod 4);

(−1)
p2−1

8
4
√

p

π L(1, χ2χ4) (modp), p ≡ 1 (mod 4),

where χ2 denotes the Legendre symbol modulo p, χ4 denotes the non-principal character
mod 4, and L(1, χ2χ4) denotes the Dirichlet L-function corresponding to character χ2χ4 mod 4p.

This Corollary is interesting, because it shows us some relations between the Euler numbers
and the Dirichlet L-function. From Corollary 1 we can also get the following:

Corollary 2. For any prime p with p ≡ 3 (mod4), we have the congruence

E p2−1
4

≡ 2
(

2
p

)
≡





2 (modp), if p ≡ 7 (mod 8);

−2 (mod p), if p ≡ 3 (mod 8).
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§2. Some Lemmas

To complete the proof of Theorems, we need the following three simple lemmas. First we
have

Lemma 1. For any integer n ≥ 1, we have have the identities

(A) 2
n∑

m=1

sin(2m− 1)x =
1− cos 2nx

sinx
;

(B) 2
n−1∑
m=0

(−1)m cos(2m + 1)x =
1− (−1)n cos 2nx

cos x
.

Proof. In fact, this Lemma is the different forms of the exercise 3.2.9 of [11], where is

n∑
m=1

sin(2m− 1)x
sinx

=
(

sinnx

sinx

)2

.

Note that 2 sin2 nx = 1− cos 2nx, from the above we can deduce the formula (A) of Lemma 1.

If we substitute x by π/2− y in (A), we may immediately get formula (B).

Lemma 2. For any real number x with 0 < |x| < π, we have the identity

1
sinx

=
∞∑

n=0

(−1)n
(
2− 22n

) B2n

(2n)!
x2n−1.

Proof. (See reference [12]).

Lemma 3. Let p be an odd prime, χ be an even primitive character mod p. Then we
have

∑

n≤p/4

χ(n) =
G(χ)

π
L(1, χχ4),

where G(χ) =
p−1∑
n=1

χ(n) e
2πin

p is the Gauss sums, χ4 denotes the non-principal character mod4,

and L(1, χχ4) denotes the Dirichlet L-function corresponding to character χχ4 mod 4p.

Proof. (See Theorem 3.7 of [13]).

§3. Proof of the theorems

In this section, we shall complete the proof of Theorems. First we prove Theorem 1. Note
that

sinx =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
and cos x =

∞∑
n=0

(−1)n x2n

(2n)!
,
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from Lemma 2 and (A) of Lemma 1 we have

2
n∑

m=1

∞∑
s=0

(−1)s (2m− 1)2s+1

(2s + 1)!
x2s+1

=

( ∞∑
s=0

(−1)s
(
2− 22s

) B2s

(2s)!
x2s−1

)(
1−

∞∑
s=0

(−1)s (2n)2s

(2s)!
x2s

)

=

( ∞∑
s=0

(−1)s
(
2− 22s

) B2s

(2s)!
x2s−1

)( ∞∑
s=0

(−1)s (2n)2s+2

(2s + 2)!
x2s+2

)

=
∞∑

s=0

(−1)s

(
s∑

t=0

(
2− 22t

) B2t

(2t)!
(2n)2s−2t+2

(2s− 2t + 2)!

)
x2s+1. (3)

Comparing the coefficient of x2k+1 on both side of (3), we get

2
n∑

m=1

(2m− 1)2k+1

(2k + 1)!
=

k∑
t=0

(
2− 22t

) B2t

(2t)!
(2n)2k−2t+2

(2k − 2t + 2)!

or
k∑

t=0

(
2k + 2

2t

) (
2− 22t

) B2t

(2n)2t
=

4(k + 1)
(2n)2k+2

n∑
m=1

(2m− 1)2k+1.

This proves Theorem 1.
Now we prove Theorem 2. From (2) and (B) of Lemma 1 we have

2
n−1∑
m=0

(−1)m
∞∑

s=0

(−1)s (2m + 1)2s

(2s)!
x2s

=

( ∞∑
s=0

E2s
x2s

(2s)!

)(
1− (−1)n

∞∑
s=0

(−1)s (2n)2s

(2s)!
x2s

)

=
∞∑

s=0

E2s
x2s

(2s)!
− (−1)n

∞∑
s=0

s∑
t=0

E2t

(2t)!
(−1)s−t (2n)2s−2t

(2s− 2t)!
x2s. (4)

Comparing the coefficient of x2k on both side of (4), we may immediately deduce

2
n−1∑
m=0

(−1)m+k (2m + 1)2k

(2k)!
=

E2k

(2k)!
−

k∑
t=0

(−1)n+k−t E2t

(2t)!
(2n)2k−2t

(2k − 2t)!

or

2
n−1∑
m=0

(−1)m+k(2m + 1)2k = E2k − (2n)2k
k∑

t=0

(−1)n+k−t

(
2k

2t

)
E2t

(2n)2t
.

This completes the proof of Theorem 2.
To prove Corollary 1, taking k = p and n = (p2 − 1)/8 in Theorem 2 we may get

2E2n + (2p)2n
n−1∑
t=0

(−1)n−t

(
2n

2t

)
E2t

(2p)2t
= 2

p−1∑
m=0

(−1)m+n(2m + 1)2n

or
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E p2−1
4

≡ (−1)
p2−1

8

p−1∑
m=0

(−1)m(2m + 1)
p2−1

4 (modp). (5)

For any integer a with (a, p) = 1, from the Euler’s criterion (See Theorem 9.2 of [4]) we know
that

a
p−1
2 ≡

(
a

p

)
(modp),

where (a/p) = χ2(a) is the Legendre symbol modulo p.
By this formula we may get

a
p2−1

4 ≡
(

a

p

) p+1
2

≡




1 (modp), if p ≡ 3 (mod 4);(
a
p

)
(mod p), if p ≡ 1 (mod 4).

(6)

If p ≡ 3 (mod4), note that
(

0
p

)
= 0, from (5) and (6) we can get

E p2−1
4

≡ (−1)
p2−1

8

p−1∑
m=0

(−1)m(2m + 1)
p2−1

4

≡ (−1)
p2−1

8

p−1∑
m=0

(−1)m

(
2m + 1

p

)2

(modp)

≡ (−1)
p2−1

8 2 (modp).

If p ≡ 1 ( mod 4), note that
(
−1
p

)
= 1 (an even character mod p), G(χ2) =

√
p and

p−1∑
m=1

(
m

p

)
=

0, from (5), (6) and Lemma 3 we may obtain

E p2−1
4

≡ (−1)
p2−1

8

p−1∑
m=0

(−1)m(2m + 1)
p2−1

4

≡ (−1)
p2−1

8

p−1∑
m=0

(−1)m

(
2m + 1

p

)
(modp)

≡ (−1)
p2−1

8


2

(p−1)/2∑
m=0

(
4m + 1

p

)
−

p−1∑
m=0

(
2m + 1

p

)
 (modp)

≡ (−1)
p2−1

8 2
(p−1)/2∑

m=0

(
m + 4

p

)
(modp)

≡ (−1)
p2−1

8 2
(p−1)/4∑

m= 1−p
4

(
m

p

)
(modp)

≡ (−1)
p2−1

8 4
(p−1)/4∑

m=1

(
m

p

)
(modp)

≡ (−1)
p2−1

8
4
√

p

π
L(1, χ2χ4) (modp),
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where a denotes the solution of the congruence ax ≡ 1 (modp) and 4 = 1−p
4 .

This completes the proof of Corollary 1.
Note. Using the exercise 3.2.7 and 3.2.8 of [11], we can also deduce the other identities

and congruences involving the Bernoulli numbers and the Euler numbers.
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denote h(D) and h4(D) as the order of H(D) and H4(D) respectively. Sun[”Quartic residues

and binary qudratic forms”, Journal of Number Theory, 2005, 113(1)] conjectured that: Let p

and q be the primes of the form 4k + 1 such that ( p
q
) = 1, where ( p

q
) is the Legendre symbol,

then h4(−4pq) = h4(−64pq) = h(−4pq)/8. In this paper we find some counterexamples to

the conjecture, thus disprove it.
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§1. Introduction

A binary quadratic form f with discriminant b2 − 4ac is a function f(x, y) = ax2 + bxy +

cy2 =
(

x y
)


 a b/2

b/2 c





 x

y


, which is denoted more briefly by (a, b, c). We say f

is primitive if gcd(a,b,c)=1. Two binary quadratic forms (a, b, c) and (a1, b1, c1) are said to be

equivalent if there exits an integeral matrix C =


 r s

t u


 of determinant equal to 1(i.e., with

ru− st = 1) such that

g(x, y) =
(

x y
)

C ′


 a b/2

b/2 c


 C


 x

y


 =

(
x y

)

 a1 b1/2

b1/2 c1





 x

y


 ,

denoted as (a, b, c) ∼ (a1, b1, c1). We denote the equivalent class of (a, b, c) by [a, b, c]. Let H(D)
be the class group which consists of primitive, integeral quadratic forms of discriminant D, and
let h(D) be the corresponding class number. Let H4(D) be the subgroup of H(D) consisting
of the fourth powers of the classes in H(D) ,i.e., H4(D) = {[a, b, c]4 | b2 − 4ac = D} and let
h4(D) be the order of H4(D).

Z.H.Sun[2] posed several conjectures concerning the relations between h(D) and h4(D) for
some special cases of D, one of them is
Conjecture. [2,conjecture 8.4] Let p and q be primes of the form 4k+1 such that (p

q ) = 1,where
(p

q ) is the Legendre symbol. Then h4(−4pq) = h4(−64pq) = h(−4pq)/8.

1This work is Supported by the NSF of China Grant 10071001, the SF of Anhui Province Grant 01046103,

and the SF of the Education Department of Anhui Province Grant 2002KJ131.



Vol. 2 Counterexamples to a conjecture concerning class number of binary quadratic forms 109

In this paper we give some counterexamples to above conjecture, thus disprove it. In
section 2 we describe two algorithms for counting h(D) and h4(D) and in section 3 we tabulate
some examples which are unfavorable for the conjecture.

§2. Counting h(D) and h4(D)

Let us now consider the problem of computing the class group H(D) for D < 0 as to the
conjecture. Firstly we need the following:
Definition. [1,Definition 5.3.2] A binary quadratic form (a, b, c) with discriminant D = b2 −
4ac < 0 and a > 0 is said to be reduced if either −a < b ≤ a < c or 0 ≤ b ≤ a = c.
Lemma 2.1 [1,Proposition 5.3.3] In every class of binary quadratic forms with discriminant
D < 0 and a > 0 there exists exactly one reduced form. In particular h(D) is equal to the
number of primitive reduced forms of discriminant D.

Now we are ready to describe a procedure to compute h(D) with reduced forms.
Procedure 1. Computing h(D);
{Input a negative integer D, Output the class group H(D) and class number h(D)}
Begin Bound←− [

√
−D/3]; b ←− D mod 2;

h ←− 1; output the form (1, b, (b2 −D)/4);
Repeat q ←− (b2 −D)/4; If b > 1 then a ←− b else a ←− 2; r ←− q/a;

repeat if if (q mod a=0) and (a2 ≤ q) and (gcd(a,b,r)=1) then
begin If (a=b) Or (a2 = q) or (b=0) Then

Begin h ←− h + 1; output the form (a, b, q/a) End Else
Begin h ←− h + 2; output the form (a, b, q/a) and (a,−b, q/a) End

end; a ←− a + 1; r ←− q/a

until a2 > q; b ←− b + 2
Until b > Bound; output h = h(D)

End.
Before counting h4(D), Let’s recall the composition of two binary quadratic forms.

Lemma 2.2 [1,Definition 5.4.6] Let (ai, bi, ci) ∈ H(D)(i = 1, 2). Set s = (b1 + b2)/2, n =
(b1 − b2)/2, and let u, v, w, d ∈ Z be such that ua1 + va2 + ws = d = gcd (a1, a2, s). Then the
composition of the two elements as the unique class is [a3, b3, c3] = [a1, b1, c1][a2, b2, c2], where
a3 = a1a2

d2 , b3 = b2 + 2a2
d (v(s− b2)− wc2), c3 = b23−D

4a3
.

According to lemma 2.2 one can describe a procedure to compute the fourth powers of the
classes in H(D) (i.e. [a, b, c]4), as following:
Procedure 2. Computing h4(D);
{Input a negative integer D, Output the class subgroup H4(D) and its order h4(D)}
Begin using Procedure 1 output H(D) and h(D);

For every (a, b, c) ∈ H(D) Do
begin (a4, b4, c4) ←− (a, b, c)4; output (a4, b4, c4);

count different elments (a4, b4, c4)’s and output its number h4(D)
end

End.
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§3. Disproof the conjecture

Using above Algorithms, we seek some prime pairs (p, q) on computer and get many coun-
terexamples to the conjecture. We tabulate some of them in table 1 and give an exact example.
Example. Taking p = 17, q = 89, we have
H(−4 · 17 · 89) = {(1, 0, 1513), (17, 0, 89), (2, 2, 757), (37, 4, 41), (37,−4, 41), (11, 8, 139),

(11,−8, 139), (22, 14, 71), (22,−14, 71), (19, 16, 83), (19,−16, 83),
(38, 22, 43), (29, 26, 58), (38,−22, 43), (29,−26, 58), (34, 34, 53)};

H4(−4 · 17 · 89) = {(1, 0, 1513)};
H(−64 · 17 · 89) = {(1, 0, 24208), (16, 0, 1513), (17, 0, 1424), (89, 0, 272)......

(167, 144, 176), (167,−144, 176), (164, 148, 181), (164,−148, 181)};
H4(−64 · 17 · 89) = {(1, 0, 24208), (16, 0, 1513)}, and
h(−4 · 17 · 89) = 16; h4(−4 · 17 · 89) = 1;
h(−64 · 17 · 89) = 64; h4(−64 · 17 · 89) = 2.
we can see h4(−4 · 17 · 89) 6= h(−4 · 17 · 89)/8 and h4(−4 · 17 · 89) 6= h4(−64 · 17 · 89).

Table 1:

(p, q) h(−4 · p · q) h4(−4 · p · q) h4(−64 · p · q) h(−4 · p · q)/8

(41, 73) 48 3 6 6

(41, 113) 32 2 4 4

(41, 337) 112 7 14 14

(41, 353) 48 3 6 6

(41, 401) 112 7 14 14

(41, 433) 96 6 12 12

(41, 449) 112 7 14 14

(73,97) 64 4 8 8

(73,137) 160 10 20 20

(73,257) 128 8 16 16

(73,353) 176 11 22 22

(89,257) 48 3 6 6

(89,409) 256 16 32 32

(89,673) 240 15 30 30
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Abstract Smarandache dual function S∗(n) denotes the greatest positive integer m such

that m! | n, where n denotes any positive integer. That is, S∗(n) = max{m : m! | n}. In this

paper, we studied the convergent property of the series

∞∑
n=1

S∗(n)

nα
by using the elementary

methods, and obtained an interesting identity.

Keywords Smarandache dual function; Series; Identity.

§1. Introduction

For any positive integer n, the famous Smarandache function S(n) is defined as the smallest
positive integer m such that n | m!. That is,

S(n) = min{m : n | m!}.

It was introduced in [1] by Professor Smarandache, and he also asked us to investigate the
properties of S(n). If n = pα1

1 pα2
2 · · · pαk

k denotes the factorization of n into prime powers, it is
easy to know that S(n) = max{S(pα1

1 ), S(pα2
2 ), · · · , S(pαk

k )}. So, we can studied the properties
of S(n) through S(pαi

i ). About the properties of S(n), many scholars have show their interest
on it, see [2], [3] and [4]. For example, Farris Mark and Mitchell Patrick [2] studied the bounding
of Smarandache function, and they gave an upper and lower bound for S(pα), i.e.

(p− 1)α + 1 ≤ S(pα) ≤ (p− 1)[α + 1 + logp α] + 1.

Wang Yongxing [3] studied the mean value
∑

n≤x

S(n), and obtained an asymptotic formula by

using the elementary methods. He proved that:

∑

n≤x

S(n) =
π2

12
x2

lnx
+ O

(
x2

ln2 x

)
.

Similarly, we introduce another function as following which have close relationship with the
Smarandache function. It is the Smarandache dual function S∗(n) which denotes the greatest
positive integer m such that m! | n, where n denotes any positive integer. That is,

S∗(n) = max{m : m! | n}.

About this problem, J.Sandor in [5] conjectured that

S∗((2k − 1)!(2k + 1)!) = q − 1,

1This work is supported by the N.S.F.(60472068) of P.R.China.



112 Li Jie No. 1

where k is a positive integer, q is the first prime following 2k + 1. This conjecture was proved
by Le Maohua [6].

In this paper, we studied the convergent property of the series
∞∑

n=1

S∗(n)
nα

by using the

elementary methods, and obtained an interesting identity. That is, we will prove the following:

Theorem. For any real number α ≤ 1, the infinity series

∞∑
n=1

S∗(n)
nα

is divergent, it is convergent if α > 1, and

∞∑
n=1

S∗(n)
nα

= ζ(α)
∞∑

n=1

1
(n!)α

,

where ζ(s) is the Riemann zeta-function.

Taking α = 2 and α = 4 in our Theorem, we may immediately deduce the following:

Corollary. For Smarandache dual function, we have the identities

∞∑
n=1

S∗(n)
n2

=
π2

6

∞∑
n=1

1
(n!)2

and
∞∑

n=1

S∗(n)
n4

=
π4

90

∞∑
n=1

1
(n!)4

.

§2. Proof of the theorem

In this section, we will complete the proof of Theorem. For any real number α ≤ 1, note
that S∗(n) ≥ 1, and the series

∞∑
n=1

1
nα

is divergent, so the series
∞∑

n=1

S∗(n)
nα

is also divergent if α ≤ 1.

For any positive integer n ≥ 1, there must be a positive integer m such that

n = m! · l,

where l 6≡ 0(mod m + 1). So for α > 1, from the definition of S∗(n), we can get
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∞∑
n=1

S∗(n)
nα

=
∞∑

l=1

∞∑
m=1

m+1†l

m

(m!)α · lα

=
∞∑

m=1

∞∑

l=1
m+1†l

m

(m!)α · lα

=
∞∑

m=1

m

(m!)α

( ∞∑

l=1

1
lα
−

∞∑

l=1

1
(m + 1)α · lα

)

=
∞∑

m=1

m

(m!)α
ζ(α)

(
1− 1

(m + 1)α

)

= ζ(α)

( ∞∑
m=1

m

(m!)α
−

∞∑
m=1

m

((m + 1)!)α

)

= ζ(α)

(
1 +

∞∑
m=1

1
((m + 1)!)α

)

= ζ(α)
∞∑

m=1

1
(m!)α

.

This completes the proof of Theorem.
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