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To facilitate rapid numerical calculations of identities pertaining

to Fibonacci numbers, we present each identity as a binomial sum.
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1. Preliminaries

The most prominent linear homogeneous recurrence relation of order

two with constant coefficients is the one that defines Fibonacci numbers (or

Fibonacci sequence). It is defined recursively as

Fn+2 = Fn+1 + Fn, where F0 = 0, F1 = 1, and n ≥ 0.
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It is well-known that the function

g(x) =
x

1 − x − x2
(1)

generates Fibonacci sequence. Bicknell and Hoggatt in [2] stated that (1)

can be verified by long division. But, since the method of long division is

a long process, especially for a large n, the author in [1] used the method of

generating functions to verify (1) which is quicker, regardless of the value of

n, and obtained

Fn =
1√
5

[
(
1 +

√
5

2
)n − (

1 −√
5

2
)n

]
, n ≥ 0. (2)

Finding the exact value of Fn from (2) requires multiple steps of busy and

messy algebraic calculations which is not desirable. So, our goal in this note

is to present Fn as a binomial sum for quick numerical calculations. Likewise,

we use this binomial sum to write some well-known and fundamental identities

concerning Fibonacci numbers as binomial sums as well.

It is known that Fibonacci numbers are the sum of the numbers along

the rising diagonals of Pascal’s (Khayyam-Pascal’s) triangle, and if we write

the elements of Pascal’s triangle as binomial terms we have
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.

.

.

Sn+1 =

(
n

0

)
+

(
n − 1

1

)
+

(
n − 2

2

)
+ ..., n ≥ 0.

Now, using Pascal’s identity

(
n + 1

r

)
=

(
n

r

)
+

(
n

r − 1

)
, (n ≥ r ≥ 0)

we can easily verify that Sn+2 = Sn+1 + Sn, and hence the binomial sum Sn

satisfies the Fibonacci relation. In practice, we need to know all terms in the

binomial sum of Sn. By inspection we can see that for n ≥ 0,

Sn+1 =

(
n

0

)
+

(
n − 1

1

)
+

(
n − 2

2

)
+ ... +

(
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2
� + 1

�n
2
� − 1

)
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2
�

�n
2
�

)
=

�n
2
�∑

i=0

(
n − i

i

)
,

where �n� represents the floor function. Again, if we use Pascal’s identity, we

can easily show that the above Sn does indeed satisfy the Fibonacci relation.

2. Identities

It is well-known that the left-hand side of each identity in Corollary

1 can be written as a (power of a ) single Fibonacci number. For example,

as early as 1876 Lucas has shown that 1 +
n∑

i=1

Fi = Fn+2, 1 +
n∑

i=1

F2i = F2n+1,

and

n∑
i=1

F2i−1 = F2n. One could use the principle of mathematical induction,

combinatorial argument, or just simple algebra to verify the validity of these

identities. These Fibonacci identities have been developed over the centuries

by mathematicians and number enthusiasts alike, and their proofs can be found

in various sources. So, as we stated earlier, the goal of this note is to write

some of these fundamental identities as binomial sums for quick numerical

calculations.
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Theorem 1. If Fn is any Fibonacci number, then

Fn+1 =

(
n

0

)
+

(
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i

)
, n ≥ 0.

Proof follows from our above discussion. Also, Theorem 1 can be

proven by using the principle of mathematical induction or combinatorial

methods.

As a direct consequence of Theorem 1 and the definition of Fibonacci

numbers we obtain the following corollary.

Corollary 1. If n is any nonnegative integer, then

(i) 1 +
n∑

i=0
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�n+1
2

�∑
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i

)
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i

)
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i

)
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(x) 2 + (n + 1)Fn+2 −
n∑

i=0

iFi =

�n+3
2
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(
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i

)

(xi) FnF 2
n+3 − F 3

n+2 = (−1)n+1

�n
2
�∑

i=0

(
n − i

i

)

(xii) Fn+3F
2
n − F 3

n+1 = (−1)n+1

�n+1
2

�∑
i=0

(
n + 1 − i

i

)

3. Conclusion

We presented just a few widely-known Fibonacci identities as binomial

sums. We are hoping that this article would motivate the curious reader to

write her/his favorite Fibonacci identities as binomial sums too. The author

himself will be working on writing some other Fibonacci and Lucas identities

as binomial sums as well.
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