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1. Introduction

The Stirling numbers of the �rst and second kinds, denoted by s(n, k) and
S(n, k) respectively, were originally introduced as the change of basis coe�cients
between the basis of monomial polynomials tn and the basis of falling factorial

polynomials [t]k :=

k−1∏
i=0

(t− i) :

tn =

n∑
k=0

S(n, k)[t]k, [t]n =

n∑
k=0

s(n, k)tk. (1)

Both kinds of Stirling numbers belong to the exponential Riordan group. For
the basic theory of this group consult [1, Section 2]. The purpose of this note
is to introduce 3-parameter families of generalized Stirling numbers of the �rst
and second kinds, denoted by s(a,b,c)(n, k) and S(a,b,c)(n, k), de�ned by means
of exponential Riordan arrays. We give an interpretation of these generalized
Stirling numbers as connection constants between the basis of monomial poly-
nomials and a family of generalized falling factorial polynomials. We turn our
attention �rst to generalizing the Stirling numbers of the second kind.

2. Generalized Stirling numbers of the second kind

The triangle of Stirling numbers of the second kind S = (S(n, k))n,k≥0 is
A048993 in the database; it is the exponential Riordan array [1, ez − 1], and
its exponential generating function (egf) is

et(e
z−1) =

∑
n,k≥0

S(n, k)tk
zn

n!
. (2)

The row polynomials of the array are the single variable Bell (or exponential)
polynomials

Bell(n, t) :=

n∑
k=0

S(n, k)tk .

De�nition

Let a, b, c ∈ Z with a 6= 0. We de�ne the array of generalized Stirling numbers

of the second kind S(a,b,c) = (S(a,b,c)(n, k))n,k≥0 to be the exponential Riordan

array 1

S(a,b,c) = [ecz,
e(a+b)z − ebz

a
]. (3)

1By taking the limit in (3) as a → 0 it is also possible to de�ne arrays of the form S(0,b,c).
For example, S(0,1,0) = A059297, the triangle of idempotent numbers and S(0,1,1)=A154372.
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The associated egf is

ecze
t

(
e(a+b)z−ebz

a

)
=
∑
n,k≥0

S(a,b,c)(n, k)t
k z

n

n!
. (4)

In this notation, the array of classical Stirling numbers of the second kind,
A048993, is S(1,0,0).
The generalized Stirling array S(a,b,c) factorizes in the exponential Riordan
group as

S(a,b,c) = [ecz,
e(a+b)z − ebz

a
]

= [ecz, 1][1,
e(a+b)z − ebz

a
]

= BcS(a,b,0),

where B (for binomial) denotes Pascal's triangle A007318.
The array S(a,b,c) begins

1
c 1
c2 a+ 2(b+ c) 1
c3 a2 + 3a(b+ c) + 3(b+ c)2 3(a+ 2b+ c) 1
...

...
...

...
. . .


We view the row generating polynomials of the array S(a,b,c) as generalized Bell
polynomials, denoted by

Bell(a,b,c)(n, t) :=

n∑
k=0

S(a,b,c)(n, k)t
k .

The generalized Stirling arrays S(1,0,c) were introduced by d'Ocagne [4]. Broder
[2] called these c-Stirling numbers of the second kind, and gave a combinatorial
interpretation for these numbers when c is a positive integer: the (n, k) entry
of S(1,0,c) equals the number of partitions of the set [n] into k blocks with
the restriction that the integers 1, 2, ..., c belong to di�erent blocks. The more
general arrays S(a,0,c) have been considered by several authors, see [5], [6] and
[7]. Some examples of generalized Stirling numbers of the second kind recorded
in the OEIS are tabled below.
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Array S(a,b,c) Description

A008277 S(1,0,1) Stirling numbers of the second kind (with o�set 0)
A143494 S(1,0,2) 2-Stirling numbers of the second kind
A143495 S(1,0,3) 3-Stirling numbers of the second kind
A143496 S(1,0,4) 4-Stirling numbers of the second kind
A193685 S(1,0,5) 5-Stirling numbers of the second kind

A039755 S(2,0,1) Type B Stirling numbers of the second kind or
Stirling-Frobenius subset numbers of order 2

A225468 S(3,0,2) Stirling-Frobenius subset numbers of order 3
A225469 S(4,0,3) Stirling-Frobenius subset numbers of order 4

A143395 S(1,1,0) Partitions of the set [n] into k blocks together
with a choice of a non-empty subset in each block

A136630 S(2,−1,0) Partitions of the set [n] into k odd sized blocks

A075497-A075505 S(m, 0,m), Stirling numbers of the second kind scaled by
m = 2, ..., 10 powers of m

A111577 S(3, 0, 1)
A111578 S(4, 0, 1)
A166973 S(5, 0, 1)

Explicit formula for S(a,b,c)(n,k).

We may write the egf (4) for the generalized Stirling array in the form

ecz
∑
k≥0

(
e(a+b)z − ebz

a

)k
tk

k!
.

Expanding the binomials and extracting the coe�cient of the term tkzn, we
obtain after a short calculation the following explicit formula for the generalized
Stirling numbers of the second kind

S(a,b,c)(n, k) =
1

akk!

k∑
j=0

(−1)(k−j)
(
k

j

)
(aj + bk + c)n . (5)

An immediate consequence of (5) is the identity

S(ma,mb,mc)(n, k) = m(n−k)S(a,b,c)(n, k) , (6)

so the triangle of generalized Stirling numbers associated with the triple (ma,mb,mc)
is simply a scaled version of the triangle of generalized Stirling numbers associ-
ated with the triple (a, b, c); in particular,

S(−a,−b,−c)(n, k) = (−1)n−kS(a,b,c)(n, k) . (7)
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It also follows easily from (5) that

S(a,b,c)(n, k) = S(−a,a+b,c)(n, k) . (8)

Recurrence equations

The generating function F (z, t) = ecze
t

(
e(a+b)z−ebz

a

)
for the array of generalized

Stirling numbers S(a,b,c) satis�es the partial di�erential equation

∂F (z, t)

∂z
= cF (z, t) +

t

a

(
(a+ b)e(a+b)z − bebz

)
F (z, t) . (9)

Expanding both sides of (9) into a Taylor series in z about z = 0 and comparing
the coe�cients of zn yields the following recurrence equation for the generalized
Bell polynomials

Bell(a,b,c)(n+1, t) = cBell(a,b,c)(n, t)+t

n∑
j=0

(a+ b)(n−j+1) − b(n−j+1)

a

(
n

j

)
Bell(a,b,c)(j, t) .

(10)
In terms of the generalized Stirling numbers this becomes the recurrence

S(a,b,c)(n+1, k+1) = cS(a,b,c)(n, k + 1) +

n∑
j=k

(a+ b)(n−j+1) − b(n−j+1)

a

(
n

j

)
S(a,b,c)(j, k) .

(11)
In a similar manner, another recurrence for the Bell polynomials may be ob-
tained from the partial di�erential equation

∂F (z, t)

∂z
=
(
c+ tebz

)
F (z, t) + (a+ b)t

∂F (z, t)

∂t
.

It follows that

Bell(a,b,c)(n+1, t) = cBell(a,b,c)(n, t)+(a+b)tBell
′

(a,b,c)(n, t)+t

n∑
j=0

bn−k
(
n

j

)
Bell(a,b,c)(j, t) ,

(12)
where the prime ′ indicates di�erentiation with respect to t.
When b = 0 this recurrence simpli�es to

Bell(a,0,c)(n+ 1, t) = (c+ t)Bell(a,0,c)(n, t) + atBell
′

(a,0,c)(n, t) , (13)

which leads to the following recurrence equation for the generalized Stirling
numbers with parameter b = 0:

S(a,0,c)(n+ 1, k) = S(a,0,c)(n, k − 1) + (ak + c)S(a,0,c)(n, k) . (14)
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3. Generalized Stirling numbers of the �rst kind

We de�ne the array of generalized Stirling numbers of the �rst kind s(a,b,c) =
(s(a,b,c)(n, k))n,k≥0 to be the inverse of the array S(a,b,c):

s(a,b,c)S(a,b,c) = S(a,b,c)s(a,b,c) = I.

The array s(1,0,0) is A048994, the triangle of Stirling numbers of the �rst kind.
The generalized Stirling array s(a,b,c) begins

1
−c 1

c(a+ 2b+ c) −(a+ 2b+ 2c) 1
−c(a+ 3b+ c)(2a+ 3b+ c) 2a2 + 3a(3b+ 2c) + 3(b+ c)(3b+ c) −3(a+ 2b+ c) 1

...
...

...
...

. . .


The �rst few row generating polynomials Rn(t) of the array are

R0(t) = 1

R1(t) = t− c
R2(t) = (t− c)(t− c− a− 2b)

R3(t) = (t− c)(t− c− a− 3b)(t− c− 2a− 3b)

R4(t) = (t− c)(t− c− a− 4b)(t− c− 2a− 4b)(t− c− 3a− 4b)

. . .

We de�ne generalized falling factorial polynomials [t; a, b, c]n dependent on 3
parameters a, b and c by means of the product formula

[t; a, b, c]n = (t−c)(t−c−a−nb)(t−c−2a−nb) · · · (t−c−(n−1)a−nb), [t; a, b, c]0 = 1,
(15)

so that [t; 1, 0, 0]n are the usual falling factorial polynomials [t]n. We will show
that the nth row polynomial of the generalized Stirling array s(a,b,c) is given by

Rn(t) =

n∑
k=0

s(a,b,c)(n, k)t
k = [t; a, b, c]n. (16)

Clearly, the inverse relation to (16) is

tn =

n∑
k=0

S(a,b,c)(n, k)[t; a, b, c]k. (17)

Thus the generalized Stirling numbers of the �rst and second kinds, s(a,b,c)(n, k)
and S(a,b,c)(n, k), are the connection constants for expressing the generalized

falling factorials [t; a, b, c]n in terms of the monomial polynomials tk and vice
versa.
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Proof of (16): Recall the array S(a,b,c) was de�ned in Section 2 as the
exponential Riordan array [ecz, F (z)], with

F (z) :=
e(a+b)z − eaz

a
. (18)

It follows from the theory of Riordan arrays that the inverse array of generalized
Stirling numbers of the �rst kind s(a,b,c) is the exponential Riordan array

s(a,b,c) = [e−cG(z), G(z)] (19)

with the associated generating function

e((t−c)G(z)) =
∑
n,k≥0

s(a,b,c)(n, k)t
k z

n

n!
, (20)

where the function G(z) is the compositional inverse of F (z) satisfying

F ◦G(z) = G ◦ F (z) = z. (21)

By (18), the relation F ◦G(z) = z is

e(a+b)G(z) − ebG(z)

a
= z. (22)

If we set Y = eaG(z), then (22) is equivalent to the functional relation

Y = 1 + azY
−b
a . (23)

A series solution to this equation may be obtained from the following well-known
result - see, for example, [3, pp 200-201] or [8, Proposition 6.2.2]:

If the generating function D = D(x) satis�es

D = 1 + xDα (24)

then the solution is

D =
∑
n≥0

1

αn+ 1

(
αn+ 1

n

)
xn. (25)

Furthermore, the function Dβ has the expansion

Dβ =
∑
n≥0

β

αn+ β

(
αn+ β

n

)
xn. (26)

It follows from (25) that the solution to equation (23) is

Y =
∑
n≥0

1
−b
a n+ 1

(−b
a n+ 1

n

)
anzn. (27)

6



Then the egf (20) for the array of generalized Stirling numbers of the �rst kind
becomes∑
n≥0

Rn(t)
zn

n!
= exp((t− c)G(z))

= Y
t−c
a

=
∑
n≥0

t−c
a

−b
a n+ t−c

a

(−b
a n+ t−c

a

n

)
anzn by (26) applied to (27)

= 1 + (t− c)z + (t− c)(t− c− a− 2b)
z2

2!

+(t− c)(t− c− a− 3b)(t− c− 2a− 3b)
z3

3!
+ · · ·

=
∑
n≥0

[t; a, b, c]n
zn

n!
.

Thus the nth row polynomial Rn(t) of the array of generalized Stirling numbers
of the �rst kind equals the generalized falling factorial

Rn(t) = [t; a, b, c]n,

completing the proof of (16).�
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