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1 Introduction to the results of F. Brown on
Zagier’s Conjecture

1.1 Zeta values: main Diophantine conjecture

Riemann zeta function

ζ(s) =
∑
n≥1

1

ns

has been considered before Riemann by Euler for integer values of the variable
s, both positive and negative ones. Among the many results he proved are

ζ(2) =
π2

6
and

ζ(2n)

ζ(2)n
∈ Q

for any integer n ≥ 1.
A quite ambitious goal is to determine the algebraic relations among the

numbers
π, ζ(3), ζ(5), . . . , ζ(2n+ 1), . . .

The expected answer is disappointingly simple: it is widely believed that there
are no relations, which means that these numbers should be algebraically inde-
pendent:

Conjecture 1. For any n ≥ 0 and any nonzero polynomial P ∈ Z[T0, . . . , Tn],

P
(
π, ζ(3), ζ(5), . . . , ζ(2n+ 1)

)
6= 0.

If true, this property would mean that there is no interesting algebraic structure.
There are very few results on the arithmetic nature of these numbers, even

less on their independence: it is known that π is a transcendental numbers,
hence, so are all ζ(2n), n ≥ 1. It is also known that ζ(3) is irrational (Apéry,
1978), and that infinitely many ζ(2n+ 1) are irrational (further sharper results
have been achieved by T. Rivoal and others – see [5]). But so far, it has not been
disproved that all these numbers lie in the ring Q[π2] (see the Open Problem
2).
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1.2 Multizeta values: Zagier’s conjecture

The situation changes drastically if we enlarge our set so as to include the so-
called Multiple Zeta Values (MZV, also called Polyzeta values, Euler-Zagier
numbers or multiple harmonic series):

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1

ns11 · · ·n
sk
k

which are defined for k, s1, . . . , sk positive integers with s1 ≥ 2. There are
plenty of relations between them, providing a rich algebraic structure.

We will call k the length of the tuple s = (s1, . . . , sk) and |s| := s1 + · · ·+ sk
the weight of this tuple. There are 2p−2 tuples s of weight p with s1 ≥ 2 and
sj ≥ 1 for 2 ≤ j ≤ k. The length k and the weight p are related by k + 1 ≤ p.

One easily gets quadratic relations between MZV when one multiplies two
such series: it is easy to express the product as a linear combination of MZV.
We will study this phenomenon in detail, but we just give one easy example.
Splitting the set of (n,m) with n ≥ 1 and m ≥ 1 into three disjoint subsets with
respectively n > m, m > n and n = m, we deduce, for s ≥ 2 and s′ ≥ 2,∑

n≥1

n−s
∑
m≥1

m−s
′

=
∑

n>m≥1

n−sm−s
′
+

∑
m>n≥1

m−s
′
n−s +

∑
n≥1

n−s−s
′
,

which is the so–called Nielsen Reflexion Formula:

ζ(s)ζ(s′) = ζ(s, s′) + ζ(s′, s) + ζ(s+ s′)

for s ≥ 2 and s′ ≥ 2. For instance,

ζ(2)2 = 2ζ(2, 2) + ζ(4).

Such expressions of the product of two zeta values as a linear combination of zeta
values, arising from the product of two series, will be called “stuffle relations”
(see §8.1).

They show that the Q–vector space spanned by the multiple zeta values is
in fact an algebra: a product of linear combinations of numbers of the form
ζ(s) is again a linear combination of such numbers. As mentioned above, it has
not been disproved that this algebra is Q[π2]. While looking at the result on
the formal symbols representing the MZV, one should keep in mind that the
following Open Problem 2 is not yet solved. Many results on these symbols
are known, but almost nothing is known on the kernel of the corresponding
specialization, which maps a symbol onto the corresponding real number.

We denote by Z the Q–vector space spanned by the numbers ζ(s). For
p ≥ 2, we denote by Zp the Q-subspace of Z spanned by the numbers ζ(s) with
|s| = p. For k ≥ 1, we denote by FkZ the Q-subspace of Z spanned by the
numbers ζ(s) with s of length ≤ k. Finally, for p ≥ k + 1 ≥ 2, we denote by
FkZp the Q-subspace of Z spanned by the numbers ζ(s) with |s| of weight p and
length ≤ k. The inclusion FkZp ⊂ FkZ ∩ Zp is plain, that there is equality is
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only a conjecture. It is also conjectured but not proved that the weight defines
a graduation on Z. It is a fact that the subspaces FkZ define an increasing
filtration of the algebra Z (see §5.4), butit is not proved that this filtration is
not the trivial one: for instance, it could happen that

FkZp = Zp = Z = Q[π2]

for all k ≥ 1 and p ≥ 2. For p ≥ 2, the space F1Zp has dimension 1, it is
spanned by ζ(p). From Rivoal’s result we know that Zp 6= Q for infinitely many
odd p.

Open Problem 2. Is–it true that Z 6= Q[π2]?

All know linear relations that express a multizeta ζ(s) as a linear combination
of such numbers are homogeneous for the weight. The next conjecture (which
is also still open) is that any linear relations among these numbers splits into
homogeneous linear relations.

Conjecture 3. The Q–subspaces Zp of R are in direct sum:⊕
p≥2

Zp ⊂ R.

This is equivalent to saying that the weight defines a graduation (see §5.1)
on the algebra Z. A very special case of Conjecture 3, which is open, is Z2∩Z3 =
{0}, which means that the number ζ(3)/π2 should be irrational.

For p ≥ 1, we denote by dp the dimension over Q of Zp (with d1 = 0); we
also set d0 = 1. It is clear that dp ≥ 1 for p ≥ 2, because ζ(p) is not zero.
For p ≥ 1 and k ≥ 1, we denote by dp,k the dimension of FkZp/Fk−1Zp with
dp,1 = 1 for p ≥ 1. We also set d0,0 = 1 and d0,k = 0 for k ≥ 1, dp,0 = 0 for
p ≥ 1. We have, for all p ≥ 0,

dp =
∑
k≥0

dp,k (4)

and dp,k = 0 for k ≥ p ≥ 1.
We have d2 = 1, since Z2 is spanned by ζ(2). The relation ζ(2, 1) = ζ(3),

which is again due to Euler, shows that d3 = 1. Also the relations, essentially
going back to Euler,

ζ(3, 1) =
1

4
ζ(4), ζ(2, 2) =

3

4
ζ(4), ζ(2, 1, 1) = ζ(4) =

2

5
ζ(2)2,

show that d4 = 1. These are the only values of dp which are known. It is not
yet proved that there exists a p ≥ 5 with dp ≥ 2. The upper bound ζ(5) ≤ 2
follows from the fact that there are 6 independent linear relations among the 8
numbers

ζ(5), ζ(4, 1), ζ(3, 2), ζ(3, 1, 1), ζ(2, 3), ζ(2, 2, 1), ζ(2, 1, 2), ζ(2, 1, 1, 1),
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and Z5 is the Q-vector subspace of R spanned by ζ(2, 3) and ζ(3, 2):

ζ(5) =
4

5
ζ(3, 2) +

6

5
ζ(2, 3) = ζ(2, 1, 1, 1),

ζ(4, 1) = −1

5
ζ(3, 2) +

1

5
ζ(2, 3) = ζ(3, 1, 1),

ζ(2, 2, 1) = ζ(3, 2)

ζ(2, 1, 2) = ζ(2, 3).

The dimension of Z5 is 2 if ζ(2, 3)/ζ(3, 2) is irrational (which is conjectured, but
not yet proved), and 1 otherwise.

Similarly, the Q–space Z6 has dimension ≤ 2, as it is spanned by ζ(2, 2, 2)
and ζ(3, 3):

ζ(6) =
16

3
ζ(2, 2, 2) = ζ(2, 1, 1, 1, 1),

ζ(5, 1) =
4

3
ζ(2, 2, 2)− ζ(3, 3) = ζ(3, 1, 1, 1),

ζ(4, 2) = −16

9
ζ(2, 2, 2) + 2ζ(3, 3) = ζ(2, 2, 1, 1),

ζ(4, 1, 1) =
7

3
ζ(2, 2, 2)− 2ζ(3, 3),

ζ(3, 2, 1) = −59

9
ζ(2, 2, 2) + 6ζ(3, 3),

ζ(2, 4) =
59

9
ζ(2, 2, 2)− 2ζ(3, 3) = ζ(2, 1, 2, 1),

ζ(2, 3, 1) =
34

9
ζ(2, 2, 2)− 3ζ(3, 3) = ζ(3, 1, 2),

ζ(2, 1, 2, 1) = ζ(3, 3).

Here is Zagier’s conjecture on the dimension dp of the Q-vector space Zp.

Conjecture 5 (Zagier). For p ≥ 3, we have

dp = dp−2 + dp−3.

Since d0 = 1, d1 = 0 and d2 = 1, this conjecture can be written∑
p≥0

dpX
p =

1

1−X2 −X3
·

It has been proved independently by Goncharov and Terasoma that the
numbers defined by the recurrence relation of Zagier’s Conjecture 5 with initial
values d0 = 1, d1 = 0 provide upper bounds for the actual dimension dp. This
shows that there are plenty of linear relations among the numbers ζ(s). For
each p from 2 to 11, we display the number of tuples s of length p which is
2p−2, the number dp given by Zagier’s Conjecture 5 and the difference which is
(a lower bound for) the number of linear relations among these numbers.
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p 2 3 4 5 6 7 8 9 10 11

2p−2 1 2 4 8 16 32 64 128 256 512

dp 1 1 1 2 2 3 4 5 7 9

2p−2 − dp 0 1 3 6 14 29 60 123 249 503

Since dp grows like a constant multiple of rp, where r = 1.324 717 957 244 7 . . .
is the real root of x3 − x− 1, the difference 2p−2 − dp is asymptotic to 2p−2.

According to Zagier’s Conjecture 5, a basis for Zp should be given as follows:
p = 2, d2 = 1, ζ(2);
p = 3, d3 = 1, ζ(3);
p = 4, d4 = 1, ζ(2, 2);
p = 5, d5 = 2, ζ(2, 3), ζ(3, 2);
p = 6, d6 = 2, ζ(2, 2, 2), ζ(3, 3);
p = 7, d7 = 3, ζ(2, 2, 3), ζ(2, 3, 2), ζ(3, 2, 2);
p = 8, d8 = 4, ζ(2, 2, 2, 3), ζ(2, 3, 3), ζ(3, 2, 3), ζ(3, 3, 2);
p = 9, d8 = 5, ζ(2, 2, 2, 3), ζ(2, 2, 3, 2), ζ(2, 3, 2, 2), ζ(3, 2, 2, 2)ζ(3, 3, 3).

For these small values of p, the dimension dp,k of FkZp/Fk−1Zp is conjec-
turally given by the number of elements in the box (p, k) of the next figure,
where conjectural generators of FkZp/Fk−1Zp should be given by the classes of
the following MZV:

k
p

2 3 4 5 6 7 8 9

1 ζ(2) ζ(3) ζ(4) ζ(5) ζ(6) ζ(7) ζ(8) ζ(9)

2 ζ(4, 1) ζ(5, 1)
ζ(6, 1)

ζ(5, 2)

ζ(7, 1)

ζ(6, 2)

ζ(8, 1)
ζ(7, 2)
ζ(6, 3)

3 ζ(6, 1, 1) ζ(6, 2, 1)

dp 1 1 1 2 2 3 4 5

The displayed elements should all be linearly independent over Q. The
numerical computations have been performed online thanks to the computer
program EZface [1].

1.3 Known results

A conjecture by M. Hoffman is that a basis of Zp over Q is given by the numbers
ζ(s1, . . . , sk), s1 + · · · + sk = p, where each si is either 2 or 3: the dimension
agrees with Conjecture 5.
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As a side product of his main recent results, F. Brown [7, 8] obtains:

Theorem 6. The numbers ζ(s1, . . . , sk), with k ≥ 1 and sj ∈ {2, 3}, span the
Q–space Z of multizeta.

Hence, Conjecture 5 is equivalent to saying that the numbers ζ(s1, . . . , sk),
with k ≥ 1 and sj ∈ {2, 3}, occurring in Theorem 6 are Q–linearly independent.

One of the auxiliary result which was needed by F. Brown is a formula which
he conjectured and which has been established by D. Zagier (see §2).

1.4 Occurrences of powers of π2 in the set of generators

The space F1Z2n is spanned by π2n over Q. The next Proposition 7 shows that
the numbers π2n occur in the set of generators ζ(s) with sj ∈ {2, 3} given by
Theorem 6, by taking all sj equal to 2.

For s ≥ 2 and n ≥ 1, we use the notation {s}a for a string with n elements
all equal to s, that is {s}n = (s1, . . . , sn) with s1 = · · · = sn = s.

Proposition 7. For s ≥ 2,

∑
n≥0

ζ
(
{s}n

)
xn =

∏
j≥1

(
1 +

x

js

)
= exp

∑
k≥1

(−1)k−1xkζ(sk)

k

 .

The proof will involve the infinite product

Fs(x) =
∏
j≥1

(
1 +

x

js

)
.

Proof. Expanding Fs(x) as a series:

Fs(x) = 1 + x
∑
j≥1

1

js
+ x2

∑
j1>j2≥1

1

(j1j2)s
+ · · ·

= 1 + xζ(s) + x2ζ(s, s) + · · ·

yields the first equality in Proposition 7. For the second one, consider the
logarithmic derivative of Fs(x):

F ′s(x)

Fs(x)
=
∑
j≥1

1

js + x
=
∑
j≥1

1

js

∑
k≥1

(−1)k−1 xk−1

js(k−1)

=
∑
k≥1

(−1)k−1xk−1
∑
j≥1

1

jsk
=
∑
k≥1

(−1)k−1xk−1ζ(sk).

Since Fs(0) = ζ
(
{s}0

)
= 1, Proposition 7 follows by integration.

6



Updated June 16, 2015 MZV IMSc 2011

Lemma 8. We have

F2(−z2) =
sin(πz)

πz
·

Proof. Lemma 8 follows from the product expansion of the sine function (see
for instance [14], Chap. 7, § 4.1, (27))

sin z = z

∞∏
n=1

(
1− z2

n2π2

)
.

From Proposition 7 and Lemma 8 we deduce:

Corollary 9. For any n ≥ 0,

ζ
(
{2}n

)
=

π2n

(2n+ 1)!
·

Proof. From the Taylor expansion of the sine function

sin z =
∑
k≥0

(−1)k
z2k+1

(2k + 1)!

and from Lemma 8, we infer

F2(−z2) =
sin(πz)

πz
=
∑
k≥0

(−1)k
π2kz2k

(2k + 1)!
·

Corollary 9 now follows from Proposition 7.

2 Zagier’s contribution to Brown’s proof

We explain the strategy of Zagier [17] for proving the relation which was needed
and conjectured by F. Brown [7, 8] concerning the numbers

H(a, b) := ζ({2}b3{2}a)

for a ≥ 0 and b ≥ 0. In particularH(0, 0) = ζ(3). Beware that the normalization
used by F. Brown and by D. Zagier [7, 8, 17] is the opposite of ours; this is why
a and b are in this reverse order here.

Another reference to this topic is the course [2] on MZV by J. Borwein and
W. Zudilin at the University of Newcastle in 2011–2012.

Set also (cf. Corollary 9)

H(n) = ζ({2}n) =
π2n

(2n+ 1)!

7
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for n ≥ 0, with H(0) = 1.
Consider the alphabet {2, 3}; give to the letter 2 the weight 2 and to the

letter 3 the weight 3, so that the word 2b ·3 ·2a has weight 2a+ 2b+ 3, while the
word 2n has weight 2n. Give also the weight ` to ζ(`) for ` ≥ 2 (this is an abuse
of language, since we do not know whether the weight defines a graduation – see
Conjecture 3). Looking at homogeneous relations, one considers on the one side
the numbers H(a, b) and on the other side the numbers ζ(`)H(m) with ` ≥ 2
and m ≥ 0, restricted to the relation 2a + 2b + 3 = ` + 2m. Notice that this
implies that the number ` = 2a+ 2b+ 3− 2m is odd.

Theorem 10 (Zagier, 2011). Let a and b be non–negative integers. Set k =
2a + 2b + 3. Then there exist a + b + 1 rational integers cm,r,a,b with m ≥ 0,
r ≥ 1, m+ r = a+ b+ 1, such that

H(a, b) =
∑

m+r=a+b+1

cm,r,a,bH(m)ζ(2r + 1).

Conversely, given two integers r and m with r ≥ 1 and m ≥ 0, there exist m+ r
rational numbers c′m,r,a,b with a ≥ 0, b ≥ 0, a+ b = m+ r − 1, such that

H(m)ζ(2r + 1) =
∑

a+b=m+r−1

c′m,r,a,bH(a, b).

The integers cm,r,a,b are explicitly given:

cm,r,a,b = 2(−1)r
[(

2r

2a+ 2

)
−
(

1− 1

22r

)(
2r

2b+ 1

)
.

]
It follows that the square matrices

(
cm,r,a,b

)
and

(
c′m,r,a,b

)
, of size a + b + 1 =

m+ r, are inverse matrices.
We only give the sketch of proof of the first part of Theorem 10. Consider

the generating series

F (x, y) =
∑
a≥0

∑
b≥0

(−1)a+b+1H(a, b)x2a+2y2b+1

and
F̂ (x, y) =

∑
a≥0

∑
b≥0

(−1)a+b+1Ĥ(a, b)x2a+2y2b+1,

where

Ĥ(a, b) =

a+b∑
m=0

cm,a,bH(m)ζ(k − 2m).

The first step relates F (x, y) to a hypergeometric series 3F2, namely F (x, y) is
the product of (1/π) sin(πy) by the z–derivative at z = 0 of the function

3F2

(
x, −x, z

1 + y, 1− y

∣∣∣∣ 1) .
8
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The second step relates F̂ (x, y) to the digamma function ψ(x) = Γ′(x)/Γ(x)

(logarithmic derivative of Γ), namely F̂ (x, y) is a linear combination of fourteen
functions of the form

ψ
(

1 +
u

2

) sin(πv)

2π
with u ∈ {±x± y, ±2x± 2y, ±2y} and v ∈ {x, y}.

The third step is the proof that F and F̂ are both entire function on C × C,
they are bounded by a constant multiple of eπX logX, when X = max{|x|, |y|}
tends to infinity, and also by a constant multiple of eπ|=(y)|, when |y| tends to
infinity while x ∈ C is fixed.

The fourth step is about the diagonal: for z ∈ C, we have

F (z, z) = F̂ (z, z).

Several equivalent explicit formula for this function are given. Let

A(z) := − π

sin(πz)
F (z, z).

Then

A(z) =

∞∑
r=1

ζ(2r + 1)z2r =

∞∑
n=1

z2

n(n2 − z2)

and

A(z) =
1

2

∞∑
n=1

(
1

n− z
+

1

n+ z
− 2

n

)
= ψ(1)− 1

2

(
ψ(1 + z) + ψ(1− z)

)
.

The fifth step shows that F (n, y) and F̂ (n, y) are equal when n ∈ N and y ∈ C,
an explicit formula is given.
The sixth step shows that F (x, k) and F̂ (x, k) are equal when k ∈ N and x ∈ C,
an explicit formula is given.
Now comes the conclusion, which rests on the next lemma:

Lemma 11. An entire function f : C→ C that vanishes at all rational integers
and satisfies

f(z) = O
(
eπ|=(z)|

)
is a constant multiple of sin(πz).

A proof of this lemma, using a Theorem of Phragmén–Lindelöf, is given by
Zagier (Lemma 2 in [17]), but he also notices that other references have been
given subsequently to him, in particular by F. Gramain who pointed out that
this lemma is known since the work of Pólya and Valiron; see [6]

9
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3 Lyndon words: conjectural transcendence ba-
sis

D. Broadhurst considered the question of finding a transcendence basis for the
algebra of MZV, he suggested that one should consider Lyndon words. We first
give the definitions.

Here, we use the alphabet alphabet A = {a, b}. The set of words on A is
denoted by A∗ (see §6.2). The elements of A∗ can be written

an1bm1 · · · ankbmk

with k ≥ 0, n1 ≥ 0, mk ≥ 0 and mi ≥ 1 for 1 ≤ i < k, and with ni ≥ 1
for 2 ≤ i ≤ k. We endowed A∗ with the lexicographic order with a < b. A
Lyndon word is a non–empty word w ∈ A∗ such that, for each decomposition
w = uv with u 6= e and v 6= e, the inequality w < v holds. Denote by L the
set of Lyndon words. Examples of Lyndon words are a, b, abk (k ≥ 0), a`b
(` ≥ 0), a2b2, a2bab. Let us check, for instance, that a2bab is a Lyndon word:
this follows from the observation that a2bab is smaller than any of

abab, bab, ab, b.

But a2ba2b is not a Lyndon word, since a2ba2b > a2b.
Any Lyndon word other than b starts with a and any Lyndon word other

than a ends with b.
Here are the 21 Lyndon words on the alphabet {a, b} with weight ≤ 15, when

a has weight 2 and b weight 3:

a < a6b < a5b < a4b < a4b2 < a3b < a3bab < a3b2 < a3b3 < a2b < a2bab

< a2bab2 < a2b2 < a2b2ab < a2b3 < ab < abab2 < ab2 < ab3 < ab4 < b.

We list them according to their weight p = 2, . . . , 15, we display their number
N(p) and the corresponding multiple zeta values, where the word an is replaced
by the tuple {2}n and bn by {3}n:

p = 2; N(2) = 1; a; ζ(2)
p = 3; N(3) = 1; b; ζ(3)
p = 4; N(4) = 0
p = 5; N(5) = 1; ab; ζ(2, 3)
p = 6; N(6) = 0
p = 7; N(7) = 1; a2b; ζ(2, 2, 3)
p = 8; N(8) = 1; ab2; ζ(2, 3, 3)
p = 9; N(9) = 1; a3b; ζ(2, 2, 2, 3)
p = 10; N(10) = 1; a2b2; ζ(2, 2, 3, 3)
p = 11; N(11) = 2; a4b, ab3; ζ(2, 2, 2, 2, 3), ζ(2, 3, 3, 3)
p = 12; N(12) = 2; a3b2, a2bab; ζ(2, 2, 2, 3, 3), ζ(2, 2, 3, 2, 3)
p = 13; N(13) = 3; a5b, a2b3, abab2;

ζ(2, 2, 2, 2, 2, 3), ζ(2, 2, 3, 3, 3), ζ(2, 3, 2, 3, 3)

10
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p = 14; N(14) = 3; a4b2, a3bab, ab4;
ζ(2, 2, 2, 2, 3, 3), ζ(2, 2, 2, 3, 2, 3), ζ(2, 3, 3, 3, 3)

p = 15; N(15) = 4; a6b, a3b3, a2bab2, a2b2ab; ;
ζ(2, 2, 2, 2, 2, 2, 3), ζ(2, 2, 2, 3, 3, 3), ζ(2, 2, 3, 2, 3, 3), ζ(2, 2, 3, 3, 2, 3).

Conjecture 12. The set of multiple zeta values ζ(s1, . . . , sk), with k ≥ 1 and
sj ∈ {2, 3} for 1 ≤ j ≤ k, such that s1s2 · · · sk is a Lyndon word on the alphabet
{2, 3}, gives a transcendence basis of Z.

The number N(p) of elements of weight p in a transcendence basis of Z
should not depend on the choice of the transcendence basis, and it should be
the number of Lyndon words of weight p on the alphabet {2, 3}.

In the next section (Example 20), we will see that, for p ≥ 1, we have

N(p) =
1

p

∑
`|p

µ(p/`)P`,

where (P`)`≥1 is the linear recurrence sequence of integers defined by

P` = P`−2 + P`−3 for ` ≥ 4

with the initial conditions

P1 = 0, P2 = 2, P3 = 3.

The sequence N0, N1, . . . is

0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 21, . . .

In Sloane [4] http://oeis.org/A113788, it is referred to as Number of irreducible
multiple zeta values at weight n.

If one forgets about the weight of the words, one may list the Lyndon words
according to the number of letters (which correspond to the length for MZV
with sj ∈ {2, 3}), which yields a partial order on the words on the alphabet
{a, b}, where there are 2k words with k letters. Here are the Lyndon words with
k letters on the alphabet {a, b} for the first values of k, with their numbers Lk:
k = 1, L1 = 2; a, b.
k = 2, L2 = 1; ab.
k = 3, L3 = 2; a2b, ab2.
k = 4, L4 = 3, a3b, a2b2, ab3.
k = 5, L5 = 6, a4b, a3b2, a2bab, a2b3, abab2, ab4.
k = 6, L6 = 9, a5b, a4b2, a3bab, a3b3, a2ba2b, a2bab2, a2b2ab, abab3, ab5

The sequence (Lk)k≥1 starts with

2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, . . .

See the reference [4] A001037 to the On-Line Encyclopedia of Integer Sequences

by Sloane.
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The sequence (L1 + · · ·+ Ln)n≥1 starts with

2, 3, 5, 8, 14, 23, 41, 71, 127, 226, 412, 747, 1377, 2538, 4720, 8800, 16510, 31042, . . .

Also, L1 + · · ·+ Ln is the number of irreducible polynomials over F2 of degree
at most n — see [4] A062692.

4 Hilbert–Poincaré series

We will work with commutative algebras, namely polynomial algebras in
variables having each a weight. A conjectural (recall the open problem 2) ex-
ample is the algebra Z of MZV which is a subalgebra of the real numbers. This
algebra Z is the image by specialization of an algebra of polynomials in infinitely
many variables, with one variable of weight 2 (corresponding to ζ(2)), one of
weight 3 (corresponding to ζ(3)), one of weight 5 (corresponding to ζ(3, 2)) and
so on with a suitable number of variables for each odd weight p. According to
Conjecture 12, the number of variables of weight p should be the number N(p)
of Lyndon words on the alphabet {2, 3} with 2 having weight 2 and 3 weight
3. In general, we will consider countably many variables with N(p) variables
of weight p for p ≥ 0, with N(0) = 0. But later we will also consider non–
commutative variables; for instance, the free algebra on the words {2, 3} will
play a role.

5 Graduated algebras and Hilbert–Poincaré se-
ries

5.1 Graduations

We introduce basic definitions from algebra. A graduation on a ring A is a
decomposition into a direct sum of additive subgroups

A =
⊕
k≥0

Ak,

such that the multiplication A × A → A which maps (a, b) onto the product
ab maps Ak × Ah into Ak+h for all pairs (k, h) of non–negative integers. For
us here, it will be sufficient to take for indices the non–negative integers, but
we could more generally take a commutative additive monoid (see [13] Chap. X
§ 5). The elements in Ak are homogeneous of weight (or degree) k. Notice that
A0 is a subring of A and that each Ak is a A0–module1.

1According to this definition, 0 is homogeneous of weight k for all k ≥ 0
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Given a graduated ring A, a graduation on a A–module E is a decomposition
into a direct sum of additive subgroups

E =
⊕
k≥0

Ek,

such that AkEn ⊂ Ek+n. In particular each En is a A0–module. The elements
of En are homogeneous of weight (or degree) n.

A graduated K–algebra is a K–algebra A with a graduation as a ring A =⊕
k≥0Ak such that KAk ⊂ Ak for all k ≥ 0 and A0 = K, (see [13] Chap. XVI,

§ 6). If the dimension dk of each Ak as a K–vector space is finite with d0 = 1,
the Hilbert–Poincaré series of the graduated algebra A is

HA(t) =
∑
p≥0

dpt
p.

If the K–algebra A is the tensor product A′ ⊗ A′′ of two graded algebras A′

and A′′ over the field K, then A is graded with the generators of Ap as K–
vector space being the elements x′ ⊗ x′′, where x′ runs over the generators of
the homogeneous part A′k of A′ and where x′′ runs over the generators of the
homogeneous part A′′` of A′′, with k + ` = p. Hence, the dimensions dp, d

′
k, d′′`

of the homogeneous subspaces of A, A′ and A′′ satisfy

dp =
∑
k+`=p

d′kd
′′
` ,

which means that the Hilbert–Poincaré series of A is the product of the Hilbert–
Poincaré series of A′ and A′′:

HA′⊗A′′(t) = HA′(t)HA′′(t).

5.2 Commutative polynomials algebras

Let (
N(1), N(2), . . . , N(p), . . .)

be a sequence of non–negative integers and let A denote the commutative K–
algebra of polynomials with coefficients in K in the variables Znp (p ≥ 1, 1 ≤
n ≤ N(p)). We endow the K-algebra A with the graduation for which each Znp
is homogeneous of weight p. We denote by dp the dimension of the homogeneous
space Ap over K.

Lemma 13. The Hilbert–Poincaré series of A is

HA(t) =
∏
p≥1

1

(1− tp)N(p)
·

13
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Proof. For p ≥ 1, the K–vector space Ap of homogeneous elements of weight p
has a basis consisting of monomials

∞∏
k=1

N(k)∏
n=1

Zhnknk ,

where h = (hnk) k≥1
1≤n≤N(k)

runs over the set of tuples of non–negative integers

satisfying
∞∑
k=1

N(k)∑
n=1

khnk = p. (14)

Notice that these tuples h have a support

{(n, k) ; k ≥ 1, 1 ≤ n ≤ N(k), hnk 6= 0}

which is finite, since hn,k = 0 for k > p. The dimension dp of the K–vector
space Ap is the number of these tuples h (with d0 = 1), and by definition we
have

HA(t) =
∑
p≥0

dpt
p.

In the identity

1

(1− z)N
=
∑
h1≥0

· · ·
∑
hN≥0

N∏
n=1

zhn

we replace z by tk and N by N(k). We deduce

∏
k≥1

1

(1− tk)N(k)
=
∑
h

∞∏
k=1

N(k)∏
n=1

tkhnk .

The coefficient of tp in the right hand side is the number of tuples h = (hnk) k≥1
1≤n≤N(k)

with hnk ≥ 0 satisfying (14); hence, it is nothing else than dp.

5.3 Examples

Example 15. In Lemma 13, take N(p) = 0 for p ≥ 2 and write N instead
of N(1). Then A is the ring of polynomials K[Z1, . . . , ZN ] with the standard
graduation of the total degree (each variable Zi, i = 1, . . . , N , has weight 1).
The Hilbert–Poincaré series is

1

(1− t)N
=
∑
`≥0

(
N + `− 1

`

)
t`.

If each variable Zi has a weight other than 1 but all the same, say p, it suffices
to replace t by tp. For instance, the Hilbert–Poincaré series of the algebra of
polynomials K[Z] in one variable Z having weight 2 is (1− t2)−1.

14
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Example 16. More generally, if there are only finitely many variables, which
means that there exists an integer p0 ≥ 1 such that N(j) = 0 for j > p0, the
same proof yields

d` =
∏

`1+2`2+···+j0`k0=`

k0∏
j=1

(
N(j) + `j − 1

`j

)
·

Example 17. Denote by µ the Möbius function (see [12]— § 16.3):
µ(1) = 1,

µ(p1 · · · pr) = (−1)r if p1, . . . , pr are distinct prime numbers distincts,

µ(n) = 0 if n has a square factor > 1.

Given a positive integer c, under the assumptions of Lemma 13, the following
conditions are equivalent:

(i) The Hilbert–Poincaré series of A is

HA(t) =
1

1− ct
·

(ii) For p ≥ 0, we have dp = cp.

(iii) For p ≥ 1, we have

cp =
∑
n|p

nN(n) for all p ≥ 1.

(iv) For k ≥ 1, we have

N(k) =
1

k

∑
n|k

µ(k/n)cn.

Proof. The equivalence between (i) and (ii) follows from the definition of HA
and the power series expansion

1

1− ct
=
∑
p≥0

cptp.

The equivalence between (iii) and (iv) follows from Möbius inversion formula
(see [13] Chap. II Ex. 12.c and Chap. V, Ex. 21; [12] § 16.4).

It remains to check the equivalence between (i) and (iii).The constant term
of each of the developments of

1

1− ct
and

∏
k≥1

1

(1− tk)N(k)

15
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into power series is 1; hence, the two series are the same if and only if their
logarithmic derivatives are the same. The logarithmic derivative of 1/(1− ct) is

c

1− ct
=
∑
p≥1

cptp−1.

The logarithmic derivative of
∏
k≥1(1− tk)−N(k) is

∑
k≥1

kN(k)tk−1

1− tk
=
∑
p≥1

∑
n|p

nN(n)

 tp−1. (18)

Example 19. Let a and c be two positive integers. Define two sequences of
integers (δp)p≥1 and (P`)`≥1 by{

δp = 0 if a does not divide p,

δp = cp/a if a divides p

and {
P` = 0 a does not divide `,

P` = ac`/a if a divides `.

Under the hypotheses of Lemma 13, the following properties are equivalent:

(i) The Hilbert–Poincaré series of A is

HA(t) =
1

1− cta
·

(ii) For any p ≥ 1, we have dp = δp.

(iii) For any ` ≥ 1, we have ∑
n|`

nN(n) = P`.

(iv) For any k ≥ 1, we have

N(k) =
1

k

∑
`|k

µ(k/`)P`.

Proof. The definition of the numbers δp means

1

1− cta
=
∑
p≥0

δpt
p,

16
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while the definition of P` can be written∑
`≥1

P`t
`−1 =

cata−1

1− cta
,

where the right hand side is the logarithmic derivative of 1/(1 − cta). Recall
that the logarithmic derivative of

∏
k≥1(1 − tk)−N(k) is given by (18). This

completes the proof.

Example 20. Let a and b be two positive integers with a < b. Define two
sequences of integers (δp)p≥1 and (P`)`≥1 by the induction formulae

δp = δp−a + δp−b for p ≥ b+ 1,

with initial conditions

δ0 = 1,

δp = 0 for 1 ≤ p ≤ b− 1 if a does not divide p,

δp = 1 for a ≤ p ≤ b− 1 if a divides p,

δb = 1 if a does not divide b,

δb = 2 if a divides b

and
P` = P`−a + P`−b for ` ≥ b+ 1,

with initial conditions
P` = 0 for 1 ≤ ` < b if a does not divides `,

P` = a for a ≤ ` < b if a divides `,

Pb = b if a does not divides b,

Pb = a+ b if a divides b.

Under the hypotheses of Lemma 13, the following properties are equivalent:

(i)The Hilbert–Poincaré series of A is

HA(t) =
1

1− ta − tb
·

(ii) For any p ≥ 1, we have dp = δp.

(iii) For any ` ≥ 1, we have ∑
n|`

nN(n) = P`.

17
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(iv) For any k ≥ 1, we have

N(k) =
1

k

∑
`|k

µ(k/`)P`.

Proof. Condition (ii) means that the sequence (dp)p≥0 satisfies

(1− ta − tb)
∑
p≥0

dpt
p = 1.

The equivalence between (i) and (ii) follows from the definition of dp in condition
(ii): the series

HA(t) =
∑
p≥0

dpt
p

satisfies
(1− ta − tb)HA(t) = 1

if and only if the sequence (dp)p≥0 is the same as (δp)p≥0. The definition of the
sequence (P`)`≥0 can be written

(1− ta − tb)
∑
`≥1

P`t
`−1 = ata−1 + btb−1.

The equivalence between (iii) and (iv) follows from Möbius inversion formula.
It remains to check that conditions (i) and (iii) are equivalent. The logarithmic
derivative of 1/(1− ta − tb) is

ata−1 + btb−1

1− ta − tb
=
∑
`≥1

P`t
`−1,

while the logarithmic derivative of
∏
k≥1 1/(1 − tk)N(k) is given by (18). This

completes the proof.

A first special case of example 20 is with a = 1 and b = 2: the sequence
(dp)p≥1 = (1, 2, 3, 5 . . . ) is the Fibonacci sequence (Fn)n≥0 shifted by 1: dp =
Fp+1 for p ≥ 1, while the sequence (P`)`≥1 is the sequence of Lucas numbers

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, . . .

See the On-Line Encyclopedia of Integer Sequences by Sloane [4], A000045 for
the Fibonacci sequence and A000032 for the Lucas sequence.

For the application to MZV, we are interested with the special case where a = 2,
b = 3 in example 20. In this case the recurrence formula for the sequence (P`)`≥1

is P` = P`−2 + P`−3 and the initial conditions are P1 = 0, P2 = 2, P3 = 3, so
that, if we set P0 = 3, then the sequence (P`)`≥0 is

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, . . .

18
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This is the so–called Perrin sequence or Ondrej Such sequence (see [4] A001608),
defined by

P` = P`−2 + P`−3 for ` ≥ 3,

with the initial conditions

P0 = 3, P1 = 0, P2 = 2.

The sequence N(p) of the number of Lyndon words of weight p on the alphabet
{2, 3} satisfies, for p ≥ 1,

N(p) =
1

p

∑
`|p

µ(p/`)P`.

The generating function of the sequence (P`)`≥1 is∑
`≥1

P`t
`−1 =

3− t2

1− t2 − t3
·

For ` > 9, P` is the nearest integer to r`, with r = 1.324 717 957 244 7 . . . the real
root of x3−x−1 (see [4] A060006), which has been also called the silver number,
also the plastic number: this is the smallest Pisot-Vijayaraghavan number.

Example 21 (Words on the alphabet {f3, f5, . . . , f2n+1 . . . }). Consider the al-
phabet {f3, f5, . . . , f2n+1 . . . } with countably many letters, one for each odd
weight. The free algebra on this alphabet (see §6.2) is the so–called concatena-
tion algebra C := Q〈f3, f5, . . . , f2n+1 . . . 〉.

We get a word of weight p by concatenating a word of weight p−(2k+1) with
f2k+1; in other terms, starting with a word of weight q having the last letter
say f2k+1, the prefix obtained by removing the last letter has weight q− 2k− 1.
Hence, the number of words with weight p satisfies

dp = dp−3 + dp−5 + · · ·

(a finite sum for each p,) with d0 = 1 (the empty word), d1 = d2 = 0, d3 = 1.
The Hilbert–Poincaré series of C

HC(t) :=
∑
p≥0

dpt
p

satisfies
HC(t) = 1− t3HC(T )− t5HC(t)− · · ·

Since

(1−t2)(1−t3−t5−t7−· · · ) = 1−t3−t5−t7−· · ·−t2 +t5 +t7 + · · · = 1−t2−t3

(telescoping series), we deduce

HC(t) =
1− t2

1− t2 − t3
·
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Recall (example 15) that the Hilbert–Poincaré series of the commutative polyno-
mial algebra Q[f2] with f2 a single variable of weight 2 is 1/(1−t2). The algebra
C ⊗QQ[f2], which plays an important role in the theory of mixed Tate motives,
can be viewed either as the free algebra on the alphabet {f3, f5, . . . , f2n+1 . . . }
over the commutative ring Q[f2], or as the algebra C[f2] of polynomials in the
single variable f2 with coefficients in C. The Hilbert–Poincaré series of this
algebra is the product

HC[f2](t) =
1− t2

1− t2 − t3
· 1

1− t2
=

1

1− t2 − t3
,

which is conjectured to be also the Hilbert–Poincaré series of the algebra Z.

5.4 Filtrations

A filtration on a A-module E is an increasing or decreasing sequence of sub–A–
modules

{0} = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ · · ·

or
E = E0 ⊃ E1 ⊃ · · · ⊃ En ⊃ · · ·

Sometimes one writes Fn(E) in place of En. For instance, if ϕ is an endomor-
phism of a A–module E, the sequence of kernels of the iterates

{0} ⊂ kerϕ ⊂ kerϕ2 ⊂ · · · ⊂ kerϕn ⊂ · · ·

is an increasing filtration on E, while the images of the iterates

E ⊃ Imϕ ⊃ Imϕ2 ⊂ · · · ⊃ Imϕn ⊃ · · ·

is a decreasing filtration on E.
A filtration on a ring A is an increasing or decreasing sequence of (abelian)

additive subgoups
A = A0 ⊃ A1 ⊃ · · · ⊃ An ⊃ · · ·

or
{0} = A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · ·

such that AnAm ⊂ An+m. In this case A0 is a subring of A and each An is a
A0–module.

As an example, if A is an ideal of A, a filtration on the ring A is given by
the powers of A:

A = A0 ⊃ A1 ⊃ · · · ⊃ An ⊃ · · ·

The first graduated ring associated with this filtration is⊕
n≥0

An,
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and the second graduated ring is⊕
n≥0

An/An+1.

For instance, if A is a proper ideal (that means distinct from {0} and from
A) and is principal, then the first graduated ring is isomorphic to the ring of
polynomials A[t] and the second to (A/A)[t].

We come back to MZV. We have seen that the length k defines a filtration
on the algebra Z of multiple zeta values. Recall that FkZp denotes the Q-vector
subspace of R spanned by the ζ(s) with s of weight p and length ≤ k and that
dp,k is the dimension of FkZp/Fk−1Zp. The next conjecture is proposed by D.
Broadhurst.

Conjecture 22.∑
p≥0

∑
k≥0

dp,kX
pY k

−1

= (1−X2Y )

(
1− X3Y

1−X2
+

X12Y 2(1− Y 2)

(1−X4)(1−X6)

)
·

That Conjecture 22 implies Zagier’s Conjecture 5 is easily seen by substitut-
ing Y = 1 and using (4).

The left hand side in Conjecture 22 can be written as an infinite product:
the next Lemma can be proved in the same way as Lemma 13.

Lemma 23. Let D(p, k) for p ≥ 0 and k ≥ 1 be non–negative integers. Then∏
p≥0

∏
k≥1

(1−XpY k)−D(p,k) =
∑
p≥0

∑
k≥1

dp,kX
pY k,

where dp,k is the number of tuples of non–negative integers of the form h =
(hij`)i≥0 j≥1, 1≤`≤D(p,k) satisfying

∑
i≥0

∑
j≥1

D(p,k)∑
n=1

ihij` = p and
∑
i≥0

∑
j≥1

D(p,k)∑
n=1

jhij` = k.

If one believes Conjecture 12, a transcendence basis T of the field generated
over Q by Z should exist such that

D(p, k) = Card
(
T ∩ FkZp

)
is the number of Lyndon words on the alphabet {2, 3} with weight p and length
k, so that∏

p≥3

∏
k≥1

(1−XpY k)D(p,k) = 1− X3Y

1−X2
+

X12Y 2(1− Y 2)

(1−X4)(1−X6)
·
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6 Words, non–commutative polynomials: free
monoids and free algebras

6.1 Free structures as solution of universal problems

We will consider the categories of monoids, groups, abelian groups, vector
spaces, commutative algebras, algebras, and, for each of them, we will consider
the following universal problem of existence of an initial object:

Universal Problem 24. Given a non–empty set X, does there exists an object
A(X) in this category and a map ι : X → A(X) with the following property:
for any object B in the category and any map f : X → B, there exists a unique
morphism f : A(X)→ B in this category for which the diagram

X
f−−−−→ B

↘ι
x f

A(X)

commutes.

In each of these categories, the answer is yes, therefore, the solution (A(X), i)
is unique up to a unique isomorphism, meaning that if (A′, ι′) is another solution
to this problem, then there is a unique isomorphism ι in the category between
A(X) and A′ for which the diagram

X
ι′−−−−→ A′

↘ι
x ι̃

A(X)

commutes.
Our first example is the category of monoid, where the objects are pairs

(M, ·), where M is a non empty set and · a law

M ×M −→ M
(a, b) 7−→ ab

which is associative with a neutral element e:

(ab)c = a(bc) and ae = ea = a

for all a, b and c in M , while the morphisms between two monoids M and M ′

are the maps ϕ : M →M ′ such that ϕ(e) = e′ and ϕ(ab) = ϕ(a)ϕ(b).
When X is a non–empty set, we denote by X∗ = X(N) the set of finite

sequences of elements in X, including the empty sequence e. Write x1 · · ·xp
with p ≥ 0 such a sequence (which is called a word on the alphabet X - the
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elements xi in X are the letters). This set X∗ is endowed with a monoid
structure, the law on X∗ is the concatenation:

(x1 · · ·xp)(xp+1 · · ·xp+q) = x1 · · ·xp+q,

which produces the universal free monoid with basis X. The neutral element is
the empty word e. This monoid X∗ with the canonical map X → X∗, which
maps a letter onto the corresponding word with a single letter, is the solution
of the universal problem 24 in the category of monoids. The simplest case of
a free monoid is when the given set X has a single element x, in which case
the solution X∗ of the universal problem 24 is the monoid {e, x, x2, . . . , xn . . . }
with the law xkx` = xk+` for k and ` non–negative integers. If one writes the
law additively with the neutral element 0 and if we replace x by 1, this is a
construction of the monoid N = {0, 1, 2, . . . } of the natural integers. We will
study in §6.2 the free monoid X∗ on a set X := {x0, x1} with two elements as
well as the free monoid Y ∗ on a countable set Y := {y1, y2, . . . }.

One can define a monoid by generators and relations: if X is the set of
generators, we consider the free monoid X∗ on X, we consider the equivalence
relation, compatible with the concatenation, induced on X∗ by the set of re-
lations, and we take the quotient. For instance, one gets the solution of the
universal problem 24 in the category of commutative monoids by taking the
quotient of the free monoid on X by the equivalence relation induced by the
relations xy = yx for x and y in X. The free commutative monoid on a set X
is the set N(X) of maps f : x 7→ nx from X to N with finite support: recall that
the support of a map f : X → N is the subset {x ∈ X ; f(x) 6= 0} of X.

Another example is the construction of the free group on a set X: we consider
the set Y which is the disjoint union of two copies of X. One can take, for
instance, Y = X1 ∪X2, where X1 = X × {1} and X2 = X × {2}. We consider
the free monoid Y ∗ on Y and we take the equivalence relation on Y ∗ induced
by (x, 1)(x, 2) = e and (x, 2)(x, 1) = e for all x ∈ X. A set of representative is
given by the set R(X) of so–called reduced words, which are the words y1 · · · ys
in Y ∗ having no consecutive letters of the form (x, 1), (x, 2) nor of the form
(x, 2), (x, 1) for some x ∈ X. One defines in a natural way a surjective map

r : Y ∗ −→ R(X)
w 7−→ r(w)

by induction on the number ` of letters of the w’s in Y ∗ as follows: if w ∈ R(X),
then r(w) = w; if w 6∈ R(X), then there are two consecutive letters in the word
w which are either of the form (x, 1), (x, 2) or of the form (x, 2)(x, 1); we consider
the word w′ having `−2 letters deduced from w by omitting such two consecutive
letters (there may be several choices) and we use the induction hypothesis which
allows us to define r(w) = r(w′). This maps is well defined (independent of the
choices made) and allows one to define a law on the set of reduced words by
ww′ = r(ww′); this endows the set R(X) with a structure of group. This is the
free group on X.

Similarly, we get the free abelian group on a set X, which is just the group
Z(X). If X is finite with n elements, this is Zn.
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The group defined by a set of generators X and a set of relations can be
seen as the monoid constructed as follows: we consider the disjoint union Y of
two copies of X, say X1 and X2 as above; the set of relations on X induces
a set of relations on Y to which one adds the relations (x, 1)(x, 2) = e and
(x, 2)(x, 1) = e for x ∈ X, and we take the quotient of Y ∗ by these relations.

In the category of vector spaces over a field K, the solution of the universal
problem 24 associated with a set X is the free vector space on X, obtained by
taking a set of variables ex indexed by x ∈ X and by considering the K–vector
space E with basis {ex}x∈X . If X is finite with n elements, the free vector space
over X has dimension n and is isomorphic to Kn. In general, the free vector
space is K(X), which it the set of maps X → K with finite support, with the
natural structure of K–vector space and with the natural injection X → K(X)

which maps x ∈ X onto the characteristic function δx of {x} (Kronecker’s
symbol):

δx(y) =

{
1 if y = x,

0 if y 6= x,
for y ∈ X.

In the category of commutative algebras over a field K, the solution of the
universal problem 24 is the ring K[{Tx}x∈X ] of polynomials in a set of variables
indexed by X. One could take the elements of X as variables, and we will
often do so, but if X has already some structure, it may be more convenient
to introduce new letters (variables). For instance, when X = N, it is better
to introduce countably many variables T0, T1, . . . in order to avoid confusion.
Let us recall the construction of the commutative polynomial algebra over a set
X, because the construction of the free algebra over X will be similar, only
commutativity will not be there. Given the set of variables Tx with x ∈ X,
an element in K[{Tx}x∈X ] is a finite linear combination of monomials, where a
monomial is a finite product ∏

x∈X
Tnxx .

Hence, to give a monomial is the same as to give a set n := {nx}x∈X of non–
negative integers, all of which but a finite number are 0. We have seen that the
set of such n is the underlying set of the free commutative monoid N(X) on X.
Hence, the K–vector space underlying the algebra of commutative polynomials
K[{Tx}x∈X ] is the free vector space on N(X): to an element n in this set N(X),
we associate the coefficient cn of the corresponding monomial, and an element
in K[{Tx}x∈X ] can be written in a unique way∑

n∈N(X)

cn
∏
x∈X

Tnxx .

In the category of algebras, the solution of the universal problem 24 will be
denoted by K〈X〉. As a K–vector space, it is the free vector space over the free
monoid X∗; hence, the elements of K〈X〉 are the linear combinations of words
with coefficients in K. The set underlying this space is the set K(X∗) of maps
S : X∗ → K having a finite support; for such a map, we denote by (S|w) the
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image of w ∈ X∗ in K, so that the support is {w ∈ X∗ ; (S|w) 6= 0} ⊂ X∗. We
write also

S =
∑
w∈X∗

(S|w)w.

On K(X∗), define an addition by

(S + T |w) = (S|w) + (T |w) for any w ∈ X∗ (25)

and a multiplication 2 by

(ST |w) =
∑
uv=w

(S|u)(T |v), (26)

where, for each w ∈ X∗, the sum is over the (finite) set of (u, v) in X∗ × X∗
such that uv = w. Further, for λ ∈ K and S ∈ K(X∗), define λS ∈ K(X∗) by

(λS|w) = λ(S|w) for any w ∈ X∗. (27)

With these laws, one checks that the set K(X∗) becomes a K-algebra, solution
of the universal problem 24, which is denoted by K〈X〉 and is called the free
algebra on X.

This is a graded algebra, when elements of X are given weight 1: the weight
of a word x1 · · ·xp is p, and, for p ≥ 0, the set K〈X〉p of S ∈ K〈X〉 for which

(S|w) = 0 if w ∈ X∗ has weight 6= p

is the K–vector subspace whose basis is the set of words of length p. For p = 0,
K〈X〉0 is the set Ke of constant polynomials λe, with λ ∈ K – this is the K-
subspace of dimension 1 spanned by e. For any S ∈ K〈X〉p and T ∈ K〈X〉q,
we have

ST ∈ K〈X〉p+q.

If X is finite with n elements, then, for each p ≥ 0, there are np words of weight
p; hence the dimension of K〈X〉p over K is np, and the Hilbert–Poincaré series
of the graded algebra K〈X〉 is∑

p≥0

tp dimK K〈X〉p =
1

1− nt
·

For n = 1, this algebra K〈X〉 is simply the (commutative) ring of polynomials
K[X] in one variable.

Remark. Any group (resp. vector space, commutative algebra, algebra) is a
quotient of a free group (resp. a free vector space, a free commutative algebra, a
free algebra) by a normal subgroup (resp. a subspace, an ideal, a bilateral ideal).
This is one more reason of the fundamental role of free structures!

2Sometimes called Cauchy product - it is the usual multiplication, in opposition to the
Hadamard product, where (ST |w) = (S|w)(T |w).
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6.2 The free algebra H and its two subalgebras H1 and H0

Our first example of an alphabet was the trivial one with a single letter, the
free monoid on a set with a single element 1 is just N. The next example is
when X = {x0, x1} has two elements; in this case the algebra K〈x0, x1〉 will be
denoted by H. Each word w in X∗ can be written xε1 · · ·xεp , where each εi is
either 0 or 1 and the integer p is the weight of w. The number of i ∈ {1, . . . p}
with εi = 1 is called the length (or the depth) of w.

We will denote by X∗x1 the set of word which end with x1, and by x0X
∗x1

the set of words which start with x0 and end with x1.
Consider a word w in X∗x1. We write it w = xε1 · · ·xεp with εp = 1. Let k

be the number of occurrences of the letter x1 in w. We have p ≥ 1 and k ≥ 1.
We can write w = xs1−1

0 x1x
s2−1
0 x1 · · ·xsk−1

0 x1 by defining s1− 1 as the number
of occurrences of the letter x0 before the first x1 and, for 2 ≤ j ≤ k, by defining
sj − 1 as the number of occurrences of the letter x0 between the (j − 1)-th and
the j–th occurrence of x1. This produces a sequence of non–negative integers
(s1, . . . , sk) ∈ Nk. Such a sequence s = (s1, . . . , sk) of positive integers with
k ≥ 1 is a called composition (the set of compositions is the union over k ≥ 1 of
these k–tuples (s1, . . . , sk)).

For s ≥ 1, define ys = xs−1
0 x1:

y1 = x1, y2 = x0x1, y3 = x2
0x1, y4 = x3

0x1, . . .

and let Y = {y1, y2, y3, . . . }. For s = (s1, . . . , sk) ∈ Nk with sj ≥ 1 (1 ≤ j ≤
k), set ys = ys1 · · · ysk , so that

ys = xs1−1
0 x1 · · ·xsk−1

0 x1.

Lemma 28.
a) The set X∗x1 is the same as the set of ys1 · · · ysk , where (s1, . . . , sk) ranges

over the finite sequences of positive integers with k ≥ 1 and sj ≥ 1 for 1 ≤ j ≤ k.
b) The free monoid Y ∗ on the set Y is {e} ∪X∗x1.
c) The set x0X

∗x1 is the set {ys}, where s is a composition having s1 ≥ 2.

The subalgebra of H spanned by X∗x1 is

H1 = Ke+ Hx1

and Hx1 is a left ideal of H. The algebra H1 is the free algebra K〈Y 〉 on the
set Y . We observe an interesting phenomenon, which does not occur in the
commutative case: the free algebra K〈x0, x1〉 on a set with only two elements
contains as a subalgebra the free algebra K〈y1, y2, . . .〉 on a set with countably
many elements. Notice that, for each n ≥ 1, this last algebra also contains as a
subalgebra the free algebra on a set with n elements, namely K〈y1, y2, . . . , yn〉.
From this point of view, it suffices to deal with only two variables! Any finite
message can be encoded with an alphabet with only two letters. Also, we see
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that a naive definition of a dimension for such spaces, where K〈y1, . . . , yn〉 would
have dimension n, would be misleading.

A word in x0X
∗x1 is called convergent. The reason is that one defines a map

on the convergent words
ζ̂ : x0X

∗x1 → R

by setting ζ̂(ys) = ζ(s). Also the subalgebra of H1 spanned by x0X
∗x1 is

H0 = Ke+ x0Hx1.

One extends the map ζ̂ : x0X
∗x1 → R by K–linearity and obtain a map

ζ̂ : H0 → R such that ζ̂(e) = 1.
On H0 there is a structure of non–commutative algebra, given by the con-

catenation – however, the map ζ̂ has no good property for this structure. The
concatenation of y2 = x1x0 and y3 = x2

0x1 is y2y3 = y(2,3) = x0x1x
2
0x1, while

ζ(2)ζ(3) 6= ζ(2, 3) and ζ(2)ζ(3) 6= ζ(2, 3); indeed according to [1] we have
ζ(2) = 1.644 . . . , ζ(3) = 1.202 . . .

ζ(2)ζ(3) = 1.977 . . . ζ(2, 3) = 0.711 . . . ζ(3, 2) = 0.228 . . .

so
ζ̂(y2)ζ̂(y3) 6= ζ̂(y2y3).

As we have seen in §3, it is expected that ζ(2), ζ(3) and ζ(2, 3) are algebraically
independent.

However, there are other structures of algebras on H0, in particular two com-
mutative algebra structures x (shuffle – see §7.3) – and ? (stuffle or harmonic

law – see §8.1 –) for which ζ̂ will become an algebra homomorphism: for w and
w′ in H0,

ζ̂(wxw′) = ζ(w)ζ(w′) and ζ̂(w ? w′) = ζ(w)ζ(w′).

7 MZV as integrals and the Shuffle Product

7.1 Zeta values as integrals

We first check

ζ(2) =

∫
1>t1>t2>0

dt1
t1
· dt2

1− t2
· (29)

For t2 in the interval 0 < t2 < 1, we expand 1/(1− t2) in power series; next we
integrate over the interval [0, t1], where t1 is in the interval 0 < t1 < 1, so that
the integration terms by terms is licit:

1

1− t2
=
∑
n≥1

tn−1
2 ,

∫ t1

0

dt2
1− t2

=
∑
n≥1

∫ t1

0

tn−1
2 dt2 =

∑
n≥1

tn1
n
·
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Hence, the integral in the right hand side of (29) is∫ 1

0

dt1
t1

∫ t1

0

dt2
1− t2

=
∑
n≥1

1

n

∫ 1

0

tn−1
1 dt1 =

∑
n≥1

1

n2
= ζ(2).

In the same way, one checks

ζ(3) =

∫
1>t1>t2t3>0

dt1
t1
· dt2
t2
· dt3

1− t3
·

We continue by induction and give an integral formula for ζ(s) when s ≥ 2 is an
integer, and, more generally, for ζ(s), when s = (s1, . . . , sk) is a composition.
To state the result, it will be convenient to introduce a definition: we set

ω0(t) =
dt

t
and ω1(t) =

dt

1− t
·

For p ≥ 1 and ε1, . . . , εp in {0, 1}, we define

ωε1 · · ·ωεp = ωε1(t1) · · ·ωεp(tp).

We will integrate this differential form on the simplex

∆p = {(t1, . . . , tp) ∈ Rp ; 1 > t1 > · · · > tp > 0}

The two previous formulae are

ζ(2) =

∫
∆2

ω0ω1 and ζ(3) =

∫
∆3

ω2
0ω1.

The integral formula for zeta values that follows by induction is

ζ(s) =

∫
∆s

ωs−1
0 ω1 for s ≥ 2.

We extend this formula to multiple zeta values as follows. Firstly, for s ≥ 1,
we define ωs = ωs−1

0 ω1, which matches the previous definition when s = 1 and
produces, for s ≥ 2,

ζ(s) =

∫
∆s

ωs.

Next, for s = (s1, . . . , sk), we define ωs = ωs1 · · ·ωsk .

Proposition 30. Assume s1 ≥ 2. Let p = s1 + · · ·+ sk. Then

ζ(s) = ζ̂(ys) =

∫
∆p

ωs.
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The proof is by induction on p. For this induction argument, it is convenient
to introduce the multiple polylogarithm functions in one variable:

Lis(z) =
∑

n1>n2>···>nk≥1

zn1

ns11 · · ·n
sk
k

,

for s = (s1, . . . , sk) with sj ≥ 1 and for z ∈ C with |z| < 1. Notice that Li(z) is
defined also at z = 1 when s1 ≥ 2, where it takes the value Lis(1) = ζ(s). One
checks, by induction on the weight p, for 0 < z < 1,

Lis(z) =

∫
∆p(z)

ωs,

where ∆p(z) is the simplex

∆p(z) = {(t1, . . . , tp) ∈ Rp ; z > t1 > · · · > tp > 0}.

We now consider products of such integrals. Using (29), write ζ(2)2 as
product of two integrals

ζ(2)2 =

∫
1>t1>t2>0
1>u1>u2>0

dt1
t1
· dt2

1− t2
· du1

u1
· du2

1− u2
·

We decompose the domain

1 > t1 > t2 > 0, 1 > u1 > u2 > 0

into six disjoint domains (and further subsets of zero dimension) obtained by
“shuffling” (t1, t2) with (u1, u2):

1 > t1 > t2 > u1 > u2 > 0, 1 > t1 > u1 > t2 > u2 > 0,

1 > u1 > t1 > t2 > u2 > 0, 1 > t1 > u1 > u2 > t2 > 0,

1 > u1 > t1 > u2 > t2 > 0, 1 > u1 > u2 > t1 > t2 > 0,

Each of the six simplices have either t1 or u1 as the largest variable (corre-
sponding to ω0(t) = 1/t) and u2 or t2 as the lowest (corresponding to ω1(t) =
dt/(1 − t)). The integrals of ω2

0ω
2
1 produce ζ(3, 1), there are 4 of them, the

integrals of ω0ω1ω0ω1 produce ζ(2, 2), there are 2 of them. From Proposition
30, we deduce

ζ(2)2 = 4ζ(3, 1) + 2ζ(2, 2).

This is a typical example of a “shuffle relation”:

ω0ω1xω0ω1 = 4ω2
0ω

2
1 + 2ω0ω1ω0ω1.
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7.2 Chen’s integrals

Chen iterated integrals are defined by induction as follows. Let ϕ1, . . . , ϕp be
holomorphic differential forms on a simply connected open subset D of the
complex plane and let x and y be two elements in D. Define, as usual,

∫ y
x
ϕ1 as

the value, at y, of the primitive of ϕ1 which vanishes at x. Next, by induction
on p, define ∫ y

x

ϕ1 · · ·ϕp =

∫ y

x

ϕ1(t)

∫ t

x

ϕ2 · · ·ϕp.

By means of a change of variables

t 7−→ x+ t(y − x),

one can assume that x = 0, y = 1 and that D contains the real segment [0, 1].
In this case the integral is∫ 1

0

ϕ1 · · ·ϕp =

∫
∆p

ϕ1(t1)ϕ2(t2) · · ·ϕp(tp),

where the domain of integration ∆p is the simplex of Rp defined by

∆p =
{

(t1, . . . , tp) ∈ Rp , 1 > t1 > · · · > tp > 0
}
.

In our applications, the open set D will be the open disk |z − (1/2)| < 1/2, the
differential forms will be either dt/t or dt/(1 − t); so one needs to take care of
the fact that the limit points 0 and 1 of the integrals are not in D. One way to
overcome this difficulty is by integrating from ε1 to 1 − ε2 with ε1 > 0, ε2 > 0
and ε1 + ε2 < 1, and by letting ε1 and ε2 tend to 0. Here, we just ignore these
convergence questions by restricting our discussion to the convergent words and
to the algebra H0 they generate.

The product of two integrals is a Chen integral, and more generally the
product of two Chen integrals is a Chen integral. This is where the shuffle
comes in. We consider a special case: the product of the two integrals∫

1>t1>t2>0

ϕ1(t1)ϕ2(t2)

∫
1>t3>0

ϕ3(t3)

is the sum of three integrals∫
1>t1>t2>t3>0

ϕ1(t1)ϕ2(t2)ϕ3(t3),

∫
1>t1>t3>t2>0

ϕ1(t1)ϕ3(t3)ϕ2(t2)

and ∫
1>t3>t1>t2>0

ϕ3(t3)ϕ1(t1)ϕ2(t2).
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Consider, for instance, the third integral: we write it as∫
1>tτ(1)>tτ(2)>tτ(3)>0

ϕτ(1)(tτ(1)) ϕτ(2)(tτ(2)) ϕτ(3)(tτ(3)).

The permutation τ of {1, 2, 3} is τ(1) = 3, τ(2) = 1, τ(3) = 2, and it is one of
the three permutations of S3 which is of the form σ−1, where σ(1) < σ(2).

The shuffle x will be defined in §7.3 so that the next lemma holds:

Lemma 31. Let ϕ1, . . . , ϕp+q be differential forms with p ≥ 0 and q ≥ 0. Then∫ 1

0

ϕ1 · · ·ϕp
∫ 1

0

ϕp+1 · · ·ϕp+q =

∫ 1

0

ϕ1 · · ·ϕpxϕp+1 · · ·ϕp+q.

Proof. Define ∆′p,q as the subset of ∆p×∆q of those elements (z1, . . . , zp+q) for
which we have zi 6= zj for 1 ≤ i ≤ p < j ≤ p+ q. Hence,∫ 1

0

ϕ1 · · ·ϕp
∫ 1

0

ϕp+1 · · ·ϕp+q =

∫
∆p×∆q

ϕ1 · · ·ϕp+q =

∫
∆′p,q

ϕ1 · · ·ϕp+q,

where ∆′p,q is the disjoint union of the subsets ∆σ
p,q defined by

∆σ
p,q =

{
(t1, . . . , tp+q) ; 1 > tσ−1(1) > · · · > tσ−1(p+q) > 0

}
,

for σ running over the set Sp,q of permutations of {1, . . . , p+ q} satisfying

σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q).

Hence, ∫
∆′p,q

ϕ1 · · ·ϕp+q =
∑

σ∈Sp,q

∫ 1

0

ϕσ−1(1) · · ·ϕσ−1(p+q).

Lemma 31 follows, provided that we define the shuffle x so that∑
σ∈Sp,q

ϕσ−1(1) · · ·ϕσ−1(p+q) = ϕ1 · · ·ϕpxϕp+1 · · ·ϕp+q.

7.3 The shuffle x and the shuffle Algebra Hx

Let X be a set and K a field. On K〈X〉 we define the shuffle product as follows.
On the words, the map x : X∗ ×X∗ → H is defined by the formula

(x1 · · ·xp)x(xp+1 · · ·xp+q) =
∑

σ∈Sp,q

xσ−1(1) · · ·xσ−1(p+q),

where Sp,q denotes the set of permutation σ on {1, . . . , p+ q} satisfying

σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q).
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This set Sp,q has (p+ q)!/p!q! elements; if (p, q) 6= (0, 0), it is the disjoint union
of two subsets, the first one with (p−1+q)!/(p−1)!q! elements consists of those
σ for which σ(1) = 1, and the second one with (p+ q − 1)!/p!(q − 1)! elements
consists of those σ for which σ(p+ 1) = 1.

Write yi = xσ−1(i), so that xj = yσ(j) for 1 ≤ i ≤ p + q and 1 ≤ j ≤
p + q. The letters x1, . . . , xp+q and y1, . . . , yp+q are the same, only the order
may differ. However, x1, . . . , xp (which is the same as yσ(1), . . . , yσ(p)) occur
in this order in y1, . . . , yp+q, and so do xp+1, . . . , xp+q (which is the same as
yσ(p+1), . . . , yσ(p+q)).

Accordingly, the previous definition of x : X∗×X∗ → H is equivalent to the
following inductive one:

exw = wxe = w for any w ∈ X∗,

and
(xu)x(yv) = x

(
ux(yv)

)
+ y
(
(xu)xv

)
for x and y in X (letters), u and v in X∗ (words).

Examples. For k and ` non-negative integers and x ∈ X,

xkxx` =
(k + `)!

k!`!
xk+`.

From

S2,2 =
{

(1) ; (2, 3) ; (2, 4, 3) ; (1, 2, 3) ; (1, 2, 4, 3) ; (1, 3)(2, 4)
}

one deduces

x1x2xx3x4 = x1x2x3x4+x1x3x2x4+x1x3x4x2+x3x1x2x4+x3x1x4x2+x3x4x1x2,

hence,
x0x1xx0x1 = 2x0x1x0x1 + 4x2

0x
2
1.

In the same way the relation

x0x1xx2
0x1 = x0x1x

2
0x1 + 3x2

0x1x0x1 + 6x3
0x

2
1

is easily checked by computing more generally x0x1xx2x3x4 as a sum of 6!/(2!3!) =
10 terms.

Notice that the shuffle product of two words is most often not a word but
a polynomial in K〈X〉. We extend the definition of x : X∗ × X∗ → H to
x : H× H→ H by distributivity with respect to addition:∑

u∈X∗
(S|u)u x

∑
v∈X∗

(T |v)v =
∑
u∈X∗

∑
v∈X∗

(S|u)(T |v)uxv.

One checks that the shuffle x endows K〈X〉 with a structure of commutative
K-algebra.
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From now on we consider only the special case X = {x0, x1}. The set
H = K〈X〉 with the shuffle law x is a commutative algebra which will be denoted
by Hx. Since H1 as well as H0 are stable under x, they define subalgebras

H0
x ⊂ H1

x ⊂ Hx.

Since, for s = (s1, . . . , sk) and s′ = (s′1, . . . , s
′
k), with sj ≥ 1, s′j ≥ 1, s′1 ≥ 2 and

s1 ≥ 2, we have
ζ̂(ys)ζ̂(ys′) = ζ̂(ysxys′),

we deduce:

Theorem 32. The map
ζ̂ : H0

x −→ R

is a homomorphism of commutative algebras.

8 Product of series and the harmonic algebra

8.1 The stuffle ? and the harmonic algebra H?

There is another shuffle-like law on H, called the harmonic product by M. Hoff-
man and stuffle by other authors, denoted with a star, which also gives rise to
subalgebras

H0
? ⊂ H1

? ⊂ H?.

The starting point is the observation that the product of two multizeta series is
a linear combination of multizeta series. Indeed, the cartesian product{

(n1, . . . , nk) ; n1 > · · · > nk} ×
{

(n′1, . . . , n
′
k′) ; n′1 > · · · > n′k′}

breaks into a disjoint union of subsets of the form{
(n′′1 , . . . , n

′′
k′′) ; n′′1 > · · · > n′′k′′}

with each k′′ satisfying max{k, k′} ≤ k′′ ≤ k + k′. The simplest example is
ζ(2)2 = 2ζ(2, 2) + ζ(4), a special case of Nielsen Reflexion Formula already seen
in §1.2.

We write this as follows:

ys ? ys′ =
∑
s′′

ys′′ , (33)

where s′′ runs over the tuples (s′′1 , . . . , s
′′
k′′) obtained from s = (s1, . . . , sk)

and s′ = (s′1, . . . , s
′
k′) by inserting, in all possible ways, some 0 in the string

(s1, . . . , sk) as well as in the string (s′1, . . . , s
′
k′) (including in front and at the

end), so that the new strings have the same length k′′, with max{k, k′} ≤ k′′ ≤
k + k′, and by adding the two sequences term by term. Here is an example:

s s1 s2 0 s3 s4 · · · 0
s′ 0 s′1 s′2 0 s′3 · · · s′k′
s′′ s1 s2 + s′1 s′2 s3 s4 + s′3 · · · s′k′ .
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Notice that the weight of the last string (sum of the s′′j ) is the sum of the weight
of s and the weight of s′.

More precisely, the law ? on H is defined as follows. First on X∗, the map
? : X∗ ×X∗ → H is defined by induction, starting from

xn0 ? w = w ? xn0 = wxn0

for any w ∈ X∗ and any n ≥ 0 (for n = 0, it means e ? w = w ? e = w for all
w ∈ X∗), and then

(ysu) ? (ytv) = ys
(
u ? (ytv)

)
+ yt

(
(ysu) ? v

)
+ ys+t(u ? v)

for u and v in X∗, s and t positive integers.
We will not use so many parentheses later: in a formula where there are

both concatenation products and either shuffle of star products, we agree that
concatenation is always performed first, unless parentheses impose another pri-
ority:

ysu ? ytv = ys(u ? ytv) + yt(ysu ? v) + ys+t(u ? v)

Again, this law is extended to all of H by distributivity with respect to addition:∑
u∈X∗

(S|u)u ?
∑
v∈X∗

(T |v)v =
∑
u∈X∗

∑
v∈X∗

(S|u)(T |v)u ? v.

Remark. From the definition (by induction on the length of uv) one deduces

(uxm0 ) ? (vxn0 ) = (u ? v)xm+n
0

for m ≥ 0, u and v in X∗.

Example.
y?3s = ys ? ys ? ys = 6y3

s + 3ysy2s + 3y2sy2 + y3s.

The additive groupK〈X〉 endowed with the harmonic law ? is a commutative
algebra which will be denoted by H?. Since H1 as well as H0 are stable under
?, they define subalgebras

H0
? ⊂ H1

? ⊂ H?.

Since, for s = (s1, . . . , sk) and s′ = (s′1, . . . , s
′
k), with sj ≥ 1, s′j ≥ 1, s′1 ≥ 2 and

s1 ≥ 2, we have
ζ̂(ys)ζ̂(ys′) = ζ̂(ys ? ys′),

we deduce:

Theorem 34. The map
ζ̂ : H0

? −→ R

is a homomorphism of commutative algebras.
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8.2 Regularized double shuffle relations

As a consequence of theorems 32 and 34, the kernel of ζ̂ contains all elements
wxw′ − w ? w′ for w and w′ in H0: indeed

ζ̂(wxw′) = ζ̂(w)ζ̂(w′) = ζ̂(w ? w′), hence, ζ̂(wxw′ − w ? w′) = 0.

However, the relation ζ(2, 1) = ζ(3) (due to Euler) is not a consequence of these
relations, but one may derive it in a formal way as follows.

Consider

y1xy2 = x1xx0x1 = 2x2
0x1 + x1x0x1 = 2y2y1 + y1y2

and
y1 ? y2 = y1y2 + y2y1 + y3.

They are not in H0, but their difference

y1xy2 − y1 ? y2 = y2y1 − y3

is in H0, and Euler’s relation says that this difference is in the kernel of ζ̂. This
is the simplest example of the so–called Regularized double shuffle relations.

9 The structure of the shuffle and harmonic al-
gebras

The shuffle and harmonic algebras are polynomial algebras in the Lyndon words.
Consider the lexicographic order on X∗ with x0 < x1 and denote by L the

set of Lyndon words (see §3). We have seen that x0 is the only Lyndon word
which is not in H1

x, while x0 and x1 are the only Lyndon words which are not
in H0

x.
For instance, there are 1 + 2 + 22 + 23 = 15 words of weight ≤ 3 (where

x0 and x1 have weight 1). Since L1 + L2 + L3 = 5, among them 5 are Lyndon
words:

x0 < x2
0x1 < x0x1 < x0x

2
1 < x1.

Accordingly, we introduce 5 variables

T10, T21, T11, T12, T01,

where Tij corresponds to xi0x
j
1.

9.1 Shuffle

The structure of the commutative algebra Hx is given by Radford Theorem.

Theorem 35. The three shuffle algebras are (commutative) polynomial algebras

Hx = K[L]x, H1
x = K

[
L \ {x0}

]
x and H0

x = K
[
L \ {x0, x1}

]
x.
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We write the 10 non-Lyndon words of weight ≤ 3 as polynomials in these
Lyndon words as follows:

e = e,

x2
0 = 1

2x0xx0 = 1
2T

2
10,

x3
0 = 1

3x0xx0xx0 = 1
3T

3
10,

x0x1x0 = x0xx0x1 − 2x2
0x1 = T10T11 − 2T21,

x1x0 = x0xx1 − x0x1 = T10T01 − T11,

x1x
2
0 = 1

2x0xx0xx1 − x0xx0x1 + x2
0x1 = 1

2T
2
10T01 − T10T11 + T21,

x1x0x1 = x0x1xx1 − 2x0x
2
1 = T11T01 − 2T12,

x2
1 = 1

2x1xx1 = 1
2T

2
01,

x2
1x0 = 1

2x0xx1xx1 − x0x1xx1 + x0x
2
1 = 1

2T10T
2
01 − T11T01 + T12,

x3
1 = 1

3x1xx1xx1 = 1
3T

3
01.

Corollary 36. We have

Hx = H1
x[x0]x = H0

x[x0, x1]x and H1
x = H0

x[x1]x.

9.2 Harmonic algebra

Hoffman’s Theorem gives the structure of the harmonic algebra H?:

Theorem 37. The harmonic algebras are polynomial algebras on Lyndon words:

H? = K[L]?, H0
? = K

[
L \ {x0, x1}

]
?

and H1
? = K

[
L \ {x0, x1}

]
?
.

For instance, the 10 non-Lyndon words of weight ≤ 3 are polynomials in the
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5 Lyndon words as follows:

e = e,

x2
0 = x0 ? x0 = T 2

10,

x3
0 = x0 ? x0 ? x0 = T 3

10,

x0x1x0 = x0 ? x0x1 = T10T11,

x1x0 = x0 ? x1 = T10T01,

x1x
2
0 = x0 ? x0 ? x1 = T 2

10T01,

x1x0x1 = x0x1 ? x1 − x2
0x1 − x0x

2
1 = T11T01 − T21 − T12,

x2
1 = 1

2x1 ? x1 − 1
2x0x1 = 1

2T
2
01 − 1

2T11,

x2
1x0 = 1

2x0 ? x1 ? x1 − 1
2x0 ? x0x1 = 1

2T10T
2
01 − 1

2T10T11,

x3
1 = 1

6x1 ? x1 ? x1 − 1
2x0x1 ? x1 + 1

3x
2
0x1 = 1

6T
3
01 − 1

2T11T01 + 1
3T21.

In the same way as Corollary 36 follows from Theorem 35, we deduce from
Theorem 37:

Corollary 38. We have

H? = H1
?[x0]? = H0

?[x0, x1]? and H1
? = H0

?[x1]?.

Remark. Consider the diagram

Hx −→ K[L]xy f

y g

H? −→ K[L]?

The horizontal maps are just the identitication of Hx with K[L]x and of H?
with K[L]?. The vertical map f is the identity map on H, since the algebras
Hx and H? have the same underlying set H (only the law differs). But the map
g which makes the diagram commute is not a morphism of algebras: it maps
each Lyndon word onto itself; but consider, for instance, the image of the word
x2

0. As a polynomial in K[L]x, we have

x2
0 =

1

2
x0xx0 =

1

2
xx2

0 ,

but as a polynomial in K[L]?, we have

x2
0 = x0 ? x0 = x?20 ,

hence, g(T 2
10) = 2T 2

10.
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10 Regularized double shuffle relations

10.1 Hoffman standard relations

The relation ζ(2, 1) = ζ(3) is the easiest example of a whole class of linear
relations among MZV.

For any word w ∈ X∗, each of x1 ? x0wx1 and x1xx0wx1 is the sum of
x1x0wx1 with other words in x0X

∗x1 (i.e. convergent words):

x1xw − x1w ∈ H0, x1 ? w − x1w ∈ H0.

Hence,
x1xw − x1 ? w ∈ H0.

It turns out that these elements x1xw− x1 ?w are in the kernel of ζ̂ : H0 → R.

Proposition 39. For w ∈ H0,

ζ̂(x1 ? w − x1xw) = 0.

Since x1xe = x1 ? e = e, these relations can be written in an equivalent way

ζ̂(x1 ? ys − x1xys) = 0 whenever s1 ≥ 2.

They are called Hoffman standard relations between multiple zeta values.

Example. Writing

x1 ? (xs−1
0 x1) = y1 ? ys = y1ys + ysy1 + ys+1

and

x1x(xs−1
0 x1) = x1x

s−1
0 x1 + x0(x1xxs−2

0 x1) =

s∑
ν=1

yνys+1−ν + ysy1,

we deduce

x1 ? (xs−1
0 x1)− x1x(xs−1

0 x1) = xs0x1 −
s∑

ν=1

xν−1
0 x1x

s−ν
0 x1,

hence,

ζ(p) =
∑
s+s′=p
s≥2, s′≥1

ζ(s, s′).

Remark. As we have seen, the word

x1 ? x1 − x1xx1 = x0x1

is convergent, but
ζ̂(x1 ? x1 − x1xx1) = ζ(2) 6= 0.

38



Updated June 16, 2015 MZV IMSc 2011

On the other hand, a word like

x2
1 ? x0x1 − x2

1xx0x1 = x1x
2
0x1 + x2

0x
2
1 − x1x0x

2
1 − 2x0x

3
1

is not convergent; also the “convergent part” of this word in the concatenation
algebra H, namely x2

0x
2
1 − 2x0x

3
1 = y3y1 − 2y2y

2
1, does not belong to the kernel

of ζ̂:

ζ(3, 1) =
1

4
ζ(4), ζ(2, 1, 1) = ζ(4).

We will see (theorem 42) that the convergent part in the shuffle algebra Hx of
a word of the form wxw0 − w ? w0, for w ∈ H1 and w0 ∈ H0, is always in the
kernel of ζ̂.

Hoffman’s operator d1 : H→ H is defined by

δ(w) = x1 ? w − x1xw.

For w ∈ H0, we have d1(w) ∈ H0 and the Hoffman standard relations (39) mean

that it satisfies d1(H0) ⊂ ker ζ̂.

10.2 Ihara–Kaneko

There are further similar linear relations between MZV arising from regularized
double shuffle relations

Recall Corollaries 36 and 38 of Radford and Hoffman concerning the struc-
tures of the algebras Hx and H? respectively (we take here for ground field K
the field R of real numbers). From

H1
x = H0

x[x1]x and H1
? = H0

?[x1]?

we deduce that there are two uniquely determined algebra morphisms

Ẑx : H1
? −→ R[X] and Ẑ? : H1

x −→ R[T ]

which extend ζ̂ and map x1 to X and T respectively: for ai ∈ H0,

Ẑx

(∑
i

aixxxi1

)
=
∑
i

ζ̂(ai)X
i and Ẑ?

(∑
i

ai ? x
?i
1

)
=
∑
i

ζ̂(ai)T
i.

Proposition 40. There is a R-linear isomorphism % : R[T ] → R[X] which
makes commutative the following diagram:

R[X]

Ẑx ↗

H1 ↑ %

Ẑ?
↘

R[T ]

39



Updated June 16, 2015 MZV IMSc 2011

The kernel of ζ̂ is a subset of H0 which is an ideal of the algebra H0
x and

also of the algebra H0
?. One can deduce from the existence of a bijective map

% as in proposition 40 that ker ζ̂ generates the same ideal in both algebras H1
x

and H1
?.

Explicit formulae for % and its inverse %−1 are given by means of the gener-
ating series ∑

`≥0

%(T `)
t`

`!
= exp

(
Xt+

∞∑
n=2

(−1)n
ζ(n)

n
tn

)
(41)

and ∑
`≥0

%−1(X`)
t`

`!
= exp

(
Tt−

∞∑
n=2

(−1)n
ζ(n)

n
tn

)
.

For instance,

%(T 0) = 1, %(T ) = X, %(T 2) = X2 + ζ(2), %(T 3) = X3 + 3ζ(2)X − 2ζ(3),

%(T 4) = X4 + 6ζ(2)X2 − 8ζ(3)X +
27

2
ζ(4).

Compare the right hand side in (41) with the formula giving the expansion of
the logarithm of Euler Gamma function:

Γ(1 + t) = exp

(
−γt+

∞∑
n=2

(−1)n
ζ(n)

n
tn

)
.

The map % may be seen as the differential operator of infinite order

exp

( ∞∑
n=2

(−1)n
ζ(n)

n

(
∂

∂T

)n)

(consider the image of etT ).

10.3 Shuffle regularization of the divergent multiple zeta
values, following Ihara and Kaneko

Recall that Hx = H0[x0, x1]x. Denote by regx the Q-linear map H→ H0 which
maps w ∈ H onto its constant term, when w is written as a polynomial in
x0, x1 in the shuffle algebra H0[x0, x1]x. Then regx is a morphism of algebras
Hx → H0

x. Clearly, for w ∈ H0, we have

regx(w) = w.

Here are the regularized double shuffle relations of Ihara and Kaneko.

Theorem 42. For w ∈ H1 and w0 ∈ H0,

regx(wxw0 − w ? w0) ∈ ker ζ̂.
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Define the shuffle regularized extension of ζ̂ : H0 → R as the map ζ̂x : H→ R
defined by

ζ̂x = ζ̂ ◦ regx.

Hence, ζ̂x is nothing else than the composite of Ẑx with the specialization map
R[X]→ R which sends X to 0.

With this definition of ζ̂x, Theorem 42 can be written

ζ̂x(wxw0 − w ? w0) = 0

for any w ∈ H1 and w0 ∈ H0.
Define the map Dx : H −→ H by Dx(e) = 0 and

Dx(xε1xε2 · · ·xεp) =

{
0 if ε1 = 0,

xε2 · · ·xεp if ε1 = 1.

For instance, for m ≥ 0 and for w0 ∈ H0,

Di
x(xm1 w0) =

{
xm−i1 w0 for 0 ≤ i ≤ m,

0 for i > m.

One checks that Dx is a derivation on the algebra Hx. Its kernel contains xm0
and H0

x. There is a Taylor expansion for the elements of H1
x:

u =
∑
i≥0

1

i!
regx(Di

xu)xyxi1 , hence, Ẑx(u) =
∑
i≥0

1

i!
regx(Di

x(u))Xi,

and

regx(u) =
∑
i≥0

(−1)i

i!
yxi1 xDi

xu.

For w0 ∈ H0 with w0 = x0w (with w ∈ H1) and for m ≥ 0, we have

regx(ym1 w0) = (−1)mx0(wxym1 ).

10.4 Harmonic regularization of the divergent multiple
zeta values

There is also a harmonic regularized extension of ζ̂ by means of the star product.
Recall that, according to Hoffman’s Corollary 38, H? = H0

?[x0, x1]?. Denote by
reg? the Q-linear map H → H0 which maps w ∈ H onto its constant term,
when w is written as a polynomial in x0, x1 in the harmonic algebra H0

?[x0, x1]?.
Then, reg? is a morphism of algebras H? → H0

?. Clearly, for w ∈ H0, we have

reg?(w) = w.
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The map D? : H1 −→ H1 defined by D?(e) = 0 and

D?(ys1ys2 · · · ysk) =

{
0 if s1 = 1,

ys2 · · · ysk if s1 ≥ 2,

is a derivation on the algebra H1
? with kernel H0

?; there is a Taylor expansion for
the elements of H1

?:

u =
∑
i≥0

1

i!
y?i1 ? reg?(D

i
?u), hence, Ẑ?(u) =

∑
i≥0

1

i!
reg?(D

i
?u)T i,

and

reg?(u) =
∑
i≥0

(−1)i

i!
y?i1 ? (Di

?u).

For w0 ∈ H0 and for m ≥ 0, we have

reg?(y
m
1 w0) =

m∑
i=0

(−1)i

i!
(ym−i1 w0) ? yi1.

11 The Zagier–Broadhurst formula

Theorem 43. For any n ≥ 1,

ζ
(
{3, 1}n

)
=

1

22n
ζ
(
{4}n

)
.

This formula was originally conjectured by D. Zagier and first proved by D.
Broadhurst.

The right hand side is known to be

1

2n+ 1
ζ
(
{2}2n

)
= 2 · π4n

(4n+ 2)!
·

These relations can be written

ζ̂(yn3,1
)

=
1

22n
ζ̂(yn4 ) =

1

2n+ 1
ζ̂(y2n

2 ) = 2 · π4n

(4n+ 2)!
·

11.1 Rational power series

We will use power series without formal justification; the necessary bases for
that will be given in § 11.4 below.

We introduce a new map, denoted again with a star ? in the exponent3,
defined on the set of series S in Ĥ which satisfy (S|e) = 0, with values in Ĥ, by

S? =
∑
n≥0

Sn = e+ S + S2 + · · · (44)

3 There should be no confusion with the notation X∗ for the set of words, nor with the
star in the exponent for the dual, nor with the harmonic product ? of §8.
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The fact that the right hand side of (44) is well defined is a consequence of

the assumption (S|e) = 0. Notice that S? is the unique solution in Ĥ to the
equation

(1− S)S? = e,

and it is also the unique solution to the equation

S?(1− S) = e.

A rational series is a series in Ĥ which is obtained by starting with a finite
number of letters (this is a restriction only in case where X is infinite) and
using only a finite number of rational operations, namely addition (25), product
(26), multiplication (27) by an element in K and the star (44). The set of
rational series over K is a field RatK(X).

For instance, for x ∈ X, the series

e+ x2 + x4 + · · ·+ x2n + · · · = x?(−x)?

is rational, and, for m ≥ 1, so is the series∑
p≥0

ϕm(p)xp = (mx)?,

when ϕm(p) = mp. Notice that ϕm(p) is also the number of words of weight p
on the alphabet with m letters. Series like∑

p≥0

xp/p,
∑
p≥0

xp/p!,
∑
p≥0

x2p

are not rational: if X has a single element, say x, one can prove that rational
series can be identified with elements in K(x) with no poles at x = 0.

For a series S without constant term, i.e. such that (S|e) = 0, one defines

exp(S) =

∞∑
n=0

Sn

n!
·

It is easy to check that if T satisfies (T |e) = 0, then the series

S =

∞∑
n=1

Tn

n

is well defined and has
exp(S) = T ?.

11.2 Syntaxic identities, following Hoang Ngoc Minh and
Petitot

Here, we assume that the next syntaxic identity (due to Minh and Petitot) holds.
We will prove it in §11.3. The star has been defined in (44) and we use rational
series which belong to the algebra of power series considered in §11.4.2.
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Lemma 45. The following identity holds:

(x0x1)?x(−x0x1)? = (−4x2
0x

2
1)?.

Taking this identity for granted, we complete the proof of Theorem 43.

Proof of Theorem 43. We will introduce generating series; we work in the ring
R[[t]] of formal power series, where t is a variable. The integration will be
according to Chen integrals with respect to ω0 and ω1 (not with respect to t!).

Consider the left hand side of the formula of Lemma 45. Integrating between
0 and 1, we deduce, for k ≥ 0,∫ 1

0

(ω0ω1)k = ζ̂(yk2 ) = ζ
(
{2}k

)
,

∫ 1

0

(ω2
0ω

2
1)k = ζ̂((y3y1)k) = ζ

(
{3, 1}k

)
and ∫ 1

0

(ω3
0ω1)k = ζ̂(yk4 ) = ζ

(
{4}k

)
.

We replace x0 by tω0, x1 by tω1. We use Proposition 7∏
n≥1

(
1 +

t

ns

)
=
∑
k≥0

ζ
(
{s}k

)
tk =

∑
k≥0

ζ̂
(
(ys)

k
)
tk

with s = 2 and s = 4. Replacing t by t2, −t2 and −t4 respectively, we deduce

∞∑
k=0

t2kζ
(
{2}k

)
=
∏
n≥1

(
1 +

t2

n2

)
,

∞∑
k=0

(−t2)kζ
(
{2}k

)
=
∏
n≥1

(
1− t2

n2

)
and

∞∑
k=0

(−t4)kζ
(
{4}k

)
=
∏
n≥1

(
1− t4

n4

)
.

On the other hand, if we replace x0 by tω0 and x1 by tω1 in the left hand side
of the formula in Lemma 45, we get( ∞∑

k=0

t2k(ω0ω1)k

)
x

( ∞∑
k=0

(−t2)k(ω0ω1)k

)
=

∞∑
k=0

(−4t4)k(ω3
0ω1)k.

Thanks to the compatibility of the shuffle product with Chen integrals (Lemma
31), one deduces(∫ 1

0

∞∑
k=0

t2k(ω0ω1)k

)(∫ 1

0

∞∑
k=0

(−t2)k(ω0ω1)k

)
=

∫ 1

0

∞∑
k=0

(−4t4)k(ω2
0ω

2
1)k.

Hence, Theorem 43 follows from∏
n≥1

(
1 +

t2

n2

)∏
n≥1

(
1− t2

n2

)
=
∏
n≥1

(
1− t4

n4

)
.
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In §11.4.3, we will use the same arguments to prove another syntaxic identity,
where the star in the exponent is the rational map introduced in §11.1, while
the operator ? is the harmonic product of §8.

Lemma 46. The following identity holds:

y?2 ? (−y2)? = (−y4)?.

11.3 Shuffle product and automata

There is a description of the shuffle product in terms of automata due to
Schutzenberger. Here is a sketch of proof of Lemma 45.

Sketch of proof of Lemma 45. To a series S?, one associates an automaton,
with the following property: the sum of paths going out from the entry ver-
tex is S. As an example the series associated to

⇐=

=⇒
1

x1←−−−−
−−−−→
x0

2 (47)

is
S1 = e+ x0x1 + (x0x1)2 + · · ·+ (x0x1)n + · · · = (x0x1)?

and similarly, the series associated to

⇐=

=⇒
A

x1←−−−−
−−−−→
−x0

B (48)

is
SA = e− x0x1 + (x0x1)2 + · · ·+ (−x0x1)n + · · · = (−x0x1)?.

The cartesian product of these two automata is the following:

⇐=

=⇒
1A

x1←−−−−
−−−−→
x0

2A

−x0

y x x1 −x0

y x x1

1B
x1←−−−−

−−−−→
x0

2B

(49)

Let S1A be the series associated with this automaton (49). One computes it by
solving a system of linear (noncommutative) equations as follows. Define also
S1B , S2A and S2B as the series associated with the paths going out from the
corresponding vertex. Then

S1A = e− x0S1B + x0S2A,

S1B = x1S1A + x0S2B ,

S2A = x1S1A − x0S2B ,

S2B = x1S1B + x1S2A.
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The rule is as follows: if Σ is the sum associated with a vertex (also denoted by
Σ) with oriented edges ξi : Σ→ Σi (1 ≤ i ≤ m), then

Σ = x1Σ1 + · · ·+ xmΣm,

and xiΣi is replaced by e for the entry vertex.
In the present situation, one deduces

S1A = e− x0(S1B − S2A), S1B − S2A = −2x0S2B ,

S2B = x1(S1B + S2A), S1B + S2A = 2x1S1A

and therefore,
S1A = e+ 4x2

0x
2
1S1A,

which completes the proof of Lemma 45, since the series associated with the
automaton (49) is the shuffle product of the series associated with the automata
(47) and (48).

A proof that the cartesian product of two automata recognizes the shuffle of
the two languages which are recognized by each factor can be found in [11], pp.
19–20.

11.4 Formal power series, rational series, symmetric and
quasi-symmetric series

11.4.1 Dual

Let K be a field and X a set. Denote by EX the free vector space on X (see
§6.1). By definition of EX as a solution of the universal problem 24, there is
a one to one map j between the set of linear maps EX → K (which is the
dual of the vector space EX which we denote by E∗) and the set KX of maps
X → K. Notice that there is no restriction on the support of these maps (such
a condition on the support makes a difference only when X is infinite: for a
finite set X, we have KX = K(X)). There is a natural structure of K–vector
space on the dual E∗ and there is also a natural structure of K–vector space on
KX , and the bijective map j is an isomorphism of K–vector spaces.

Consider next the free commutative algebra K[X] on X (see §6.1). By
definition of K[X] as a solution of universal problem 24, there is a one to one
map ι between the set of morphisms of algebras K[X]→ K (which is also called
the dual of the algebra K[X]) and the set KX of maps X → K. There is a
natural structure of K–algebra on the dual and there is also a natural structure
of K–algebra on KX , and the bijective map ι is an isomorphism of K–algebras.

Consider a non–empty set X. According to the definition of K〈X〉 as a
solution of a universal problem 24, for each K-algebra A, the map f → f defines

a bijection between AX and the set of morphisms of K-algebras K〈X〉 → A.
This is one dual of H, considered as an algebra, but this is not the one we are
going to consider: we are interested with the dual Ĥ of H as a K–vector space.
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11.4.2 The Algebra Ĥ = K〈〈X〉〉 of formal power series

Let X be a non–empty set. We are interested in the dual of the free K–algebra
K〈X〉 as a K–vector space, namely the K–vector space HomK

(
K〈X〉,K

)
of

K-linear maps K〈X〉 → K. We will see that there is a natural structure of

algebra on this dual, which is the algebra Ĥ = K〈〈X〉〉 of formal power series
on X.

The underlying set of the algebra K〈〈X〉〉 is the set KX∗ of maps X∗ → K.
Here, there is no restriction on the support. For such a map S, write (S|w) for
the image of w ∈ X∗ in K and write also

S =
∑
w∈X∗

(S|w)w.

On this set KX∗ , the addition is defined by (25) and the multiplication is again
Cauchy product (26). Further, for λ ∈ K and S ∈ K(X∗), define λS ∈ KX∗ by
(27). With these laws, one checks that the set KX∗ becomes a K-algebra which

we denote by either K〈〈X〉〉 or Ĥ.

To a formal power series S we associate a K-linear map:

K〈X〉 −→ K

P 7−→
∑
w∈X∗

(S|w)(P |w).

Notice that the sum is finite, since P ∈ K〈X〉 has finite support.
SinceX∗ is a basis of theK-vector spaceK〈X〉, a linear map f ∈ HomK

(
K〈X〉,K

)
is uniquely determined by its values (f |w) on the set X∗. Hence, the map

HomK

(
K〈X〉,K

)
−→ Ĥ

f 7−→
∑
w∈X∗(f |w)w

is an isomorphism of vector spaces between the dual 4 HomK

(
K〈X〉,K

)
of

H = K〈X〉 and Ĥ.

11.4.3 Symmetric Series, Quasi-Symmetric Series and Harmonic prod-
uct

Denote by t = (t1, t2, . . . ) a sequence of commutative variables. To s = (s1, . . . , sk),
where each sj is an integer ≥ 1, associate the series

Ss(t) =
∑

n1≥1,...,nk≥1

n1,...,nkpairwise distinct

ts1n1
· · · tsknk .

4This is the classical dual; there are other notions of dual, in particular the “graduate
dual”, which in the present case is isomorphic to H, and the “restricted dual”, which is the
field RatK(X) of series which are “rational” (see § 1.3).
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The space of power series spanned by these Ss is denoted by Sym and its elements
are called symmetric series. A basis of Sym is given by the series Ss with
s1 ≥ s2 ≥ · · · ≥ sk and k ≥ 0.

A quasi-symmetric series is an element of the algebra QSym spanned by the
series

QSs(t) =
∑

n1>···>nk≥1

ts1n1
· · · tsknk ,

where s ranges over the set of tuples (s1, . . . , sk) with k ≥ 0 and sj ≥ 1 for
1 ≤ j ≤ k. Notice that, for s = (s1, . . . , sk) of length k,

Ss =
∑
τ∈Sk

QSsτ ,

where Sk is the symmetric group on k elements and sτ = (sτ(1), . . . , sτ(k)).
Hence, any symmetric series is also quasi-symmetric. Therefore, Sym is a sub-
algebra of QSym.

Notice that these algebras are commutative.

Proposition 50. The K-linear map φ : H1 → QSym defined by ys 7→ QSs is

an isomorphism of K-algebras from the harmonic algebra H1
? to QSym.

In other terms, we can write (33) as follows:

QSs(t) QSs′(t) =
∑
s′′

QSs′′(t),

which means∑
n1>···>nk≥1

ts1n1
· · · tsknk

∑
n′1>···>n′k≥1

t
s′1
n′1
· · · ts

′
k

n′k
=
∑
s′′

∑
n′′1>···>n′′k≥1

t
s′′1
n′′1
· · · ts

′′
k

n′′k
,

where s′′ is the same as for the definition of the harmonic product in §8. The star
(stuffle) law gives an explicit way of writing the product of two quasi-symmetric
series as a sum of quasi-symmetric series.

Let QSym0 be the subspace of QSym spanned by the QSs(t) for which s1 ≥ 2.

The restriction of φ to H0 gives an isomorphism of K-algebra from H0 to QSym0.
The specialization tn → 1/n for n ≥ 1, restricted to QSym0, maps QSs onto
ζ(s). Hence, we have a commutative diagram:

H⋃
H1 φ−−−−→∼ QSym⋃ ⋃
H0 ∼−−−−→ QSym0

ζ̂

y ↙

R

ys 7−→ QSs(t)

↓ ↙
ζ(s)
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Proof of Lemma 46. From the definition of φ in Proposition 50, we have

φ(y?2) =

∞∑
k=0

∑
n1>···>nk≥1

t2n1
· · · t2nk ,

φ
(
(−y2)?

)
=

∞∑
k=0

(−1)k
∑

n1>···>nk≥1

t2n1
· · · t2nk

and
φ
(
(−y4)?

)
= (−1)k

∑
n1>···>nk≥1

t4n1
· · · t4nk .

Hence, from the identity

∞∏
n=1

(1 + tnt) =

∞∑
k=0

tk
∑

n1>···>nk≥1

tn1 · · · tnk ,

one deduces

φ(y?2) =

∞∏
n=1

(1+t2n), φ
(
(−y2)?

)
=

∞∏
n=1

(1−t2n) and φ
(
(−y4)?

)
=

∞∏
n=1

(1−t4n),

which implies Lemma 46.

We give a short list of references, starting with internet web sites.
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