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Abstract

In this paper, we consider pattern avoidance in a subset of words
on {1, 1, 2, 2, . . . , n, n} called double lists. We enumerate double lists
avoiding any single pattern of length at most 4 and completely deter-
mine the corresponding Wilf classes.

1 Introduction

Let Sn be the set of all permutations on {1, 2, . . . , n}. Given π ∈ Sn and
ρ ∈ Sm we say that π contains ρ as a pattern if there exists 1 ≤ i1 < i2 <
· · · < im ≤ n such that πia ≤ πib if and only if ρa ≤ ρb. In this case we say
that πi1 · · · πim is order-isomorphic to ρ, and that πi1 · · · πim is an occurrence
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of ρ in π. If π does not contain ρ, then we say that π avoids ρ. Pattern-
avoiding permutations have been well-studied with applications to algebraic
geometry, theoretical computer science, and more. Of particular interest are
the sets Sn(ρ) := {π ∈ Sn | π avoids ρ}. Let sn(ρ) := |Sn(ρ)|. It is well

known that sn(ρ) =
(2n

n )
n+1

for ρ ∈ S3 [9]. For ρ ∈ S4, 3 different sequences are
possible for {sn(ρ)}n≥1. Two of these sequences are well-understood, but the
computation of sn(1324) remains open for n ≥ 37 [5].

Pattern avoidance has been studied for a number of combinatorial ob-
jects other than permutations. The definition above extends naturally for
patterns in words (i.e. permutations of multisets) and there have been sev-
eral algorithmic approaches to determining the number of words avoiding
various patterns [2, 3, 8, 10].

In another direction, a permutation may be viewed as a bijection on
[n] := {1, . . . , n}. When we graph the points (i, πi) in the Cartesian plane,
all points lie in the square [0, n+1]×[0, n+1], and thus we may apply various
symmetries of the square to obtain involutions on the set Sn. For π ∈ Sn,
let πr = πn · · · π1 and let πc = (n + 1 − π1) · · · (n + 1 − πn), the reverse
and complement of π respectively. For example, the graphs of π = 1342,
πr = 2431, and πc = 4213 are shown in Figure 1. Pattern-avoidance in
centrosymmetric permutations, i.e. permutations π such that πrc = π has
been studied by Egge [6] and by Barnabei, Bonetti and Silimbani [1]. Ferrari
[7] generalized this idea to pattern avoidance in centrosymmetric words. In
all of these cases, knowing the first half of the word or permutation uniquely
determines the second half.

π = 1342 πr = 2431 πc = 4213

Figure 1: The graphs of π = 1342, πr = 2431, and πc = 4213

A final variation involves circular permutations. In a circular permutation
π1 · · · πn, we consider the last digit in the permutation to be adjacent to the
first and two permutations are considered the same if they differ by only a
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rotation. For example, 1234, 2341, 3412, and 4123 are all the same circular
permutation. A circular permutation π is said to contain ρ as a pattern if
there exists a rotation of π that contains ρ. Circular permutations avoiding
permutation patterns were studied by Callan [4] and Vella [13] who obtained
a number of interesting enumeration sequences.

In this paper we consider a specific type of word that borrows ideas from
centrosymmetric and circular permutations. In particular, we define the set
of double lists on n letters to be

Dn := {ππ | π ∈ Sn}.

In other words, a double list is a permutation of {1, . . . , n} concatenated with
itself. We see immediately that |Dn| = n!. As with centrosymmetric objects,
knowing the first half of a double list determines the second half. As with
circular permutations, we have taken a permutation and appended the end
to the beginning. Yet, double lists are a new combinatorial object of interest
in their own right. Consider

Dn(ρ) := {σ ∈ Dn | σ avoids ρ},

and let dn(ρ) := |Dn(ρ)|. We obtain a number of interesting enumeration
sequences for {dn(ρ)}n≥1 with connections to other combinatorial objects.
The goal of this paper is to completely determine dn(ρ) for ρ ∈ S1∪S2∪S3∪S4.

2 Avoiding patterns of length 1, 2, or 3

The main focus of this paper is avoidance of length 4 patterns, but for com-
pleteness we first consider shorter patterns. First, notice that the graph of a
double list σ ∈ Dn is a set of points on the rectangle [0, 2n + 1]× [0, n + 1].
Using the reverse and complement involutions described in Section 1, we see
that

σ ∈ Dn(ρ)⇐⇒ σr ∈ Dn(ρr)⇐⇒ σc ∈ Dn(ρc).

We will partition the set of permutation patterns of length m into equivalence
classes where ρ ∼ τ means that dn(ρ) = dn(τ) for n ≥ 1. In this case ρ and
τ are said to be Wilf equivalent. When this equivlance holds because of one
of the symmetries of the rectangle, we say that ρ and τ are trivially Wilf
equivalent. Using trivial Wilf equivalence we have that 12 ∼ 21, 123 ∼ 321
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and 132 ∼ 213 ∼ 231 ∼ 312, so we need only consider 4 patterns in this
section: 1, 12, 123, and 132.

Avoiding a pattern of length 1 or length 2 is trivial. It is straightforward
to check that for n ≥ 1, dn(1) = 0, and similarly

dn(12) = dn(21) =

{
1 n = 1

0 n ≥ 2.

With pattern-avoiding permutations, avoiding a pattern of length 3 is
the first non-trivial enumeration, and for any pattern ρ of length 3, we have
that sn(ρ) is the nth Catalan number. Double lists are more restrictive, so
we obtain simpler sequences for dn(ρ). More strikingly, although sn(123) =
sn(132) for n ≥ 1, we obtain two distinct sequences in this new context.

Proposition 1. dn(123) = dn(321) =

{
n! n ≤ 2

1 n ≥ 3.

Proof. For n ≤ 2, all double lists avoid permutation patterns of length 3.
However, for n ≥ 3, the unique double list avoiding 123 is n · · · 1n · · · 1. We
verify this directly for the 6 members of D3, with a copy of 123 underlined
in each of the other 5 double lists: 123123, 132132, 213213, 231231, 312312.
Now, assume Dn(123) = {n · · · 1n · · · 1} and consider Dn+1(123). Given σ ∈
Dn+1(123), let σ′ be the double list obtained by deleting both copies of n+ 1
in σ. Since σ ∈ Dn+1(123), we know σ′ ∈ Dn(123). By assumption, σ′ =
n · · · 1n · · · 1. To construct σ, we must only reinsert the two copies of n + 1
so that σ avoids 123. If n+ 1 is inserted after the initial n, then we have σ =
n · · · (n+ 1) · · · 1n · · · (n+ 1) · · · 1, which contains the 123 pattern 1n(n+ 1).
Therefore, n + 1 must be inserted before the initial n, and Dn+1(123) =
{(n+ 1)n · · · 1(n+ 1)n · · · 1}.

Finally, we consider double lists avoiding 132.

Proposition 2. dn(132) = dn(213) = dn(231) = dn(312) =


n! n ≤ 2

1 n = 3

0 n = 4.

Proof. For n ≤ 2, all double lists avoid permutation patterns of length 3.
However, for n = 3, the unique double list avoiding 132 is 231231. Indeed for
the other 5 double lists in D3: 123123, 132132, 213213, 312312, 321321. Now,
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consider the 4 ways to insert 4 into 231231: 42314231, 24312431, 23412341,
23142314. We see (via the underlined occurrences) that each of these double
lists contains a 132 pattern. If there are no 132-avoiding double lists of length
n, then there are no 132-avoiding double lists of length n+ 1, since deleting
both occurrences of n+ 1 in such a list should produce another 132-avoiding
double list.

At this point, we have completely characterized double lists avoiding a
single pattern of length 1, 2, or 3. Although we obtained only trivial se-
quences, the fact that we obtained two distinct Wilf classes for avoiding
patterns of length 3 is a noteworthy difference between avoidance in double
lists and avoidance in permutations.

3 Avoiding patterns of length 4

The remainder of this paper is concerned with double lists avoiding a single
pattern of length 4. Using the symmetries of the rectangle, we can partition
the 24 patterns of length 4 into 8 trivial Wilf classes, as shown in Table
1. Notably, the trivial Wilf equivalences are the only Wilf equivalences for
patterns of length 4. This is in contrast to the case for pattern-avoiding per-
mutations. In that context, we have an additional trivial Wilf equivalence
since sn(ρ) = sn(ρ−1) for n ≥ 1, so sn(1342) = sn(1423). As it turns out,
there are a number of non-trivial Wilf equivalences for pattern-avoiding per-
mutations so that every length 4 pattern is equivalent to one of 1342, 1234,
or 1324. For large n, we have that

sn(1342•) < sn(1234†) < sn(1324◦).

In Table 1 each pattern is marked according to its Wilf equivlance class for
permutations; patterns equivalent to 1342 are marked with •, those equiva-
lent to 1234 are marked with †, and those equivalent to 1324 are marked with
◦. A closer look at the table reveals a couple more subtleties of the pattern-
avoiding double lists problem. For permutations, the monotone pattern 1234
is neither the hardest nor the easiest pattern to avoid; for double lists, it is
the easiest pattern to avoid. Similarly, one might expect that all patterns
equivalent to 1324 may produce smaller sequences than those avoiding 1234,
which produce smaller sequences than those avoiding 1324, but this is also
not the case. Other than the trivial equivalences of reverse and complement,
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Wilf equivalence in the context of double lists appears to be a very differ-
ent phenomenon than equivalence in the context of permutations. We now
consider each of these patterns in turn.

Pattern ρ {dn(ρ)}10n=1

1342• ∼ 2431• ∼ 3124• ∼ 4213• 1, 2, 6, 12, 15, 15, 15, 15, 15, 15
2143† ∼ 3412† 1, 2, 6, 12, 13, 14, 16, 18, 20, 22
1423• ∼ 2314• ∼ 3241• ∼ 4132• 1, 2, 6, 12, 17, 23, 27, 30, 33, 36
1432† ∼ 2341† ∼ 3214† ∼ 4123† 1, 2, 6, 12, 17, 23, 31, 40, 50, 61
1243† ∼ 2134† ∼ 3421† ∼ 4312† 1, 2, 6, 12, 19, 25, 34, 44, 55, 67
2413• ∼ 3142• 1, 2, 6, 12, 18, 29, 47, 76, 123, 199
1324◦ ∼ 4231◦ 1, 2, 6, 12, 21, 38, 69, 126, 232, 427
1234† ∼ 4321† 1, 2, 6, 12, 27, 58, 121, 248, 503, 1014

Table 1: Enumeration of double lists avoiding a pattern of length 4

3.1 The pattern 1342

The pattern 1342 is the hardest permutation of length 4 to avoid, and from
initial data is the easiest to conjecture a general enumeration formula for.

Theorem 1. dn(1342) =


n! n ≤ 3

12 n = 4

15 n ≥ 5.

Proof. For n ≤ 3, all double lists avoid 1342, and for n = 4, a check of the
24 members of Dn yields exactly 12 that avoid 1342. They are 12431243,
21342134, 23142314, 23412341, 24132413, 24312431, 31243124, 32143214,
32413241, 42314231, 43124312, 43214321.

We now consider Dn(1342) for n ≥ 5 and make three key structural
observations. Let σ = ππ ∈ Dn(1342) and let σ′ = π′π′ ∈ Dn−2(1342) be the
double list obtained by deleting both copies of n and both copies of n − 1
from σ. Then

1. π′ avoids 123.

2. π′ contains at most one coinversion (i.e. there is at most one pair of
integers 1 ≤ i < j ≤ n− 2 such that π′i < π′j).

6



3. If π′ contains a coinversion, then the coinversion is composed of the
digits 1 and 2 or the digits 2 and 3.

For the first observation, suppose to the contrary that π′ contains 123
and the occurrence of 123 is formed by the digits π′a < π′b < π′c. If n (resp.
n−1) appears before π′b or after π′c in π, then π′aπ

′
cnπ

′
b (resp. π′aπ

′
c(n−1)π′b) is

a copy of 1342 in σ = ππ. Therefore, n and n− 1 must both appear between
π′b and π′c in π. If they are in increasing order, then π′a(n− 1)nπ′c is a copy of
1342 in π, and thus in σ. If they are in decreasing order, then π′a(n− 1)nπ′c
is a copy of 1342 in σ. Since we have exhausted all possible options, it must
be the case that π′ avoids 123.

For the second observation, we know that π′ avoids 123, so if π′ contains
two coinversions, either (a) π′ contains the pattern 132, (b) π′ contains the
pattern 213, or (c) π′ contains the pattern 3412. It can be shown that case (a)
and case (b) are impossible by a similar analysis to the previous paragraph,
conditioning on various possible positions of n and n − 1. Case (c) is even
more readily discounted, since 34123412 already contains a copy of 1342.

Finally, if π′ contains a coinversion, we show that it must use two consec-
utive digits and they must include the digit 2. Suppose on the contrary that
we have the coinversion π′i < π′j where

∣∣π′j − π′i∣∣ > 1. Then no matter the
location of π′i+1, it forms a coinversion with either π′i or π′j. This contradicts
our previous observation that π′ contains at most one coinversion. Therefore,
the coinversion must use consecutive digits. Now suppose that the coinver-
sion uses digits π′i and π′i + 1 where π′i ≥ 3. To avoid other coinversions, it
must be the case that π′ = (n − 2)(n − 3)(n − 4) · · · (π′i + 3)(π′i + 2)π′i(π

′
i +

1)(π′i− 1)(π′i− 2) · · · 21. However, in this case, 1π′i(π
′
i + 1)2 is a copy of 1342

in σ. Therefore, any coinversion must either use the digits 1 and 2 or the
digits 2 and 1.

Using these three observations, we see that there are only 3 possible forms
for π′. They are: (n− 2) · · · 1 (the decreasing permutation), (n− 2) · · · 4231,
or (n− 2) · · · 312. Now, we consider ways to reinsert n and n− 1 into π′ to
form π so that σ = ππ is a member of Dn(1342). There are 6 ways to insert
them into the decreasing permutation; namely,

n · · · 1, (n− 1) · · · 1n, (n− 1) · · · 2n1,
(n− 2) · · · 1n(n− 1), (n− 2) · · · 2n1(n− 1), (n− 2) · · · 2n(n− 1)1.

There are also 6 ways to insert them into (n− 2) · · · 4231; namely,
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n · · · 4231, (n− 1) · · · 4231n,
(n− 1) · · · 423n1, (n− 2) · · · 4231n(n− 1),

(n− 2) · · · 423n1(n− 1), (n− 2) · · · 423n(n− 1)1.

Finally, there are only 3 ways to insert them into (n− 2) · · · 312; namely

n · · · 312, (n− 1) · · · 312n, (n− 2) · · · 312n(n− 1).

These 15 permutations π uniquely describe all possible members σ = ππ ∈
Dn(1342) for n ≥ 5.

To illustrate, the 15 members of D6(1342) are shown in Figure 2. While
an eventually constant sequence is expected for smaller patterns, the constant
sequence 15 is perhaps a bit more surprising in this context. Nonetheless the
structural argument in this proof sets the stage for several of the proofs yet
to come in the following subsections.

Figure 2: The members of D6(1342)

3.2 The patterns 2143 and 1423

Two of our patterns yield avoidance sequences that grow linearly.
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Theorem 2. dn(2143) =


n! n ≤ 3

12 n = 4

13 n = 5

2(n+ 1) n ≥ 6.

Proof. The cases for n ≤ 5 are easily verified by brute force methods, so we
focus on the case where n ≥ 6. Intuitively there are an even number of double
lists avoiding 2143 for a geometric reason. We have that 2143rc = 2143, so
ρ avoids 2143 if and only if ρrc avoids 2143. For n ≥ 6, there are exactly
two members of Dn(2143) that are reverse-complement invariant. If n is
even, they are 12 · · ·n and n+2

2
· · ·n1 · · · n

2
; If n is odd, they are 12 · · ·n

and n+3
2
· · ·nn+1

2
1 · · · n−1

2
. All other 2143-avoiders come in pairs ρ and ρrc.

However, it turns out that it is easier to characterize the members ofDn(2143)
using other distinguishing features.

Notice that all elements after 1 and other than 2 must appear in increasing
order. Otherwise, 2 from the first copy of π, and 1 followed by the decrease
in the second copy of π form a 2143 pattern in σ. Similarly, all elements
before n and other than n − 1 must appear in increasing order. Therefore,
there are only 3 possible double lists σ = ππ where 1 precedes n: 12 · · ·n,
13 · · ·n2, and (n− 1)12 · · · (n− 2)n. So far, we have described 3 members of
Dn(2143), as shown in Figure 3. It remains to consider when n precedes 1
and n is in position n− 2 or earlier.

Figure 3: 2143-avoiding lists where 1 preceeds n

If n precedes 1, then there is at most 1 element between n and 1. Suppose
to the contrary that there are two elements a > b that appear between n and
1 in π. Then b1na forms a 2143 pattern in σ, taking b1 from the first copy
of π and na from the second copy.

Next, consider three elements a, b, and c, such that a appears before
n, b appears between n and 1, and c appears after 1 in π. It must be the
case that a > b > c; otherwise a case analysis shows that σ contains a 2143
pattern. Finally, 2 (resp. n−1) may only appear out of increasing order after
1 (resp. before n) if 1 is in position n−2 (resp. n is in position 3); otherwise,

9



another case analysis shows σ contains 2143. Also, 2 and n − 1 may not
both appear out of increasing order at the same time, lest we create another
possible 2143 pattern. Using these constraints, there are n + 1 members
of Dn(2143) where n immediately preceeds 1. They are π = 4 · · ·n132,
π = (n − 1)(n − 2)n1 · · · (n − 3), and n − 1 lists where π = i · · ·n1 · · · i − 1
(2 ≤ i ≤ n), as shown in Figure 4. Finally, there are n − 2 lists σ = ππ
where n is two positions before 1, all of the form (i + 1) · · ·ni1 · · · (i − 1)
(2 ≤ i ≤ n− 1), as shown in Figure 5.

Figure 4: 2143-avoiders where n immediately preceeds 1

Figure 5: 2143-avoiders where n is two positions before 1

We have now accounted for (n + 1) + (n − 2) = 2n − 1 additional per-
mutations π such that ππ ∈ Dn(2143). Together with the original 3 lists we
have 2n− 1 + 3 = 2(n+ 1) double lists avoiding 2143.

The number of 1423-avoiding double lists also grows linearly but for a
different reason.

Theorem 3. dn(1423) =



n! n ≤ 3

12 n = 4

17 n = 5

23 n = 6

3(n+ 2) n ≥ 7.

Proof. Again, the cases for n ≤ 6 are easily verified by brute force methods, so
we focus on the case where n ≥ 7. Now, we condition on which of the letters
1 and n comes first in σ = ππ ∈ Dn(1423). If 1 precedes n, then all other
digits must appear in decreasing order, otherwise 1n in the first copy of π and
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any increasing pair in the second copy of π form a 1423 pattern in σ = ππ.
Further, n must be the last element of π. Since all other digits appear in
decreasing order, if n is not the last digit of π, then πn = 2, and 1n23 is a 1423
pattern in π. Since n is last, then either πn−1 = 1, πn−2 = 1, or πn−3 = 1.
Otherwise πn−3 > πn−2 > πn−1 and 1πn−3πn−1πn−2 is a copy of 1423 in
σ, taking the first three digits from the first copy of π and the remaining
digit from the second copy. There are exactly 3 double lists in Dn(1423)
where 1 precedes n; namely, π = (n − 1) · · · 4132n, π = (n − 1) · · · 312n or
π = (n− 1) · · · 1n.

Now, suppose that n precedes 1. We quickly see that the digits after 1 in
π must appear in decreasing order; otherwise, 1 from the first copy of π and
n and the increasing pair from the second copy form a 1423 pattern. This
implies there are at most 2 digits after 1 in π, otherwise we can form the 142
of a 1423 pattern using 1πn−2πn from the first copy of π and πn−1 from the
second copy of π to complete a 1423 pattern in σ. Similarly, all digits after
n and larger than 1 in π must appear in decreasing order.

What can be said about the digits that appear before n? Two things:
(a) Either the only digit before n is n − 2, or all digits before n are larger
than all digits after n, and (b) If there are at least four digits before n, then
they appear in decreasing order. Observation (a) follows from the fact that
everything after n in π and larger than 1 is in decreasing order. If π1 = i and
π2 = n where i < n − 2 then in(n − 2)(n − 1) forms a 1423 pattern where
the first three digits come from the first copy of π. Further, if there is more
than one digit before n in π, let the first two digits of π be a and b where
a < b. By assumption there exists a digit c that appears after n in π where
a < c. We have that either anbc or ancb is a 1423 pattern in σ where in
the first case, an comes from the first copy of π and in the second case, anc
comes from the first copy of π. Therefore, observation (a) holds. A similar
analysis supports observation (b). If there are two digits before n in π, they
may appear in either order, and if there are 3 digits before n they may form
either a 132 pattern or a 321 pattern as all other patterns lead to a 1423
pattern in σ.

Here, then, is the final enumeration. We have seen 3 double lists where
πn = n. We have also seen that if n precedes 1, we may choose the position
of n, the arrangement of the digits before n, and the position of 1 (one of the
last 3 digits), and then the rest of the double list is decreasing. Therefore,
there are 3 double lists beginning with n, 3 beginning with (n − 1)n, 3
beginning with (n− 2)n, 3 beginning with (n− 2)(n− 1)n, 3 beginning with
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(n− 1)(n− 2)n, 3 beginning with (n− 3)(n− 1)(n− 2)n, 3 beginning with
(n − 1)(n − 2)(n − 3)n, and 3 where πi = n for 5 ≤ i ≤ n − 3. Finally
there are 2 lists where πn−2 = n (since there are only two positions to place
1 following n), and 1 list where πn−1 = n. Adding these together, we have
3 · 8 + 3 · (n− 7) + 3 = 3(n+ 2) double lists avoiding 1423.

3.3 The patterns 1432 and 1243

The avoidance sequences for two patterns grow quadratically.

Theorem 4. dn(1432) =


n! n ≤ 3

12 n = 4

17 n = 5
n2

2
+ 3n

2
− 4 n ≥ 6.

Proof. Again, the base cases are easily checked by brute force techniques, so
we focus on the case where n ≥ 7.

We claim that if σ = ππ ∈ Dn−1(1432), then inserting n immediately after
n − 1 produces a member σ′ = π′π′ of Dn(1432). Suppose to the contrary
that inserting n immediately after n− 1 created a 1432 pattern. The n must
play the role of ‘4’ in this new bad pattern. If n − 1 does not play the role
of ‘3’, then using n − 1 instead of n would have been a 1432 pattern in σ.
Therefore, the new forbidden pattern must involve the n from the first copy
of π and the n− 1 from the second copy of π.

Now, notice that all digits after n − 1 in π other than 1 must appear in
increasing order, otherwise the 1 from the first copy of π followed by n − 1
and a decreasing pair from the second copy of π form a 1432 pattern. This
means that there is at most 1 digit after n in π′. However, we assume that
n ≥ 7, so there are at least 2 digits that appear before n − 1 in π. If one
of these digits d is less than the ‘1’, d(n − 1)‘2’‘1’ is a forbidden pattern.
If not, then ‘1’(n − 1)‘2’d or ‘1’(n − 1)d‘2’ is a forbidden pattern. In any
case, we have shown that σ′ contains a forbidden pattern not including n, so
σ /∈ Dn−1(1432), which is a contradiction.

Now, we must account for members σ = ππ of Dn(1432) where n does
not immediately follow n − 1 in π. We consider two cases: n follows n − 1
and n precedes n− 1.

If n follows n − 1, but not immediately, there can be at most one digit
between them. Otherwise, let a < b be two digits between them in π. an(n−
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1)b forms a 1432 pattern in σ. Further that one digit must smaller than all
digits before n − 1 and larger than all digits after n. Otherwise, suppose
a < b or b < c where a is before n − 1 b is between n − 1 and n and c is
after n. if a < b, then an(n − 1)b forms a forbidden pattern. If b < c, then
bn(n−1)c forms a forbidden pattern. Finally, the only digit that can appear
after n is 1. We already have seen that all digits after n − 1 and smaller
than n− 1 other than 1 must appear in increasing order. A digit cannot be
smaller than b and in increasing order with b at the same time. The only two
lists of this form are 2 · · · (n− 1)1n and 3 · · · (n− 1)2n1.

If n precedes n−1, we have a different situation. We know everything after
n other than 1 appears in increasing order, otherwise 1 from the first copy of
π followed by n and the increasing pair form a 1432 pattern. Finally we show
that in this case, n must be the first digit of π. Suppose n is preceded by two
digits a < b. Then an(n − 1)b is a forbidden pattern in σ where an(n − 1)
come from the first copy of π and b comes from the second copy. Therefore,
n must be the first or second digit in π. Suppose n is preceded by a digit a.
If a < n− 2 then an(n− 1)(n− 2) is a forbidden pattern in σ. If a = n− 2,
recall all digits after n other than 1 must be in increasing order and n ≥ 6
so (n − 4)(n − 1)(n − 2)(n − 3) is a forbidden pattern. Thus if n precedes
n− 1, n is the first digit of π, and after choosing the position of 1 the rest of
π is uniquely determined. There are n− 1 choices for the position of n− 1,
so we get n− 1 double lists in this case.

In summary, we have shown that dn(1432) = dn(1432) + 2 + (n − 1) =
dn−1(1432) + n+ 1, and after matching with the fact that d6(1432) = 23, we
have the quadratic formula above.

Theorem 5. dn(1243) =


n! n ≤ 3

12 n = 4

19 n = 5
n2

2
+ 5n

2
− 8 n ≥ 6.

Proof. Again, the base cases are easily checked by brute force techniques, so
we focus on the case where n ≥ 7.

We claim that if σ = ππ ∈ Dn−1(1243), then appending 1 to the end of π
and inserting all other digits by 1 produces a member σ′ = π′π′ of Dn(1243).
Suppose to the contrary that σ′ contains a 1243 pattern but σ does not. Then
the 1 at the end of the first copy of π′ must play the role of ‘1’ and π contains
a 132 pattern. Further, the digit 2 in the second copy of π′ must play the role
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of ‘1’ in this 132 pattern otherwise taking 2 from the first copy of π′ following
with the 132 pattern in the second copy of π′ implies there is a 1243 pattern
in σ. Also, there are at most 2 digits between the 2 and the 1 in π′. We know
that the only double list of length 3 or more that avoids 132 is 231231. If the
digits between 2 and 1 have a 132 pattern then 2 followed by this pattern
are a forbidden 1243 occurrence. If the digits contain 231231, then a sublist
of σ′ is 2453124531 which contains the 1243 pattern 1253. Since n ≥ 7 after
insertion, there are at least three digits appearing before 2. If at least one of
them, c is less than the ‘3’ in the 1243 pattern, then 2c‘4’‘3’ is a forbidden
pattern in σ. If at least one of them d is greater then ‘4’, then 2‘3’d‘4’ is a
forbidden pattern. If all three digits are greater than ‘3’ and less than ‘4’
and there is an decreasing pair a > b, then 2‘3’ab is a forbidden pattern, so
we may assume that the three digits before 2 appear in increasing order with
a < b < c and are all between ‘3’ and ‘4’ in value. However, in this case
ab‘4’c is a forbidden pattern. In all cases we have found a copy of 1243 in σ,
so it must be the case that inserting a 1 at the end of π and incrementing all
other digits produces another 1243-avoiding double list.

Now, we consider members of Dn(1243) that do not end in 1. Notice that
1 must be one of the last three digits of π. If there were three digits after 1
with a < b < c, then in order for the digits 1, a, b, c to avoid 1243, we must
have 1bca1bca. Now consider d and e as digits before 1. If d < a then 1dba
is a forbidden pattern. If d > b then 1adb is a forbidden pattern so we may
assume that d and e are both between a and b in value. if d > e appear
in decreasing order, then 1ade is a forbidden pattern. If d > e appear in
increasing order, then edcb is a forbidden pattern. Thus, it must be the case
that there are at most two digits after 1. Now suppose that i is a digit after
1 where i < n− 1.

Suppose then that 1 is followed by 2 digits in π. Let a < b be those two
digits. If b < n, then 1anb forms a forbidden pattern. Further, we know that
all digits larger than a must appear in increasing order in π lest we create a
1243 pattern using 1 and a as ‘1’ and ‘2’. If there are at least four such digits
c < d < e < f , then cdfe is a 1243 pattern in σ. So, it must be the case that
a ≥ n− 3. If a = n− 3 or a = n− 2, then 1an(n− 1) is a forbidden pattern,
so the only option is to end in 1(n− 1)n. The digits before 1 must appear in
decreasing order, so we get one double list where π = (n− 2) · · · 1(n− 1)n.

Suppose that 1 is followed by exactly one digit in π. It can be followed
by n and we have n− 2 choices for the location of (n− 1). Then the rest of
the digits must appear in decreasing order, lest we have a 1243 pattern, or it
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can be followed by i where n > i ≥ (n− 3) and n appears in position n− i
and the rest of the digits are decreasing. There are 1 + (n− 2) + 3 = n + 2
possible double lists that do not end in 1.

In summary, dn(1243) = dn−1(1243) + n + 2, and putting this together
with the base cases above, we achieve the desired enumeration.

3.4 The patterns 1234, 2413, and 1324

The results of the previous sections make a stark contrast with pattern-
avoiding permutations where most avoidance sequences grow exponentially.
However, pattern avoidance in double lists is more restrictive, so it should
not be surprising that we achieve such a variety of behaviors. We conclude
by examining the three final patterns of length 4, each of whose avoidance
sequences exhibits exponential growth.

We begin with the monotone pattern. In the context of permutations,
1234 is neither the hardest nor the easiest pattern to avoid, but for double
lists it turns out that it is the easiest to avoid.

Theorem 6. dn(1234) =


n! n ≤ 3

12 n = 4

2n − n n ≥ 5.

Proof. To avoid 1234 where n ≥ 5, either 1 precedes n or 1 follows n. In the
first case, 1 must appear immediately before n, and π = i · · · 1n · · · (i+1). In
the second case, the digits of π still form two decreasing runs of digits, one
starting with n using the largest digits, and one ending with 1 and using the
smallest digits. In either case, the permutation π may be encoded by a list
of us and `s for whether a digit belongs to the upper or the lower decreasing
run. There are 2n such encodings of a sequence of n us and `s, however n+ 1
of them (those of the form ui`n−i) encode the decreasing permutation, so we
have overcounted by n. There are 2n − n double lists avoiding the pattern
1234.

The remaining two patterns also produce nice sequences that are charac-
terized by linear recurrences with constant coefficients. Double lists avoiding
2413 are counted by the Lucas numbers, i.e. where L0 = 2, L1 = 1, and for
n ≥ 2, Ln = Ln−1 + Ln−2.
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Theorem 7. dn(2413) =


n! n ≤ 3

12 n = 4

Ln+1 n ≥ 5.

Proof. As usual, it is straightforward to confirm the theorem via brute force
techniques for specific small n. We show that dn(2413) = dn−1(2413) +
dn−2(2413) for n ≥ 7.

We actually prove a more specific result. Let

Di
n = {σ ∈ Dn(2413) | σ1 = i}

and di
n(2413) = |Di

n(2413)|. It turns out that di
n(2413) = 0 if i /∈ {1, n −

2, n− 1, n}, and for n ≥ 7,

d1n(2413) = d1
n−1(2413) + d1

n−2(2413),

dn−2n (2413) = dn−2
n−1(2413) + dn−2

n−2(2413),

dn−1n (2413) = dn−1
n−1(2413) + dn−2

n−1(2413),

dnn(2413) = dn
n−1(2413) + dn−2

n (2413).

First, consider σ = ππ ∈ Di
n(2413) for i /∈ {1, n − 2, n − 1, n}. If n − 2

precedes n in π then i(n− 2)n(n− 1) forms a forbidden pattern in σ where
the first three digits come from the first copy of π and the last digit comes
from the second copy. Therefore, n−2 comes after n. Now, in1(n−2) forms
a forbidden pattern where in come from the first copy of π, 1 comes from
somewhere between the two copies of n and n − 2 comes from the second
copy of π. In every event, it is impossibly to avoid 2413, so di

n(2413) = 0 for
i /∈ {1, n− 2, n− 1, n}.

Next, consider σ = ππ ∈ D1
n(2413). Any coinversion in π that does not

include the digit 1 must consist of a pair of consecutive digits and therefore
must appear in consecutive positions. Suppose to the contrary there is a
coinversion with a < b such that b 6= a + 1. Then using ab1(a + 1) where
the first two digits come from the first copy of π forms a forbidden pattern.
If a(a+ 1) is a coinversion in nonconsecutive positions we have ab(a+ 1). If
b < a then b(a+1) is another coinversion with nonconsecutive digits, which is
not allowed. If b > a+1 then ab is another coninversion with nonconsecutive
digits, which is still not allowed. We may preserve this property by inserting
(n − 1)n after 1 in any member of D1

n−2(2413) or inserting n after 1 in any
member of D1

n−1(2413).
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Next, consider σ = ππ ∈ Dn−2
n (2413). If π1 = n − 2, we claim that

π2 = n−1 and πn = n. Suppose to the contrary that n precedes n−1. Then
(n−2)n1(n−1) is a forbidden pattern in σ. Now suppose that π2 = i < n−2.
Then (n− 2)ni(n− 1) is a forbidden pattern so π2 = n− 1. Finally, suppose
πn = i < n − 2. Then (n − 2)ni(n − 1) is a forbidden pattern, so we know
that π1 = n− 2, π2 = n− 1, and πn = n. Now, the digits n− 2, n− 2, and
n can only play the role of ‘4’ in a 2413 pattern so any coinversions amongst
the digits {1, . . . , n − 3} in π must appear between consecutive digits in
consecutive positions as in the previous case. Given a member of Dn−4

n−2(2413),
we may increment n − 4, n − 3, and n − 2 by 1 and insert (n − 4)(n − 3)
in the third and fourth positions to obtain a member of Dn−2

n (2413). For
example, 34215 ∈ D3

5(2413) produces 5634217 ∈ D5
7(2413). Given a member

of Dn−3
n−1(2413), we may increment n − 3, n − 2, and n − 1 by 1 and insert

n− 3 in the third position to obtain a member of Dn−2
n (2413). For example,

452316 ∈ D4
6(2413) produces 5642317 ∈ D5

7(2413).
Next, consider σ = ππ ∈ Dn−1

n (2413). Then either π2 = n or πn = n.
Suppose to the contrary that πi = n where 3 ≤ i ≤ n − 1. First, all digits
between n− 1 and n in π must be larger than all digits after n; otherwise we
have a 2413 pattern in π. Since we assume n ≥ 7, either there are at least 2
digits between n− 1 and n in π or there are at least 2 digits after n in π. In
the first case, suppose the digits between n − 1 and n include a < b. Then
an(n−1)b is a 2413 pattern in σ. If the digits after n in π include a < b and c
is a digit between n−1 and n then a(n−1)cb is a forbidden pattern. Therefore
n is either the second or the last digit in π. In the first case, given σ = ππ ∈
Dn−3

n−2(2413) where π2 = n − 2, we may prepend (n − 1)n to the front of π
to obtain a 2413-avoiding member of Dn−1

n (2413). If σ = ππ ∈ Dn−2
n−1(2413)

where π2 = n − 1, then increment π1 and π2 and insert (n − 2) into the
third position. For example, 563412 ∈ Dn−2

n−1(2413) becomes 6753412. Now,
if πn = n we approach the situation differently. If σ = ππ ∈ Dn−3

n−2(2413),
then remove π1 and πn−2 to obtain a permutation on {1, . . . , n − 4} then
create the new permutation (n − 1)(n − 3)(n − 2)π2 · · · πn−3n(n − 1)(n −
3)(n − 2)π2 · · · πn−3n ∈ Dn−1

n (2413). If σ = ππ ∈ Dn−2
n−1(2413), then remove

π1 and πn−1 to obtain a permutation on {1, . . . , n − 3} then create the new
permutation (n−1)(n−2)π2 · · · πn−2n(n−1)(n−2)π2 · · · πn−2n ∈ Dn−1

n (2413).
Finally, consider σ = ππ ∈ Dn

n(2413). Given σ′ = π′, π′ ∈ Dn−2
n−2(2413),

delete π′1 and create n(n − 2)(n − 1)π′2 · · · π′n−2n(n − 2)(n − 1)π′2 · · · π′n−2 ∈
Dn

n(2413). If σ′ = π′, π′ ∈ Dn−2
n−1(2413), prepend n to the front of π′ to obtain

a member σ of Dn
n(2413).

17



The final sequence is perhaps the most surprising result. The task of enu-
merating 1324-avoiders in other contexts has proven especially challenging.
For double lists, however, structure is evident beginning with the n = 7 term.
It turns out these double lists satisfy a tribonacci recurrence.

Theorem 8. dn(1324) =



n! n ≤ 3

12 n = 4

21 n = 5

38 n = 6

69 n = 7

126 n = 8

232 n = 9

dn−1(1324) + dn−2(1324) + dn−3(1324) n ≥ 10.

Proof. As before, we focus on the n ≥ 10 case. Since this is a recurrence
that depends on the previous three terms, we must also confirm base cases
for 7 ≤ n ≤ 9. First, given σ = ππ ∈ Dn(1324) it is impossible for 1 to
precede n if n ≥ 7. Suppose to the contrary that 1 precedes n. All digits
in {2, . . . , n− 1} appear between the first 1 and the last n and must appear
in increasing order to avoid 1324. Suppose two digits a < b appear between
1 and n in π. Then 1ban is a 1324 pattern in σ. If there is just one digit
i between 1 and n in π, then if i > 2, 1i2n is a forbidden pattern, and if
i = 2, then 132n is a forbidden pattern. Therefore if 1 appears before n, 1
is immediately before n and the digits {2, . . . , n − 1} appear in increasing
order between the first occurrence of 1n and the second occurence of 1n in
σ. Since n ≥ 7, there are either 3 digits a < b < c before the first 1 (in which
case acbn is a forbidden pattern) or there are 3 digits a < b < c in π after the
first n (in which case 1bac is a forbidden pattern). In every event we have
forced the occurrence of a 1324 pattern so it is impossible for 1 to precede n
if n ≥ 7.

Now, if n precedes 1, it must appear as one of the first 3 digits of π.
Suppose that n appears in position i ≥ 4. Then π1 · · · πi−1π1 · · · πi−1 must
avoid 132. We have seen that this is impossible for i − 1 ≥ 4, and the only
way to do this if i − 1 = 3 is for π1π2π3 = 231. However bcan1bcan1 with
a < b < c contains the 1324 pattern 1can. Therefore n must appear in one
of the first three positions.

Let Di
n(1324) := {σ ∈ Dn(1324) | σi = n} and let di

n(1324) = |Di
n(1324)|.
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We claim that d1
n(1324) = d2

n(1324) and d3
n(1324) = d1

n−2(1324) for n ≥ 6.
To see that d1

n(1324) = d2
n(1324) for n ≥ 6, notice that if ππ ∈ D2

n(1324),
then π1 = i and π2 = n can be transposed to produce a member of D1

n(1324).
If not, then we know that π1 < n− 1 since if π1π2 = (n− 1)n, both (n− 1)
and n can only play the role of ‘4’ in a 1324 pattern and transposing them
does not change their involvement. If π1 < n − 1 and it plays the role of
a ‘1’ in a pattern where n plays the role of ‘4’, we must have used the first
copy of π1 and the second copy of n, so transposing them within each copy
of π does not affect the patterns. The only other way for both to be involved
in the same copy of 1324 that could possible be destroyed is for π1 to play
the role of ‘2’ and n to play the role of ‘4’. In this case suppose the double
list beginning with in contains 1324 but the list beginning with ni avoids
1324. We know everything larger than i must appear in increasing order
immediately after i and i ≥ n − 3. Now, a case analysis shows that any σ
beginning with (n−3)n(n−2)(n−1) or (n−2)n(n−1) cannot have σ1 play
the role of ‘2’ in a 1324 pattern so we are fine.

To see that d3
n(1324) = d1

n−2(1324) for n ≥ 6 notice that if ππ ∈ D3
n(1324),

then π1 = (n−2) and π2 = (n−1). We know these two numbers must appear
in increasing order since 1 comes after n. If there exists i where π1 < i < π2,
then π1π2in is a forbidden pattern and if there exists i where π2 < i, then
π1iπ2n is a forbidden pattern. Since π = (n − 2)(n − 1)nπ3 · · · πn, we may
delete (n− 1) and n to obtain π′, π′ ∈ D1

n−2(1324).
It remains to show that d1

n(1324) satisfies the tribonacci recurrence (and
thus so do d2

n(1324), d3
n(1324), and dn(1324)). For σ ∈ D1

n−3(1324), replace
n− 3 with n(n− 3)(n− 2)(n− 1). For σ ∈ D1

n−2(1324), replace n− 2 with
n(n − 2)(n − 1). For σ ∈ D1

n−1(1324), prepend n to the front of each copy
of π. This map sends members of D1

n−3(1324)∪D1
n−2(1324)∪D1

n−1(1324) to
Dn(1324).

4 Summary

We have now completely characterized dn(ρ) where ρ is a permutation pat-
tern of length at most 4. The corresponding results are given in Table 2.
These results provide an interesting contrast to pattern avoiding permuta-
tions. First, the only Wilf equivalences are the trivial ones. Second, the
monotone pattern is the easiest pattern to avoid in the context of double
lists. Finally, we obtained a variety of behaviors (constant, linear, quadratic,
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and exponential), as opposed to permutation pattern sequences which only
grow exponentially.

Pattern ρ dn(ρ) OEIS

1342, 2431,
15 (n ≥ 5) A010854

3124, 4213
2143, 3412 2n+ 2 (n ≥ 6) A005843
1423, 2314,

3n+ 6 (n ≥ 7) A008585
3241, 4132
1432, 2341, 1

2
n2 + 3

2
n− 4 (n ≥ 6) A052905

3214, 4123
1243, 2134, 1

2
n2 + 5

2
n− 8 (n ≥ 6) A183897

3421, 4312
2413, 3142 Ln+1 (n ≥ 5) A000032
1324, 4231 |Dn−1(ρ)|+ |Dn−2(ρ)|+ |Dn−3(ρ)| (n ≥ 10)
1234, 4321 2n − n (n ≥ 4) A000325

Table 2: Formulas for dn(ρ) where ρ ∈ S4

The variety of sequence behaviors and the complete classification for
length 4 patterns are both exciting developments, but this work raises addi-
tional possibilities for future work. In particular,

1. Is 1 · · ·n the easiest pattern of length n to avoid for all n? Can we
characterize the hardest pattern of length n to avoid in general?

2. All of the sequences in Table 2 have rational generating functions. Do
there exist patterns ρ where the sequence {dn(ρ)} does not have a
rational generating function?

3. With the exception of the proof of Theorem 6, the proofs in this paper
were the result of detailed case analysis. While this is a thorough
treatment that reveals much about the structure of pattern-avoiding
double lists, it is not the most elegant approach. What are alternate
proofs of these results?
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