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Abstract. We study connections among structures in commutative algebra, com-
binatorics, and discrete geometry, introducing an array of numbers, called Borel’s
triangle, that arises in counting objects in each area. By defining natural com-
binatorial bijections between the sets, we prove that Borel’s triangle counts the
Betti numbers of certain Borel-fixed ideals, the number of binary trees on a fixed
number of vertices with a fixed number of “marked” leaves or branching nodes,
and the number of pointed pseudotriangulations of a certain class of planar point
configurations.

1. Introduction

The Catalan numbers Cn, defined for n ≥ 0 by Cn = 1
n+1

(
2n
n

)
, appear in countless

places throughout enumerative combinatorics. For example, in a well-known exercise
from [St2], the reader is asked to show that the Catalan numbers count the elements
of each of 66 sets. A related construction is Catalan’s triangle, a triangular array
whose right boundary gives the classical Catalan numbers.

Let S = K[x1, x2, . . . , xn]. One of the many sets counted by the Catalan numbers
is the set of minimal monomial generators of the smallest Borel ideal containing the
monomial x1x2x3 · · ·xn. As a result, the Betti numbers of these ideals can be obtained
by applying an invertible transformation to the rows of Catalan’s triangle, which is an
array closely linked to the Catalan numbers. This results in a new triangular array,
which we call Borel’s triangle.

In [FMS], we show a curious correspondence: The Betti numbers of these ideals
also count certain pointed pseudotriangulations, which are planar configurations often
studied in discrete geometry and rigidity theory. Here, our interest is in illustrating
this correspondence by producing bijections between these two seemingly unrelated
(yet equinumerous) sets. Our bijections involve binary trees and a new labeling of
their leaves, which we believe to be of independent interest (for instance, these so-
called marked binary trees are also enumerated by the entries of Borel’s triangle).

With its close connection to the Catalan numbers, we believe Borel’s triangle will
prove useful in other enumerative applications as well.

Let fn,k to denote the kth element of the nth row of Borel’s triangle (where we begin
counting rows and elements at 0). We summarize our main results in Theorem 1.1.
For relevant definitions, see Sections 2 and 4.
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Theorem 1.1. Let n ≥ 1 and k ≤ n− 1. Then the coefficient fn−1,k counts each of
the following sets, and there exist natural bijections between them:

(1) The number of branch-marked binary trees with n unmarked vertices and k
marked branching vertices.

(2) The number of leaf-marked binary trees with n unmarked vertices and k marked
leaves.

(3) The number of EK-symbols (m,α) of In in which degα = k.
(4) The number of pointed pseudotriangulations of the single chain of length n in

which k interior vertices are not connected to the tip.

We begin the paper by reviewing preliminaries on Catalan numbers and Borel
ideals in Section 2. We also introduce some language in this section to help us discuss
binary trees. In Section 3, we construct a labeling of the vertices of binary trees
which provides a bijection between leaf-marked trees and Eliahou-Kervaire symbols
(that is, between items (2) and (3) above). We begin Section 4 by reviewing the
background on pointed pseudotriangulations, and we go on to produce a bijection
between pointed pseudotriangulations of the single chain and branch-marked binary
trees (that is, between items (1) and (4) above). (The bijection between items (1)
and (2) is trivial.)

We conclude the paper by mentioning further directions for our study and by giving
a class of binary parenthesizations that are enumerated by Borel’s triangle.

2. Preliminaries

Definition 2.1. Catalan’s triangle is the array {Cn,k}, where 0 ≤ k ≤ n, defined by
Cn,0 = 1 for all n, Cn,k = Cn−1,k + Cn,k−1 for 0 < k < n, and Cn,n = Cn,n−1.

Below we show rows zero through four of Catalan’s triangle.

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14

Definition 2.2. We define a corresponding array {fn,k} by setting fn,k =
∑n

s=0

(
s
k

)
Cn,s.

We call this array Borel’s triangle. Equivalently,

n∑
k=0

Cn,k(t+ 1)k =
n∑
k=0

fn,kt
k.

Rows zero through four of this array are below.
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1
2 1
5 6 2
14 28 20 5
42 120 135 70 14

Remark 2.3. The classical Catalan numbers Cn = 1
n+1

(
2n
n

)
occur on the diagonal of

both Catalan’s and Borel’s triangles as well as in the first column of Borel’s triangle.
That is, fn,0 = Cn+1 = fn+1,n+1.

Remark 2.4. Borel’s triangle appears in slightly different forms in the Online En-
cyclopedia of Integer Sequences [OEIS]. The sequence A062991 is the triangle with
alternating signs, and P. Barry gives an explicit form for Borel’s triangle in the com-
ments, noting that

fn,k =
1

n+ 1

(
2n+ 2

n− k

)(
n+ k

k

)
.

The entry A094385, written in triangular form, has an additional column on the left
of the triangle and the entries of the row reversed from Borel’s triangle. This sequence
arises in Barry’s recent work on generalized Pascal matrices defined by Riordan arrays;
see, in particular, [B, Example 18].

Let T be a binary tree. As we work only with binary trees, we often drop the word
“binary.” Recall that T has a unique root vertex, which we call rT . If v and w are
two vertices of T , recall that w is a descendant of v if the unique path from rT to w
goes through v. In this case, we also say that v is an ancestor of w. If in addition v
and w are the endpoints of an edge of T , then w is called an child of v and v is called
the parent of w.

If e is an edge of T with positive (resp., negative) slope, we say e is a left (resp.,
right) edge. If w is a child of v and the two are connected by a left edge, we say that
w is a left child of v, and we define the notion of a right child analogously. If w is a
descendant of a left child of v, we say that w is a left descendant of v and define a
right descendant similarly.

A vertex of T with no children is a leaf, and we call a vertex branching if it has
two children.

Definition 2.5. Let T be a binary tree. The rightmost leaf of T is the leaf obtained
by starting at the root and descending, take a right edge whenever possible. Let X
be a set of leaves of T not containing T ’s rightmost leaf. Then the pair (T,X) is
called a leaf-marked tree. We call the vertices in X marked, and the other vertices
unmarked.

If B is a set of branching vertices of T , we call the pair (T,B) a branch-marked
tree.
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We often use T to refer both to the tree and its set of vertices. For instance, we
may write v ∈ T rX if v is a vertex of T not contained in X.

2.1. Borel ideals. All our ideals are in the ring S = K[x1, x2, . . .] for a field K. If
m is a monomial and xj divides m, replacing m with xi

xj
m for some i < j is called a

Borel move.

Definition 2.6. A Borel ideal I ⊆ S is a monomial ideal closed under Borel moves.
We write In to denote the smallest Borel ideal containing the monomial x1x2x2 · · ·xn.

We will be particularly interested in the minimal monomial generating set of In,
for which we write Gens(In).

Fact 2.7. The number of monomials in Gens(In) is Cn = 1
n+1

(
2n
n

)
, the nth Catalan

number.

For example, there are C3 = 1
4

(
6
3

)
= 5 generators of I3: x

3
1, x

2
1x2, x

2
1x3, x1x

2
2, x1x2x3.

If m is a monomial, we let max(m) denote the greatest index of a variable dividing
m.

Definition 2.8. An Eliahou-Kervaire symbol (or EK-symbol) of In is a pair (m,α)
where m ∈ Gens(In) and α is a squarefree monomial with max(m) > max(α). The
(homological) degree of an EK-symbol (m,α) is the degree of α.

The EK-symbols of a Borel ideal give a basis for its resolution. See [EK] for a proof
and [PS] for a mapping cone approach to resolving a Borel ideal minimally. Thus we
can calculate the Betti numbers of In by counting EK-symbols:

Theorem 2.9 (See, for instance, [FMS]). The ith Betti number bi of In is the number
of EK-symbols of In of homological degree i.

3. Leaf-marked trees and EK-symbols

In this section, we construct a bijection between (2) and (3) in Theorem 1.1. Let
T be a tree. Throughout, we refer to an ordering on the vertices of T , defined as
follows. Given vertices v and w, let u be their unique common ancestor of greatest
depth. (If w is an ancestor of v, let u = w.) If v is a left descendant of u (so that w
must be a right descendant) we set v < w and say that v is on the left of w.

This defines a total order on the vertices of T . Moreover, this order is the transitive
closure of the order defined by v < w whenever w is a right child of v or v is a left
child of w.

Construction 3.1. Let (T,X) be a leaf-marked tree on n+ k vertices with |X| = k.
We define a labeling φ : T → [n] as follows. For a vertex v ∈ T , define φ(v) by:

φ(v) = 1 + |{w ∈ T rX : w < v and w is not a descendant of v}|.
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Using this labeling, we define a pair of monomials EK(T,X) = (m,α) by

m =
∏

v∈TrX

xφ(v) and α =
∏
v∈X

xφ(v).

If X = ∅, we set α = 1.

An alternate recursive definition of φ is as follows. Let (T,X) be a leaf-marked
tree, and set φ(rT ) = 1, where rT is the root of T . Now let w be a child of v.

• If w is a left child of v, set φ(w) = φ(v).
• If w is a right child of v, set φ(w) = φ(v) + k + 1, where k is the number of

left descendants of v not contained in X.

See Figure 1 for an example of the labeling and also Figure 8, which appears later
in the paper. (For readability, we set x1 = a, x2 = b, etc.)

h

a

a

a

a b

b

f

g

g

g

Figure 1. The labeling of a leaf-marked tree

Lemma 3.2. Let µ : {trees with n vertices} → {monomials} be the map sending
a tree T to the first entry of EK(T,∅). Then µ is a bijection between trees with n
vertices and generators of In.

Proof. Write µ(T ) = xi1xi2 · · ·xin , where i1 ≤ i2 ≤ · · · ≤ in, and let v1 < v2 <
· · · < vn be the vertices of T . By construction, φ(vj) ≤ j for all j. Thus, for all j,
ij = φ(vj) ≤ j, meaning µ(T ) is a minimal monomial generator of In.

A straightforward induction shows that µ(T ) 6= µ(T ′) for non-isomorphic trees T
and T ′. As Cn counts both the number of generators of In and the number of n-vertex
binary trees [St2], the result follows. �

Lemma 3.3. Let (T,X) be a leaf-marked tree and let v and w be two leaves of T .
Then φ(v) 6= φ(w).

Proof. Since v and w are both leaves, neither has any descendants. Without loss,
let v < w. Let u be the unique ancestor of both v and w of greatest depth. Then
v < u < w, so φ(v) < φ(w). �
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Let (T,X) be a leaf-marked tree with EK(T,X) = (m,α). By Lemma 3.2, m is a
generator of In. By Lemma 3.3, α is squarefree. As X cannot contain the last leaf of
T , max(m) > max(α). Thus, EK(T,X) is an EK-symbol for In. We now show that
this map is a bijection.

Theorem 3.4. The map (T,X)→ EK(T,X) is a bijection between leaf-marked trees
on n+ k vertices with |X| = k and EK-symbols of In of homological degree k.

Proof. Let T ′ be an arbitrary unmarked tree, with rightmost leaf z, and let s = φ(z).
We will show that, for i ≤ n, there exists a unique way to affix a new marked leaf wi
to T ′ such that φ(wi) = i, and that z is the rightmost leaf of the resulting tree if and
only if i < s.

Let the vertices of T ′ be v1, . . . , vn, written in ascending order. Observe that if vi−1
has a right child w, then φ(w) = i. (If u is left of vi−1, then it cannot be a descendant
of w. If u is right of vi−1, then it is right of w as well.) If such a child does not exist,
we may affix wi on the right of vi−1. If such a child does exist, then, if it has a left
child w′, we have φ(w′) = i as well. If no such w′ exists, we may affix wi on the left of
w. If w′ does exist, we may look to its left as well. Because T ′ is finite, we eventually
reach a vertex without a left child, and affix wi there.

Thus, for all i ≤ n + 1, there is at least one way to affix a marked leaf with label
xi. If there were two such ways, we could affix both leaves, and they would have the
same label, violating Lemma 3.3.

Observe that wi is left of vi and z = vs. If i < s, it follows that z is still the
rightmost leaf after affixing wi. If i > s, then wi becomes the rightmost leaf. If i = s,
then φ(wi) = φ(z), so by Lemma 3.3 z and wi cannot both be leaves. Thus z is no
longer a leaf and in particular is not the rightmost leaf. (In fact, one can show that
wi is the left child of z.)

Now let (m,α) be an EK-symbol with max(m) = s. To construct a marked tree
(T,X) satisfying EK(T,X) = (m,α), let T ′ be the (unmarked) tree on n vertices
guaranteed by Lemma 3.2 whose associated monomial is m. Now for each xi dividing
α, append the marked leaf wi found above. Let X be the set of added leaves and
T = T ′ ∪ X be the resulting tree. Since each new leaf is marked, it does not affect
the label of any other vertex. Thus EK(T,X) = (m,α).

We have shown above that the leaf-marked trees (T,X) are in bijection with the
pairs (T ′, α) consisting of unmarked trees T ′ with n vertices and squarefree monomials
α such that max(α) < φ(z). By Lemma 3.2, the set of such pairs is in bijection with
the set of EK-symbols. The map (T,X) → EK(T,X) is the composition of these
bijections. �

Remark 3.5. Note that the bijection between branch-marked trees and leaf-marked
trees, items (1) and (2) in Theorem 1.1, is immediate: Suppose T is a branch-marked
tree with k branching vertices. Then T necessarily has k+1 leaves. Writing branching
vertices b1, b2, . . . , bk in ascending order and the leaves w1, w2, . . . , wk+1 in ascending
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order, the map sending bi to wi yields a leaf-marked tree, and this map is easily seen
to be a bijection. (Note that under this map the rightmost leaf is never marked,
which is a requirement of leaf-marked trees.)

4. Branch-marked trees and ppts

Pseudotriangulations and pointed pseudotriangulations are the subject of much
investigation in combinatorial geometry, robotics, and rigidity theory. The authors
of [AOSS], concerned with enumerative properties of these objects, examined pointed
pseudotriangulations (which we will often call ppts) of the single chain. We first define
these notions and show some simple properties of this configuration. Our purpose is
to construct a bijection between items (1) and (4) of Theorem 1.1.

Definition 4.1. A pseudotriangle is a polygon with exactly three convex interior
angles.

Example 4.2. The hexagon in Figure 2 is a pseudotriangle because only three of the
six interior angles are convex.

Figure 2. A pseudotriangle

Definition 4.3. Let V be a collection of points in the plane, and suppose that no
three points in V are collinear. Then a pseudotriangulation of V is a connected
whiskerless planar graph with vertex set V , with the properties that all bounded
regions are pseudotriangles, and that the union of the bounded regions is the convex
hull of V .

A vertex v ∈ V is called pointed if it is incident to a concave angle (on a bounded
or unbounded region), and the pseudotriangulation is called pointed if every vertex
is pointed.

Example 4.4. Figure 3 is a pseudotriangulation, but it is not a pointed pseudotri-
angulation because the unshaded vertex is not pointed. Every angle to which the
unshaded vertex is incident is convex.

Definition 4.5. The single chain of length n is a point configuration consisting of
n + 1 points p0, . . . , pn arranged in order on an open semicircular arc, together with
another point z, called the tip, at the intersection of the tangent lines from p0 and
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Figure 3. A pseudotriangulation

pn. Observe that the convex hull of the single chain is a triangle with vertices p0, pn,
and z, and that no line segment from the tip to any pi intersects any chord.

Remark 4.6. Our notation differs from that of [AOSS]. In that paper, the authors
refer to a single chain with ` = r to mean that there are r interior points plus the tip
and the first and last vertices arranged on the semicircular arc.

Example 4.7. Figure 4 shows all pointed pseudotriangulations of the single chain of
length three. There are five in which both interior vertices are connected to the tip, six
in which exactly one interior vertex is connected to the tip, and two in which neither
interior vertex is connected to the tip. Note that the second row (f2,0, f2,1, f2,2) of
Borel’s triangle is (5, 6, 2), which is the sequence of Betti numbers of I3, the smallest
Borel ideal containing x1x2x3.

Figure 4. The pointed pseudotriangulations of the single chain of
length three

The authors of [AOSS] study the pointed pseudotriangulations of the single chain
and several other point configurations in considerable detail. In order to handle this
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context, they introduce notation that is unwieldy for our narrower purposes. We now
recover a few basic results using our notation.

Proposition 4.8. Let V be any point configuration with n + 2 points, and suppose
that P is a pointed pseudotriangulation of V . Then P contains 2n+ 1 edges.

Proof. Let V , E, and F be the sets of vertices, edges, and regions of P , respectively.
Then P has |V | concave angles, and 2|E| − |V | convex angles. Consequently |F | =

1 + 2|E|−|V |
3

. The lemma follows from Euler’s formula |V | − |E|+ |F | = 2. �

Proposition 4.9. Let P be a pointed pseudotriangulation of the single chain, and let
pj be a vertex on the semicircle. Then exactly two of the following three statements
hold:

(1) pj is connected to the tip.
(2) pj is connected to some vertex pi with i < j.
(3) pj is connected to some vertex pk with j < k.

Proof. If all three statements hold, then the vertex pj is not pointed. If all three fail,
then P is not connected.

If only statement (i) holds, then the vertex pj has degree one.
Now suppose that only statement (iii) holds. Let R be the region containing both

pj and the tip in its boundary. Then R has convex angles at the tip and at its leftmost
point pi; observe that i < j. Now consider the path along ∂R connecting pj to pi that
doesn’t pass through the tip, and the path connecting pj to the tip that doesn’t pass
through pi. Observe that R has a convex angle at the rightmost point of each path.
Thus R is not a pseudotriangle. �

Lemma 4.10. Let P be a pointed pseudotriangulation of the single chain of length at
least four. Then the triangles of P are in bijection with the pj that are not connected
to the tip. In particular, P contains a triangle with vertices pi, pj, and pk satisfying
i < j < k if and only if pj is not connected to the tip.

Proof. The first statement follows from the second since two such triangles cannot
share middle vertex pj. We prove the second statement.

If such a triangle exists, then pj cannot be connected to the tip by Proposition
4.9. Conversely, if pj is not connected to the tip, let I be minimal and K maximal
such that pj is connected to both pI and pK . Let R be the region above pj, which
contains both these edges in its boundary. If R contains the tip it has convex angles
at pj and the tip, as well as at its leftmost and rightmost points, and so cannot be
a pseudotriangle. If R does not contain the tip it is convex and consequently is the
triangle with vertices pI , pj, and pK . �

Construction 4.11. Given a branch-marked tree (T,B), we construct a pointed
pseudotriangulation of the single chain by induction on a depth-first traversal of T .
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We begin at the root of T by constructing two points p0 and p1, and create an edge
between them, labelled by the root vertex. Then at every vertex v of T , starting with
the root, we find the edge (pi, p`) labelled by v and do the following.

If v is a leaf, we leave our construction unmodified.
If v has a child on the left but not on the right, we choose a real number j with

i < j < `, construct a new point pj, and construct an edge from pi to pj labelled by
the child vertex.

If v has a child on the right but not on the left, we choose a real number j with
i < j < `, construct a new point pj, and construct an edge from p` to pj labelled by
the child vertex.

If v is a marked branching vertex, we choose a real number j with i < j < `,
construct a new point pj, and construct edges from pi to pj and from p` to pj labelled
by the children on the left and right, respectively.

If v is an unmarked branching vertex, we choose real numbers j and k with i < j <
k < `, construct new points pj and pk, and construct edges from pi to pj and from p`
to pk, labelled by the children on the left and right, respectively.

After traversing T , we delete the edge labels, reindex the points with consecutive
integers, and finally add edges from z to each point pj that is not connected to points
pi and pk with i < j < k.

The result is a pointed pseudotriangulation of the single chain of length n, which
we call P (T,B).

Example 4.12. Given the branch-marked tree in Figure 5, we begin by labeling the
vertices as in a depth-first search. We form an edge labeled 1 corresponding to the
root of the tree, and we create edges labeled 2 and 6 that correspond to the left and
right children of 1 respectively. The edge 2 intersects 1 in its left vertex because 2 is
a left child of 1, and similarly for 6. Additionally, because 1 is marked in the original
tree, the edges labeled 2 and 6 meet at a common vertex. We construct the edges
3 and 5 in the same way, noting that 2 is also marked. Finally, we create an edge
labeled 7 that meets 6 at its left endpoint because 7 is a left child of 6, and similarly
we create an edge 4 that shares its right endpoint with edge 3.

Proposition 4.13. If (T,B) has n unmarked vertices and k marked vertices, then
P (T,B) is a pointed pseudotriangulation of the single chain of length n in which k of
the points are not connected to the tip.

Proof. We begin the construction with two points, then add two more points for each
unmarked branching vertex, and one more point for each marked branching vertex
and for each non-branch, non-leaf vertex, for a total of

It remains to show that we have in fact constructed a pointed pseudotriangulation.
Clearly our configuration is pointed: the tip has a concave angle on the exterior, and
every other point has a convex angle either on the left (if it it is not connected to any
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Figure 5. The construction of P (T )

other points on its left), on the right (if it is not connected to any other points on its
right), or in the direction of the tip (if it is connected on both its left and its right).

To see that our configuration is a pseudotriangulation, first observe that any vertex
pj which is connected to any pi and p` with i < j < ` must have arisen in our
construction from a marked branching vertex. In this case, let I and L be minimal
and maximal indices, respectively, such that pI and pL are connected to pj; then there
was a marked vertex labelling an edge from pI to pL, and its children labelled edges
from pI to pj and from pL to pj.

Now suppose some region R within our configuration is not a pseudotriangle; that
is, it has at least four convex vertices. Then in particular, R has at least three convex
vertices other than the tip z; choose three and write them pi, pj, and p`, in order.
Let pI and pL be as in the discussion above; then we claim that pI = pi and pL = p`.
Indeed, if not the lines from pI to pj would cut through R. It follows that R is in fact
the triangle with vertices pi, pj, and p`, contradicting the assumption that it is not a
pseudotriangle. �

Finally, given a pointed pseudotriangulation P of the single chain of length n, we
construct a branch-marked tree T (P) by imposing a tree order on the edges of P .

Construction 4.14. Given an edge ei,` from pi to p`, let J < ` be maximal such
that there is an edge ei,J from pi to pJ , and let K be minimal such that there is an
edge eK,` from pK to p`. Then we set ei,J and eK,` to the left and right children of
ei,` (provided that they exist). Finally, if J = K (i.e., P contains a triangle on pi, pJ ,
and p`), we mark ei,`. The resulting branch-marked tree is T (P).
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Example 4.15. Let P be the pointed pseudotriangulation in Figure 6. In Figure 7
we construct the associated binary tree from the covering relations on its edges. We
mark both branch vertices because they each come from the top edge of a triangle.
The resulting branch-marked tree is the first tree in Figure 8, which also displays
the associated leaf-marked tree and its vertex labels. Observe that this reverses the
process illustrated in Example 4.12.

Figure 6. A pointed pseudotriangulation P of the single chain of
length five

Figure 7. The associated binary tree T (P)

b

a

a

a

d

d

c

Figure 8. T (P) and its associated leaf-marked tree with labeling
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Proposition 4.16. If P is a pointed pseudotriangulation of the single chain of length
n in which k vertices are not connected to the tip, then T (P) is a branch-marked tree
with n unmarked vertices and k marked branching vertices.

Proof. By Proposition 4.8 P contains 2n+1 edges, of which n+1−k are connected to
the tip. Thus T (P) contains n+k vertices; the number of marked vertices is equal to
the number of triangles in P , which by Lemma 4.10 is equal to the number of points
not connected to the tip, i.e., k.

Clearly, each marked vertex is a branching vertex.
It remains to show that T (P) is a tree. We will show that every vertex of T (P),

except the root vertex e0,n, is the child of a unique vertex. Indeed, let ej,k be an edge
of P . Let I be minimal such that eI,k is an edge, and let L be maximal such that ej,L
is an edge. If I = j and L = k, then the region outside the triangle connecting ei, ej,
and the tip is not simply connected, so we must have ej,k = e0,n. Otherwise, suppose
without loss of generality that I 6= j. Let i be maximal such that I ≤ i < j; then ej,k
is the left child of ei,k but not of any other edge. In this case we claim that L = k (so
that ej,k is not the right child of any edge). Indeed, if not, then eI,k and ej,L would
intersect. �

The following proposition is straightforward.

Proposition 4.17. T and P are inverse bijections.

5. Further Research

Theorem 1.1 gives several classes of objects counted by Borel’s triangle. However,
we believe the entries of Borel’s triangle will prove useful in many other enumerative
contexts. For example, Stanley’s book [St2] lists many sets counted by the nth Catalan
number, including binary trees on n vertices, generators of Borel ideals In (implicit in
the ballot-path bijection), and triangulations of n points in convex position. As these
classes of objects (with some extra structure) correspond to marked trees, minimal
syzygies of Borel ideals, and pointed pseudotriangulations, we anticipate that most
objects on Stanley’s list similarly correspond to a new class of objects counted by
Borel’s triangle.

Open-ended Problem 5.1. Find classes of objects counted by Borel’s triangle. In
particular, for each class of objects counted by the Catalan numbers, identify extra
structure that defines a new class of objects counted by Borel’s triangle.

We begin addressing this problem by studying binary parenthesizations, which
are counted by the Catalan numbers [St2]. For example, there are C3 = 5 binary
parenthesizations of 4 symbols:

(x1x2)(x3x4) x1(x2(x3x4)) (x1(x2x3))x4 x1((x2x3)x4) ((x1x2)x3)x4
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Now let X ⊆ {2, 3, . . . , n − 1}. We let the X-word on [n] be the word obtained
from x1x2 · · ·xn by doubling xi whenever i ∈ X. For example, if X = {2, 4}, then
the X-word on [5] is x1x2x2x3x4x4x5. Similarly, an X-parenthesization on [n] is a
binary parenthesization of the X-word on [n] satisfying the following property: For
each doubled letter xi, both types of parentheses appear between the two copies of
the letter. For example, if X = {2}, then the X-word on [4] is x1x2x2x3x4, and there
are three X-parenthesizations on [4]:

(x1x2)((x2x3)x4) (x1x2)(x2(x3x4)) ((x1x2)(x2x3))x4

Note that if X ⊆ [n] is empty, the number of X-parenthesizations on [n] is Cn−1,
as this is simply the number of binary parenthesizations on n symbols.

We define a k-parenthesization of [n] to be an X-parenthesization of [n] for some
X with cardinality k.

Theorem 5.2. Recall that we write fn,k for the kth entry in the nth row of Borel’s
triangle. Then fn,k is the number of k-parenthesizations of [n+ 2].

For example, a symmetry argument coupled with the example above shows that
the number of X-parenthesizations on [4] for which |X| = 1 is 6, which is f2,1.

Sketch of proof of Theorem 5.2. The bijection from pointed pseudotriangulations is
as follows: For a pointed pseudotriangulation P of the single chain of length n, let
X = {i : pi is not connected to the tip}. We associate to P the X-parenthesization
obtained by attaching a left parenthesis to xi for each edge of P having pi as its left
vertex, and attaching a right parenthesis to xi for each edge of P having pi as its right
vertex. For example, let P be the pointed pseudotriangulation in Example 4.15. Then
X = {3, 4} and the associated X-parenthesization is (((x1(x2x3))(x3x4))((x4x5)x6)).

�

As marked trees count the minimal syzygies of In, one can ask whether the combina-
torics yield an interesting differential. We can of course translate the EK differential
along our bijections, but the resulting maps do not seem at all natural on sets of
marked trees.

Example 5.3. Let T be the tree from Figure 5. Tracing the bijections, T corresponds
to the Eliahou-Kervaire symbol [a3d2, bc]. The differential of this Eliahou-Kervaire
symbol is [a3bd, c] − [a3cd, b] + [a3d2, b] − [a3d2, c], which corresponds to the linear
combination below:

D(T) = 

+− −
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As this figure illustrates, there is no obvious combinatorial rule for defining the
differential on a marked tree.

While the Eliahou-Kervaire differential does not appear to make sense on the space
of marked trees, it is possible that there is a natural combinatorial differential. Such
a structure would be of considerable interest to algebraists; for example, in [NR, Si],
other bases for the resolution of a Borel ideal are constructed. Unfortunately, thus
far we have been unable to find a reasonable differential on either trees or the other
structures discussed in this paper. For example, on the space of X-parenthesizations,
the following map looks tantalizingly like a differential, but it is not.

Example 5.4. For an X-parenthesization w, and j ∈ X, define Lj(w) to be the (Xr
j)-parenthesization obtained by deleting the first copy of xj from w and simplifying
(or, if this is not an (X r j)-parenthesization, set Lj(w) equal to zero). Similarly
define Rj(w) by deleting the second copy of xj. Finally, if X = {xj1 , . . . , xjk}, define
D(w) =

∑
(−1)i(Lji(w) − Rji(w)). For example, if w = ((x1(x2x3))(x3x4))(x4x5),

then

D(w) = ((x1x2)(x3x4))(x4x5)− ((x1(x2x3))x4)(x4x5)− 0 + ((x1(x2x3))(x3x4))x5.

The definition of D looks like a boundary operator, and appears to mimic the Eliahou-
Kervaire differential, but it is not a differential. In fact, with w as above, D2(w) 6= 0.

It seems natural to ask the following question:

Question 5.5. Among the classes of objects counted by Borel’s triangle, is there one
that admits a natural differential structure?
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