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Abstract

Let n = 2k + 1 with 0 < k ∈ Z and let Mk be the subgraph induced by the k-
and (k + 1)-levels of the n-cube graph. A system of numeration according to which
the nonnegative integers are written as restricted growth strings, so called by Arndt
and Ruskey, has specifically the k-th Catalan number Ck =

(n
k

)

/n expressed as 10k.
This permits a linear ordering of the vertex set of a quotient graph Rk of Mk under
a dihedral-group action. The Shields-Savage lifting of a Hamilton path in Rk between
certain two distinguished vertices of Rk to a Hamilton cycle placed in a dihedrally
symmetric fashion in Mk is presented in terms of the Kierstead-Trotter lexical match-
ings of Mk, which highlights the relevance of the said system in pursuing the existence,
enumeration and sorting (according both to that system and to the lexical matchings)
of such Hamilton cycles in Mk. With these tools in hand, we ask whether there are
as many such cycles as the 22

Ω(n)
ones obtained by Mütze in proving the existence of

Hamilton cycles (not necessarily placed in dihedrally symmetric fashion) in Mk.

1 Introduction

Let n = 2k + 1 with 0 < k ∈ Z. Assume that the dihedral group D2n acts on a graph G ,
and in that case let H be a D2n-invariant subgraph of G ([11], pg. 20). If this subgraph
H is a Hamilton cycle of G , then we say that H is a Hamilton cycle placed in a dihedrally
symmetric fashion in G.

In this work, each nonnegative integer is expressed as a restricted growth string (or RGS )
α, so called by Arndt [2] and Ruskey [17], (defined in Section 2, below). The resulting RGS s
are related to the Catalan numbers Ck = 1

n

(

n
k

)

, (A000108 in, [21]), in that Ck becomes the
RGS α = 10k, as observed by Arndt in [2] pg. 325. A system of numeration, (A239903
in [21]), composed by the RGS s α is presented in Section 2 and is taken to a dihedrally
symmetric version of Hável’s [12] or Buck-Wiedemann’s [4] conjecture, proved by Mütze
[16], on the existence of Hamilton cycles (not necessarily placed in a dihedrally symmetric
fashion) in the middle-levels graphs. These graphs, denoted Mk, (0 < k ∈ Z), are treated
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from Section 4 on, after associating the RGS s α to corresponding n-tuples F (α) representing
the vertices of Mk by means of a ”descending castling” operation in Theorem 2 of Section 3.
In turn, the n-tuples F (α) become, in Section 9, the vertices of a quotient graph Rk of Mk

defined previously in Section 7 under action of the dihedral group D2n of 2n elements.
According to Shields and Savage in their Lemma 3 [18], the existence of Hamilton paths

in Rk between certain distinguished vertices yields Hamilton cycles placed in a dihedrally
symmetric fashion in Mk. Thus, these paths yield the dihedrally symmetric version of
Hável’s conjecture mentioned above. Moreover, these paths can be presented in terms of
the Kierstead-Trotter lexical matchings of Mk [13], which highlights the relevance of the said
system, particularly in pursuing the existence, enumeration (more specifically, if existence

is established, perhaps less than 22
Ω(n)

paths, see next paragraph) and sorting (according to
both the α ordering and the lexical matchings, see Section 11) of such paths.

These tasks remain in spite of the establishment of Hável’s conjecture by Mütze, who
reviewed its history in [16], to which bibliography we refer, and proved that there are 22

Ω(n)

such cycles.
More specifically, in our treatment below lexical 1-factorizations in the Mk s are defined

via the Kierstead-Trotter lexical matchings [13] from Section 8 on. Ammerlaan and Vassilev
[1] showed that any Hamilton cycle in a graph Mk has the same number of edges along every
coordinate direction of the n-cube Hn. This is the case of the Shields-Savage construction
of a Hamilton cycle ηk placed in a dihedrally symmetric fashion in Mk for it uses the cyclic
nature mod n of Mk in taking a Hamilton path ξk as required and with: (i) its vertices in
1-1 correspondence with the first Ck strings α and (ii) dihedral unfolding in Mk formed by
concatenating ξk with its translates mod n in order to compose ηk, (Section 11). In fact,
such ξk must visit just once each vertex class of Mk under an adequate equivalence relation
(Section 5). The Shields-Savage construction technique (further employed in [19, 20] with
no visible association to any system of numeration, naturally related, or not, to the Catalan
numbers) motivates our inquiry about existence, enumeration and sorting of such Hamilton
cycles ηk. Each vertex of ξk corresponds uniquely to a k-word α in the system of numeration
A239903, concept made precise in Section 2.

Thus, we ask: Are there as many Hamilton cycles placed in a dihedrally symmetric fashion
in the Mk s as Mütze showed by his constructions in the general case in [16]? Moreover, can
Mütze’s construction be somehow particularized to Hamilton cycles placed in a dihedrally
symmetric fashion in the Mk s?

In continuation to this approach, a generalized lexical tree is introduced in [8] whose nodes
are all the k-words (1 ≤ k ∈ Z) and is inductively constructed in terms of corresponding
k-co-words. Moreover, still in [8], the lexically colored adjacency tables in Section 10 below
are analyzed in terms of k-words to contribute in answering the questions above.

2 Catalan-number system of numeration

According to the proposed system of numeration, the increasing sequence of non-negative
integers is represented via the RGS s, starting with:

0, 1, 10, 11, 12, 100, 101, 110, 111, 112, 120, 121, 122, 123, 1000, . . . (1)
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where the subsequence 1, 10, 100, 1000, . . . , 10 · · ·0, . . . , (the last term shown with t zeros
represented symbolically by 10t, t ≥ 0) corresponds to the numbers C1 = 1, C2 = 2, C3 = 5,
C4 = 14, . . . , Ct+1 = . . . , etc. Because of this, we refer to the system as the Catalan-number
system of numeration. It can be defined formally as follows. The RGS s, represening the
consecutive integers from 0 to 14, can in general be written as expressions ak−1ak−2 · · · a2a1 by
prefixing enough 0 s in (1) if necessary, for any adequate k. Such expressions ak−1ak−2 · · · a2a1,
called k-words, are defined for 1 < k ∈ Z by means of the following two rules:

1. The leftmost position in a k-word ak−1ak−2 · · ·a2a1, namely position k − 1, contains a
digit ak−1 ∈ {0, 1}.

2. Given a position i > 1 with i < k in a k-word ak−1ak−2 · · · a2a1, then to the immediate
right of the corresponding digit ai, the digit ai−1 (meaning at position i − 1) satisfies
0 ≤ ai−1 ≤ ai + 1.

The reader may compare this with the essentially similar Catalan RGS s in Section 15.2
of [2], and with the mixed radix systems [5], including the factorial number, or factoradic,
system [9], [10], [14] pg. 192, [15] pg. 12, or A007623 in [21]. We refer as well to Stanley’s
interpretation (u) of Catalan numbers [22], Exercise (u), as mentioned in A239903 of [21].

Every k-word ak−1ak−2 · · ·a2a1 yields a (k + 1)-word akak−1ak−2 · · · a2a1 = 0ak−1ak−2 · · ·
a2a1. A k-word 6= 0 stripped of the null digits to the left of the leftmost position containing
digit 1 is called a Catalan string. We also consider (improper) Catalan string 0 corresponding
to the null k-words, 0 < k ∈ Z.

The k-words are ordered as follows: Given any two k-words, say

α = ak−1 · · · a2a1 and β = bk−1 · · · b2b1,

where α 6= β, we say that α precedes β, written α < β, whenever either

(i) ak−1 < bk−1 or

(ii) aj = bj , for k − 1 ≤ j ≤ i+ 1, and ai < bi, for some 1 ≤ i < k − 1.

The order defined on the k-words this way is said to be their stair-wise order.

Observation 1. The sequence of nonzero Catalan strings has the terms corresponding to
the Catalan numbers C1 = 1, C2 = 2, C3 = 5, C4 = 14, . . . , Ct+1 = 1

2t+3

(

2t+3
t+1

)

, . . . , written
respectively as 1, 10, 100, 1000, . . . , 10t, . . ., where 0 ≤ t ∈ Z. Moreover, there exists exactly
Ck+1 k-words < 10k, for each k > 0.

To determine the Catalan string corresponding to a given decimal integer x0, or vice
versa, one employs Catalan’s triangle ∆, namely a triangular arrangement composed by
positive integers starting with the following rows ∆j , for j = 0, . . . , 8:

1
1 1
1
1

2
3

2
5 5

1
1

4
5

9
14

14
28

14
42 42

1
1

6
7

20
27

48
75

90
165

132
297

132
429 429

1 8 35 110 275 572 1001 1430 1430
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and with a linear reading of the successive rows conforming the sequence A009766 in [21].
Specifically, the numbers τ ji in row ∆j of ∆ (0 ≤ j ∈ Z) satisfy the following items:

1. τ j0 = 1, for every j ≥ 0;

2. τ j1 = j and τ jj = τ jj−1, for every j ≥ 1;

3. τ ji = τ j−1
i + τ ji−1, for every j ≥ 2 and i = 1, . . . , j − 2;

4.
∑j

i=0 τ
j
i = τ j+1

j = τ j+1
j+1 = Cj, for every j ≥ 1.

A unified formula for the numbers τkj , (j = 0, 1 . . . , k), is given by:

τkj =
(k + j)!(k − j + 1)

j!(k + 1)!

Now, the determination of the Catalan string corresponding to a decimal integer x0

proceeds as follows. Let y0 = τk+1
k be the largest member of the second diagonal of ∆

with y0 ≤ x0. Let x1 = x0 − y0. If x1 > 0, then let Y1 = {τ jk−1}
k+b1
j=k be the largest set of

successive terms in the (k− 1)-column of ∆ with y1 =
∑

(Y1) ≤ x1. Either Y1 = ∅, in which
case we take b1 = −1, or not, in which case b1 = |Y1| − 1. Let x2 = x1 − y1. If x2 > 0,
then let Y2 = {τ jk−2}

k+b2
j=k be the largest set of successive terms in the (k − 2)-column of ∆

with y2 =
∑

(Y2) ≤ x2. Either Y2 = ∅, in which case we take b2 = −1, or not, in which
case b2 = |Y3| − 1. Proceeding this way, we arrive at a null xk. Then the Catalan string
corresponding to x0 is ak−1ak−2 · · · a1, where ak−1 = 1, ak−2 = 1 + b1, . . ., and a1 = 1 + bk.

For example, if x0 = 38, then y0 = τ 43 = 14, x1 = x0 − y0 = 38 − 14 = 24, y1 =
τ 32 + τ 42 = 5 + 9 = 14, x2 = x1 − y1 = 24 − 14 = 10, y2 = τ 21 + τ 31 + τ 41 = 2 + 3 + 4 = 9,
x3 = x2 − y2 = 10 − 9 = 1, y3 = τ 10 = 1 and x4 = x3 − y3 = 1 − 1 = 0, so that b1 = 1,
b2 = 2, and b3 = 0, taking to a4 = 1, a3 = 1 + b1 = 2, a2 = 1 + b2 = 3 and a1 = 1 + b3 = 1,
determining the 5-word of 38 to be a4a3a2a1 = 1231. If x0 = 20, then y0 = τ 43 = 14,
x1 = x0 − y0 = 20− 14 = 6, y1 = τ 32 = 5, x2 = x1− y1 = 1, y2 = 0 is an empty sum (since its
possible summand τ 21 > 1 = x2), x3 = x2−y2 = 1, y3 = τ 10 = 1 and x4 = x3−x3 = 1−1 = 0,
determining the 5-word of 20 to be a4a3a2a1 = 1101. Moreover, if x0 = 19, then y0 = τ 43 = 14,
x1 = x0 − y0 = 19− 14 = 5, y1 = τ 32 = 5, x2 = x1 − y1 = 5− 5 = 0, determining the 5-word
a4a3a2a1 = 1100.

Given a Catalan string or k-word ak−1 · · · a1, the considerations above can easily be played
backwards to recover the corresponding decimal integer x0.

3 Descending castling

Theorem 2. To each k-word α = ak−1 · · · a1 corresponds an n-tuple F (α) whose entries are
the integers 0, 1, . . . , k (once each) together with k asterisks ∗ and such that: (a) the leftmost
entry of F (α) is k; (b) each integer entry to the immediate right of an integer entry b is an
integer less than b; in particular, F (0k−1) = k(k − 1)(k − 2) · · ·210 ∗ · · · ∗; (c) first, to each
k-word α 6= 00 · · ·0 corresponds a k-word β = bk−1 · · · b1 smaller than α in the stair-wise
order of k-words and differing from α in exactly one entry, that is bi 6= ai for just one i
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with k − 1 ≥ i ≥ 1, being β maximal under these restrictions; second, F (α) = f0f1 · · · f2k is
obtained from F (β) = g0g1 · · · g2k by the descending castling operation consisting of:

1. setting g0 = f0, g1 = f1, . . ., gi−1 = fi−1; g2k = f2k, g2k−1 = f2k−1, . . ., g2k−i+1 =
f2k−i+1;

2. denoting the i-substrings formed by the entries in item 1 by W i on the left and Z i on
the right, and writing F (β) \ (W i ∪ Z i) = X|Y , (X concatenated with Y ), with the
substring Y starting at entry ℓ− 1, where ℓ > 0 is the leftmost entry of X;

3. by noticing that F (β) = W i|X|Y |Z i, finally setting F (α) = W i|Y |X|Z i.

In order to proceed with the proof of Theorem 2, let us note that there is a rooted tree Tk
whose nodes are the k-words. In fact, Tk is associated to the stair-wise order of the k-words.
The root of Tk is 0

k−1 and any other k-word α 6= 0k−1 is a child in Tk of a k-word β that differs
from α in just one entry ai (0 < i < k). By representing Tk with the children of every k-word
α enclosed between parentheses after α and separating siblings with commas, we can write,
say for k = 4: T4 = 000(001, 010(011(012)), 100(101, 110(111(121)), 120(121(122(123))))).

Proof. In sub-item 2 of item (c), we have: (i) W i is a proper subsequence of the maximal
starting descending integer sequence W̄ such that W̄ \W i starts with ℓ, the head ofX ; (ii) Z i

is solely composed by asterisks. The k-tuple α contains precise instructions for the recursive
operation of descending castling to work as prescribed in the statement, away from those
W i and Z i equally long in F (β) and F (α): By respecting the rule that in every sequence
of applications of sub-items 1-3 along descending paths in Tk, unit augmentation of ai for
larger values of i, (0 < i < k), must occur first, and only then in descending order of i, thus
thinning the inner sub-string X|Y after each application, the resulting process effectively
preserves the stated properties, for by changing the order of the appearing sub-strings X
and Y , that have their first elements being respectively ℓ and ℓ− 1 in successive decreasing
order, the descending nature of this operation is effectively guaranteed.

Let us illustrate the descending castling operation. For k = 2, 3, 4, the k-words α are
presented in their stair-wise order in Table I, both on the left and the right columns, and
their corresponding images under F , or F -images, on the penultimate column. In each of
the three listings, each with Ck rows (C2 = 2, C3 = 5 and C4 = 14), the columns are filled,
from the second row on, as follows: (i) α, appearing in downward stair-wise order; (ii) β
as in item (c) of Theorem 2, which allows to determine the subindex i in item (iv) below,
where α and β differ; (iii) F (β), from the penultimate column in the previous row; (iv) the
only subindex i (k − 1 ≥ i ≥ 1) for which the i-th entries in α and β differ, with β as large
as possible such that β < α; (v) the decomposition W i|Y |X|Z i of F (β); (vi) the result of
the descending castling operation; (vii) the corresponding re-concatenation in the column
F (α); and (viii) again α, as F−1(F (α)).

Clearly, for each k-word α different from the zero k-word there exists a well determined
β obtained as indicated in item (c) of Theorem 2 and observable by comparing the first two
columns in Table I, which in addition highlights the sub-index i of the fourth column. On
the other hand, not all the n-tuples satisfying items (a)-(b) of Theorem 2 appear in the finite
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recursion implied by item (c). For example, β ′ = 431 ∗ 2 ∗ ∗0∗ is not image of a permissible
α for k = 4, (see Table I, for k = 4). In fact, trying to apply sub-items 1.-3. for i = 1 to β ′

would result in α′ = 42 ∗ ∗031 ∗ ∗ which does not respect item (b). For i = 2, we would have
β ′ decomposing as 43|1 ∗ 2 ∗ ∗|0∗, and since the first sub-word of the middle part starts with
1, we would like to take 0 as the second sub-word, but 0 is outside the middle part. Again
this is not a case in our treatment, as indicated in item (ii) of the proof of Theorem 2.

TABLE I

α β F (β) i W i |X | Y |Z i W i | Y |X |Z i F (α) α

0 − − − − − 210∗∗ 0
1 0 210∗∗ 1 2 | 1 | 0∗ |∗ 2 | 0∗ | 1 |∗ 20∗1∗ 1

00 − − − − − 3210∗∗∗ 00
01 00 3210∗∗∗ 1 3 | 2 | 1 0∗ ∗|∗ 3 | 1 0 ∗ ∗| 2 |∗ 310∗∗2∗ 01
10 00 3210∗∗∗ 2 32 | 1 | 0∗ | ∗∗ 32 | 0 ∗ | 1 | ∗ ∗ 320∗1∗∗ 10
11 10 320∗1∗∗ 1 3 | 20∗ | 1∗ |∗ 3 | 1 ∗ | 2 0 ∗ |∗ 31∗20∗∗ 11
12 11 31∗20∗∗ 1 3 | 1∗2 | 0∗ |∗ 3 | 0 ∗ | 1 ∗ 2 |∗ 30∗1∗2∗ 12

000 − − − − − 43210 ∗ ∗ ∗ ∗ 000
001 000 43210 ∗ ∗ ∗ ∗ 1 4|3|210 ∗ ∗ ∗ |∗ 4|210 ∗ ∗ ∗ |3|∗ 4210 ∗ ∗ ∗ 3∗ 001
010 000 43210 ∗ ∗ ∗ ∗ 2 43|2|10 ∗ ∗| ∗ ∗ 43|10 ∗ ∗|2| ∗ ∗ 4310 ∗ ∗2 ∗ ∗ 010
011 010 4310 ∗ ∗2 ∗ ∗ 1 4|310 ∗ ∗|2 ∗ |∗ 4|2 ∗ |310 ∗ ∗|∗ 42 ∗ 310 ∗ ∗∗ 011
012 011 42 ∗ 310 ∗ ∗∗ 1 4|2 ∗ 3|10 ∗ ∗|∗ 4|10 ∗ ∗|2 ∗ 3|∗ 410 ∗ ∗2 ∗ 3∗ 012
100 000 43210 ∗ ∗ ∗ ∗ 3 432|1|0 ∗ | ∗ ∗∗ 432|0 ∗ |1| ∗ ∗∗ 4320 ∗ 1 ∗ ∗∗ 100
101 100 4320 ∗ 1 ∗ ∗∗ 1 4|3|20 ∗ 1 ∗ ∗|∗ 4|20 ∗ 1 ∗ ∗|3|∗ 420 ∗ 1 ∗ ∗3∗ 101
110 100 4320 ∗ 1 ∗ ∗∗ 2 43|20 ∗ |1 ∗ | ∗ ∗ 43|1 ∗ |20 ∗ | ∗ ∗ 431 ∗ 20 ∗ ∗∗ 110
111 110 431 ∗ 20 ∗ ∗∗ 1 4|31 ∗ |20 ∗ ∗|∗ 4|20 ∗ ∗|31 ∗ |∗ 420 ∗ ∗31 ∗ ∗ 111
112 111 420 ∗ ∗31 ∗ ∗ 1 4|20 ∗ ∗3|1 ∗ |∗ 4|1 ∗ |20 ∗ ∗3|∗ 41 ∗ 20 ∗ ∗3∗ 112
120 110 431 ∗ 20 ∗ ∗∗ 2 43|1 ∗ 2|0 ∗ | ∗ ∗ 43|0 ∗ |1 ∗ 2| ∗ ∗ 430 ∗ 1 ∗ 2 ∗ ∗ 120
121 120 430 ∗ 1 ∗ 2 ∗ ∗ 1 4|30 ∗ 1 ∗ |2 ∗ |∗ 4|2 ∗ |30 ∗ 1 ∗ |∗ 42 ∗ 30 ∗ 1 ∗ ∗ 121
122 121 42 ∗ 30 ∗ 1 ∗ ∗ 1 4|2 ∗ 30 ∗ |1 ∗ |∗ 4|1 ∗ |2 ∗ 30 ∗ |∗ 41 ∗ 2 ∗ 30 ∗ ∗ 122
123 122 41 ∗ 2 ∗ 30 ∗ ∗ 1 4|1 ∗ 2 ∗ 3|0 ∗ |∗ 4|0 ∗ |1 ∗ 2 ∗ 3|∗ 40 ∗ 1 ∗ 2 ∗ 3∗ 123

One may perform sub-items 1-3 departing from a k-word β independently of a specific
α by taking a subindex i in the text of item (D) and after replacing numbers and asterisks
respectively by 0 s and 1 s, obtaining a k-work α′ provided already by the textual item (D).
Say we depart for k = 3 from F (β) = F (01) =310**2* and take i = 1. Sub-items 1-3 leads
here to F (α′) = 30 ∗ ∗21∗, which yields 0011001, a translation mod 7 of 31*20**= F (11),
obtained already in a different way in Table I.

To each F (α) corresponds a binary n-tuple φ(α) of weight k obtained by replacing each
integer entry in {0, 1, . . . , k} by 0 and each asterisk ∗ by 1. By attaching the entries of
F (α) as subscripts to the corresponding entries of φ(α), a subscripted binary n-tuple φ̄(α)
is obtained. Let ℵ(φ(α)) be given by the reverse complement of φ(α), that is

if φ(α) = a0a1 · · · a2k, then ℵ(φ(α)) = ā2k · · · ā1ā0, (2)
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where 0̄ = 1 and 1̄ = 0. A subscripted version ℵ̄ of ℵ is immediately obtained for φ̄(α).
Observe that every image under ℵ is an n-tuple of weight k + 1 and has the 1 s with integer
subscripts and the 0 s with asterisk subscripts. The integer subscripts reappear from Section 8
to Section 10 as lexical colors [13]. Table II illustrates the notions just presented, for k = 2, 3.

TABLE II

α φ(α) φ̄(α) ℵ̄(φ(α)) = ℵ(φ̄(α)) ℵ(φ(α))

0 00011 0201001∗1∗ 0∗0∗101112 00111
1 00101 02001∗011∗ 0∗110∗1012 01011

00 0000111 030201001∗1∗1∗ 0∗0∗0∗10111213 0001111
01 0001101 0301001∗1∗021∗ 0∗120∗0∗101113 0100111
10 0001011 0302001∗011∗1∗ 0∗0∗110∗101213 0010111
11 0010011 03011∗02001∗1∗ 0∗0∗10120∗1113 0011011
12 0010101 03001∗011∗021∗ 0∗120∗110∗1013 0101011

An interpretation of this related to the middle-levels graphs is started at the end of
Section 5 in relation to the subscripts 0, 1, . . . , k and concluded as Corollary 6 at the end of
Section 9.

4 The middle-levels graphs

Let 1 < n ∈ Z. The n-cube graph Hn is the Hasse diagram of the Boolean lattice on the
coordinate set [n] = {0, . . . , n− 1}. Vertices of Hn are cited in three different ways:

(a) as the subsets A = {a0, a1, . . . , ar−1} = a0a1 · · · ar−1 of [n] they stand for, where 0 <
r ≤ n;

(b) as the characteristic n-vectors BA = (b0, b1, . . . , bn−1) over the field F2 that the subsets
A represent, meaning they are given by bi = 1 if and only if i ∈ A (i ∈ [n]), and
represented for short by BA = b0b1 · · · bn−1;

(c) as the polynomials ǫA(x) = b0 + b1x+ · · ·+ bn−1x
n−1 associated with the vectors BA.

A subset A as in (a) is said to be the support of the vector BA in (b). For each j ∈ [n], the
j-level Lj is the vertex subset in Hn formed by those A ⊆ [n] with |A| = j. For 1 ≤ k ∈ Z,
the middle-levels graph Mk is defined as the subgraph of Hn induced by Lk ∪ Lk+1.

5 Quotient graphs under cyclic action

By viewing the vertices of Mk as polynomials, as in item (c) of Section 4, an equivalence
relation π is seen to exists in the vertex set V (Mk) of Mk by means of the logical expression:

ǫA(x)πǫA′(x) ⇐⇒ ∃ i ∈ Z such that ǫA′(x) ≡ xiǫA(x) (mod 1 + xn).
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Figure 1: Reflection symmetry of M2/π about a line ℓ/π and resulting graph map γ2

This implies that there exists a quotient graph Mk/π under a regular (i.e. transitive and
free) action

Υ′ : Zn ×Mk → Mk (3)

given by Υ′(i, v) = v(x)xi mod 1+xn in polynomial terms as in item (c) of Section 4, where
v ∈ V (Mk) and i ∈ Zn. Here, Mk/π is the graph whose vertices are the equivalence classes
of vertices of Mk under π and whose edges are the equivalence classes that π induces on the
edge set E(Mk) of Mk.

For example, M2/π is the domain of the graph map γ2 suggested in Figure 1 and as-
sociated with reflective symmetry of both M2/π and M2 about respective dashed vertical
lines ℓ/π and ℓ acting as symmetry axes (generalized below in Section 6) with V (M2/π) =
L2/π ∪L3/π, where L2/π = {(00011), (00101)} and L3/π = {(00111), (01011)}, each π-class
expressed between parentheses about one of its representatives written as in (b) of Section 4
and composed by the following elements (of L2/π and L3/π):

L2/π={(00011)={00011,10001,11000,01100,00110},
L3/π={(00111)={00111,10011,11001,11100,01110},

(00101)={00101,10010,01001,10100,01010}};
(01011)={01011,10101,11010,01101,10110}}.

Let k > 1 be a fixed integer. We associate with each binary weight-k n-tuple F (A) the
class (F (A)) generated by F (A) in Lk/π and the class (ℵ(F (A))) generated by ℵ(F (A)) in
Lk+1/π. These associations start the interpretation of Section 3 above to be concluded as
Corollary 6 in Section 9.

6 Reflective-symmetry graph involutions

A graph involution of a graph G is a graph map ℵ : G → G such that ℵ2 is the identity
graph map. Clearly, a graph involution is a graph isomorphism. In a way similar to the
example for k = 2 in Section 5, but now for any k ≥ 2, and in order to make explicit a
graph involution ℵ of Mk/π given by reflective symmetry, as suggested in Figure 1 about the
symmetry axis ℓ/π, we want now to list and represent vertically the vertex parts Lk/π and
Lk+1/π of Mk/π (resp. Lk and Lk+1 of Mk) by placing their vertices into pairs, each pair
displayed on an horizontal line with its two composing vertices equidistant from a dashed
vertical line ℓ/π (resp. ℓ), like the ℓ/π in the representation of M2/π in Figure 1. To specify
the desired vertex setting, the definition of ℵ in display (2) can be immediately extended
to a bijection ℵ : Lk → Lk+1, where the image of an element of Lk through ℵ is again said
to be its reverse complement. Let us take each resulting horizontal vertex pair to be of
the form (BA,ℵ(BA)) and ordered from left to right. Let ρi : Li → Li/π be the canonical
projection given by assigning b0b1 · · · bn−1 ∈ Li to (b0b1 · · · bn−1) ∈ Li/π, for i = k, k + 1,
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and let ℵπ : Lk/π → Lk+1/π be given by ℵπ((b0b1 · · · bn−1)) = (b̄n−1 · · · b̄1b̄0). Then ℵπ is a
bijection and we have the commutative identity ρk+1ℵ = ℵπρk. In what follows, we say that
a non-horizontal edge of Mk/π is a skew edge.

Theorem 3. To each skew edge e = (BA)(BA′) of Mk/π corresponds a different skew edge
ℵπ((BA))ℵ

−1
π ((BA′)) obtained from e by reflection on the line ℓ/π, which is equidistant from

(BA) = ℵ−1
π ((BA′)) ∈ Lk/π and ℵπ((BA)) = (BA′) ∈ Lk+1/π. Thus: (i) the skew edges of

Mk/π appear in pairs, having their endpoints in each pair forming two pairs of horizontal
vertices equidistant from ℓ/π; (ii) the horizontal edges of Mk/π have multiplicity ≤ 2.

Proof. With the representation adopted for the vertices of Mk , the skew edges BABA′ and
ℵ−1(BA′)ℵ(BA) ofMk are now seen to be reflection of each other about ℓ and also having their
pairs (BA,ℵ(BA)) and (ℵ−1(BA′), BA′) of endpoints lying each on a corresponding horizontal
line. Now, ρk and ρk+1 extend together to a covering graph map ρ : Mk → Mk/π, since the
edges accompany the projections correspondingly, as for example for k = 2, where:

ℵ((00011))= ℵ({00011,10001,11000,01100,00110})={00111,01110,11100,11001,10011}=(00111),

ℵ−1((01011))=ℵ−1({01011,10110,10110,11010,10101})={00101,10010,01001,10100,01010}=(00101),

showing the order of the elements in the images or preimages under ℵ of the classes mod π
as displayed in Figure 1, that is: presented backwards (from right to left), cyclically between
braces, and continuing on the right once one reaches a leftmost brace. This backwards
behavior holds for any k > 2, that is:

ℵ((b0···b2k))= ℵ({b0···b2k , b2k...b2k−1, ..., b1···b0})={b̄2k ···̄b0, b̄2k−1···̄b2k , ..., b̄1···̄b0}=(b̄2k ···̄b0),

ℵ−1((b̄′2k ···̄b
′

0))=ℵ−1({b̄′2k ···b̄
′

0, b̄
′

2k−1···b̄
′

2k , ..., b̄
′

1···̄b
′

0})={b′0···b
′

2k , b
′

2k ···b
′

2k−1, ..., b
′

1···b
′

0}=(b′0···b
′

2k),

for any vertices (b0 · · · b2k) ∈ Lk/π and (b′0 · · · b
′
2k) ∈ Lk+1/π. This establishes item (i). Now,

every edge of Mk from a vertex in ℵ−1(v) to a vertex in ℵ−1(ρ(v)), for some v ∈ Lk, projects
onto an horizontal edge of Mk, while all other edges of Mk project onto corresponding skew
edges of Mk. It is easy to see that an horizontal edge of Mk/π has its endpoint in Lk/π
represented by a vertex b̄k · · · b̄10b1 · · · bk ∈ Lk so there are 2k such vertices in Lk and less
than 2k corresponding vertices of Lk/π; for example, (0k+11k) and (0(01)k), mentioned in
Shields-Savage Lemma 3 [18], are endpoints of two horizontal edges, each in Mk/π. To prove
that this implies item (ii), we have to see that there cannot be more than two representatives
b̄k · · · b̄1b0b1 · · · bk and c̄k · · · c̄1c0c1 · · · ck of a vertex v ∈ Lk/π, with b0 = c0 = 0. Let v =
(d0 · · · b0di+1 · · · dj−1c0 · · · d2k), with b0 = di, c0 = dj and 0 < j − i ≤ k. A substring
σ = di+1 · · · dj−1 with 0 < j−i ≤ k is said to be (j−i)-feasible if v fulfills (ii) with multiplicity
at least 2. Any (j − i)-feasible substring σ forces in Lk/π only endpoints ω incident to two
different (parallel) horizontal edges inMk/π because periodic continuation mod n of d0 · · ·d2k
both to the right of dj = c0 with minimal cyclic substring d̄j−1 · · · d̄i+11di+1 · · · dj−10 = Pr
and to the left of di = b0 with minimal cyclic substring 0di+1 · · · dj−11d̄j−1 · · · d̄i+1 = Pℓ yields
a two-way infinite string that winds up onto (d0 · · · d2k), corresponding to ω. For example,
the initial feasible substrings σ, with ‘o’ indicating the positions b0 = 0 and c0 = 0, are

(∅,(oo1)), (0,(o0o11)), (1,(o1o)), (02,(o00o111)), (01,(o01o011)), ((12, o11o0)), (03,(o000o1111)),
(010,(o010o101101)), (012,(o011o)), (101,(o101o)), (13,(o111o00)),

where n has successive values n = 3, 5, 3, 7, 7, 5, 9, 11, 5, 5, 7. (However, the substrings 021
and 102 are non-feasible). If σ is a feasible substring and σ̄ is its reverse complement via ℵ,
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then the possible symmetrical substrings about oσo = 0σ0 in (the notation of) a vertex ω of
Lk/π are in order of ascending length:

0σ0,
σ̄0σ0σ̄,
1σ̄0σ0σ̄1,

σ1σ̄0σ0σ̄1σ,
0σ1σ̄0σ0σ̄1σ0,

σ̄0σ1σ̄0σ0σ̄1σ0σ̄,
1σ̄0σ1σ̄0σ0σ̄1σ0σ̄1,

etc., where we use again ‘0’ instead of ‘o’ for the entries immediately preceding and following
the shown central copy of σ. Due to this, the finite lateral periods of the resulting Pr and Pℓ do
not allow a third horizontal edge (at v in Mk) up to returning to b0 or c0 since no entry e0 = 0
of (d0 · · · d2k) other than b0 or c0 happens such that (d0 · · · d2k) has a third representative
ēk · · · ē10e1 · · · ek (besides b̄k · · · b̄10b1 · · · bk and c̄k · · · c̄10c1 · · · ck). Thus, those two horizontal
edges are produced solely from the feasible substrings di+1 · · · dj−1 characterized above.

To illustrate the ideas in the proof of Theorem 3, let 1 < h < n in Z be such that
gcd(h, n) = 1 and let the h-interspersion λh : Lk/π → Lk/π be given by λ((a0a1 · · ·an)) →
(a0aha2h · · ·an−2han−h). For each h with 1 < h ≤ k, there is at least one h-feasible substring
σ and a resulting associated vertex ω ∈ Lk/π as in the proof of the theorem. For example,
applying h-interspersion repeatedly by starting at ω = (0k+11k) ∈ Lk/π produces a number
of such vertices ω ∈ Lk/π. If we assume h = 2h′ with h′ ∈ Z, then an h-feasible substring σ

has the form σ = ā1 · · · āh′ah′ · · · a1, so there are at least 2h
′

= 2
h

2 such h-feasible substrings.

7 Quotient graphs under dihedral action

Given a graph G with an involution ℵ : G → G, a graph folding of G is a graph H whose
vertices are the pairs {v,ℵ(v)}, where v ∈ V (G), and whose edges are the pairs {e,ℵ(e)},
where e ∈ E(G). Here, e has end-vertices v and ℵ(v) if and only if e yields a loop in H ;
otherwise, e yields a link in H ([3], pg. 3). Let us denote each pair ((BA),ℵπ((BA)) of Mk/π,
horizontally represented in Section 6, via the notation [BA], where |A| = k.

A graph folding Rk of Mk/π is obtained whose vertices are the pairs [BA] and having
(1) an edge [BA][BA′] per skew-edge pair {(BA)ℵπ((BA′)), (BA′)ℵπ((BA))};
(2) a loop at [BA] per horizontal edge (BA)ℵπ((BA)). By Theorem 3, there may be up to
two loops at each vertex of Rk.

Theorem 4. Rk is a quotient graph of Mk under an action Υ : D2n ×Mk → Mk.

Proof. To define Υ, recall that D2n is the semidirect product Zn ⋊̺ Z2 via the group homo-
morphism ̺ : Z2 → Aut(Zn) given by taking ̺(1) as the automorphism assigning i ∈ Zn to
(n− i) ∈ Zn, and ̺((0) as the identity. If ∗ : D2n ×D2n → D2n indicates multiplication and
i1, i2 ∈ Zn, then (i1, 0)∗(i2, j) = (i1+i2, j), but (i1, 1)∗(i2, j) = (i1−i2, 1+j), for j ∈ Z2. Now,
set Υ((i, j), v) = Υ′(i,ℵj(v)), for i ∈ Zn and j ∈ Z2, where Υ′ was defined in display (3) of
Section 5 above. It is easy to see that Υ is a well-defined action ofD2n onMk. For example by
writing (i, j) · v = Υ((i, j), v) and v = a0 · · · a2k, we have (i, 0) · v = an−i+1 · · · a2ka0 · · ·an−i =
v′ and (0, 1) · v′ = āi−1 · · · ā0ā2k · · · āi = (n − i, 1) · v = ((0, 1) ∗ (i, 0)) · v, leading to one
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instance of the compatibility condition ((i, j) ∗ (i′, j′)) · v = (i, j) · ((i′, j′) · v) that a group
action must satisfy, (together with the identity condition) to fulfill its definition.

For example, the vertices in the 20-cycle to the right in Figure 3 of Section 11 below can
be rewritten as follows in their shown disposition, where a = 00011 and b = 11101:

Υ((3,0),a) Υ((3,1),a) Υ((4,0),a) Υ((4,1),a) Υ((0,0),a) Υ((0,1),a) Υ((1,0),a) Υ((1,1),a) Υ((2,0),a) Υ((2,1),a)

Υ((3,0),b) Υ((3,1),b) Υ((4,0),b) Υ((4,1),b) Υ((0,0),b) Υ((0,1),b) Υ((1,0),b) Υ((1,1),b) Υ((2,0),b) Υ((2,1),b)

representing a Hamilton cycle in Mk, for k = 2, invariant under the action of D2n.
Let the graph map γk : Mk/π → Rk be the corresponding projection, as represented for

k = 2 in Figure 1. Then the canonical projection ρD2n : Mk → Rk is the composition of the
canonical projection ρZk

: Mk → Mk/π with γk. We remark that Υ is regular just when Mk

is taken as a directed graph, because (undirected) edges of Mk leading to loops of Rk via
ρD2n appear that are fixed by Υ. For example R2, represented as the image of the graph map
γ2 depicted in Figure 1, contains two vertices and just one (vertical) edge between them,
where each vertex is incident to two loops. The representation of M2/π on its left has its
edges indicated with colors 0,1,2. Here, the edge ǫ = (11000, 11100) is fixed via ℵ; not so for
the each one of the two arcs composing ǫ.

In general, each vertex v of Lk/π will have its incident edges indicated with lexical colors
0, 1, . . . , k obtained by the following procedure arising from [13], so that Lk/π admits a
(k + 1)-edge-coloring with color set [k + 1] = {0, . . . , k}.

8 Kierstead-Trotter lexical procedure

For each v ∈ Lk/π there are k + 1 n-vectors of the form b0b1 · · · bn−1 = 0b1 · · · bn−1 that
represent v with b0 = 0. For each such n-vector, we take a grid Γ = Pk+1�Pk+1 ([3], pg. 29),
where Pk+1 is the subgraph of the unit-distance graph of the real line R induced by the set
[k+1] ⊂ Z ⊂ R. We trace the diagonal ∆ of Γ from vertex (0, 0) to vertex (k, k). (For k = 2,
∆ is represented by a dashed line in the instances of Figure 2, analyzed up in Section 9).
Recall that an arc of Γ is an ordered pair of adjacent vertices of Γ. Based on [13], we build
a directed 2k-path D in Γ from w = (0, 0) to w′ = (k, k) in 2k steps indexed from i = 0 to
i = 2k − 1, as follows. Initially, set i = 0 and w = (0, 0) and let D be the 0-path containing
solely w. Repeat the following loop, formed subsequently by items (1)-(3), 2k times:

b
b
b

b
b
b

b
b
b- -6
6

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

-6

-6
-6

00011→2 00110→1 01100→0

01010→0 01001→100101→2

-6

+

+

+

+

⇒ (0201001∗1∗) ⇒ (210∗∗)

⇒ (02001∗011∗) ⇒ (20∗1∗)

(00011) ⇒

(00101) ⇒

Figure 2: Representing the color assignment for k = 2
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(1) If bi = 0 (resp., bi = 1), then set w′ := w + (1, 0) (resp., w′ := w + (0, 1)).

(2) Augment the i-path D by means of the arc (w,w′) of Γ into an (i + 1)-path, again
denoted D; in other words, reset D := D ∪ (w,w′); subsequently, set i := i + 1 and
w := w′.

(3) If w 6= (k, k), or equivalently, if i < 2k, then go back to item (1).

(4) Set v̄ ∈ Lk+1/π as a vertex of Mk/π adjacent to v ∈ Lk/π and obtained from a
representative b0b1 · · · bn−1 = 0b1 · · · bn−1 of v by replacing the entry b0 of v by b̄0 = 1
in v̄, keeping the entries bi of v with i > 0 unchanged in v̄.

(5) Set the color of the edge vv̄ to be the number c of horizontal (alternatively vertical)
arcs of D below the diagonal ∆ of Γ.

We remark that [13] highlighted the number k + 1 − c, where c varies in [k + 1], instead of
establishing a well-defined 1-1 correspondence between [k + 1] and the set of edges incident
to v in Lk/π, as we do here. In fact, if addition and subtraction in [n] are taken modulo n
and we write [y, x) = {y, y+1, y+2, . . . , x−1}, for x, y ∈ [n], and Sc = [n] \S, for S = {i ∈
[n] : bi = 1} ⊆ [n], then the cardinalities of the sets {y ∈ Sc \ x : |[y, x) ∩ S| < |[y, x) ∩ Sc|}
yield all the numbers k+1− c in 1-1 correspondence with our colors c, where x ∈ Sc varies.

As in [13], the lexical procedure (or LP for short) just presented yields 1-factorizations
of Rk, Mk/π and Mk by means of the edge colors c = 0, 1, . . . , k. This lexical approach is
compatible with the graphs Mk/π and Rk, because each edge e of Mk has the same lexical
color in [k + 1] for both arcs composing e.

9 Ascending castling

In what follows, a color notation δ(v) is set for each vertex v in Lk/π. In fact, there
exists a unique k-word α = α(v) with [F (α)] = δ(v). We start by representing the lexical
color assignment suggested in Figure 2 for k = 2, with the LP indicated by arrows “⇒”
departing from v = [00011] (top) and v = [0010] (bottom) then going to the right via
depiction of working sketches of V (Γ) (separated by plus signs “+”) for each of the three
representatives b0b1 · · · bn−1 = 0b1 · · · bn−1 (shown as a subtitle for each sketch, with the entry
b0 = 0 underscored) in which to trace the arcs of D ⊂ Γ below ∆, and finally pointing, via
an arrow “→” departing from the representative b0b1 · · · bn−1 = 0b1 · · · bn−1 in each sketch
subtitle, the number of horizontal arcs of D below ∆. Only arcs of D ⊂ Γ are traced on
each sketch of V (Γ), with those below ∆ indicated as darts in bold trace, and the remaining
ones as segments in thin trace.

In each of the two cases in Figure 2, to the right of the three sketches, an arrow “⇒” points
to an unparenthesized modification of the notation (b0b1 · · · bn−1) of v obtained by setting as
a subindex of each entry 0 the color obtained from its corresponding sketch, and an asterisk
“∗” for each entry 1. Further to the right of this subindexed version of v, another arrow
”⇒” points to the string of length n formed solely by the just established subindexes in the
order they appear from left to right. This final notation is indicated by δ(v). For each such
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δ(v), there is a unique k-word α = α(v) with (F (α)) = δ(v), a fact whose proof depends on
the inverse operation to descending castling in Section 3, that we may call ascending castling
and that can be presented as follows:

Given an n-tuple v in Lk/π, let W
i = k(k − 1) · · · (k − i) be the maximal initial (i+ 1)-

substring of δ(v) = δ0(v), where 0 ≤ i ≤ k. If i = k, then let α(v) = [00 · · ·0] consist of
k − 1 zeros. Else, write δ0(v) = [W i|X|Y |Z i], where Z i is a j0-substring with j0 = i + 1,
and X, Y start respectively at two integers ℓ and ℓ + 1 ≤ k − i. Let δ1(v) = [W i|Y |X|Z ]).
If δ1(v) = [k(k − 1) · · · 10 ∗ · · · ∗], then let α(v) differ from ak−1 · · ·α1 = 00 · · ·0 just by unit
incrementation of aj0. Else, repeat the procedure above starting at δ1(v), and so on. In the
end, we obtain a finite sequence δ0(v), δ1(v), . . . , δs(v) of n-tuples in Lk/π with parameters
j0 ≥ j1 ≥ . . . ≥ js and k-words α(v0), α(v1), . . . , α(vs) = 00 · · ·0 and obtain α(v) = α0(v)
from αs(v) = 00 · · ·0 = ak−1 · · ·α1 by unit incrementation of each aji, for i = 0, . . . , s,
with each such incrementation yielding the corresponding α(vi). Now, observe that F is a
bijection between the set of k-words and the set Lk/π, both of cardinality Ck. This shows
that in order to work with V (Rk) is enough to deal with the set of k-words, a fact useful in
interpreting Theorem 5 below.

Take for example δ0(v) = [40 ∗ 1 ∗ 2 ∗ 3∗] = [4|0 ∗ |1 ∗ 2 ∗ 3|∗]. Then,

j0=0,
j1=0,

δ1(v)
δ2(v)

=
=

[4|1∗2∗3|0∗|∗]
[4|2∗30∗|1∗|∗]

=
=

[41∗2∗30∗∗]
[42∗30∗1∗∗]

=
=

[4|1∗|2∗30∗|∗],
[4|2∗|30∗1∗|∗],

j2=0,
j3=1,

δ3(v)
δ4(v)

=
=

[4|30∗1∗|2∗|∗]
[43|1∗2|0∗|∗∗]

=
=

[430∗1∗2∗∗]
[431∗20∗∗∗]

=
=

[43|0∗|1∗2|∗∗],
[43|1∗|20∗|∗∗],

j4=1,
j5=2,

δ5(v)

δ6(v)
=
=

[43|20∗|1∗|∗∗]
[432|1|0∗|∗∗∗]

=
=

[4320∗1∗∗∗]
[43210∗∗∗∗],

= [432|0∗|1|∗∗],

yielding α(v) = α(v0) = 123, with the α(vi) s corresponding to the formed rows being α(v1) =
[122], α(v2) = [121], α(v3) = [120], α(v4) = [110], α(v5) = [100] and α(v6) = α(vs) = [000].

Thus, the function F that sends the k-words onto their corresponding n-tuples F (α) in
Section 3 happens to provide a backbone relating the succeeding applications of the LP to
the elements of Lk/π, finally covering all of Lk/π. A pair of skew edges (BA)ℵπ((BA′)) and
(BA′)ℵ((BA)) in Mk/π is said to be a skew reflective edge pair. This provides a color notation
for any v ∈ Lk+1/π such that in each particular edge class mod π:

(1) each edge receives the same color regardless of the endpoint on which the LP or its
modification for v ∈ Lk+1/π is applied;

(2) each skew reflective edge pair in Mk/π is assigned a sole color in [k + 1].

The modification in item (1) consists in replacing in Figure 2 each v by ℵπ(v) so that on the
left we have now instead (00111) (top) and (01011) (bottom) with respective sketch subtitles

00111→2,
01011→2,

10011→1,
10101→0,

11001→0,
01101→1,

resulting in similar sketches when the rules of the LP are taken with right-to-left reading-
and-processing of the entries on the left side of the subtitles (before the arrows ”→”), where
now the values of each bi must be taken complemented.

Since a skew reflective edge pair in Mk determines a unique edge ǫ of Rk (and vice versa),
the color received by this pair can be attributed to ǫ, too. Clearly, each vertex of Mk or
Mk/π or Rk defines a bijection between its incident edges and the color set [k + 1]. The
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edges obtained via ℵ or ℵπ from these edges have the same corresponding colors because of
the LP.

Theorem 5. A 1-factorization of Mk/π formed by the edge colors 0, 1, . . . , k is obtained via
the LP. This 1-factorization can be lifted to a covering 1-factorization of Mk and can further
be collapsed onto a folding 1-factorization of Rk which induces a color notation δ(v) on each
of its vertices v. Moreover, for each v ∈ V (Rk) and induced notation δ(v), there is a unique
k-word α = α(v) such that [F (α)] = δ(v).

Proof. As pointed out in item (2) above, each skew reflective edge pair in Mk/π has its edges
with the same color in [k + 1]. Thus, the [k + 1]-coloring of Mk/π induces a well-defined
[k + 1]-coloring of Rk. This yields the claimed collapsing to a folding 1-factorization of Rk.
The lifting to a covering 1-factorization in Mk is immediate. The arguments above in this
section and from Section 3 determine that the collapsing 1-factorization in Rk induces the
k-word α(v) claimed in the statement.

Corollary 6. Lk/π and Lk+1/π can be represented respectively by the resulting classes
(F (A)) and (ℵ(F (A))).

Proof. The corollary follows from Theorem 5 and its preceding discussion.

10 Lexically colored adjacency tables

From now on and justified by Theorem 5, we use the color notation δ(v) for the vertices v of
Rk with no enclosures in parentheses or brackets as above. Furthermore, we consider a lexi-
cally colored adjacency table for Rk in which the vertices F (α) of Rk are expressed via their
notation α, and with the order of such α s taken stair-wise, as agreed before Observation 1.
According to this, we view Rk as the graph whose vertices are the k-words α and whose
adjacency is inherited from that of their δ-notation in Rk via pullback by F−1 (namely, via
ascending castling). In writing elements of Rk, we avoid now parentheses or brackets.

In Table III, examples of such disposition are shown for k = 2 and 3. Notice that the
neighbors of each F (α) in the second column are presented as F 0(α), F 1(α) , . . ., F k(α)
respectively for the colors 0, 1, . . . , k of the edges incident to them, where the notation is
given via the direct effect of the function ℵ. The last four columns yield the k-words α0, α1,
. . ., αk associated via F−1 respectively with the listed neighbor vertices F 0(α), F 1(α) , . . .,
F k(α) of F (α) in Rk.

TABLE III

α F (α) F 0(α) F 1(α) F 2(α) F 3(α) α0 α1 α2 α3

0 210 ∗ ∗ 210 ∗ ∗ 20 ∗ 1∗ 1 0 ∗∗2 − 0 1 0 −
1 20 ∗ 1∗ 1 ∗ 20∗ 210 ∗ ∗ 0∗1∗ 2 − 1 0 1 −

00 3210∗∗∗ 3210∗∗∗ 320∗1∗∗ 310∗∗2∗ 210∗∗∗ 3 00 10 01 00
01 310∗∗2∗ 2∗310∗∗ 2∗30∗1∗ 3210∗∗∗ 1∗20∗∗ 3 01 12 00 11
10 320∗1∗∗ 31∗20∗∗ 3210∗∗∗ 30∗1∗ 2∗ 20∗1∗∗ 3 11 00 12 10
11 31∗20∗∗ 320∗1∗∗ 20∗∗31∗ 31 ∗20∗∗ 10∗∗2∗ 3 10 11 11 01
12 30∗1 ∗2∗ 1∗2∗30∗ 2∗310∗∗ 320∗1∗∗ 0∗1∗2∗ 3 12 01 10 12
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For k = 4, observe in Table IV the resulting stair-wise adjacency disposition. In general,
for any k > 1, the columns αi of the stair-wise adjacency table preserve their respective
j-th entries (taken from right to left, so j = k, k − 1, . . . , 2, 1) in the following way: j(α0) =
k, j(α2) = k, j(α3) = k − 1, . . . , j(αk−1) = 2, j(αk) = 1, while we do not have such a
simple entry invariance rule for column α1. A further analysis of the relation between α and
each of α1, . . . , αk−1 proceeds in [8], Sections 2-7, in terms of k-words, as in Table IV.

TABLE IV

α
−−

α0

−−
α1

−−
α2

−−
α3

−−
α4

−−
000
001

000
001

100
101

010
012

001
000

000
011

010
011

011
010

121
120

000
011

112
111

110
001

012
100

012
110

123
000

001
120

110
101

122
100

101
110

112
100

001
111

123
110

100
012

121
010

111
112

111
101

110
122

122
112

011
010

111
112

120
121

122
121

011
010

100
121

123
122

120
101

122
123

120
123

112
012

111
101

121
120

012
123

−− −−
3∗∗

−−
∗∗∗

−−
3∗∗

−−
∗2∗

−−
∗∗1

For every k > 1, each color defines an involution, as displayed in Table V, where fixed
points are enclosed in parentheses, the remaining cycles are all transpositions and such fixed
points and transpositions between columns α and αi in the tables above are presented after
a corresponding header “i:”.

TABLE V

k=2 0:(0)(1); k=3 0:(00)(01)(12)(10 11);
1:(0 1); 1:(11)(00 10)(01 12);
2:(0)(1); 2:(11)(00 01)(10 12);

3:(00)(10)(12)(01 11);

k=4 0:(000)(001)(012)(111)(121)(123)((010)(011)(100 110)(101 112)(120 122);
1:(000)(100)(001)(101)(010 121)(011 120)(012 123)(110 111)(112 122);
2:(011)(110)(112)(121(000 010)(001)(012)(100 120)(101 123)(111 122);
3:(000)(001)(010)(112)(011 111)(012 110)(100 101)(120 123)(121 122);
4:(000)(100)(111)(112)(120)(123)((001 011)(010 110)(012 122)(101 121).

11 On sorting Shields-Savage Hamilton paths

Inspired in the construction technique considered by the author and his students in [6, 7],
Shields and Savage showed in their Lemma 3 [18] that a Hamilton path ξk in Rk starting at
[F (0k−1)] = [0k+11k] and ending at [F (12 . . . k)] = [0(01)k] exists that determines a Hamilton
cycle ηk in Mk invariant under Υ (Theorem 3 in Section 7), thus constituting a Hamilton
cycle placed in a dihedrally symmetric fashion in Mk, meaning it is invariant under the
dihedral-group action.

First, we pull back ξk via the inverse image γ−1
k (of γk in Section 7) onto a Hamilton

cycle ζk in Mk/π invariant under Υ′ (Section 5), where a loop at each end of ξk lifts onto
its corresponding parallel edge in Mk/π. Second, we pull ζk back via ρ−1

Zn
onto a ηk in Mk

invariant under Υ.
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For example, the reflection about ℓ on the left of Figure 3 is used to transform ξ2 first
into a Hamilton cycle ζ2 of M2/π invariant under the action of Z2 induced by ℵ, represented
on the figure, and then into a path of length 2|V (R2)| = 4 starting at 00101 = x2 + x4 and
ending at 01010 = x+ x3, in the same class mod 1 + x5, that can be repeated five times to
form a Hamilton cycle η2 invariant under Υ, represented on the rest of the figure.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

� �

b 00011

00111

00101

01011

00110
01110

01010

10110

01100
11100

10100

01101

11000
11001

01001

11010

10001
10011

10010

10101

ℓ

b

b

b

bb(00011)

(00111)

(00101)

(01011)

ℓ

Figure 3: Hamilton cycles in M2/π and M2

In the same way and again due to Lemma 3 [18], a Hamilton cycle ηk in Mk invariant
under the action of D2n is guaranteed by the determination of a Hamilton path ξk in Rk

from vertex δ(0k+11k) = k(k− 1) · · · 21 ∗ · · · ∗ to vertex δ(0(10)k) = k0 ∗ 1 ∗ 2 ∗ · · · ∗ (k− 1)∗.
A Shields-Savage Hamilton path ξk offers the finite sequence of colors of successive edges in
ξk as a succinct code for the Hamilton cycle ηk. We can describe ξk via the sequence of its
edge colors, or admissible color sequence. Table VI exemplifies in detail such sequences for
k = 2, 3, namely: c210 = 1 and c310c

3
20
c330c

3
40

= 1031, where i0 indicates the order of presentation
in which the color cki0 is selected.

TABLE VI

i0 αi0
F (αi0

) ψ(αi0
) ψ̄(αi0

) ℵ(ψ̄(αi0
)) ℵ(ψ(αi0

)) ck
i0

10
20

0
1

210∗∗
20∗1∗

00011
01011

0201001∗1∗
0∗110∗1012

0∗0∗101112
02001∗011∗

00111
00101

1

10
20

00
10

3210∗∗∗
320∗1∗∗

0000111
0010111

030201001∗1∗1∗
0∗0∗110∗101213

0∗0∗0∗10111213
0302001∗011∗1∗

0001111
0001011

1
0

30
40

11
01

31∗20∗∗
310∗∗2∗

0010011
1010011

03011∗02001∗1∗
130∗100∗0∗1011

0∗0∗10120∗1113
01001∗1∗011∗03

0011011
0011010

3
1

50 12 30∗1∗2∗ 1010010 1∗021∗03001∗01 110∗10130∗120∗ 1011010

In fact, the feasible admissible color sequences for k = 2, 3, 4 are lexically sorted, that
is ordered according to the Kierstead-Trotter 1-factorization, from top to bottom and then
from left to right, as shown in Table VII.

TABLE VII

k=2:
−−−−

1±
−−−−

k=4: 1013101314121
1013103130121

1032103132313
1032141312313

1201041413421
1201314143131

1203130143131
1203403413421+

k=3: 1031+
2302−

1213141310121
1213143134121

1214103132131
1214141312131

1214231213142
1214231231302

1303132132413
1341312132413

2140102013421
2140121021421

2140123423023
2140142431023

2304302013421
2304321021421

2304323423023
2304342431023

3103132312031
3141312312031

3230213213142
3230213231302

3230303132313
3230341312313

3231301310323
3231303134323

3241041031023
3241314301313

3243130301313
3243403031023

3412303132131
3412341312131

3431341314323−
3431343130323

Indicated in the rows of Table VII with a sign ± to the right are their admissible color
sequences for which the corresponding sequences of succeeding k-words form a maximum
(+) and a minimum (−) according to the stair-wise order (or α ordering) of the k-words
involved in the sequences. This illustrates the notions of stair-wise sorting and extremality
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for the admissible color sequences, to be compared with the lexical sorting and corresponding
extremality in the previous paragraph. For k = 3, 4, the corresponding α-ordering extrema
are as follows:

00 (1) 10 (0) 11 (3) 01 (1) 12+
00 (2) 01 (3) 11 (0) 10 (2) 12−
000 (1) 100 (2) 120 (0) 122 (3) 121 (4) 101 (0) 112 (3) 010 (4) 110 (1) 111 (3) 011 (4) 001 (2) 012 (1) 123+
000 (3) 001 (4) 011 (3) 111 (1) 110 (3) 012 (4) 122 (1) 112 (3) 010 (1) 121 (4) 101 (3) 100 (2) 120 (3) 123−

where succeeding k-words are separated by adjacency colors expressed between parentheses,
so that by concatenating from left to right the contents of those parentheses yields the
corresponding admissible color sequence. On the other hand, the minimum and maximum
of the admissible color sequence for k = 5 are

10102010120101043010120103421313101010121;
45453545435454512545435452134242454545434.

Lexical extremality as above yields for k = 5 the contents of Table VIII.

TABLE VIII

0000 (1) 1000 (2) 1200 (3) 1230 (0) 1233 (4) 1231 (0) 1232 (3)
1221 (5) 1211 (0) 1222 (1) 1120 (4) 1123 (5) 1223 (3) 1212 (4)
1010 (5) 1210 (3) 1220 (1) 1122 (4) 1121 (3) 0121 (2) 0010 (1)
1011 (5) 1001 (2) 1201 (1) 0112 (3) 1112 (4) 1110 (0) 1111 (3)
0122 (0) 0120 (3) 1100 (4) 0101 (2) 0001 (5) 0011 (4) 0111 (2)
0110 (0) 0100 (4) 1101 (3) 0123 (2) 0012 (1) 1012 (2) 1234+
0000 (4) 0001 (5) 0011 (0) 0010 (5) 0110 (4) 0012 (5) 0122 (2)
0112 (0) 0101 (4) 1100 (5) 0100 (4) 1101 (5) 0121 (3) 1121 (0)
1010 (3) 1000 (4) 1001 (5) 1011 (0) 1120 (4) 1123 (0) 1012 (4)
1210 (2) 1211 (0) 1222 (5) 1112 (0) 1122 (3) 0111 (5) 1111 (0)
1110 (2) 1221 (3) 1232 (2) 1212 (3) 1223 (4) 0120 (5) 1220 (4)
0123 (5) 1233 (4) 1231 (5) 1201 (4) 1200 (3) 1230 (4) 1234−
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