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A path, P, of length n from (zg,yg) to (x,y)
with step set S is a sequence of points in the
plane,

(CC07 yO)a (xla yl)a (CC27 y2)7 sy (xna yn) — (x7 y)
such that all (z;41 —x;,y;41 — i) € S.

The points are called vertices. The height of
a vertex, v, is the ordinate of that point. A
path, P, is positive if each of its vertices has
nonnegative height.

Dyck paths are positive paths from (0,0) to
(2n,0) with § = {(1,1),(1,—-1)}. Below are
the five Dyck paths of length 6.
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A (rooted) plane tree or tree, T, is a con-
nected graph with no cycles, where one vertex
IS designated as the root.

The five plane trees on 4 vertices:

A plane m-ary tree is a plane tree in which
every vertex (including the root) has degree O
or m.

The five binary (or 2-ary) trees with 6 edges:
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Let D,, denote the set of all Dyck paths of
length 2n. Let A,, denote the set of all plane
trees with n edges.

Dul=la= (7 @
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The nth Catalan number, %_H(Qn") is denoted
cn, and

0
C(z) = > cnz"
n=0
is called the Catalan function. We have that

C(z) =14 2C2(2)

and

1 —+v1-—-42

Clz) = 2z




The nth Catalan number, ¢, = #(QR”) is the
number of;:

e triangulations of a convex (n+ 2)-gon into
n triangles with n — 1 nonintersecting (ex-
cept at a vertex) diagonals,

e planted (i.e., degree of the root is 1) plane
trees with 2n + 2 vertices where every non-
root vertex has degree 0O or 2,

e Dyck paths from (0,0) to (2n 4+ 2,0) with
no peak at height 2,

e noncrossing partitions of [n].



Definition 1. The Central Binomial function,
B(z), is the generating function for the central
binomial coefficients, <2n”> That is,

o0

2n 1
B(z) = 2" =

Definition 2. The Fine function, F(z), is the
generating function for the Fine numbers,

1,0,1,2.6,18,57,186, ...

L n_ 1—+/1—4z
F<Z>—n§c)f”z ~ 2(3—/1-4z)

Definition 3. The Motzkin function, M(z), is
the generating function for the Motzkin num-
bers 1,1,2,4,9,21,51,127,323, ...

1—z—/1—2z— 322
2z

M(z) = Y mpz" =

n=0



Identity 1. B(z) = 14 22C(2)B(2)

Identity 2. F(z) = 14?;(5)(2)

- 1 2
Identlty 3. M(Z) —_ l—ZC ((]_i—z)Q)
B(z) counts paths from (0,0) to (2n,0) with

F'(z) counts Dyck paths with no hills and plane
trees with no leaf at height 1.

M (z) counts the number of positive paths from
(0,0) to (n,0) using S = {(1,1),(1,0),(1,-1)},
and the number of plane trees with n edges
where every vertex has degree < 2.



Let 7,, denote the set of all positive paths from
(0,0) tosome (3n,0) with S = {(1,1),(1,—2)}.
We call these paths ternary paths.
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Theorem 1. Let T(z) = Y00 5tnz™. Then:

(i.) T(2) =1+ 2T3(2)
(ii.) tn = 51 ()

A generalized t-Dyck path is a positive path
from (0,0) to ((t+1)n,0) with S = {(1,1),(1,—¢t)}.



The ternary numbers, ﬁ(?) also count:

e positive paths starting at (0,0) and ending
at (2n,0) using steps in

{(1,1),(1,-1),(1,-3),(1,-5),(1,=7),..., };

e rooted plane trees with 2n edges where ev-
ery vertex (including the root) has even de-
gree (referred to as “even trees"”);

e dissections of a convex 2(n 4 1)-gon into
n quadrangles by drawing n — 1 diagonals;

e Noncrossing trees on n + 1 points;
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e rooted plane trees with 3n edges where ev-
ery node (including the root) has degree
zero or three (called ternary trees)

The three ternary trees with 6 edges:
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Definition 4. An infinite lower triangular ma-

trix, L = (lnk)n o 5 @ Riordan matrix if

there exist generating functions g(z) = Y. gnz",

f(z) = X fnz", fo = 0, fi1 # 0 such that
In.0 = gn and Ypsi by k2™ = g(2) (F(2))F.

L is called Riordan and we write L = (g(z), f(2)),
or simply L = (g, f).

Example 1.
1
1 1
2 2 1
o 5 5 3 1

42 42 28 14 5 1
132 132 90 48 20 6 1
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Theorem 2. (Chung, Feller) Let c,; denote
the number of paths from (0,0) to (2n,0) with
steps in {(1,1),(1,—1)} such that k up steps lie

above the z-axis, k = 0,1,...,n. Then ¢, | =
cn = 41(5"), independently of k.

Theorem 3. Let w, ; be the number of paths
from (0,0) to (3n, O) with steps in {(1,1),(1,—-2)}
such that k up steps lie above the xz-axis,

k=0,1,...,2n. Then u, k_tn_2n1+1(3”)

Proof:
z <> an up step

y <> an up step above the x-axis

Uly,2) = > upgy"2"
0<k<n

T(22)
1 —W(y,z2)

U(y,z) =
where
W(y, 2) = y22°T2(y%22)T(2%) +yz°T(y°2%)T?(22)
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Theorem 4. The function N(z) = Z(?)z”
counts

(i.) paths in Z x Z starting at (0,0) and ending
at (3n,0) using steps in {(1,1),(1,-2)}, and

(ii.) even trees with 2n edges and one distin-
guished vertex.

Theorem 5.
(i.) N(z) =14+ 32T2(2)N(2)

(ii.) N(2)T5(z) = ¥ (3“+S)zn

n=0 n

Proof: (i) Note & (zT(zz)) = N(z2)
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Theorem 6. (i.) The “Motzkin analogue”,
Mr(z), satisfies

Mp(2) = 142422°45234+13244362°41042°+ ...

= 14 2Mp(2) + 2°M2(2) + 23 M3(2)

(ii.) My (z) counts positive paths from (0,0)
to (na O) USing {(17 1)7 (17 _1)7 (17 _2)7 (17 O)}

Theorem 7. (i.) The “Fine Analogue,” Fr(z)
satisfies

1
Fr(z) = 1+ 2z — 2T2(2)
_ Fp(2)
T == ZFr(2)

(ii.) Fpr(z) counts ternary paths with no bumps.
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Theorem 8. The expected number of returns
for generalized Dyck paths from (0,0) to

((t+ 1)n,0) is

(t+2)n
tn + 2

with variance

2tn(n — 1) ((t+ 1)n+ 1)
(tn + 2)2(tn + 3)

Proof: Let Y(n) denote the number of re-
turns. Let py(n) denote the probability that a
randomly chosen path of length (¢+1)n has m
returns. Then

Py ) (2) 1= > pm(n)z"
m=0

. t(tn + 1)
@+ D+ —1)
The limiting distribution of Y (n) is negbin(2, t%)-

zF(2,1-n;2—(+1)n; z)
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Theorem 9. (Woan, Rogers, Shapiro) The sum
of the areas of all strict Dyck paths of length
on is 471,

Theorem 10. (Kreweras/Merlini et al./Chapman)
The sum of the areas of all Dyck paths of

: 1/2n+2
length 2n is 4™ — 5( nn—l-l )

Let D,, denote the set of Dyck paths of length
2n. Define the area of D € Dy, a(D), to be
the area of the region bounded by D and the
T-axXis.

Let B,, denote the set of all plane binary trees
with 2n edges. Let B € B,,. Define the total
weight of B, w(B) by

w(B) := Y _ hgt(v)

veB

Theorem 11. For all n € N,

Y wB)=2 > a(D)

BeB, DeDy,
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Let S,, denote the set of all ternary paths in 7,
with exactly 1 return (strict ternary paths).

Let a® (resp. al) denote the total area of the
region bounded by the paths of S, (resp. 7p)
and the z-axis.

Let hy, (resp. hf%k) denote the number of

points in S, NZ x Z (resp. T, NZ x 7Z) which
have height k.
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Theorem 12. Let Hj(z) = Y>> h; 2" and
Hj(2) = Y90 hy, 2

(i)
5] g |
Hi(z)=> (" . 7)T3 ()"
j=0 J
T3(£5)
. 3 . k 1 z 1—=2
=GN 5 1
(ii.)
5] p |
Hi(z)=> (7 1) T3 ) IT%(2)
j=0
2T3(1“"_22)

(ZT3(Z))k—I—2 1—=z
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Let W,, denote the set of all ternary trees with
3n edges.

Conjecture 1. For all n € N,

Let t(k,n) denote the total number of vertices
at height k& in W, and 7(y, 2) = Y t(k,n)y"z".
Then

d . 32T73(2)
d_y(T(y,Z)Ny:l - (1 . 3ZT2(Z))2

= 32+ 27224+ 20723 + 15062% 4+ 106922° + . ..
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Given a sequence {an}o’ 4, define

ag Ag4+1 At - Opdk—1

. ag4+1 Ag42 Qg3 Gpk
A, = | ag4o ag+3  Ag44q4  c Apdg k41
Apnt+k—1 and4-k Andk+1 - A2ptk—2

Theorem 13. (Gronau et al.) Let p;; be the
number of paths leading from a; to bj in G,
let p+ be the number of disjoint path systems
W in (G, A, B) for which (W) is an even per-
mutation, and let p— be the number of such
systems with for which (W) is odd. Then

det(p;;) = pT —p.

Let QF be the family of all sets of pairwise
vertex disjoint paths in G, &, &1, ..., &—1,
such that ¢, joins (—34,0) with (3(: + k),0),
1 =0,1,...,n—1. The theorem implies that

Al = |QF)
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When k=1, n = 3, we have

1 3 12
Qi|=4}=|3 12 55
12 55 273

= 26

The corresponding vertex disjoint path systems

are

TN A

mg
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n AQ Al
0 1 1
1 2 3
2 11 26
3 170 646
4 7429 45,885
5 920,460 9,304,650
6 | 323,801,820 | 5,382,618,658

Theorem 14. (U. Tamm)

n—l . . .
o _ 1 B3+ 1)(65)!(25)!
n _JEO (45 4+ 1)!(45)!

ao pp 020

=20

Question 1. What about Ak for k > 27



Definition 5. An alternating sign matrix is a
square matrix of 0s, 1s, and -1s for which

e the entries of each row and each column
sum to 1,

e the non-zero entries of each row and each
column alternate in sign.

Example 2.

OOr OO

|

[

O
O~ OO0OO
OOr OO
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Conjecture 2. (Stanley/Mills, Robbins, Rum-
sey)

Let F(2n+1) denote the number of (2n+1) x
(2n 4+ 1) alternating sign matrices which are
invariant under a reflection about the vertical
axis.

(5
F(2n+1) = :
( ) jl;Il 2(4£;1)

Question 2. Is there a bijection between ver-
tex disjoint ternary path systems and alternat-
ing sign matrices invariant under vertical re-
flection?
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