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Enumerative combinatorics

Enumerative combinatorics deals with the bag of tricks used by mathematician
to count the number of objects in a set - very often by setting up a bijection
(or 1-1 correspondence) with some other set one can count. Here are two of
my favourite examples:
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Enumerative combinatorics

Enumerative combinatorics deals with the bag of tricks used by mathematician
to count the number of objects in a set - very often by setting up a bijection
(or 1-1 correspondence) with some other set one can count. Here are two of
my favourite examples:
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Proof.

(a) Among all possible Indian cricket teams, consider those that include
Sehwag and those that do not.
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Enumerative combinatorics

Enumerative combinatorics deals with the bag of tricks used by mathematician
to count the number of objects in a set - very often by setting up a bijection
(or 1-1 correspondence) with some other set one can count. Here are two of
my favourite examples:
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Proof.

(a) Among all possible Indian cricket teams, consider those that include
Sehwag and those that do not.

(b) To pick a cricket team and a captain, you can either first pick the team and
then the captain (like the Aussies) or first pick the captain and then the rest of
the team (like the English). 2
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Catalan Numbers

This talk is about the quite amazing sequence of Catalan numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, ...

named after the Belgian mathematician Eugène Charles Catalan (1814-894) -
which arises in numerous contexts.
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Catalan Numbers

This talk is about the quite amazing sequence of Catalan numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, ...

named after the Belgian mathematician Eugène Charles Catalan (1814-894) -
which arises in numerous contexts.

The book Enumerative Combinatorics: Volume 2 by combinatorial
mathematician Richard P. Stanley contains a set of exercises which describe 66
different sequences of sets with the property that the n-th set of each collection
has the same number Cn of objects. (See
http://www-math.mit.edu/ rstan/ec/catalan.pdf)
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Catalan Numbers

This talk is about the quite amazing sequence of Catalan numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, ...

named after the Belgian mathematician Eugène Charles Catalan (1814-894) -
which arises in numerous contexts.

The book Enumerative Combinatorics: Volume 2 by combinatorial
mathematician Richard P. Stanley contains a set of exercises which describe 66
different sequences of sets with the property that the n-th set of each collection
has the same number Cn of objects. (See
http://www-math.mit.edu/ rstan/ec/catalan.pdf)

Here are some examples, illustrated for n = 3:

(i) Cn is the number of ‘acceptable arrangements’ of n pairs of parentheses (so
that every ‘(’ precedes its matching ‘)’:

((())) ()(()) ()()() (())() (()())
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Catalan Numbers

This talk is about the quite amazing sequence of Catalan numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, ...

named after the Belgian mathematician Eugène Charles Catalan (1814-894) -
which arises in numerous contexts.

The book Enumerative Combinatorics: Volume 2 by combinatorial
mathematician Richard P. Stanley contains a set of exercises which describe 66
different sequences of sets with the property that the n-th set of each collection
has the same number Cn of objects. (See
http://www-math.mit.edu/ rstan/ec/catalan.pdf)

Here are some examples, illustrated for n = 3:

(i) Cn is the number of ‘acceptable arrangements’ of n pairs of parentheses (so
that every ‘(’ precedes its matching ‘)’:

((())) ()(()) ()()() (())() (()())

(ii) Cn is the number of strings of n R’s and n U’s so that each initial substring
has at least as many R’s as U’s.

RRRUUU RURRUU RURURU RRUURU RRURUU
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Monotonic paths and non-crossing partitions

(iii) Cn is the number of monotonic paths from (0, 0) to (n, n) consisting of 2n

steps which go to the right or go up by one unit, and which (are ‘good’ in that
they) never cross (but may touch) the diagonal y = x .
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Monotonic paths and non-crossing partitions

(iii) Cn is the number of monotonic paths from (0, 0) to (n, n) consisting of 2n

steps which go to the right or go up by one unit, and which (are ‘good’ in that
they) never cross (but may touch) the diagonal y = x .

(iv) Cn is the number of non-crossing pair partitions of {1, 2, · · · , 2n}
1 23 3 3 3 31 2 21 1 2 2 1

444 44 55555 66666
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Monotonic paths and non-crossing partitions

(iii) Cn is the number of monotonic paths from (0, 0) to (n, n) consisting of 2n

steps which go to the right or go up by one unit, and which (are ‘good’ in that
they) never cross (but may touch) the diagonal y = x .

(iv) Cn is the number of non-crossing pair partitions of {1, 2, · · · , 2n}
1 23 3 3 3 31 2 21 1 2 2 1

444 44 55555 66666

(v) Cn is the number of non-crossing partitions of {1, 2, · · · , n}
1 1 1 1 1

2 2 2 2 2

3333 3
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The formula
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for n ≥ 0. (1)

For our proof, We shall use the formulation (iii) in terms of monotonic paths.
For points m = (m1, m2) and n = (n1, n2) with integer coordinates (in the
plane), let us write P(m, n) for the set of monotonic paths from m to n. This
set is clearly empty precisely when ni ≥ mi for both i ; and if this set is
non-empty, any path in it must consist of n1 − m1 R’s and n2 − m2 U’s, so

|P(m, n)| =

 

(n1 − m1 + n2 − m2)

ni − mi

!

(2)

(Reason: Of a total of (n1 − m1 + n2 − m2) steps, you must choose (n1 − m1)
steps to be R’s, or equivalently (n2 − m2) steps to be U’s.)
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For our proof, We shall use the formulation (iii) in terms of monotonic paths.
For points m = (m1, m2) and n = (n1, n2) with integer coordinates (in the
plane), let us write P(m, n) for the set of monotonic paths from m to n. This
set is clearly empty precisely when ni ≥ mi for both i ; and if this set is
non-empty, any path in it must consist of n1 − m1 R’s and n2 − m2 U’s, so

|P(m, n)| =

 

(n1 − m1 + n2 − m2)

ni − mi

!

(2)

(Reason: Of a total of (n1 − m1 + n2 − m2) steps, you must choose (n1 − m1)
steps to be R’s, or equivalently (n2 − m2) steps to be U’s.)

Call an element of P((0, 0), (n, n)) good if it does not cross the diagonal
y = x , and write Pg ((0, 0), (n, n)) for the set of such paths. In view of (2), we
need only to identify the number Pb((0, 0), (n, n)) of bad paths, since
Cn = |Pg | = |P| − |Pb|.
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Reflection trick

Note, by a shift, that we may identify Pg ((0, 0), (n, n)) with the set
Pg ((1, 0), (n + 1, n)) of monotonic paths which do not touch the diagonal
y = x . Consider the set Pb((1, 0), (n + 1, n)) of monotonic paths which do
touch the diagonal y = x .
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Reflection trick

Note, by a shift, that we may identify Pg ((0, 0), (n, n)) with the set
Pg ((1, 0), (n + 1, n)) of monotonic paths which do not touch the diagonal
y = x . Consider the set Pb((1, 0), (n + 1, n)) of monotonic paths which do
touch the diagonal y = x .

The point is this:

1 any path γ ∈ Pb((1, 0), (n + 1, n)) can be uniquely written as a
‘concatenation’ γ = γ1 ◦ γ2, with γ1 ∈ P((1, 0), (j , j)) and
γ2 ∈ P((j , j), (n + 1, n)), where (j , j) is the first point where γ meets the
diagonal; and
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Reflection trick

Note, by a shift, that we may identify Pg ((0, 0), (n, n)) with the set
Pg ((1, 0), (n + 1, n)) of monotonic paths which do not touch the diagonal
y = x . Consider the set Pb((1, 0), (n + 1, n)) of monotonic paths which do
touch the diagonal y = x .

The point is this:

1 any path γ ∈ Pb((1, 0), (n + 1, n)) can be uniquely written as a
‘concatenation’ γ = γ1 ◦ γ2, with γ1 ∈ P((1, 0), (j , j)) and
γ2 ∈ P((j , j), (n + 1, n)), where (j , j) is the first point where γ meets the
diagonal; and

2 if we write eσ for the path obtained by reflecting the path σ in the diagonal
y = x , then the association

γ↔γ1 ◦ eγ2

sets up a bijection Pb((1, 0), (n + 1, n))↔P((1, 0), (n, n + 1)).
(Reason: any monotonic path from (1, 0) to (n, n + 1) starts below the
diagonal and finishes above the diagonal, and hence must be of the form
γ1 ◦ eγ2 for a path γ which must necessarily be in Pb((1, 0), (n + 1, n))).
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So, another appeal to (2) shows that

|Pb((0, 0), (n, n))| = |Pb((1, 0), (n + 1, n))|
= |P((1, 0), (n, n + 1))|

=

 

2n

n − 1

!
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Dyck paths

In the literature, you will find references to Dyck paths which are really
nothing but a (rotated, then reflected) version of what we have called ‘good
monotonic paths’. By definition, the permissible steps in a Dyck path move
either south-east or north-east from (m1, m2) to (m1, m2 ± 1), the path starts
and ends on the x-axis, and the required ‘goodness’ from it is that it should
never stray below the x-axis, although it may touch it. (The reason for my
departure from convention is that it is easier, with my limited computer skills,
to draw pictures with horizontal and vertical lines!)
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Dyck paths

In the literature, you will find references to Dyck paths which are really
nothing but a (rotated, then reflected) version of what we have called ‘good
monotonic paths’. By definition, the permissible steps in a Dyck path move
either south-east or north-east from (m1, m2) to (m1, m2 ± 1), the path starts
and ends on the x-axis, and the required ‘goodness’ from it is that it should
never stray below the x-axis, although it may touch it. (The reason for my
departure from convention is that it is easier, with my limited computer skills,
to draw pictures with horizontal and vertical lines!)

Thus Cn is the number of Dyck paths of length 2n (from (0, 0) to (2n, 0)).
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Dyck paths

In the literature, you will find references to Dyck paths which are really
nothing but a (rotated, then reflected) version of what we have called ‘good
monotonic paths’. By definition, the permissible steps in a Dyck path move
either south-east or north-east from (m1, m2) to (m1, m2 ± 1), the path starts
and ends on the x-axis, and the required ‘goodness’ from it is that it should
never stray below the x-axis, although it may touch it. (The reason for my
departure from convention is that it is easier, with my limited computer skills,
to draw pictures with horizontal and vertical lines!)

Thus Cn is the number of Dyck paths of length 2n (from (0, 0) to (2n, 0)).

A Dyck path is said to be irreducible if it touches the x-axis only at (0, 0) and
(2n, 0). By ignoring the first and last steps of the path (and shifting down by
one unit), it is not hard to see that the number of irreducible Dyck paths of
length 2n is Cn−1.
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Recurrence relation

Another proof of the formula given in Theorem 2 appeals to the following
recurrence relation the Catalan numbers satisfy:
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Recurrence relation

Another proof of the formula given in Theorem 2 appeals to the following
recurrence relation the Catalan numbers satisfy:

C0 = 1 and Cn+1 =

n
X

i=0

CiCn−i ∀n ≥ 0. (3)
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Recurrence relation

Another proof of the formula given in Theorem 2 appeals to the following
recurrence relation the Catalan numbers satisfy:

C0 = 1 and Cn+1 =

n
X

i=0

CiCn−i ∀n ≥ 0. (3)

A proof of this recurrence relation appeals to the ‘Dyck path’ definition, and
goes by induction, considering the smallest i such that a given Dyck path
passes through (2(i + 1), 0), and the fact that the number of such irreducible
Dyck paths is CiCn−i .

Here is a Dyck path which is a concatenation of two irreducible ones:
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Sketch of second proof - via generating functions

Another way to keep track of a sequence {an : n = 0, 1, 2, ...} of numbers is via
their generating function

A(x) =
∞
X

n=0

anx
n

This is a purely formal power series, but even without worrying about whether
such series converge, we can add and multiply them just like polynomials.

V.S. Sunder IMSc, Chennai Catalan numbers Wonders of Science CESCI, Madurai, August 25 2009



Sketch of second proof - via generating functions

Another way to keep track of a sequence {an : n = 0, 1, 2, ...} of numbers is via
their generating function

A(x) =
∞
X

n=0

anx
n

This is a purely formal power series, but even without worrying about whether
such series converge, we can add and multiply them just like polynomials.

For example, for the generating function C(x) =
P

Cnx
n, we see that

C(x)2 = (
X

Cmx
m)(
X

Cnx
n)

=
∞
X

k=0

(
k
X

m=0

CmCk−m)xk

=

∞
X

k=0

Ck+1x
k

from which we see that
C(x) = 1 + xC(x)2
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Sketch of second proof - via generating functions

Another way to keep track of a sequence {an : n = 0, 1, 2, ...} of numbers is via
their generating function

A(x) =
∞
X

n=0

anx
n

This is a purely formal power series, but even without worrying about whether
such series converge, we can add and multiply them just like polynomials.

For example, for the generating function C(x) =
P

Cnx
n, we see that

C(x)2 = (
X

Cmx
m)(
X

Cnx
n)

=
∞
X

k=0

(
k
X

m=0

CmCk−m)xk

=

∞
X

k=0

Ck+1x
k

from which we see that
C(x) = 1 + xC(x)2

Solving this quadratic equation, we see that we must have

C(x) = (1 ±
√

1 − 4x)/2x (4)
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The + sign in equation (4) yields a function which ‘blows up’ at 0. On the
other hand, the function c(x) = (1 −

√
1 − 4x)/2x is smooth at 0 and is seen

to have a Taylor series expansion. Since the Catalan numbers are determined
by the recurrence relations (3) it follows that Ck should be the coefficient of xk

in this power series. Recalling what one had learnt about the binomial theorem
for general exponents, we recover the formula of Theorem 2.
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Other manifestations

Also, Cn has the following interpretations:
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Other manifestations

Also, Cn has the following interpretations:

Cn is the number of ways that the vertices of a convex 2n-gon can be
paired so that the line segments joining paired vertices do not intersect.
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Other manifestations

Also, Cn has the following interpretations:

Cn is the number of ways that the vertices of a convex 2n-gon can be
paired so that the line segments joining paired vertices do not intersect.

Cn is the number of ways of triangulating a labelled polygon with n + 2
vertices.
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Other manifestations

Also, Cn has the following interpretations:

Cn is the number of ways that the vertices of a convex 2n-gon can be
paired so that the line segments joining paired vertices do not intersect.

Cn is the number of ways of triangulating a labelled polygon with n + 2
vertices.

Cn is the number of ways of tiling a stairstep shape of height n with n
rectangles.
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Hankel matrix

The n × n Hankel matrix whose (i , j) entry is the Catalan number Ci+j−2 has
determinant 1, regardless of the value of n. For example, for n = 4, we have

˛

˛

˛

˛

˛

˛

˛

˛

1 1 2 5
1 2 5 14
2 5 14 42
5 14 42 132

˛

˛

˛

˛

˛

˛

˛

˛

= 1
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Hankel matrix

The n × n Hankel matrix whose (i , j) entry is the Catalan number Ci+j−2 has
determinant 1, regardless of the value of n. For example, for n = 4, we have

˛
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˛

˛

˛

˛

˛

˛

1 1 2 5
1 2 5 14
2 5 14 42
5 14 42 132

˛

˛

˛

˛

˛

˛

˛

˛

= 1

Note that if the entries are ”shifted”, namely the Catalan numbers Ci+j-1, the
determinant is still 1, regardless of the size of n. For example, for n = 4 we
have

˛

˛

˛

˛

˛

˛

˛

˛

1 2 5 14
2 5 14 42
5 14 42 132
14 42 132 429

˛

˛

˛

˛

˛

˛

˛

˛

= 1
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Hankel matrix

The n × n Hankel matrix whose (i , j) entry is the Catalan number Ci+j−2 has
determinant 1, regardless of the value of n. For example, for n = 4, we have
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˛
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˛

˛

1 1 2 5
1 2 5 14
2 5 14 42
5 14 42 132

˛

˛

˛

˛

˛

˛

˛

˛

= 1

Note that if the entries are ”shifted”, namely the Catalan numbers Ci+j-1, the
determinant is still 1, regardless of the size of n. For example, for n = 4 we
have

˛

˛

˛

˛

˛

˛

˛

˛

1 2 5 14
2 5 14 42
5 14 42 132
14 42 132 429

˛

˛

˛

˛

˛

˛

˛

˛

= 1

The Catalan numbers form the unique sequence with this property.
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Home-work

1. Verify that all the collections asserted to have Cn elements do indeed have
that many elements.
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Home-work

1. Verify that all the collections asserted to have Cn elements do indeed have
that many elements.

2. Check the details of the proof of the recurrence relation which was outlined
here.
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Home-work

1. Verify that all the collections asserted to have Cn elements do indeed have
that many elements.

2. Check the details of the proof of the recurrence relation which was outlined
here.

3. Try to verify the assertions about Hankel matrices of Catalan numbeers.
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