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§ 1. INTRODUCTION.

NUMFEROUS combinatory problems arise in connection with a set of
clements subject to a non-associative process of composition—let us say of
multiplication—commutative or non-commutative.

Non-associative products may be classified according to their shape.
By the shape of a product I mean the manncer of association of its factors
without regard to their identity. Shapes will be called commutative or
non-commutative according to the tvpe of multiplication under consider..-
tion. Thus if multiplication is non-commutative, the products (AB.C.D
and (BA.C)D are distinct but have the same shape, while D(AB.C) has
a different shape. The three expressions, however, have the same com-
mutative shape. 1 confine attention to products (likc these) in which
the factors are combined only two at a time.

In § 2 I define addition and multiplication of shapes, and show that
they may be regarded as the ““ positive integers’’ of a kind of non-associativ:
arithmetic. With commutative multiplication this provides a convenient
numerical notation by which shapes of great complexity can be easily
specified. -

A non-associative product or shape may be visualised as a pedigree, by
which I mean a #7¢e (Cayley, 1857) which (going from the root upwards,
i.e. from the product to its factor elements) bifurcates at every knot
(Cayley, 1859). Trecs in general may quantifurcatcw arbitrarily at the
knots, representing a morc general kind of non-associative assemblage,
which was also considered abstractly by Schréder (1870). A four-
fold classification of shapes, arising partly out of this representation, is
discussed in § 3.
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154 1. M A Btherington,

Enumerative ptoblems cofiniected with non-associative combinations
have been considered from vatfous points of view by Catalan (1838,
p- 515; etc.), Rodrigues (1838), Binet (1839), Schréder (1870): see Netto
(1901, §§ 122-128) for a summary of their work; also by Cayley (1857, etc.),
Wedderburn (1922). Some further enumerations are discussed here
(§ 4); in particular, with the aid of the concept of mutability, defined in
§ 3, it is shown that the commutative and non-commutative cases can
be treated simultaneously. Thus equation (33) below, with y put equal
to 1, yiclds the known formulae (25), (27) for the commutative case;
putting v 2, the known results (2 2O), (28) follow Tor the none
('()lllllllllil“V(‘ Case,

§ 2. ARITHMETIC OF SHAPES.

To climinate brackets in writing non-associative products, it is con-
venicnt to use groups of dots to separate the factors when necessary,
fewness of dots implying precedence in  multiplication. Thus
A:.BC.AD%:E means. A{[(BC)(ADD)]E}. (The notation is duc to
Peano.) '

Products and shapes in which the factors are absorbed onc at a time
(e.g. A:BC.D:.E) will be called primary. The shapes gencrated by
repeated squaring of an clement, and products having such a shabe
(e.g. AB.CD : EF.GH), will be called plenary. It will be seen in § 3 that
all other shapes are in a sense intermediate between these two extremes.

For the moment, confine attention to the case of commutative multi-
plication, where a primary shape is unique when the number of factors 3 is
given. A power having this shape will be denoted X%: ¢z X* mcans
XX.X:X. All other powers can be represented by suitably partitioning
the index, using brackets when necessary, with the following conventions;
the product of two powers of the same clement is indicated as a sum in
the index, a power of a power as a product in the index, and an iterated
power as a power in the index. Thus:

X243 = X2X3,
X2-3 =(X2)3, X3~2=(X3)2,
XF = (X2, X = (X,
X 2m+@’ Z Xexe X3, X2X9, X2X9 1, X2XO, X3X3 ; X2XS,

Addition of indices, since it reflects non-associative multiplication of
puwers, is commutative but non-associative. On the other hand, multi-
plication of indices is non-commutative (as seen above), but associative,
since X< and X% hoth mean ((X¢)%)¢, which can therefore be written
Xe4te unambiguously. This becomes X** when a=6b=c¢; and similarly
with any number of factors in the index.
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Ifurther, Xe®+e) means (X7)1¢, 7.0, (XO)P(X")", which is the same as
Xev+ae  Hence in the arithmetic of the indices

a(b+¢)=ab+ac.
But in general
(h-0)aq ha +ca,

since (X?X*)® is not thc same as (X*)"(X¢)®. We may say thercfore that
in the arithmetic of the indices multiplication is predistributive with
addition, but not in gencral postdistributive.

In these arguments a, b, ¢ can be any expressions standing for com-
plicated powers: they are not restricted to being simple integers indicating
primary powers.

The notation provides an arithmetical method of specifying commu-
tative shapes; for now the skape s of any commutative non-associative
product can be redefined as the index of the corresponding power
obtained by equating all the factors The product AB.C?*:D, for
instance, has thc same shape as thc power (X2)2X=X22?+!, namely
§=2.2+1.

Consider what addition and multiplication of shapes mean when we
are dealing with products in general instcad of powers. Let IT;, I1, be
ahy two products with shapes 53, 5, Then s; +5, is the shape of the
product I1,IT,, while sys5 is the shape of the product formed by sub-
stituting TI, for each of the factor elements of II,.

The procedure of this § may be described as a representation of the set
of all commutative non-associative continued products formed from given
clements on a non-associative arithmetic, whose integers are commutative

shapces a, 6, ¢, . . . with the rules of combination
a+h—bia, ab.r=a. b, a(h v o) =abd nr,} (
absba, (a+b)+ekat (i), (b+oavbatial 2

A similar representation is possible when multiplication of the
original elements is non-commutative as well as nqn-associative. It is
reflected as non-commutative addition of shapes, the other rules of com-
bination (1) being unchanged. But the numerical gpecification of non-
commutative shapes of increasing complexity rapidly becames very com-
plicated; to simplify it, some convention is required fpr distinguishing the
28-% distinct primary shapes of any given degree 3(> ).

§ 3. CLASSIFICATIQN ox}‘ SHAPES,

Shapes s will be classified by theif degree 5(:), altitude o(s), and
mutability p(s). Non-commutative shapes will be fyrther classified by

I
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the commutative sHapes with which they are conformal. These terms
will now be defined. .

The degree 8 of 8 shape s means the number of factor elements in a
product having this shape.” 1t may be reckoned by evaluating s as if it
were an integer in ordinary arithmetic.

Two non-commutative shapes sy, 2 which become the same shape §
when multiplication is regarded as commutative, will be called conformal
with each other and with 5. Write s, ~ 53 t0 indicate this. With com-
mutative shapes, §; ~ §g means the same as §;=4Jg, 2 commutative shape
being conformal only with itself. The word is also applicable to products
whose shapes are conformal. Thus

AB.C: D, A.BC:D, A :BC.D, A:B.CD

and their shapes
CER IR (1+2)+1, 1+(2+1), 1+(1+2) -

are all conformal with the commutative power Al and its shape 4.

Let shapes be depicted as pedigrecs (§ 1). Any non-associative
product is then, so to speak, descended from’’ its factors. The number
of “‘generations”’ preceding the product itself is its altitude a (Cayley,
1875). At each knot in the pedigree two factors are united; the total
number of knots is thus §—1. Let a knot be called balanced if its two
factors are conformal: then the number of unbalanced knots in a puedigree
will be called its mutability p. The various terms defined may be applied
indiscriminately to the product, shape or pedigree.

If the mutability of any shape § (commutative or not) is p, then there
are evidently just 2* distinct non-commutative shapes which will become
the same as s when multiplication is commutative. S0 @ could be defined
alternatively as the logarithm to base 2 of the number of conformal non-
commutative shapes.

If 5, ~ s, then evidently

(s =8(sp,  als)=alsd)s plsp=plsp- - ()

The following formule are easily proved, 7 and s being any shapes,
commutative or non-commutative, and v an ordinary positive integer:—

8(r+s)= 3(r) +8(s), . . . . (3)

3(rs) =d()d(s), .+ = - . . . (@)

3(s*) =8(5)"; . . . . . (5)

alr +s)=1 +a(r) or 1+ a(s) according us a(r) > or < a(s), (0)
alrs) = a(?) +als), . . . . n

a(s*) =vals); . . . . . (3)

Y\ \""
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pO +8) == 2p0(s) if »~s, . . . . . ()
v+ pu(r) + pls) il not, . . . . . o (10)
11 () =8(s) (7)) + puls), . . . . . . . ()
p(s)y=(1+8+8%+ ... +8" " Huls), . . . . . (12)
where
8 =8(s).

The last result is proved by induction from the preceding onc. It may
also be written

psn) _7(s)
w(5) " 7()’ (13)
where
T=0-1.

The degree, altitude and mutability can now be readily calculated for any
given shape specified numerically.  The table below gives all commutative
shapes for which a < 4, § < 6.

TABLE OF COMMUTATIVF. SHAPES,

el
=

(z2+1)+1
(3+2)+1,4+2

AN ON AT B b N~
W RNWONN=N=RNO=0O0:™
[
N

O LU Ww e w—=0 2

-
(gl

As the table suggests, we cannot construct a shape with a, 8, u assigned
arbitrarily. Certain relations must be satisfied, namely:

22 >8 >a+1; ie. 8§—-1>a >log,s. . . H . (19)

d >p+2, except when §=1. . . : . . . (xs5)
s . TR

B < 3.29°%-1; Le.a > 3+log, 1 except when a <3 . (16)

]

b is expressible as the sum of p+ 1 powers of 2, not all alike ifp>o. (17)

(14) and (15) are easily proved by consideration of pegigrees. At one
extreme, the equality §=a +1 holds only when s is pgimary; and the
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same is true of H=ﬁ+2,. :Siﬂ'ifl;ﬂly at the other extreme, 8§=2% p=o0
occur when anc? dhly wher ¢ ig plenaty: T

(17) is proved by Induction ftonr 3%, (5), (9), (10); It being noted that
when p=o, $ id of the form 2° (plenaty); when p=1, s=2°+2* (a+p);
and that two like powers. of 2 tah be combined if desired into a single
power of 2. :

To prove (16), let pq be tHe greatest possible mutability for a shape
whose altitide a Is given; it will be shown that for a > 3

Pa=3.2"%—1.

In view of (2) it will be sufficient to consider only commutative shapes.
By inspection of the table of commutative shapes,

Ko=H1=0, pe=1, Hs=2.

Now (see (6)) any shape of altitude a +1 is necessarily the sum of two
shapes, one of altitude « and one of altitude B < a. By (9), (10), pa+
must be expressible either as 2u, or as I +pq +pg. Since py =0, pp=1, it
follows that

Pa+1 > o for a>o,
so that p, increases monotonically with a.

Now let a be any altitude (e.g. a =3) for which there exist at least three

distinct shapes sy, 52, 53 with the maximum mutability p,. Then

plsp) = pls9) = p(s9) = pa > p(5),
where s is any shape of lower altitude. Hence for the altitude a +1 also
there will exist at least three distinct shapes of maximum mutability;
namely, ’

Sy 45y,  Sptssy Syt
with the mutability given by (10)

Has1=1+ 2/t (a >3.)
It follows that
T+ pas1=2(1 + o).

But
I +I"'3=3)
whence
TR I LR
(914
Jawe 32970 =1 il w23

This proves (10),
It will be seen that the equality in (16) is attained by N, commutative

shapes of altitude a, where

Ny 1= ING(Ng = 1), Ny—.. . . . (1oa)
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§ 4. ENUMERATION OF SHAPES.

Let a5, pa be the numbers of possible shapes of given degree 6 and of
given altitude o respectively, when multiplication is non-commutative
and non-associative; and let &, ga be the corresponding numbers when
multiplication is commutative and non-associative. LEvidently

ay=by=po=qp=1.
Remembering (3) and (6), and considering the different ways in which

shapes of given degree or altitude can be formed from those of lower
degree or altitude, we obtain the formule:

ay=mag.1+a,a5_g+agny 3+ . . . tas-aa, . . . (18)
bay1=bybos g+ byba_s+ . . . +hy_1bs } (19)
bos=byboy 1 +bbas g+ . . . by 1bsr1+3bs(bs+ 1),
Por1=20apo+P1+La+ - - - FPa-1) +P . . . (20)
Fas1=qa(Go+ 1+ 2+ - - - +0a1) +17u(ga+1). . . (21)
Ford=1,2,3,...and a=0, 1, 2, . . . the sequences start:

as=1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862; [ '_\I/[O%

ga=1,\1, 2, 7, 56, 2212, 2595782, .~
- Let \"“—————‘\x___"
F(x) =ax +apx®+agx®+ . . . +axd+ ... . . (22)
and

f@) = —1+bx+bxt+ ... FoxtE L. . . (23)

The following results are known:—
F(x)? - F(x) +x =o, : S € 7))
F(x)2+f(x?) +20=0; . . ’ . (25)
F(x) =4 -4V1 —4x, . . . (26)
f(x)=lim -4/ —2x+4/—22%+4/ —2x'+ . .. +4/ —2x2 41, (27)

where in (27) each 4/ covers all that follows it;

Of those formulz, (18), (28) were given by Catalgn (1838). (Catalan
pointed out that a, is the number of ways in which g convex polygon of
S +1 sides can be divided up into triangles by dipgonals. (28), as a
consequence of (18) with a;=1, was first éstablished fram this point of
view, and was known to other writers, apparently first to ijler. Several
papers on this topic appear in the Journ. de _Matlt., 1838-39.), Binet (1839)

Bilh s

by=1, 1, 1, 2, 3, 6, 11, 23, 40, 98, . . T HQO
Pa=1, 1, 3, 21, 651, 457653, 210065930571, . . “T—u
D 1677/

65¢ &
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introduced the generating furction’ (22), and deduced (24), (26), (28) from
(18). The calcuilations were repeated by Cayley (1859) from the pedigree
point of view; by Schroder (1870); also by Wedderburn (1922), who
discussed as well the commutative case, obtaining (19), (25), (27), and
made a special study of the functional equation (25) and its more general -
solutions. (Cf. Etherington, 1937.) '

It will now be shown that by introducing mutability we can discuss the
commutative apd non-commutative cases simultaneously and obtain a
more general functional cquation (33) which includes the two equations
(24), (25) as special cases.

Let ¢, be the number of possible commutative shapes of given degree 3
and mutability g, so that the corresponding number of non-commutative
shapes will be

N5, = 2" Coy. . . . . . {29)
Then 7, ¢y, are defined for all integer values of 8, u with 8 > 1, p > o.
For all other values of & and p, let 7, ¢;, be defined as zero.

Consider with the aid of (3), (9), (10) the different ways in which a
non-commutative shape s of degrec 8 and mutability p can be formed.
Excluding 8=1, p=0, s=1, s must be of the form s; +s, where, by (3),

8(s)) +8(sy) =8.
If (10) held in all cases, we should have

1+ p(sy) + plsy) =g,
and consequently

73, = Z N im F+7=8, 1+/+m=p).
5 4L,m

Subtracting the cases to which (10) does not apply, and adding those to
which (g) does, we get as the correct formula

Ma= Dy Mitym = 24 Dy jo-ny+ 2048, 4
LihiLm
where
1+7=39, l+m=p-1, d%1. ) - (39
Also

nyg=1.

Putting 4, = 2*¢s,, and removing the factor 2#,
fw:"ﬁ( 2. fuf;,,.—fu.l(n—l)>+f|a.i»
f,h &, m
where (31)
i+j=8, [l+m=p-1, d*I. : : -3
Also

=1
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Now let
S(x, 9) = cuatyn,
S n

Substituting (31) in (32), we obtain the functional cquation

S, ) =2+ 39{f(x, NP+ (1= 42) f (=2, 3Y).

Now, from the definitions of ay, by, s, 1y,
@l
a5=2‘n5“=22“q#, b5=Z£5#.
“ K M

Conscquently, comparing (22), (23), (32),
F@) =f(x,2),  1+f()=fx, 1.

161

(32)

(33)

34)

It is readily verified that on putting y=2 the equation (33) reduces to

(24); and that on putting y =1 it reduces to (23), as it should.
If on the right of (33) we substitute the first approximation

S =x+ ...,  f@hH=aty .. .,
we obtain the second approximation
S, )=x+xb+ . ||
Similarly the third approximation is

S p)=x+iy(@ 4223 +28+ . )+ - (tats .. 2)
=x+att+aitaty+ L.

and thé process may be repeated to any required extent.
Alternatively, we may proceed in either of the following ways.

S@& N =2fi() +aY(N+ . o +22H0)+ ...

S(x, ) =£o(®) +161(%) + 325X + . . . Ayrg )+ . .

or

substitute in the functional equation (33), and equate coefficients.

obtain
.f1=f2=1) f3=.7; fl=l+_y2’
Ss=y+y 475 fe=y+ateapiags, ..
Sus-x=y(fifus-2+Sofrs-s+ . . . +fso1/), .
Su=y(fifu-1+fafus-2t oo Hfasiforr + 3D +(1 - 19) fi(0Y);

So=x(1-2)71, g =21 -2)" (1 -x?),
&2=24(1+x + 2xH(1 —x) (1 ~ x?)~1(1 — x4,
£3=xY1 +x +3xH)(1 —x) X1 ~2?) Y1 - 2%, , . .,
Ew-1=80fm-1t£618mu-8+ « o +8u-28u+E8u 12~ 1g,-1(xY),
E2m=LoL%-11£18% -3+ . « . +gn—l€u+f‘u(x’)~
It will be observed that 5

P.R.S.E—VOL. LIX, 1938-39, PART II

Sl =as,  fi)=by .

A

II

Write
(35)

(36)
We

31

(38)

(39
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The first of these two methods is perhaps the quickest way of calculating
many terms df the expansion of f(x, ¥). By means of the second, we
could find explicit formule for ¢y, cs1, ¢aay €53, - + -

With regard to the convergence of the various generating series, it
may be observed that (22), since it is the expansion of (26), is absolutely
convergent if | x | <4. Since 4; < ay, it follows that (23) also converges
absolutely if | # | < }; and since f(x, 2) =F(x), it follows that the double
series (32) converges absolutely if | x| <}, |y | <2.

SUMMARY.

Non-associative combinations are classified and enumerated with the
aid of a representation involving non-associative arithmetic.
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