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Abstract. We study novel arithmetic algorithms on a canonical number
representation based on the Catalan family of combinatorial objects.

For numbers corresponding to Catalan objects of low structural complex-
ity our algorithms provide super-exponential gains while their average
case complexity is within constant factors of their traditional counter-
parts.
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1 Introduction

Number representations have evolved over time from the unary “cave
man” representation where one scratch on the wall represented a unit, to
the base-n (and in particular base-2) number system, with the remarkable
benefit of a logarithmic representation size. Over the last 1000 years, this
base-n representation has proved to be unusually resilient, partly because
all practical computations could be performed with reasonable efficiency
within the notation.

While alternative notations like Knuth’s “up-arrow” [1] or tetration
are useful in describing very large numbers, they do not provide the ability
to actually compute with them – as, for instance, addition or multiplica-
tion with a natural number results in a number that cannot be expressed
with the notation anymore.

The novel contribution of this paper is a Catalan family based num-
bering system that allows computations with numbers comparable in size
with Knuth’s “arrow-up” notation. Moreover, these computations have
a worst case complexity that is comparable with the traditional binary
numbers, while their best case complexity outperforms binary numbers
by an arbitrary tower of exponents factor. Simple operations like succes-
sor, multiplication by 2, exponent of 2 are constant time and a number
of other operations benefit from significant complexity reductions.



For the curious reader, it is basically a hereditary number system [2],
based on recursively applied run-length compression of the usual binary
digit notation. To evaluate best and worst cases, a concept of structural
complexity is introduced, based on the size of representations and algo-
rithms favoring large numbers of small structural complexity are designed
for arithmetic operations.

We have adopted a literate programming style, i.e. the code described
in the paper forms a self-contained Haskell module (tested with ghc 7.6.3),
also available as a separate file at http://logic.cse.unt.edu/tarau/

research/2013/catco.hs . We hope that this will encourage the reader
to experiment interactively and validate the technical correctness of our
claims.

The paper is organized as follows. Section 2 introduces recursively
run-length compressed natural numbers seen as a member of the Catalan
family of combinatorial objects. Section 3 describes constant time suc-
cessor and predecessor operations on our numbers. Section 4 describes
novel algorithms for arithmetic operations taking advantage of our num-
ber representation. Section 5 defines a concept of structural complexity
and studies best and worst cases. Section 6 discusses related work. Section
7 concludes the paper and discusses future work.

2 Recursively run-length compressed natural numbers as
objects of the Catalan family

The Catalan family of combinatorial objects [3] spans over a wide di-
versity of concrete representation ranging from balances parenthesis ex-
pressions and rooted plane trees to non-crossing partitions and polygon
triangulations.

2.1 The “cons-list”-view of Catalan objects

For simplicity, we will pick here as a representative of the Catalan family
a language of balanced parentheses defined as follows.

We fix our set of two parentheses {L,R} as specified by the Haskell
data type Par.

data Par = L | R deriving (Eq,Show,Read)

The set of Dyck words is an important member of the Catalan family
of combinatorial objects.



Definition 1 A Dyck word on the set of parentheses {L,R} is a list con-
sisting of n L’s and R’s such that no prefix of the list has more L’s than
R’s.

Let T be the language obtained from the set Dick words on {L,R} with
an extra L parenthesis added at the beginning of each word and an extra
R parenthesis added at the end of each word. We represent the language
T in Haskell as the type T and we will call its members terms.

type T = [Par]

It is convenient to view T as the set of rooted ordered binary trees through
the operations cons and decons defined as:

cons :: (T,T) → T

cons (xs,L:ys) = L:xs++ys

decons :: T→(T,T)

decons (L:ps) = count_pars 0 ps where

count_pars 1 (R:ps) = ([R],L:ps)

count_pars k (L:ps) = (L:hs,ts) where (hs,ts) = count_pars (k+1) ps

count_pars k (R:ps) = (R:hs,ts) where (hs,ts) = count_pars (k-1) ps

T can also be seen as isomorphic with the set of ordered rooted trees,
another member of the Catalan family. The forest of subtrees corresponds
to the toplevel balanced parentheses composing an element of T as defined
by the bijections to list and from list.

to_list :: T → [T]

to_list [L,R] = []

to_list ps = hs:hss where

(hs,ts) = decons ps

hss = to_list ts

We will call subterms the terms extracted by to list.

from_list :: [T]→T

from_list [] = [L,R]

from_list (hs:hss) = cons (hs,from_list hss)

2.2 The Catalan encoding of natural numbers

We are ready for an arithmetic interpretation of the language T, associ-
ating a unique natural number to each of its terms t:

– The term t=[L,R] corresponds to zero
– if xs is obtained by applying the to list operation to t, then each

x on the list xs counts the number of b ∈ {0, 1} digits, followed by
alternating counts of 1-b and b digits, with the conventions that the
most significant digit is 1 and the counter x represents x+1 objects.



– the same principle is applied recursively for the counters, until [L,R]
is reached.

One can see this process as run-length compressed base-2 numbers, un-
folded as an object of the Catalan family, after applying the encoding
recursively.

By convention, as the last (and most significant) digit is 1, the last
count on the list xs is for 1 digits. The following simple fact allows infer-
ring parity from the number of subterms of a term.

Proposition 1 If the length of xs = to list x is odd, then x encodes
an odd number, otherwise it encodes an even number.

Proof. Observe that as the highest order digit is always a 1, the lowest
order digit is also 1 when length of the list of counters is odd, as counters
for 0 and 1 digits alternate.

This ensures the correctness of the Haskell definitions of the predicates
odd and even , the last one defined to be true for terms different from
[L,R] only.

oddLen [] = False

oddLen [_] = True

oddLen (_:xs) = not (oddLen xs)

odd_ :: T→Bool

odd_ x = oddLen (to_list x)

even_ :: T→Bool

even_ x = f (to_list x) where

f [] =False
f (y:ys) = oddLen ys

Note that while these predicates work in time proportional to the length
of the list representing a term in T, with a (dynamic) array-based list
representation that keeps track of the length or keeps track of the parity
bit explicitly, so one can assume that they can be made constant time with
an optimal data structure choice, as we will do in the rest of the paper,
while focusing, for simplicity, on the language of balanced parenthesis T.

Definition 2 The function n : T→ N shown in equation (1) defines the
unique natural number associated to a term of type T.

n(a) =


0 if a = [L,R],

2n(x)+1n(xs) if (x,xs) = decons a is even ,

2n(x)+1n(xs)− 1 if (x,xs) = decons a is odd .

(1)



For instance, the computation of [L,L,R,L,L,R,L,R,R,R] = 14 expands
to (20+1(2(2

0+1(20+1−1))+1 − 1)). The Haskell equivalent is:

type N = Integer

n :: T→N

n ([L,R]) = 0

n a | even_ a = 2^(n x + 1)∗(n xs) where (x,xs) = decons a

n a | odd_ a = 2^(n x + 1)∗(n xs+1)-1 where (x,xs) = decons a

The following example illustrates the values associated with the first few
natural numbers.

0: [L,R]

1: [L,L,R,R]

2: [L,L,R,L,R,R]

3: [L,L,L,R,R,R]

4: [L,L,L,R,R,L,R,R]

5: [L,L,R,L,R,L,R,R]

Definition 3 The function t : N → T defines the unique term of type T
associated to a natural number as follows:

t :: N→T

t 0 = [L,R]

t k | k>0 = zs where

(x,y) = if even k then split0 k else split1 k

ys = t y

zs = if x==0 then ys else cons (t (x-1),ys)

It uses the helper functions split0 and split1 that extract a block of
contiguous 0 digits and, respectively, 1 digits from the lower end of a
binary number.

split0 :: N→(N,N)

split0 z | z> 0 && even z = (1+x,y) where

(x,y) = split0 (z ‘div‘ 2)

split0 z = (0,z)

split1 :: N→(N,N)

split1 z | z>0 && odd z = (1+x,y) where

(x,y) = split1 ((z-1) ‘div‘ 2)

split1 z = (0,z)

They return a pair (x,y) consisting of a count x of the number of digits
in the block, and the natural number y representing the digits left over
after extracting the block. Note that div, occurring in both functions, is
integer division.

The following holds:



Proposition 2 Let id denote λx.x and ◦ function composition. Then,
on their respective domains

t ◦ n = id, n ◦ t = id (2)

Proof. By induction, using the arithmetic formulas defining the two func-
tions.

Figure 1 shows the DAG obtained by folding together identical sub-
terms at each level for the term corresponding to the natural number
12345, where we have mapped lists of L symbols to strings built of ‘(’
and R to ‘)’ characters, for readability. Note that integer labels mark the
order of the edges outgoing from a vertex.

(()(())(()())(()()())(())) => 12345

(()()()) => 5

3

(()()) => 2

2

(()) => 1

4 1

() => 0

0

2 1 0 1 0 0

Fig. 1: The DAG illustrating the term associated to 12345

The constants e and u correspond to the natural numbers 0 and 1.
The predicates e and u are used to recognize them.

e = [L,R]

u = [L,L,R,R]

e_ [L,R] = True

e_ _ = False

u_ [L,L,R,R] = True

u_ _ = False

3 Successor (s) and predecessor (s’)

We will now specify successor and predecessor on data type T through
two mutually recursive functions, s and s’.



s x | e_ x = u -- 1

s x | even_ x = from_list (sEven (to_list x)) -- 7

s x | odd_ x = from_list (sOdd (to_list x)) -- 8

sEven (a:x:xs) |e_ a = s x:xs -- 3

sEven (x:xs) = e:s’ x:xs -- 4

sOdd [x]= [x,e] -- 2

sOdd (x:a:y:xs) | e_ a = x:s y:xs -- 5

sOdd (x:y:xs) = x:e:(s’ y):xs -- 6

s’ x | u_ x = e -- 1

s’ x | even_ x = from_list (sEven’ (to_list x)) -- 8

s’ x | odd_ x = from_list (sOdd’ (to_list x)) -- 7

sEven’ [x,y] |e_ y = [x] -- 2

sEven’ (x:b:y:xs) | e_ b = x:s y:xs -- 6

sEven’ (x:y:xs) = x:e:s’ y:xs -- 5

sOdd’ (b:x:xs) | e_ b = s x:xs -- 4

sOdd’ (x:xs) = e:s’ x:xs -- 3

Note that the two functions work on a block of 0 or 1 digits at a time.
They are based on simple arithmetic observations about the behavior of
these blocks when incrementing or decrementing a binary number by 1.
The following holds:

Proposition 3 Denote T+ = T − {e}. The functions s : T → T+ and
s′ : T+ → T are inverses.

Proof. It follows by structural induction after observing that patterns
for rules marked with the number -- k in s correspond one by one to
patterns marked by -- k in s’ and vice versa.

More generally, it can be shown that Peano’s axioms hold and as a
result < T, e, s > is a Peano algebra.

Note also that if parity information is kept explicitly, the calls to odd

and even are constant time, as we will assume in the rest of the paper.

Proposition 4 s and s’ are constant time, on the average.

Proof. Observe that the average size of a contiguous block of 0s or 1s in
a number of bitsize n has the upper bound 2 as

∑n
k=0

1
2k

= 2 − 1
2n < 2.

As on 2-bit numbers we have an average of 0+0+0+1
4 = 0.25 more calls,

we can conclude that the total average number of calls is constant, with
upper bound 2 + 0.25 = 2.25.



A quick empirical evaluation confirms this. When computing the suc-
cessor on the first 230 = 1073741824 natural numbers, there are in total
2381889348 calls to s and s’, averaging to 2.2183 per computation. The
same average for 100 successor computations on 5000 bit random numbers
oscillates around 2.22.

4 Arithmetic operations

We will now describe algorithms for basic arithmetic operations that take
advantage of our number representation.

4.1 A few other constant time operations

Doubling a number db and reversing the db operation (hf) are quite sim-
ple. For instance, db proceeds by adding a new counter for odd numbers
and incrementing the first counter for even ones.

db x | e_ x = e

db xs | odd_ xs = cons (e,xs)

db xxs | even_ xxs = cons (s x,xs) where (x,xs) = decons xxs

hf x |e_ x = e

hf xxs = if e_ x then xs else cons (s’ x,xs) where (x,xs) = decons xxs

Note that such efficient implementations follow directly from simple
number theoretic observations.

For instance, exp2, computing an exponent of 2 , has the following
definition in terms of s’.

exp2 x | e_ x = u

exp2 x = from_list [s’ x,e]

as it can be derived, for k = 0, from the identity

(λx.2x+ 1)n(k) = 2n(k + 1)− 1 (3)

Proposition 5 The operations db,hf and exp2 are constant time, on
the average.

Proof. As s,s’ are average constant time, the proposition follows by
observing that at most 1 call to s,s’ is made in each definition.

Due to space constraints we will just mention that algorithms favoring
numbers with large contiguous blocks of 0s and 1s in their binary repre-
sentations can be devised for various arithmetic operations. For instance,
addition of odd numbers, would benefit from the use of identity 4.

(λx.2x+ 1)k(x) + (λx.2x+ 1)k(y) = (λx.2x+ 2)k(x+ y) (4)



5 Structural complexity

Arguments similar to those about the average behavior of s and s’ can
be carried out to prove that the average complexity of other arithmetic
operations matches their traditional counterparts, using the fact, shown
in the proof of Prop. 3, that the average size of a block of contiguous 0

or 1 bits is at most 2.
To evaluate the best and worst case space requirements of our number

representation, after defining the bitsize of a term as

bitsize x = sum (map (n.s) (to_list x))

we introduce here a measure of structural complexity, defined by the func-
tion tsize that counts the nodes of a term of type T (except the root).

tsize x =foldr add1 0 (map tsize xs) where

xs = to_list x

add1 x y = x + y +1

It corresponds to the function c : T→ N defined as follows:

c(t) =

{
0 if t = e,∑

x∈xs (1 + c(x)) if xs = to list t.
(5)

The following holds:

Proposition 6 For all terms t ∈ T, tsize t ≤ bitsize t.

Proof. By induction on the structure of t, observing that the two functions
have similar definitions and corresponding calls to tsize return terms
inductively assumed smaller than those of bitsize.

The following example illustrates their use:

*CatCo> map (tsize.t) [0,100,1000,10000]

[0,7,9,13]

*CatCo> map (tsize.t) [2^16,2^32,2^64,2^256]

[5,6,6,6]

*CatCo> map (bitsize.t) [2^16,2^32,2^64,2^256]

[17,33,65,257]

Figure 2 shows the reductions in structural complexity compared with
bitsize for an initial interval of N.

Next we define the higher order function iterated that applies k

times the function f.

iterated f a x |e_ a = x

iterated f k x = f (iterated f (s’ k) x)



Fig. 2: Structural complexity (yellow line) bounded by bitsize (red line)
from 0 to 210 − 1

We can exhibit, for a given bitsize, a best case

bestCase k = iterated wterm k e where wterm x = cons (x,e)

and a worst case

worstCase k = iterated (s.db.db) k e

The following examples illustrate these functions:

*CatCo> bestCase (t 4)

[L,L,L,L,L,R,R,R,R,R]

*CatCo> n it

65535

*CatCo> bitsize (bestCase (t 4))

16

*CatCo> tsize (bestCase (t 4))

4

*CatCo> worstCase (t 4)

[L,L,R,L,R,L,R,L,R,L,R,L,R,L,R,R]

*CatCo> n it

85

*CatCo> bitsize (worstCase (t 4))

7

*CatCo> tsize (worstCase (t 4))

7

The function bestCase computes the iterated exponent of 2 (tetration)
and then applies the predecessor to it. For k = 4 it corresponds to



(2(2
(2(2

0+1−1)+1−1)+1−1)+1 − 1) = 22
22 − 1 = 65535.

The average space-complexity of the representation is related to the
average length of the integer compositions of the bitsize of a number.
Intuitively, the shorter the composition in alternative blocks of 0 and 1

digits, the more significant the compression is.

6 Related work

Several notations for very large numbers have been invented in the past.
Examples include Knuth’s arrow-up notation [1], covering operations like
the tetration (a notation for towers of exponents). In contrast to our
approach, such notations are not closed under arithmetic operations, they
cannot be used as a replacement for ordinary binary or decimal numbers.

The first instance of a hereditary number system, at our best knowl-
edge, occurs in the proof of Goodstein’s theorem [2], where replacement
of finite numbers on a tree’s branches by the ordinal ω allows him to
prove that a “hailstone sequence” visiting arbitrarily large numbers even-
tually turns around and terminates. Another hereditary number system is
Knuth’s TCALC program [4] that decomposes n = 2a+b with 0 ≤ b < 2a

and then recurses on a and b with the same decomposition. Given the
constraint on a and b, while hereditary, the TCALC system is not based
on a bijection between N and N × N and therefore the representation is
not canonical. In [5] a similar (non-canonical) exponential-based notation
called “integer decision diagrams” is introduced, providing a compressed
representation for sparse integers, sets and various other data types.

This paper is an adaptation of our online draft at the Cornell arxiv
repository [6], which describes a more complex hereditary number system
(based on run-length encoded “bijective base 2” numbers, first introduced
in [7] pp. 90-92 as “m-adic” numbers). In contrast to [6], we are using here
the familiar binary number system, and we represent our numbers as lists
of balanced parentheses rather than the more complex data structure
used in [6].

Arithmetic computations based on a member of the Catalan family
(ordered rooted of binary trees) are described in [8]. In [9] a type class
mechanism is used to express computations on hereditarily finite sets and
hereditarily finite functions. However likewise [8] and [9], and by contrast
to those proposed in this paper, they only compress “sparse” numbers,
consisting of relatively few 1 bits in their binary representation.



7 Conclusion

We have provided in the form of a literate Haskell program a specifica-
tion of a number system based on a member of the Catalan family of
combinatorial objects.

We have shown that computations that favor giant numbers with low
structural complexity, are performed in constant time, or time propor-
tional to their structural complexity. We have also studied the best and
worst case structural complexity of our representations and shown that, as
structural complexity is bounded by bitsize, computations and data rep-
resentations are within constant factors of conventional arithmetic even
in the worst case.

Our novel number representation enables performing arithmetic op-
erations with members of the Catalan family of combinatorial numbers
and can deal with numbers significantly larger than traditional bitstring
representations.
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