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Abstract

The main objective of the thesis is to develop and evaluate a variety
of computer-aided experimental methods that yield insight for discov-
ering and proving theorems in combinatorics. We contribute to the
methodology of the “creativity spiral” paradigm.

We present nine studies, most of which rely on replacing equiva-
lence of discrete structures by a finite group action.

Throughout the thesis we make much use of computer algebra sys-
tems. In particular, the first core chapter is completely devoted to an
improvement of an algorithm that frequently occurs in proving combi-
natorial identities, namely Gosper’s algorithm.

The enumerative part of the thesis is centered around the concept
of quasi-polynomials. We show that many interesting combinatorial
quantities, typically depending on two parameters, possess a quasi-
polynomial closed form if one of the parameters becomes fixed. Then
we derive an algorithm for computing the values of one special kind
of quasi-polynomials, namely the number of restricted partitions.

In the constructive part of the thesis we subsequently focus our at-
tention on different kinds of discrete structures. We start with two
chapters on graphs, disproving a graph-theoretical conjecture in the
first one and extending the classification theory of chordal rings in the
second one. Then we switch to necklaces and bracelets. We develop an
algorithm that generates bracelets and then we improve known bounds
on the relation between local and global bead proportionalities in brace-
lets. The rest of the constructive part is devoted to finite geometries
and linear codes. We build catalogs of two kinds of configurations in
projective planes over finite fields, namely the semiovals and the arcs.
We develop general constructions of semiovals in Desarguesian planes
of arbitrary odd orders. At the end we classify certain optimal ternary
linear codes.

The majority of our studies improves or extends results of other au-
thors. This was achieved by thoroughly planned interlacing of human
thinking steps and machine computing. Hence, our main conclusion is
that this strategy inevitably contributes to the research in combinatorics.



Kurzreferat

Das Thema der Dissertation ist die Entwicklung und Auswertung ver-
schiedener computerunterstützter experimenteller Methoden hinsicht-
lich des Findens und Beweisens von Sätzen in der Kombinatorik. Wir
tragen zur Methodologie des Prinzips der “Kreativitätsspirale” bei.

Wir stellen neun Studien vor, von denen die meisten darauf beru-
hen, die Äquivalenz von diskreten Strukturen durch Operation einer
endlichen Gruppe zu ersetzen.

Der intensive Gebrauch von Computeralgebra-Systemen war eine
wesentliche Voraussetzung, um die Ergebnisse dieser Dissertation zu
erzielen. Das erste Kapitel ist einer Verbesserung von Gospers Algorith-
mus gewidmet, mit dem sich eine Reihe kombinatorischer Identitäten
beweisen lassen.

Das Konzept der Quasipolynome ist das Kernstück des enumera-
tiven Teils der Arbeit. Wir zeigen, daß zahlreiche interessante kom-
binatorische Größen sich durch Quasipolynome geschlossen darstellen
lassen. Darüberhinaus entwickeln wir einen Algorithmus zur Berech-
nung einer speziellen Art von Quasipolynomen, welche die Anzahl von
eingeschränkten Partitionen beschreiben.

Im konstruktiven Teil diskutieren wir unterschiedliche Arten von
diskreten Strukturen. Zwei Kapitel beschäftigen sich mit Graphen, wo-
bei im ersten eine graphentheoretische Vermutung widerlegt wird und
im zweiten eine Theorie zur Klassifizierung von chordialen Ringen auf-
gestellt wird. Danach folgt ein Kapitel über die kombinatorischen Mo-
delle ”Halsketten” und ”Armbänder”. Wir entwickeln einen Algorith-
mus, der Armbänder auflistet, und verbessern bekannte Schranken für
das lokal-globale Verhältnis der Perlenanzahl in Armbändern. Dann
erstellen wir Listen zweier Arten von Konfigurationen in projektiven
Ebenen über endliche Körper: Semiovale und Bögen. Weiters entwik-
keln wir eine Methode, um in Desarguesschen Ebenen beliebiger unge-
rader Ordnung Semiovale zu konstruieren. Abschließend klassifizieren
wir bestimmte optimale triadische lineare Codes.

Der Großteil unserer Studien verbessert oder erweitert Ergebnisse
anderer Autoren. Das wurde ermöglicht durch wohlüberlegtes Verbin-
den von menschlichen Denkschritten und Computerberechnungen. Als
Hauptschlußfolgerung daraus ergibt sich, daß diese Strategie essentiell
für die kombinatorische Forschung ist.



To my parents

Preface

We live in a stormy period when computers have begun to invade
the sacred ground of classical mathematics. A dangerous polarization
has become visible between the classical, “rigorous” mathematicians on
one side and mathematicians proposing “semi-rigorous”, “experimen-
tal” methods on the other side. Wide-spread journals such as Notices
of the A.M.S. or Bulletin of the A.M.S. initiated discussion about these
issues on their pages.

While the discussion goes on and the end is not in sight, we feel
that any attempt to reconcile both sides is worth a try. The main goal
of our thesis is to deliver a modest but sincere contribution to this
process. In the specific field of combinatorics, which offers perhaps
the largest computational playground among all corners of mathemat-
ics, we will try to show that the “silicon savior” need not be an en-
emy of the mathematical rigorousness. Our belief is that, in particular
in combinatorics, both the rigorous proving methods and the insight
gained from thoroughly planned computer experiments are inevitable
for achieving a continuous progress. We explain our views in more
detail in the introductory chapter of the thesis.

Rather than speculating in general, we present nine case studies that
roughly correspond to the chapters of the thesis. Each chapter ends
with a section called “Methodological Aspects” where we analyze the
relation between experimenting and proving. The chapters are rela-
tively independent; about half of them was accepted for publishing as
journal papers while some more will be submitted for publication soon.

The thesis is divided in three parts. After a short excursion in com-
puter algebra we enter the two core parts, reflecting this way the com-
mon division of combinatorics into enumerative and constructive prob-
lems. In these two parts we replace equivalence of discrete structures
by a finite group action. At the beginning of either part we recall how
to use group action for enumerative and constructive purposes �Chap-
ters 2 and 6, respectively�. A skilled reader can skip these introduc-
tory chapters as well as the chapter on Hadamard patterns �Chapter 3�,
since the last one is meant mainly as a warm-up example on Pólya’s
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counting theory.
Throughout the thesis, the word “we” means “the reader and the

author”. Wherever “we” stays in place of other co-authors as well,
the names are mentioned explicitly. Theorems reproduced from other
sources are always accompanied with the most appropriate reference
known to us.

Not only finishing but even beginning of my thesis work would
have been impossible without a help of many. My first and most sin-
cere thanks go to Bruno Buchberger who taught me so much, who
substantially helped me to get a doctoral scholarship over a period of
three years and who brought to life the wonderful research environ-
ment called RISC-Linz. Thank you very much, Bruno, I will never
forget what you did for me.

I am extremely grateful to Peter Paule who greatly intensified my
original interest in combinatorics, who gave me a freedom to choose
the research topics but at the same time was always ready to answer
my questions, and who carefully read my manuscripts and helped to
improve them a lot. I am happy that we found two occasions to have
a joint paper, I really enjoyed that work. When speaking about joint
papers, I appreciated that Volker Strehl formed a trio with Peter and
me to investigate Gosper’s algorithm.

Many thanks are due to Günter Pilz who kindly agreed to be a
referee of this thesis and who was providing me with informal and
friendly help over the years.

Special thanks are addressed to John Cannon and his co-workers in
the computer algebra team at the University of Sydney who granted me
access to their wonderful systems Cayley and Magma which I thank-
fully used on many places in this thesis, and who listened to my out-
sider thoughts about Magma, making many of them into a reality.

I can hardly tell how much I appreciated the opportunity of exciting
and fruitful discussions with all members of RISC-Linz, and I thank to
all of them. In particular I enjoyed the everyday collaboration with
my closest colleagues and friends Kurt Eichhorn, István Nemes and
Roberto Pirastu.

I wish to express my gratitude to Adalbert Kerber, Reinhard Laue
and Ronald C. Read who grew my passion for combinatorial construc-
tions by saying to me the right words at the right time. The same
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is true about Professor Kerber’s students Bernd Schmalz and Roland
Grund.

I am happy that during my short but intensive visits to Eindhoven
and Ghent I met Marijn van Eupen and Leo Storme, which in both
cases resulted in a very interesting collaboration.

Many more people contributed by pointing me to references, giving
me worthy advices, or even inviting me to visit their universities. I
wish to thank to Gert Almkvist, Aart Blokhuis, Joel Brawley Jr., Gun-
nar Brinkmann, Frank De Clerck, Reinhard Folk, Roberto Frucht, Poul
Hjorth, Frank K. Hwang, Steen Markvorsen, Brendan D. McKay, Simon
Plouffe and Neil J. Sloane.

September 14, 1994 Petr Lisoněk
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Symbols and Conventions

In the following table we include a list of symbols that are used widely
in the thesis. Symbols specific to certain chapters are introduced at the
beginning of the respective chapter.

N set of non-negative integers
N� set of positive integers
Z set of integers
Q set of rational numbers
jXj, jGj number of elements of the finite set X,

order of the finite group G
YX f f j f : X �Yg, set of all mappings from X to Y
P �X� power set of the set X
χS characteristic function of the set S;

χS�x� � 1 if x � S, 0 otherwise
n set f1�2� � � � �ng where n is a positive integer
SX symmetric group on the set X

�acting naturally on X�
G � H G is a subgroup of H
G�H direct sum of the groups G and H
GF�q� finite field with q elements, q a prime power
UT transposition of the matrix U
deg�p� degree of the polynomial p
K�x1� � � � �xn� ring of n-variate polynomials over K
K��x1� � � � �xn�� ring of n-variate formal power series over K
K�x� field of univariate rational functions over K
bxc floor of x �integer part�
dxe ceiling of x
n mod k modulo function with the range f0�1� � � � � k� 1g
a � n a is a partition of n;

a � �ai�1�i�n with ∑n
i�1 i � ai � n, ai � N

f �n� � O�g�n�� there is a constant C
such that f �n� � Cjg�n�j for all n � N;
analogously for sequences in more variables
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1.7.2 Apéry’s Recurrence � � � � � � � � � � � � � � � � � � 32

1.8 More on Rational Summation � � � � � � � � � � � � � � � � 35
1.9 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 36

xiii



xiv Contents

II Enumerative Combinatorics 37

2 Symmetry Classes of Mappings 39
2.1 Definitions � � � � � � � � � � � � � � � � � � � � � � � � � � � 40

3 Symmetries in Neural Networks 47
3.1 Definitions � � � � � � � � � � � � � � � � � � � � � � � � � � � 48

3.1.1 Automorphism Group of Hn � � � � � � � � � � � � � 50
3.1.2 The Group GL�n�2� � � � � � � � � � � � � � � � � � � 51

3.2 Preparatory Statements � � � � � � � � � � � � � � � � � � � � 51
3.3 Isomorphism between Gn’s and GL�n�2�’s Actions � � � � 54
3.4 Orbits of Hadamard Pattern Sets � � � � � � � � � � � � � � 57

3.4.1 Cycle Indices of Linear Groups � � � � � � � � � � � 58
3.5 Computation of Orbit Numbers � � � � � � � � � � � � � � � 59
3.6 Length of the Winning Orbit � � � � � � � � � � � � � � � � � 59
3.7 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 60

4 Quasi-polynomials 63
4.1 Definitions � � � � � � � � � � � � � � � � � � � � � � � � � � � 65

4.1.1 Generating Functions � � � � � � � � � � � � � � � � � 66
4.1.2 Closed Forms � � � � � � � � � � � � � � � � � � � � � 67

4.2 On the Search for Quasi-polynomials � � � � � � � � � � � � 68
4.3 G-partitions of Numbers � � � � � � � � � � � � � � � � � � � 69

4.3.1 Necklaces and Bracelets � � � � � � � � � � � � � � � 72
4.3.2 0�1-matrices and Bipartite Graphs � � � � � � � � � � 73
4.3.3 Multigraphs � � � � � � � � � � � � � � � � � � � � � � 74

4.4 Polygon Dissections � � � � � � � � � � � � � � � � � � � � � � 75
4.5 Computational Considerations � � � � � � � � � � � � � � � � 80

4.5.1 Examples of Closed Forms � � � � � � � � � � � � � � 81
4.6 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 82

5 Denumerants 83
5.1 Definitions � � � � � � � � � � � � � � � � � � � � � � � � � � � 84
5.2 Facts about Denumerants � � � � � � � � � � � � � � � � � � � 85
5.3 Algorithms for Computing Denumerants � � � � � � � � � � 87

5.3.1 Known Methods � � � � � � � � � � � � � � � � � � � � 87
5.3.2 The New Algorithm � � � � � � � � � � � � � � � � � � 88
5.3.3 Comparison with Other Algorithms � � � � � � � � 92



xv

5.4 Approximations � � � � � � � � � � � � � � � � � � � � � � � � 92
5.5 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 94

III Constructive Combinatorics 95

6 Group Action and Constructions 97
6.1 Problem Specification � � � � � � � � � � � � � � � � � � � � � 98

6.1.1 Small and Large Problems � � � � � � � � � � � � � � 100
6.2 Orderly Methods � � � � � � � � � � � � � � � � � � � � � � � � 100

6.2.1 Canonical Forms � � � � � � � � � � � � � � � � � � � � 104
6.2.2 Restricted Generation � � � � � � � � � � � � � � � � � 105

6.3 Other General Methods � � � � � � � � � � � � � � � � � � � � 106
6.3.1 Recursive Methods � � � � � � � � � � � � � � � � � � 107
6.3.2 Double Coset Representatives � � � � � � � � � � � � 107
6.3.3 Combined Methods � � � � � � � � � � � � � � � � � � 107
6.3.4 Generation by Stabilizer Type � � � � � � � � � � � � 107
6.3.5 Random Generation � � � � � � � � � � � � � � � � � � 108

6.4 Specialized Listing Methods � � � � � � � � � � � � � � � � � 108
6.4.1 Graphs � � � � � � � � � � � � � � � � � � � � � � � � � 108
6.4.2 Rooted and Unrooted Trees � � � � � � � � � � � � � 109
6.4.3 Regular Graphs � � � � � � � � � � � � � � � � � � � � 109
6.4.4 Necklaces � � � � � � � � � � � � � � � � � � � � � � � � 109

7 On a Conjecture of Graffiti 111
7.1 About Graffiti � � � � � � � � � � � � � � � � � � � � � � � � � 112
7.2 The Conjecture � � � � � � � � � � � � � � � � � � � � � � � � � 112
7.3 Derivation of Counterexamples � � � � � � � � � � � � � � � 113
7.4 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 115

8 Chordal Rings 117
8.1 Definitions � � � � � � � � � � � � � � � � � � � � � � � � � � � 118

8.1.1 Alternating Paths and Alternating Cycles � � � � � 120
8.2 Motivations � � � � � � � � � � � � � � � � � � � � � � � � � � � 121

8.2.1 Combinatorics � � � � � � � � � � � � � � � � � � � � � 121
8.2.2 Distributed Computing � � � � � � � � � � � � � � � � 121

8.3 Problem Statement � � � � � � � � � � � � � � � � � � � � � � � 121
8.4 Initial Results � � � � � � � � � � � � � � � � � � � � � � � � � � 124



xvi Contents

8.4.1 Local Structure of CR�k�m� � � � � � � � � � � � � � � 124
8.4.2 Singular Cases � � � � � � � � � � � � � � � � � � � � � 126

8.5 Alternating Cycles and Isomorphism � � � � � � � � � � � � 134
8.5.1 Solving the Congruences � � � � � � � � � � � � � � � 136

8.6 Classifications � � � � � � � � � � � � � � � � � � � � � � � � � 137
8.6.1 The Case k � p � � � � � � � � � � � � � � � � � � � � � 138
8.6.2 The Case k � 2e p � � � � � � � � � � � � � � � � � � � � 138

8.7 Notes on Other Values of k � � � � � � � � � � � � � � � � � 140
8.8 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 141

9 Necklaces and Bracelets 143
9.1 Definitions � � � � � � � � � � � � � � � � � � � � � � � � � � � 144
9.2 Necklace Generation � � � � � � � � � � � � � � � � � � � � � � 147
9.3 The WS Algorithm � � � � � � � � � � � � � � � � � � � � � � 147

9.3.1 Time Complexity of the WS Algorithm � � � � � � 150
9.4 Bracelet Generation � � � � � � � � � � � � � � � � � � � � � � 151

9.4.1 The Bracelet Algorithm � � � � � � � � � � � � � � � � 152
9.4.2 Time Complexity � � � � � � � � � � � � � � � � � � � 156

9.5 Restricted Generation � � � � � � � � � � � � � � � � � � � � � 157
9.6 Proportionalities in Ball Rings � � � � � � � � � � � � � � � � 159

9.6.1 Local and Global Majorities � � � � � � � � � � � � � 159
9.7 Models for Ball Rings � � � � � � � � � � � � � � � � � � � � � 161
9.8 A New Upper Bound for the Symmetric Case � � � � � � 162
9.9 Deriving Upper Bounds � � � � � � � � � � � � � � � � � � � 164
9.10 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 167

10 Configurations in Finite Geometries 169
10.1 Definitions and Facts � � � � � � � � � � � � � � � � � � � � � 170

10.1.1 Finite Fields � � � � � � � � � � � � � � � � � � � � � � 170
10.1.2 Finite Field Planes � � � � � � � � � � � � � � � � � � � 171

10.2 Group Action Setting � � � � � � � � � � � � � � � � � � � � � 173
10.3 Configuration Listing � � � � � � � � � � � � � � � � � � � � � 175
10.4 Semiovals � � � � � � � � � � � � � � � � � � � � � � � � � � � � 176

10.4.1 Constructions � � � � � � � � � � � � � � � � � � � � � � 177
10.4.2 Analysis of Results � � � � � � � � � � � � � � � � � � 177
10.4.3 Semiovals and Regular Arrangements � � � � � � � 179
10.4.4 Semiovals Built from Conics � � � � � � � � � � � � � 183
10.4.5 Semiovals with Deleted Points � � � � � � � � � � � 191



xvii

10.5 Arcs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 191
10.5.1 Constructions � � � � � � � � � � � � � � � � � � � � � � 192
10.5.2 Analysis of Results � � � � � � � � � � � � � � � � � � 194

10.6 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 194

11 Linear Codes 195
11.1 Definitions � � � � � � � � � � � � � � � � � � � � � � � � � � � 196
11.2 Classification of Optimal Codes � � � � � � � � � � � � � � � 198
11.3 Group Action Setting � � � � � � � � � � � � � � � � � � � � � 199
11.4 Constructions � � � � � � � � � � � � � � � � � � � � � � � � � � 200
11.5 Analysis of Results � � � � � � � � � � � � � � � � � � � � � � 202
11.6 Methodological Aspects � � � � � � � � � � � � � � � � � � � � 204

References 205

Curriculum Vitae 215



xviii Contents



Chapter 0

Methodological Background

1



2 Methodological Background

Science walks forward on two feet,
namely theory and experiment.

Sometimes it is one foot which is put forward first,
sometimes the other,

but continuous progress is only made by the use of both.

— R. Millikan

These remarkable words, which we would like to have as the motto
of our thesis, belong to a famous physicist and 1923 Nobel prize win-
ner. Unlike physics, mathematics is known for the rigorousness as its
absolute principle. Hence, much caution is needed if we want to take
a moral from the motto. We feel that a detailed explanation of our
views is in place before starting anything else, and the present chapter
is devoted to this.

0.1 The Creativity Spiral

Once we begin to formulate a research plan, we need a rigorous math-
ematical description of the ideas that are approximated in Millikan’s
quotation. Among those known to us, the most refined such plan is
the iteration through the “creativity spiral” as described by Buchberger
�1993�. The basic idea of this principle is expressed in Figure 0.1.

Following Buchberger �1993�, the concept of spiral has two ingredi-
ents: proceeding through a circle one arrives at a higher level. In the
bottom level �base� of the spiral, it does not matter which step of the
four possible ones we take as the point of the departure for the first
iteration.

Typically, we would start with some �say, given� algorithm and gen-
erate experimental data that are related to the problem under examina-
tion. By observing the common structure “hidden” in the experimental
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THEOREM

EXPERIMENTAL FACTS

ALGORITHM

computing

programming

observing

proving

CONJECTURE

��
��
��
��
� �
� �
� �
� �
�

Figure 0.1: The creativity spiral �Buchberger�.
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facts we may get a new insight in the problem and formulate a conjec-
ture. Our main aim, however, is to turn this conjecture into a theorem,
i.e., to prove that the conjectured assertion is not only true in the cases
observed in the computational experiments but is necessarily true in
all possible cases. In the case of proving, again, the insight obtained
in the computational experiments may be crucial for discovering the
sequence of thinking steps needed in order to obtain a complete proof.

At this point, Buchberger puts much emphasis on algorithmic mathe-
matics. This means that one should always try to formulate and prove
theorems that can be easily converted into algorithms, which then en-
able to continue smoothly in the circle movement. Now, one circle of
the spiral is closed and we are, again, in the position where we can
apply the algorithm to collect more experimental data and, hopefully,
get new insight. Since the new algorithm incorporates more insight
and knowledge, we may hope that it is more efficient for solving our
problem, which means that the next pass through the circle may proceed
on a higher level.

We may summarize that the creativity spiral is marked by an inter-
laced sharpening of its two essential components, namely results �the-
orems� and methods �algorithms�.

It is the ultimate goal of our thesis to contribute to the specific as-
pects of the “creativity spiral” when it is applied as a methodology for
research in combinatorics and closely neighboring fields. For this purpose,
at the end of each chapter �except for the introductory ones� we in-
sert a section called “Methodological Aspects”. In each such section
we discuss the creativity spiral of the respective chapter, in particular
we analyze the relation between experiments and proofs. Some general
remarks about these issues follow in the next section.

0.2 Experiments and Proofs

The concept of the creativity spiral seems to be so natural that we can
adopt the idea that it governs all progress in mathematics. While the
proving side of the spiral is relatively transparent because the proofs
are usually published in full detail, it may be less transparent what
happens on the experimental part.
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The last sentence of course does not imply that proving is easy—
typically proofs are products of hard mental work, and the essence of
mathematics is proving. We just want to remark that, after having read
a paper written by someone else, we usually know much better how
the theorem was proved than in which way it was discovered. Some
authors intentionally skip the latter information because they hope to
exploit it further, and because only the former information �the proof�
is normally required to get the theorem published.

Hence, apart for giving perfect proofs, it will also be our concern
in this thesis to develop good methods of experimenting.

The dramatic progress in computer technology over the past decade
was paralleled by equally dramatic statements about the changing role
of computers in mathematics. One of them reads as follows:

There are writings on the wall that,
now that the silicon savior has arrived,

a new testament is going to be written.

This quotation is taken from a controversial paper by Zeilberger
�1993�. While we find this particular sentence very appealing �let us
make it, say, to a sub-motto of our thesis�, it should be noted that the
rest of the paper provoked a lot of �mostly negative� discussion. Zeil-
berger argues that in the future computers will overwhelm us with so
many new exciting facts that we simply will not have time to prove
them. He predicts the dawn of “semi-rigorous mathematics” in which
propositions will be stated only with limited certainty, based on com-
puter experiments. Things went even further in a Scientific American
essay by Horgan �1993� who speculated about “the death of proof”.
Technical flaws in Horgan’s pamphlet were pointed out by many au-
thors; see, for example, the response by MacLane �1994�.

In these days, for many mathematicians the main source of irrita-
tion is the appearance of computerized experiments as substitutes for
proofs. As a consequence, the pure mathematical community in its vast
majority still regards computers as invaders, despoilers of “the sacred
ground”.

To our opinion, the way out of this unpleasant and dangerous po-
larization is to clearly state in which parts of the creativity spiral is the
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use of computers highly profitable and from which parts it should be elim-
inated whenever possible.

Since our main concern is to study the creativity spiral in combina-
torics, we will now turn our attention to this specific field.

0.2.1 Combinatorial Computing

Massive combinatorial computations were performed to establish the
following results:

� Every plane map is four-colorable. See �Appel, Haken, 1986� for a
historical account and a defense of their method.

� There is no projective plane of order 10, by Lam, Thiel and Swiercz
�1989�.

� The Ramsey number R�4�5� is equal to 25, by McKay and Ra-
dziszowski �1993�.

The common characteristic of all three cases is that a computer was
used to “prove” a result by separately verifying a myriad of possible
subcases at the total cost of months or years of computing time.

The main objection raised by the rigorous mathematicians is that
such proofs cannot be checked by humans. For example, to estab-
lish the equality R�4�5� � 25, a separate consideration of more than
350,000 twenty-four-vertex graphs was necessary. In the proof by Ap-
pel and Haken, even minor errors had to be corrected over the years.
Recently, Sanders �1994� and his colleagues have simplified the Appel-
Haken proof, which now requires “only” 24 hours on a Sun Sparc 10
workstation.

The second objection is that the computer proofs may rely on error-
prone software, not to speak about possible hardware failures.

It is then no wonder that, given this state of affairs, the rigorous
mathematicians tend to believe that the computer is a false Messiah.

Our main concern in this thesis is to show that computer-assisted
mathematics need not be “speculative” or “semi-rigorous”. One possi-
ble recipe to have the computer as a honest, harmless tool of rigorous
mathematics is to use it freely on the experimental side of the creativity
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spiral, while the usage on the proving side should be limited to cases
that are intractable by humans �e.g., because of immense complexity�.

�Remark. Even in those cases, one should try to get such computer-
generated proofs that have short �i.e., human-verifiable� “certificates”.
For an excellent example of certified computer proving, see Zeilberger
�1990a�, �1990b� and Wilf and Zeilberger �1992�.�

In other words, we aim at a rehabilitation of “experimental mathe-
matics” by giving this term a proper content, as outlined by J. Borwein
and P. Borwein �1992� or by Kerber �1991� in the final comments to his
recent book �pages 425–426�.

As far as experimenting is considered, combinatorics and its neigh-
bors seem to be a paradise landscape. Combinatorial objects are usu-
ally easy to represent in a computer, and the numbers involved in the
problems usually are integers or rationals.

In our thesis, we present nine studies of doing rigorous experimental
combinatorics. In the great majority of cases we are able to provide
transparent proofs that are logically independent of computer results.
Only in the last two chapters �constructions in finite projective planes
and classifications of ternary codes� we sometimes have to “believe the
computer” in the instances when the number of classified objects is too
big to have a human proof for it.

0.3 The Role of Symbolic Computation

Symbolic computation software is a useful tool that changes the way
we teach, apply and invent mathematics. In particular, the computer
algebra systems provide wonderful environments for experimenting.
Bergeron �1993� shows how surprising can be the results discovered
this way.

Computer algebra plays an immense role also in our investigations.
Part I deals entirely with computer algebra algorithms. In Part II, com-
putational manipulations of formal power series provide us with a lot
of insight in certain enumerative problems. In Part III, we study prob-
lems that have symmetries described by permutation groups. In or-
der to efficiently cope with these problems we need a certain prepro-
cessing of these groups. In cases when these groups grow very large
�such as in Chapters 10 and 11�, a powerful computational system is
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inevitable to handle them. A standard instance for the application of
computer algebra also is provided by the study of algebraic curves in
Section 10.4.
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1.1 About Symbolic Summation

In this chapter our interest will be focussed on “simplification” of finite
sums

b

∑
i�a

ti� �1.1�

Usually, the main goal is elimination of the ∑ symbol in �1.1� under
the assumption that the resulting formula is “simpler” then the original
sum. As an example, take

a�n� �
n

∑
k�0

1
4k2 � 8k � 3

and

b�n� �
n� 1
2n� 3

�

For all non-negative integers n, a�n� � b�n� holds. But evaluating b�n�
takes constant time �when n is “not too big”� while for computing a�n�
we must do O�n� arithmetic operations. Moreover, from b�n� we get
more knowledge—for instance,

lim
n�∞

a�n� � lim
n�∞

b�n� �
1
2
�

Thus the main reasons for performing symbolic summation are

� achieving more mathematical insight,

� obtaining better or unique algebraic representations,

� reduction of evaluation time and/or escape from complicated nu-
merical evaluations.

It has been recognized in the course of years that for certain classes
of functions, the sums are found in other certain classes of functions.
For example, sums of polynomials are polynomials, sums of rational
functions are rational functions plus a transcendental part. This leads
to the formal specification of our problem, see also �Gärtner, 1986�:



1.1. About Symbolic Summation 13

Definition 1.1.1 Let K be a ring (field) and K � F�t� � G�t� be extensions
of K such that all elements of F�t� and G�t� are functions from Z to K.
The problem of summation in finite terms is as follows:

Given: an element f � F�t� (the “summand expression”).
Find: an element g � G�t� in “closed form” such that

for all n�m �Z�n� m, the following holds:

(	 i � n�n� 1� � � � �m) ( f �i� is defined) �

(g�n� is defined � g�m� 1� is defined � �1.2�

∑m
i�n f �i� � g�m � 1�� g�n�).

Return “no closed formula exists” if there is no function g � G�t� with this
property.

Hence, given a function f �n�, n �Z, we look for corresponding g�n�
such that

�	n �Z� �∆g�n� :� g�n � 1�� g�n� � f �n�� �

The implication �1.2� is then easily satisfied. Thus the indefinite sum-
mation reduces to solving the first-order difference equation

g�n � 1�� g�n� � f �n�� �1.3�

The solution is unique up to the addition of a constant sequence.
The term “closed form” is to be understood in accordance with the

achievement that we expect from the summation act. For example, if
we intend to reduce the amount of computation, the “closed form” is
an expression that is considerable easier to evaluate than the sum itself.

Sometimes, we speak about indefinite summation instead of “summa-
tion in finite terms” because of the parallel to the indefinite integration
problem. See Chapter 2.6 of �Graham, Knuth and Patashnik, 1989� for
a discussion of analogy to the continuous case. In fact, success with
symbolic integration in the late 60s motivated progress in the discrete
case as well.

Sometimes, we cannot find g�n� satisfying �1.2� but for some I �Z,
evaluation of ∑n�I f �n� is possible. Then we perform the definite sum-
mation. In this case often one of the summation limits appears as
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a parameter of the summand. As a well-known example, consider
f �k� �

�n
k

�
� n � N. We cannot simplify the symbolic sum ∑m

k�0

�n
k

�
for

arbitrary m but we know that ∑n
k�0

�n
k

�
� 2n.

In particular, symbolic methods can be used for proving �and also
rediscovering� of a great majority of identities involving factorials and
binomial coefficients. Nowadays they present a standard tool for re-
search in combinatorics.

In the history of indefinite summation, four large classes of func-
tions were subsequently mastered, namely polynomial, rational, hyper-
geometric and special functions. The hypergeometric case is treated by
the algorithm invented by Gosper �1978�. In the following sections, a
detailed study of the degree setting for Gosper’s algorithm is presented.
In particular, we discriminate between rational and proper hypergeo-
metric input. As a result, the critical degree bound can be improved
in the former case.

The work described in subsequent sections originated by two in-
dependent publications: Paule and Strehl �1991� described the K0-case
arising in proof of Apéry’s recurrence �see Section 1.7.2�, and Lisoněk
�1991� found the improvement of the degree setting in the rational in-
put case. The algebraic theory of the degree setting was then developed
in collaboration of Lisoněk, Paule and Strehl �1993�.

1.2 Gosper’s Algorithm

Gosper’s algorithm for indefinite hypergeometric summation �see Gos-
per �1978�, Lafon �1983� or Graham, Knuth and Patashnik �1989�� be-
longs to the standard methods implemented in most computer algebra
systems. Current interest in this algorithm is mainly due to the fact
that it can also be used for definite hypergeometric summation �e.g.,
verifying binomial identities “automatically”, finding recurrence oper-
ators annihilating hypergeometric sums� in a non-obvious and non-
trivial way �see Zeilberger �1990a�, �1990b�, Wilf and Zeilberger �1992�
and the references given in the latter�.

One of the steps in Gosper’s algorithm, crucial for its running time
and memory requirement, is the determination of a degree bound for
a possible polynomial solution of a certain difference equation - the so-
called “key equation”, see �GE� in Section 1.5. In this chapter a detailed



1.2. Gosper’s Algorithm 15

analysis of this degree setting is given. It turns out that the situation
for rational sequences is different from that for proper, i.e., non-rational
hypergeometric input. Besides several theoretical results one practical
implication of our discussion is an improvement for the degree setting
in Gosper’s algorithm in the rational case. At first glance, this improve-
ment might seem to be of minor interest since Gosper’s algorithm is
not primarily intended for the special case of rational summation. But
we have to stress that in many computer algebra systems it is the only
summation algorithm available. �The single exception from this situ-
ation is probably Maple providing a variety of summation algorithms
and choosing the appropriate one depending on the particular form of
the input.� This motivates a study of the behavior of Gosper’s algo-
rithm for different classes of inputs in order to make it input-sensitive
as a balance to having more algorithms at hand.

After the basic definitions, in Sections 1.3 and 1.4 algebraic relations
between rational and hypergeometric sequences are discussed. Two
representations �Gosper form and Petkovšek’s normal form� of ratio-
nal functions are introduced which are crucial for our investigation. In
Section 1.5 a brief outline of Gosper’s algorithm is given, including in-
formation on the solution space of the key equation �GE�. Section 1.6
presents the careful analysis of the degree setting for polynomial so-
lutions of �GE�. The difference between rational and hypergeometric
input sequences is made explicit. For example, if an indefinite sum
over a regular rational sequence again is rational then there exist at
least two polynomial solutions of the key equation with different de-
grees. The one with the higher degree corresponds to the “K0-case” in
Gosper’s original degree setting. This is different from the situation for
proper hypergeometric input. Based on the degree setting analysis, a
suggestion for a corresponding improvement in Gosper’s algorithm is
made.

In Section 1.7 two examples illustrating the difference between ra-
tional and proper hypergeometric situation are given. One of them is
related to the famous Apéry recurrence.

In Section 1.8 we include a brief survey of other methods for ratio-
nal sequence summation.



16 Improvement in Gosper’s Algorithm

1.3 Rational and Hypergeometric Sequences

Definition 1.3.1 Let Q be a field of characteristic 0. A sequence �ak�k�0 in
Q is called

� rational, if there exist relatively prime polynomials s� t � Q�x� such
that

ak �
s�k�
t�k�

�k � N� �1.4�

(in particular: t�k� �� 0 for all k � N)

� hypergeometric, if there exist relatively prime polynomials σ� τ �Q�x�
such that

ak �
σ�k�
τ�k�

� ak�1 �k  1� �1.5�

where τ�k� �� 0 for all k  1.

A rational sequence �ak�k�0 is called regular rational if deg�s� � deg�t�
in equation (1.4) holds.

Note that once a term an of some hypergeometric sequence van-
ishes, all the subsequent terms an�k �k  0� will automatically vanish
too, i.e., �ak�k�0 has only a finite number of non-zero terms in this case.
This degenerate situation is obviously not of much interest as far as
indefinite hypergeometric summation is concerned. On the other hand,
rational sequences can only have a finite number of vanishing terms,
hence rational sequences with at least one vanishing term cannot be hy-
pergeometric. Again, since we are interested in indefinite summation,
we can always dispense with a finite initial segment of a sequence to
be summed by shifting indices.

Hence, for the remainder of this chapter rational sequence will always
mean “rational sequence without vanishing terms” and hypergeometric
sequence will always mean “hypergeometric sequence without vanishing
terms”.

Under this convention, every rational sequence is a hypergeometric
one, since

ak �
s�k�
t�k�

� t�k� 1�
s�k� 1�

� ak�1 �
σ�k�
τ�k�

� ak�1
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with

σ�x� � s�x� � t�x� 1��d�x�
τ�x� � t�x� � s�x� 1��d�x�

where d�x� � gcd�s�x� � t�x� 1�� t�x� � s�x� 1��. Thus it makes sense to
introduce the concept of proper hypergeometric sequence which means hy-
pergeometric sequence that is not a rational one.

Conversely, if �ak�k�0 is a hypergeometric sequence as in �1.5� such
that the rational function σ�x��τ�x� can be written as

σ�x�
τ�x�

�
p1�x�

p1�x� 1�
� p2�x� 1�

p2�x�

for �relatively prime, w.l.o.g.� polynomials p1� p2 � Q�x�, then �ak�k�0 is
rational because

ak �
∏k

i�1 σ�i�
∏k

j�1 τ� j�
� a0 �

p1�k� � p2�0�
p1�0� � p2�k�

� a0�

i.e., we have �1.4� with s�x� � a0 � p2�0� � p1�x� and t�x� � p1�0� � p2�x�.
We may summarize this discussion in

Proposition 1.3.2 Let �ak�k�0 be a hypergeometric sequence with rational
function certificate λ�x� � σ�x��τ�x� � Q�x�, i.e.,

ak � λ�k� � ak�1 for all k  1�

The sequence �ak�k�0 is rational if and only if there exist polynomials
p1� p2 � Q�x� such that

λ�x� �
p1�x�

p1�x� 1�
� p2�x� 1�

p2�x�
�

1.4 Representations of Rational Functions

Gosper’s algorithm makes essential use of the following fact about ra-
tional functions:
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Proposition 1.4.1 (Gosper) Every non-zero rational function λ�x� � Q�x�
can be written as

λ�x� �
p�x�

p�x� 1�
� q�x�

r�x�
� �G1�

where p� q� r � Q�x� are polynomials such that

gcd�q�x�� r�x � j�� � 1 for all j � N� �G2�

A triple �p� q� r� satisfying �G1� and �G2� will be called a G-form
of λ�x�. Gosper �1978� outlines an algorithm for the computation of a
G-form. Note that such a form is not unique. As a simple example: in

λ�x� �
�x � 1�2

x
�

x� 1
x

� x� 1
1

�
�x � 1�2

x2 � x
1

both the third and the fourth term are G-forms with

p�x� � x � 1� q�x� � x � 1� r�x� � 1

and
p�x� � �x � 1�2� q�x� � x� r�x� � 1�

respectively.
It was shown by Petkovšek �1992� that uniqueness for this kind of

form can be enforced by imposing two more conditions.

Proposition 1.4.2 (Petkovšek) Every non-zero rational function λ�x� �
Q�x� can be written uniquely as

λ�x� � c � p�x�
p�x� 1�

� q�x�
r�x�

� �P1�

where 0 �� c � Q and where p� q� r � Q�x� are monic polynomials such that

gcd�q�x�� r�x � j�� � 1 for all j � N� �P2�

gcd�p�x�� r�x�� � 1� �P3a�

gcd�p�x� 1�� q�x�� � 1� �P3b�
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Petkovšek also gives an algorithm for computing what we will call
the P-form �p� q� r� of a rational function.

As an immediate simple consequence of Petkovšek’s representation
we note:

Proposition 1.4.3 Let α�β � Q�x�. If the equation

β�x� � y�x�� α�x� � y�x� 1� � 0 �1.6�

admits a non-trivial polynomial solution y � Q�x�, then all polynomial so-
lutions of (1.6) are precisely given by the scalar multiples c � y�x�� c � Q,
of y�x�.

Proof. If y�x� is any monic solution of the equation, then view the r.h.s.
of

α�x�
β�x�

�
y�x�

y�x� 1�

as the P-form �p�x� � y�x�� q�x� � r�x� � 1� of the l.h.s. By the unique-
ness assertion of Proposition 1.4.2, any polynomial solution of equation
�1.6� must be a scalar multiple of y�x�. �

As a further consequence of Petkovšek’s result we get information
about the possible G-forms of rational sequence certificates. �Cf. Propo-
sition 1.3.2 for the notion of the certificate.�

Proposition 1.4.4 Let ρ�x� � σ�x��τ�x� � Q�x� be a rational function with
gcd�σ�x�� τ�x�� � 1, and let �p�x�� q�x�� r�x�� be any G-form of ρ�x��ρ�x�
1�. Then

1. if q�x� � r�x� � 1, then ρ�x� is a polynomial, i.e., τ�x� � 1;

2. if p�x� � 1, then ρ�x� is the reciprocal of a polynomial, i.e., σ�x� � 1;

3. in the general situation: σ�x� j p�x�.
Proof. 1. For q � r � 1

σ�x�
σ�x� 1�

�
�τ � p��x�

�τ � p��x� 1�
�

Both sides are in P-form, thus σ � τ � p, which implies τ � 1 by gcd�σ� τ�
� 1.
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2. Representing τ�x� 1��τ�x� in P-form as

τ�x� 1�
τ�x�

�
u�x�

u�x� 1�
� v�x�

w�x�

implies v�x� j τ�x� 1� and w�x� j τ�x� by considering

τ�x� 1� � u�x� 1� �w�x� � τ�x� � u�x� � v�x�
together with the Petkovšek conditions. But then both sides of

�σ � u��x�
�σ � u��x� 1�

� v�x�
w�x�

�
q�x�
r�x�

are in P-form. E.g., gcd�w�σ � u� � 1, the Petkovšek condition �P3a�,
holds because of w j τ, gcd�σ� τ� � 1, and gcd�u�w� � 1. Analogously the
other “diagonal” Petkovšek condition �P3b� is verified using v�x� j τ�x�
1�.
Thus we have v � q, w � r, σ � u � 1, and thus u � σ � 1.

3. For ρ̃ � σ��p � τ� the G-form of ρ̃�x��ρ̃�x� 1� is

ρ̃�x�
ρ̃�x� 1�

�
q�x�
r�x�

�

It follows from 2. that ρ̃�x� is the reciprocal of a polynomial. This,
together with gcd�σ� τ� � 1, implies σ j p. �

We use this assertion in the following result which is crucial for
discussing the behavior of Gosper’s algorithm on rational sequences.

Proposition 1.4.5 Let λ�x� � Q�x� be a rational function, and let �p� q� r�
be any G-form of λ�x�. Then the following assertions are equivalent:

1. We have

λ�x� �
ρ�x�

ρ�x� 1�

for some rational function ρ�x� � Q�x�.

2. The equation
q�x � 1� � y�x�� r�x� � y�x� 1� � 0

admits a non-trivial polynomial solution y � Q�x�.
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Proof. Let ρ�x� � σ�x��τ�x� � Q�x� with gcd�σ�x�� τ�x�� � 1. Then
σ�x� j p�x� by the general part of the previous proposition. We may
thus rewrite the G-form of

λ�x� �
ρ�x�

ρ�x� 1�
�

σ�x�
σ�x� 1�

� τ�x� 1�
τ�x�

as
τ�x� 1�

τ�x�
�

�p�σ��x�
�p�σ��x� 1�

� q�x�
r�x�

or

q�x� �
� p � τ

σ

�
�x�� r�x� �

� p � τ
σ

�
�x� 1� � 0� �1.7�

Now gcd�q�x�� r�x�� � 1 by property �G2�, hence q�x� j �p � τ�σ��x � 1�,
i.e., � p � τ

σ

�
σ�x� � q�x � 1� � y�x�

for some non-zero polynomial y � Q�x�. Dividing both sides of �1.7� by
q�x� then gives

q�x � 1� � y�x�� r�x� � y�x� 1� � 0�

For the other direction, let y�x� be a non-trivial solution of this pre-
vious equation, then

q�x�
r�x�

�
q�x�

q�x � 1�
� y�x� 1�

y�x�
�

and

λ�x� �
p�x�

p�x� 1�
� q�x�

q�x � 1�
� y�x� 1�

y�x�
�

i.e., we have λ�x� � ρ�x��ρ�x� 1� with

ρ�x� �
p�x�

q�x � 1� � y�x� �

�
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1.5 Uniqueness of Solutions

The essence of Gosper’s algorithm �see Gosper �1978� or Section 5.7
in Graham, Knuth and Patashnik �1989�� can be shortly described as
follows:

Given a hypergeometric sequence �ak�k�0 with values from the field
Q. Let us assume that the sequence �sn�n�0 defined as

sn �
n

∑
k�0

ak�

for all non-negative integers n, again is hypergeometric. Then to solve
the summation problem is equivalent to find the hypergeometric solu-
tion �sk�k�0 of the difference equation

sk � sk�1 � ak k  1 �DE�

with the initial condition s0 � a0. If exists, this solution can be expressed
as

sn �
q�n� 1�

p�n�
� f �n� � an�

where f �x� is a polynomial satisfying the key equation

p�x� � q�x � 1� � f �x�� r�x� � f �x� 1� �GE�

and where �p� q� r� is a G-form of the rational function certificate de-
termined by ak�ak�1 �k  1�. In order to discuss the set of all possible
polynomial solutions f � Q�x� of the key equation �GE� we make use
of the following proposition which is evident:

Proposition 1.5.1 Given polynomials α�β� γ � Q�x� with γ �� 0, then the set
of all polynomial solutions of

γ�x� � α�x� � y�x�� β�x� � y�x� 1� �1.8�

consists precisely of all expressions of the form

y � z�

where y � Q�x� is a solution of (1.8) and z � Q�x� runs through all poly-
nomial solutions of the homogeneous equation

0 � α�x� � z�x�� β�x� � z�x� 1�� �1.9�
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A similar statement is proven as Lemma 3.7 in �Koornwinder, 1992�.
However, no further investigations appear there. On the contrary, here
we proceed by showing that there is an intimate connection between
the situation described in the previous proposition and the two princi-
pal classes of input sequences:

Let us assume that a polynomial solution f � Q�x� of �GE� exists.
Then, by Proposition 1.5.1 we have to consider two different cases, (A)
and (B), induced by the structure of the corresponding homogeneous
equation

0 � q�x � 1� � y�x�� r�x� � y�x� 1�� �1.10�

(A) If �1.10� admits no non-trivial solution, then f �x� is the only
solution of the key equation �GE�.

(B) If there exists a non-trivial solution h of �1.10�, then due to
Propositions 1.5.1 and 1.4.3 the polynomial solution set of the key equa-
tion �GE� consists precisely of all polynomials of the form

f �x� � c � h�x��

where c is running through all the elements of Q.
We show that the cases (A) and (B) correspond to �ak�k�0 being either

a proper hypergeometric sequence �i.e., not a rational one�, or being a
rational sequence:

Proposition 1.5.2 Let �ak�k�0 be a hypergeometric sequence with rational
function certificate λ�x� � Q�x�, i.e., ak � λ�k� � ak�1 for all k  1, and let
�p� q� r� be a G-form of λ. Then the key equation

p�x� � q�x � 1� � f �x�� r�x� � f �x� 1�

arising in Gosper’s algorithm admits

1. at most one polynomial solution, if �ak�k�0 is a proper hypergeometric
sequence;

2. none or a one-parameter family of polynomial solutions, if �ak�k�0 is
a rational sequence.



24 Improvement in Gosper’s Algorithm

Proof. By Proposition 1.4.5 the homogeneous form of the key equation

0 � q�x � 1� � f �x�� r�x� � f �x� 1�

admits a non-trivial solution if and only if λ�x� � ρ�x��ρ�x� 1� for some
rational function ρ � Q�x�. By Proposition 1.3.2 this representation of λ
is possible if and only if �ak�k�0 is rational. The rest of the proposition
is implied by the analysis of the cases (A) and (B) above. �

We conclude this section by a proposition describing how, in the
rational input case, a polynomial solution of the homogeneous form
of the key equation �GE� can be computed from the corresponding G-
form. The special form of this solution implies a degree relation which
turns out to be fundamental for the analysis of the degree setting �see
Section 1.6.4�.

Definition 1.5.3 We define the degree of a rational function

F�x� � f1�x�� f2�x�

as
Deg�F�x�� :� deg� f1�x���deg� f2�x���

Proposition 1.5.4 Let �F�k��k�0 be a rational sequence, F�x� � f1�x�� f2�x�
with f1� f2 � Q�x� and gcd� f1� f2� � 1, and let �p� q� r� be a G-form of
F�x��F�x� 1�. Suppose that the key equation (GE) admits a one-parameter
family of polynomial solutions (cf. Proposition 1.5.2.2). Then the following
holds:

1. We have that P�x� :� p�x�� f1�x� and z�x� :� f2�x�P�x��q�x � 1� are
polynomials in Q�x�.

2. The polynomial z �Q�x� is a solution of the homogeneous form of the
key equation (GE), i.e.,

0 � q�x � 1� � z�x�� r�x� � z�x� 1� �1.11�

holds.

3. For Deg�F�x�� � deg� f1�x���deg� f2�x�� we have

deg�p�x���deg�q�x���Deg�F�x�� � deg�z�x���
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Proof. By Proposition 1.4.4.3 we know that f1�x� j p�x�, hence from the
G-form representation

f2�x� 1�
f2�x�

�
P�x�

P�x� 1�
� q�x�

r�x�
�

From Proposition 1.4.5 we know there must exist a non-trivial solution
of �1.11�. Suppose Z �Q�x� is such a solution. Then by rewriting �1.11�
as

q�x�
r�x�

�
Z�x� 1�

Z�x�
� q�x�

q�x � 1�

and corresponding replacement of q�x��r�x� in the equation above, after
some rearrangements we obtain

f2�x�P�x�
Z�x�q�x � 1�

�
f2�x� 1�P�x� 1�

Z�x� 1�q�x�
�

This equation implies that for some non-zero constant c � Q

f2�x� � P�x� � c �Z�x� � q�x � 1��

Consequently z�x� :� f2�x�P�x��q�x � 1� must be a polynomial and a
solution of �1.11�, too.

The assertion on degrees follows immediately from 1. �

Later �in Proposition 1.6.1� we shall see that the critical value of K0 is
just the degree of the non-zero homogeneous solution z � Q�x�.

1.6 The Degree Setting

We resume the discussion of Gosper’s algorithm at the point where
a G-form has been computed. Then the remaining task in Gosper’s
algorithm is to solve the key equation �GE�.

To be specific, let �ak�k�0 be a hypergeometric sequence with ratio-
nal function certificate λ�x� � Q�x�, i.e., ak � λ�k� � ak�1 for all k  1, and
let �p� q� r� be a G-form of λ. One possibility to compute a polynomial
solution f �x� of Gosper’s key equation �GE� is by coefficient compar-
ison. This can be carried out algorithmically once an upper bound K
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for the degree of f �x� is known. As Gosper �1978� showed, K can be
derived from an analysis of the following equation, which is equivalent
to �GE�:

p�x� � �q�x � 1�� r�x��
f �x� � f �x� 1�

2
� �q�x � 1� � r�x��

f �x� � f �x� 1�
2

�

The following two cases may arise: �The degree of the zero poly-
nomial is set to �1.�

Case 1: If deg�q�x � 1� � r�x�� � deg�q�x � 1�� r�x�� �: M, then K is
uniquely determined as K :� deg�p��M.

Case 2: deg�q�x � 1� � r�x�� � deg�q�x � 1� � r�x�� �: m. This case
appears exactly if deg�q� � deg�r� and, moreover, the leading coeffi-
cients of q and r are equal. Thus by the Gosper-type representation
�G1� we may assume that these leading coefficients are equal to 1. Let
f �x� � fKxK �O�xK�1�, fK � Q n f0g, be a polynomial solution f of �GE�.
�In this particular case, the notation O�xd� stays for a polynomial of
degree at most d.� Then the rest of the degree analysis can be read off
the observation that

p�x� � fK � L�K� � xK�m�1 � O�xK�m�2�� �1.12�

with L�K� being a linear polynomial of the form L�K� � K�K0, where
K0, the root of L�K�, is determined as the coefficient of xm�1 in r�x��
q�x � 1�, in usual notation

K0 :� �xm�1� �r�x�� q�x � 1��� �1.13�

According to the degree comparison of both sides of �1.12� the set of
polynomial solutions f of �GE� splits into two classes: those solutions f
with deg� f � � K0, which is just possible for K0 being an integer greater
than deg�p� �m � 1, and those solutions f with deg� f � �� K0, which
corresponds to K :� deg�p��m � 1. Recalling that m � deg�q�, one has

Case 2a: if K0 is not an integer, then K is uniquely determined as
K :� deg�p�� deg�q� � 1,

Case 2b: if K0 is an integer, take K :� max�K0�deg�p��deg�q� � 1�.
It may happen that K is determined to be a negative integer. This

means that no hypergeometric sequence �sn�n�0 solving the difference
equation �DE� exists and Gosper’s algorithm terminates.
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1.6.1 K0-cases

In his survey on indefinite summation algorithms, Lafon �1983� writes
about Gosper’s algorithm: “We have never observed that �the degree�
... was set to K0; here some improvements may be possible.”

This remark is a bit confusing. Actually such a “K0-example” is
provided by Lafon himself on the same page �Lafon, 1983, p. 75�: For
the �regular rational� input an � 1��n�n � 2��, K :� K0 �� 2� is set by
Gosper’s algorithm as the degree for the polynomial f �n�.

Moreover, there are prominent proper hypergeometric sequences for
which exactly the K0-setting yields a solution. One of such sequences
arises from the famous Apéry recurrence, see Section 1.7.2.

1.6.2 Rational Sequence Summation

Suppose we run Gosper’s algorithm on the rational sequence input
�F�n��n�0 of the form F�x� � f1�x�� f2�x�; f1, f2 � Q�x�.

Let �1.14� be Gosper’s representation of the quotient F�x��F�x� 1�:

f1�x� f2�x� 1�
f2�x� f1�x� 1�

�
p�x�

p�x� 1�
� q�x�

r�x�
� �1.14�

From �1.14� we have

f1�x� f2�x� 1�p�x� 1�r�x� � f2�x� f1�x� 1�p�x�q�x�� �1.15�

We see that deg�q�x�� � deg�r�x�� �: m and �xm� q�x� � �xm� r�x�. Thus
Case 2 of Gosper’s degree analysis applies. We have to look for the
value of K0:

Proposition 1.6.1 For each non-zero rational function F�x� we have

K0 � deg�p�x���deg�q�x���Deg�F�x��� �1.16�

where K0 is the value computed by Gosper’s algorithm in Case 2 and p�x�,
q�x�, r�x� are the polynomials arising in Gosper’s representation (1.14).

Proof. Denote f1�x� �∑s
i�0 aixi, f2�x� � ∑t

i�0 bixi, p�x� � ∑d
i�0 pixi, q�x� �

∑m
i�0 qixi, r�x� � ∑m

i�0 rixi with as bt pd qm rm �� 0. Note that qm � rm.
By coefficients comparison at xs�t�d�m�1 in �1.15� we obtain �remem-

ber that qm � rm�
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as�1bt pdrm � as��tbt � bt�1�pdrm � asbt��dpd � pd�1�rm � asbt pdrm�1 �
bt�1as pdrm � bt��sas � as�1�pdrm � btas pd�1rm � btas pdqm�1,

hence
�s� t � d�as bt pd rm � as bt pd �qm�1 � rm�1�

and
��d �m� t � s�rm � mrm � qm�1 � rm�1�

Thus
d�m � t� s � �mrm � qm�1 � rm�1

rm
�

which together with qm � rm yields

deg�p�x���deg�q�x���Deg�F�x�� � �2
mqm � qm�1 � rm�1

qm � rm
�

On the r.h.s. of the last equation we have the value

�2
�xm�1� �q�x � 1�� r�x��

�xm� �q�x� � r�x��
� �1.17�

W.l.o.g. we can assume q and r to be monic. Then �1.17� is precisely
equal to the value K0 �cf. �1.13�� in Gosper’s degree analysis. Thus we
have proved that �1.16� holds for each rational input sequence. �

1.6.3 Description of the K0-case in Rational Summation

With respect to our result, the “K � K0”-case in rational summation
occurs if and only if

deg�p�x���deg�q�x���Deg�F�x��  deg�p�x���deg�q�x�� � 1 �1.18�

iff
Deg�F�x�� � �1

iff the summation input �F�k��k�0 is a regular rational sequence.
If this is the case, the solution to the summation problem is given

by

R�x� �
q�x � 1� f �x�

p�x�
F�x�
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with deg� f �x�� :� K0 � deg�p�x�� � deg�q�x�� � Deg�F�x��. �It follows
from Gosper’s precise analysis that this degree bound is accurate.� We
compute

Deg�R�x�� � deg�q�x�� � �deg�p�x��� deg�q�x���Deg�F�x���
�deg�p�x�� �Deg�F�x���

Hence, Deg�R�x�� � 0�

1.6.4 A Better Degree Setting

We learned that for regular rational function inputs F�x�, the solution
function R�x� of �DE� computed by Gosper’s algorithm arises from the
K0-case and, moreover, Deg�R�x�� � 0 holds. Let R�x� � r1�x��r2�x�,
deg�r1�x�� � deg�r2�x��. Then r1�x��r2�x� � c � r3�x��r2�x�, c � Q n f0g
with r3 � 0 or deg�r3�x�� � deg�r2�x��. From this we get another solu-
tion of the difference equation �DE�, namely

r3�x�
r2�x�

� r3�x� 1�
r2�x� 1�

� F�x�� �1.19�

Since Deg�r3�x��r2�x�� � 0, we see that this solution cannot correspond
to the K0-case. Moreover, �1.19� implies Deg�r3�x��r2�x�� �Deg�F�x���1
for the regular rational solution of �DE� from which we calculate the
degree of the respective polynomial f �x� to be

Deg�F�x�� � 1�Deg�F�x�� �deg�p�x���deg�q�x��

which is the second alternative of Case 2b of Gosper’s algorithm.
For the practical applications we note that the degree of f �x� �and

so the order of the linear system for coefficients of f �x�� decreases by
the same value as the rational function degree of the resulting sum
does, i.e., by �Deg�F�x��� 1.

1.6.5 Non-regular Rational Input

The last class of inputs that has not been treated yet is the set of non-
regular rational sequences. We show that no improvement of degree
setting is possible here:
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From Proposition 1.5.4.3 we have that

Deg�F�x��  0 �
 deg�z�x�� � deg�p�x��� deg�q�x�� � 1

for any non-zero solution z�x� � Q�x� of the homogeneous form of the
key equation �GE�. Due to Gosper’s degree analysis this also implies

deg�z�x�� � deg�y�x��

where y � Q�x� solves �GE�. This means that in the case of the non-
regular rational input, all solutions of �GE� are of the same degree.
In particular, we see that this degree is deg�p�x��� deg�q�x�� � 1 since
Proposition 1.5.4.3 and Proposition 1.6.1 yield together

K0 � deg�z�x��

and so K0 is less than deg�p�x���deg�q�x�� � 1 here.

1.6.6 “Plain” and “Hidden” Rational Sequences

We should be aware of the fact that the input sequence actually might
be a rational one but in a disguised form. For example,

ak � k!��k � 6�! �1.20�

is a rational sequence.
Such cases are recognized easily when processed by humans but

need more care when we implement summation in a computer algebra
system. Success with the rationality test allows us to reduce computa-
tion time by taking the better degree setting instead of the maximum
in Case 2b.

Here we meet central issues of symbolic computation, namely sim-
plification and canonical forms.

However, even if we do not simplify the input completely, there is
a guideline that can help us:

Proposition 1.6.2 Let m be the value computed in Case 2 of Gosper’s al-
gorithm (cf. Section 1.6). If we get into Case 2b with m � 1 (q and r are
linear polynomials), then the input sequence is rational.
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Proof. We can make q and r monic. Suppose q�x� � x � q0, r�x� � x �
r0. Then K0 � r0 � q0 � 1 must be a non-negative integer. Denote the
summation input by �ak�k�0. Then the G-representation is

ak

ak�1
�

p�k�
p�k� 1�

� k � q0

k � r0

for some p�x� � Q�x�. Now the result follows directly from Proposition
1.3.2 applied with p1�x� :� p�x� and p2�x� :� ∏r0

i�q0�1�x � i�. �

Based on our results given up to now, we suggest the following im-
provement of the degree setting in Gosper’s algorithm by regrouping the
two subcases of Case 2:

If K0 is not an integer or the input sequence is rational or m � 1
then K :� deg�p�n���m� 1 fCase 2ag
else K :� max�K0 � deg�p�n���m� 1� fCase 2bg

1.7 Other K0-examples

We have shown how to improve the degree reasoning for rational in-
puts. In this section we present some proper hypergeometric K0-cases
documenting that no general improvement is possible here.

1.7.1 A “Simple” Proper Hypergeometric K0-case

It is hard to find a “nice” example with binomials or even with �inte-
ger� factorials and not to fall into the rational case at the same time.
This is the reason why we use somewhat cumbersome fractions and
raising factorials here:

Let xn � x�x � 1� � � � �x �n� 1� be the raising factorial and let p̃�n� �
1
36��35n2 � 20n� 65�. We want to sum

an � p̃�n�
��5�2�n�12

��1�3�n�1��2�3�n�1
�



32 Improvement in Gosper’s Algorithm

Gosper’s representation here is p�n� � p̃�n�, q�n� � �n � 5�2�2, r�n� �
�n� 1�3��n� 2�3�, so deg�q�n�� � deg�r�n�� and leading coefficient of q
is equal to the leading coefficient of r. We have that m � 2 and the
degree bounds for polynomial f �n� are

deg�p��m� 1 � 2� 2 � 1 � 1

and
K0 � 2�

Thus we are in the K0-case with a balanced linear system for unknown
coefficients c2, c1, c0 of polynomial f �n�. The system has exactly one
solution because its determinant is different from zero. The solution is
�c2� c1� c0� � �1�0�1�, thus we are in the proper hypergeometric K0-case
with f �n� � n2 � 1. The sum is

sn � �n� 3�2�2�n2 � 1�
��5�2�n�12

��1�3�n�1��2�3�n�1
�

Remark. We note that for m � 1 and K � K0, the linear system for
coefficients of f �x� � cK0x

K0 � � � �� c0 is underdetermined. It has K0 equa-
tions and K0 � 1 unknowns. This fact just supports the claim of Propo-
sition 1.5.2.2.

Generally, in the “K � K0” case the linear system for coefficients of
f �x� arises from coefficient comparisons at deg�q�x � 1�� � deg� f �x�� �
1� 1 � K0 � m different powers of x in �GE�. �The �1 counts the ab-
solute term whereas �1 discounts the vanishing leading term, cf. Gos-
per’s degree analysis.�. Hence, the system has K0 � m equations and
K0 � 1 unknowns. Thus it is the value of m that influences whether the
system is underdetermined, balanced or overdetermined �m � 1, m � 2,
m � 2�. The value m � 1 means rational input, hence the value m � 2
from the previous example is minimal for presentation of a proper hy-
pergeometric K0-case.

1.7.2 Apéry’s Recurrence

Finally we present a nice proper hypergeometric K0-example. The value
of m is equal to 4 here. The example is taken from �Paule, Strehl, 1991�.
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For non-negative integers n� k let

Fn�k �

�
n
k

�2�n� k
k

�2

� �1.21�

Let us recall the famous Apéry recurrence

	n � N c0�n� � Sn � c1�n� � Sn�1 � c2�n� � Sn�2 � 0� �1.22�

where

c0�n� � �n � 1�3� c1�n� � ��2n� 3��17n2 � 51n� 39��
c2�n� � �n � 2�3� �1.23�

and

Sn �
n

∑
k�0

Fn�k� �1.24�

Remark. For an excellent account on how this recurrence is used to
prove the irrationality of ζ�3� see �van der Poorten, 1979�.

Note that the double-indexed sequence �Fn�k�n�0�k�0 is hypergeometric
in both variables. Under slight side-conditions �see Zeilberger �1990a�,
�1990b� or Wilf and Zeilberger �1992�� for such sequences there exist a
non-negative integer d, polynomials c0�n�� � � � � cd�n� being independent
of k, and a double-indexed sequence �Gn�k�n�0�k�0, again hypergeometric
in both variables, such that

c0�n� � Fn�k � c1�n� � Fn�1�k � � � �� cd�n� � Fn�d�k

� Gn�k �Gn�k�1� �1.25�

Since the l.h.s. of the equation above can be rewritten as Fn�k times a
rational function in the two variables n, k, i.e., the resulting expression
is hypergeometric in k �actually it is hypergeometric in both variables�,
it is possible to compute Gn�k and the coefficient polynomials ci�n� by
executing Gosper’s algorithm once the order d is known.

Now running this procedure in the Apéry situation, i.e., with choos-
ing Fn�k as defined in �1.21� and setting d � 2, produces exactly the situ-
ation of Case 2b described above. In the following we give the details
of that computation.
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The left-hand-side of equation �1.25� can be rewritten as the follow-
ing rational function multiple of Fn�k:

p0�n� k� � c0�n� � p1�n� k� � c1�n� � p2�n� k� � c2�n�
�n� k � 1�2�n� k � 2�2 � Fn�k � ak� �1.26�

where

p0�n� k� � �n� k � 2�2�n� k � 1�2�

p1�n� k� � �n� k � 2�2�n � k � 1�2�

p2�n� k� � �n� k � 2�2�n � k � 1�2�

The polynomials corresponding to a G-form of the quotient ak�ak�1

are computed as

p�x� � c0�n�p0�n�x� � c1�n�p1�n�x� � c2�n�p2�n�x��
q�x� � �n � x�2�x� n� 3�2�

r�x� � x4�

In addition, we find that

deg�p�x�� � 4� deg�q�x � 1�� r�x�� � 3� and deg�q�x � 1� � r�x�� � 4�

One can observe that

K0 � 2 and deg�p�x���m � 1 � 1�

Thus we are in Case 2b, where now the degree setting K for f �x� has
to be set to K0, i.e., K :� 2.

Following that pattern, i.e., that of the polynomials p� q� r, it is easy
to construct further examples where exactly the same instance of Case
2b occurs.

For the sake of completeness we want to remark that by running
Gosper’s algorithm one gets for the coefficient polynomials ci�n�, i �
0�1�2, the same values �1.23� as in Apéry’s recurrence, f �x� � 4�2n �
3��2x2 � x� �2n � 3�2� and thus

Gn�k �
q�k � 1�

p�k�
� f �k� � ak �

�n � k � 1�2

�n� k � 1�2 � f �k� � Fn�k�

With these substitutions Apéry’s recurrence �1.22� follows from
�1.25� by “telescoping”, i.e., summation w.r.t. k. �If n is fixed then
Gn�k as a function in k has finite support, as it is a rational function
multiple of Fn�k.�
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1.8 More on Rational Summation

To conclude this degree analysis we briefly comment on other methods
for rational function summation.

The �probably� first method for rational sequence summation was
designed by Abramov �1971�. Nowadays it can be viewed as a special
version of Gosper’s algorithm adjusted for rational sequences. Abra-
mov solves an equation which is similar to Gosper’s equation �GE�,
however, he considers only Case 2a in degree setting since, in his ap-
proach, it leads to the solution if there is any. It follows from �1.18�
that Case 2a delivers a better setting than Case 2b if and only if the
degree of the numerator of the input sequence is less than the degree
of the denominator. This can be always done by putting the polyno-
mial part of the input aside. There are considerably easier methods
for summing polynomials. �E.g., transformation in the falling factorial
base.�

On the other hand, Gosper stuck to the higher degree setting be-
cause he wanted to ensure that no solution is lost. Sometimes we pay
for this comfort by unnecessary computations.

As far as we know, neither of them considered or discussed the
approach of the other one.

Summation analogs of Hermite integration of rational functions
have been provided by Abramov �1975� and Moenck �1977�. Since both
methods are iterative and based on gcd-computations, they cannot be
compared to the two mentioned above.

Paule �1992�, in an effort to close gaps in Moenck’s work, intro-
duced the concept of greatest-factorial factorization. In that paper a
new approach to rational sequence summation is given including a
summation analog of Horowitz’s method for rational function integra-
tion.

For a detailed comparison of the last three approaches mentioned
see Pirastu �1992�.

Recently Pirastu and Strehl �1994� invented a rational summation
algorithm which for any given input finds the optimal solution, where
optimality is defined in terms of degrees of the polynomials that ap-
pear as denominators in the solution �both in the rational and in the
transcendental part�.
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1.9 Methodological Aspects

Gosper’s approach involved testing many cases with Macsyma until a
pattern emerged that worked for all cases and led to the discovery of
the algorithm. Following Gosper’s own words �1976�, “if Stirling had
been granted access to a computerized symbolic mathematic system,
he would probably have done most of this work before 1750.” Our
approach was basically the same, namely experimenting with Gosper’s
algorithm and observing carefully what happens at the point where
it comes to the degree setting. Based on these observations we then
rigorously proved theorems characterizing the degree setting.

Computer algebra systems stimulate research on efficient symbolic
algorithms that make them more powerful. At the same time these sys-
tems yield a wonderful environment for experimenting with symbolic
algorithms which in turn leads to further improvements in the theory.
Hence, this field provides an excellent playing ground for climbing up
the creativity spiral �Section 0.1�.
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This is a preparatory chapter for Part II of our thesis. We shortly re-
call basic definitions in finite group actions, in particular the statements
concerning the enumeration of the symmetry classes of mappings. The
reader may find more information in the first two chapters of the book
�Kerber, 1991�.

2.1 Definitions

Definition 2.1.1 Let �ai�i�0 be a sequence. The formal power series

∞

∑
i�0

aizi

is called the �ordinary� generating function for the sequence �ai�.

For an excellent textbook on generating functions we refer to �Wilf,
1993�.

Definition 2.1.2 Let G be a finite group and X a finite set. Suppose the
mapping

G�X � X� �g�x� �� gx

fulfills two axioms:

A1� �	x � X� 1Gx � x
A2� �	g1�g2 � G��	x � X� �g1g2�x � g1�g2x�

where 1G is the unit element of G. Then we call this mapping finite group
action of G on X. We abbreviate this by saying that X is a G-set or by
simply writing GX.

Remark. Let us emphasize that in Definition 2.1.2 both the group G and
the set X are finite. The definition for infinite groups and/or infinite
sets is completely analogous. However, we do not study infinite actions
in our thesis since we do not really use them here. The only infinite
action, which occurs in Section 4.3, will be transformed to a limit of a
sequence of finite actions.

Let SX denote the symmetric group on X, i.e., the group of all
bijections from X to X and let X be a G-set. The homomorphism
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δ : G � SX , δ�g� :� ḡ where ḡ : x �� gx, is a permutation represen-
tation of G. �One has to verify that ḡ � SX and g1 � g2 � g1 � g2, which is
easy.� The image of the permutation representation of G is denoted by
Ḡ:

δ : G �� Ḡ � SX�

Remark. Later on, we will stick to the common abuse in the terminol-
ogy by identifying the permutation representation �as a mapping� with
the image of a group under this mapping.

Definition 2.1.3 The natural action of the symmetric group SX on its un-
derlying set X is defined by

�π�x� �� π�x��

Definition 2.1.4 If G � SX for some set X then we will say that G is a
permutation group. The degree of G is jXj.

Fact 2.1.5 Let GX be a finite action. The relation �G defined by

x1 �G x2 :�
 ��g � G� x2 � gx1

is an equivalence relation on X.

Proof. A1 gives reflexivity while A2 assures transitivity. Finally, A1 and
A2 together yield symmetry. �

Definition 2.1.6 The equivalence classes of �G are called orbits. The orbit
of x is denoted by

G�x� :� fgx j g � Gg�

If G�X � X is a finite action and H � G then we obtain the subac-
tion H�X � X by mapping restriction.

Another way to define a subaction of the action GX is to take a
union of several G’s orbits on X �let us call this union Y� and to con-
sider the action GY defined again by mapping restriction.
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Definition 2.1.7 A subset T of X such that

X �
��

t�T

G�t�

(on the right-hand side we have a disjoint union) is called a transversal
of the orbits.

Definition 2.1.8 The set of all orbits will be denoted by

G nnX :� fG�x� j x � Xg�
Definition 2.1.9 Let G�X � X and H�Y �Y be two actions such that
there is an isomorphism τ : G � H and a bijection ω : X � Y with
τ�g�ω�x� � ω�gx� for any g � G, x � X. Then we say that the actions
GX and HY are isomorphic.

Obviously, ω induces a bijection between G-orbits and H-orbits.

Definition 2.1.10 Let X be a G-set. For each x � X we introduce its sta-
bilizer

Gx :� fg � G j gx � xg�
Clearly, Gx � G for any x � X.

Definition 2.1.11 With each group element g � G we associate its fixed
point set

Xg :� fx � X j gx � xg�
Fact 2.1.12 Let X be a G-set, x � X. Then jG�x�j � jGj�jGxj.
Proof. For arbitrary g�g� � G we have

gx � g�x �
 g�1g� � Gx �
 g�Gx � gGx�

This implies that the mapping

G�x� � G�Gx

gx �� gGx�

where G�Gx denotes the set of left cosets of Gx in G, is a bijection. �

The value jG�x�j is usually called length of the orbit G�x�.
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Lemma 2.1.13 (Cauchy-Frobenius) Let GX denote a finite action and w :
X � R a map from X into a commutative ring R containing Q as a sub-
ring. If w is constant on the orbits of G on X, then we have for any
transversal T of the orbits:

∑
t�T

w�t� �
1
jGj ∑

g�G
∑

x�Xg

w�x� �
1
jḠj ∑̄g�Ḡ

∑
x�Xḡ

w�x�� �2.1�

Proof. We have

∑
g�G

∑
x�Xg

w�x� � ∑
x

∑
g�Gx

w�x�

� ∑
x
jGxjw�x� � jGj∑

x
jG�x�j�1w�x� � jGj∑

t�T
w�t��

The last equation follows from the assumption that w is constant on
orbits. �

This is the so-called weighted form of Cauchy-Frobenius Lemma as it
allows us to enumerate orbits by weight. By taking the constant weight
w� 1 we obtain the unweighted form of the Lemma which then states
that the total number of orbits is equal to the average cardinality of
fixed point sets.

Remark. Lemma 2.1.13 is often incorrectly called “Burnside’s Lem-
ma”, see �Kerber, 1991�, p. 407 for a historical account.

Definition 2.1.14 Let X be a G-set and let Y be a finite set. The induced
action of G on YX is defined by

G�YX � YX

�g� f ��x� :� f �g�1x��

i.e., �g� f � is mapped to f̃ , where f̃ �x� :� f �g�1x�. The orbits of G on YX

will be called symmetry classes of mappings.

Definition 2.1.15 Given a weight mapping W : Y � R, where R is a com-
mutative ring containing Q as a subring, we define the multiplicative
weight w : YX � R by

w� f � :� ∏
x�X

W� f �x�� �2.2�

for each f � YX. Clearly, w is constant on G-orbits.
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In order to use Lemma 2.1.13 for enumeration of symmetry classes
of mappings by their weight we need to know the sum of the weights
of mappings fixed by a given g � G. To this end we have to define the
cycle type of a permutation.

Definition 2.1.16 Let GX be a finite action. Each permutation ḡ � Ḡ can
be decomposed in a product of pairwise different disjoint cycles; this factor-
ization is unique up to the relative order of the cycles in the product, which
is of no consequence. For each 1 � i � jXj, let ai�ḡ� denote the number of
cycles of length i occurring in this factorization. The jXj-tuple

a�ḡ� :� �a1�ḡ�� a2�ḡ�� � � � � ajXj�ḡ��

we be called the cycle type of ḡ.

Obviously, ∑jXj
i�1 i � ai�ḡ� � jXj for any ḡ.

Lemma 2.1.17 Let GX be a finite action, Y be a finite set and let the
weight of functions in YX be defined as in (2.2). For each ḡ � Ḡ we have

∑
f��YX �ḡ

w� f � �
jXj

∏
i�1

�
∑
y�Y

W�y�i

�ai�ḡ�

� �2.3�

Proof. If f � �YX�ḡ then f must be constant on ḡ’s cycles. For each
1 � i � jXj there are precisely ai�ḡ� cycles of length i and each such
cycle contributes to f ’s weight by a factor of W�y�i for some y � Y.
Summing over all possible combinations gives exactly the right-hand
side of �2.3�. �

Theorem 2.1.18 Let GX be a finite action, Y be a finite set, W : Y �� R be
a weight function and let the multiplicative weight function w be defined
as in (2.2). The sum of w’s values on a transversal of the orbits is equal
to

1
jGj ∑g�G

jXj

∏
i�1

�
∑
y�Y

W�y�i

�ai�ḡ�

� �2.4�

Proof. This follows from Lemmas 2.1.13 and 2.1.17. �
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Definition 2.1.19 Let X and Y be finite sets and let f � YX. We define
the content of f to be the mapping

c� f �y� :� j f�1�y�j�

i.e., c� f �y� is the multiplicity with which f takes the value y �Y.
In the special case Y � f0�1� � � � �mg we will occasionally write the con-

tent of f as �k0� k1� � � � � km� where ki � j f�1�i�j.

We have now the following consequence of Theorem 2.1.18:

Corollary 2.1.20 Let Y be a finite set of indeterminates. The number of
G-orbits on YX, the elements of which have the same content as f �YX, is
equal to the coefficient of the monomial ∏y�Y yc� f �y� in the polynomial

1
jGj ∑g�G

jXj

∏
i�1

�
∑
y�Y

yi

�ai�ḡ�

�

Proof. We identify each element of Y with its weight, i.e., we put W :
y �� y for each y � Y. �

Definition 2.1.21 Let GX be a finite action. The cycle index (sometimes
called cycle indicator polynomial) of GX is the polynomial

C�G�X� :�
1
jGj ∑g�G

jXj

∏
i�1

�zi�
ai�ḡ� � Q�z1� z2� � � � � zjXj�� �2.5�

The intuition behind the name of the cycle index is that C�G�X�
“knows” the cycle type of all elements of Ḡ.

Definition 2.1.22 Let C�G�X� be the cycle index of GX as in (2.5) and
let p � Q�u1�u2� � � � �um� be a polynomial. The Pólya-substitution of p in
C�G�X� is defined by

C�G�Xjp�u1�u2� � � � �um�� :�
1
jGj ∑g�G

jXj

∏
i�1

p�ui
1�u

i
2� � � � �u

i
m�

ai�ḡ� �Q�u1�u2� � � � �um��
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This definition naturally generalizes to the Pólya-substitution of a formal
power series f � Q��u1�u2� � � � �um�� in the cycle index, yielding another
formal power series from Q��u1�u2� � � � �um��.

Theorem 2.1.23 (Pólya) The generating function for the enumeration of G-
classes on YX by content can be obtained from the cycle index of GX by
Pólya-substituting ∑y�Y y into the cycle index C�G�X�. Hence this generat-
ing function is equal to

C�G�Xj∑
y�Y

y��

A generalized version of this theorem gives us a freedom to de-
termine which orbits should be considered together for enumeration
purposes.

Theorem 2.1.24 (Pólya) Let GX be a finite action and let Y be a finite
set. Let R � Q�t1� � � � � tl�, let W : Y � R be a weight function such that
W�y� is a monomial in Q�t1� � � � � tl� for any y �Y, and let the multiplicative
weight of functions from YX be defined as in (2.2). Let z be a monomial
in Q�t1� � � � � tl�. The number of G’s orbits of weight z on YX is equal to
the coefficient of z in

C�G�Xj∑
y�Y

W�y���

The unweighted version of the last theorem is obtained by setting
W�y� � 1 for each y � Y. It allows us to count the total number of
orbits �disregarding the content�.

Theorem 2.1.25 (Pólya) The total number of G’s orbits of on YX is equal
to

C�G�X j jYj��
Hence the enumeration task is reduced to the computation of the

cycle index for the given action. Examples of cycle indices for the most
common group actions can be found on pages 72–73 of �Kerber, 1991�.
The definition of the cycle index given in equation �2.5� can be sub-
stantially simplified by recalling that the cycle type of ḡ is invariant on
conjugacy classes of the group Ḡ.

Pólya’s Theorem is the essential tool for class enumeration. We will
see many its applications in the forthcoming chapters of our thesis.
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This chapter develops mathematical methods for studying Hadamard
pattern sets which are currently used as models of neural networks.
Two applications are presented: the enumeration of equivalence classes
of Hadamard pattern sets and the evaluation of orbit lengths. The
chapter provides a standard application of finite group action and is
intended as an introductory example for definitions and theorems from
Chapter 2. Hence, it can be skipped by those readers who are well-
acquainted with these topics.

Our work was motivated by theoretical physics scientists who are
currently introducing and investigating a new model for neural net-
works involving the so-called Hadamard patterns. Global properties of
an individual network can be found from symmetry considerations of
the invariance group of the specific pattern set stored by some learning
rule. Theoretical physics background of our investigations in explained
in �Folk, Kartashov and Ortbauer, 1992�. The summary of our results
and their physical implications can be found in �Folk, Kartashov, Li-
soněk and Paule, 1993�. Technical details of the isomorphism between
Gn’s and GL�n�2�’s actions �Section 3.3� were worked out by Brawley
and Lisoněk �1992�.

3.1 Definitions

Let X be a set. A k-subset of X �k natural� is any subset of X with
cardinality k. The set of all k-subsets of X is denoted as X�k�:

X �k� :� fS j S � X � jSj� kg�

Let t � �t0� � � � � tm�1� and s � �s0� � � � � sm�1� be two m-tuples. We define

t � s :� �t0� � � � � tm�1� s0� � � � � sm�1��

To make the equations more readable we will sometimes write t�i� in-
stead of ti but we will always keep in mind that these two symbols
denote the same object, namely the i-th component of the vector t.

Let GF�2�m be the m-dimensional vector space over GF�2�. The el-
ements of GF�2�m will be considered as row vectors. The coordinates
of these vectors will be numbered by 0�1� � � � �m� 1. For each n 1, let
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fe0�n� � � � � en�1�ng be the standard basis of GF�2�n where

ei�n :� �0� � � � �0� 	z 

i

�1�0� � � � �0� 	z 

n�i�1

��

Definition 3.1.1 For u � GF�2�m, u � �u0� � � � �um�1�, we define its comple-
ment u :� �1� u0� � � � �1� um�1�.

Thus u � u.

Definition 3.1.2 Let Hn � GF�2�2n
be defined inductively as follows:

H0 :� f�0�g

and for i  0,

Hi�1 :� fp � q j p � Hi � �q � p� q � p�g�

The elements of Hn are called Hadamard patterns of length 2n.

For example,

H2 � f �0�0�0�0�� �0�0�1�1�� �0�1�0�1�� �0�1�1�0� g�

We introduce the sequence of mappings �Φn�n�1

Φn : Hn � GF�2�n

where
Φn�p� :� �p�20�� p�21�� � � � � p�2n�1���

E.g.,
Φ3�0�1�0�1�1�0�1�0� � �1�0�1��

Φ�1
2 �1�0� � �0�1�0�1��

Lemma 3.1.3 For each n  1, Φn is a bijection between Hn and GF�2�n.
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Proof. The statement follows easily from the definition of Hn. �

We also introduce the bijections �φn�n�1

φn : f0�1� � � � �2n � 1g � GF�2�n

such that for 0 � k � 2n � 1

φn�k� :� ∑
i�I

ei�n

where I is the unique subset of f0�1� � � � �n� 1g such that

k � ∑
i�I

2i�

Thus φn�k� is the coefficient vector of the dyadic representation of k. For
example, φ4�13� � �1�0�1�1� � e0�4 � e2�4 � e3�4 because 13 � 20 � 22 � 23.

3.1.1 Automorphism Group of Hn

The automorphism group of Hn will be denoted Gn and is defined as
the group consisting of all permutations that map Hadamard patterns
to Hadamard patterns:

Gn :� fπ � Sf0�1�����2n�1g j πHn � Hng

where
πHn � fπh j h � Hng

and for h � Hn, h � �h0�h1� � � � �h2n�1�,

πh :� �h�π�1�0���h�π�1�1��� � � � � � �h�π�1�2n � 1���� �3.1�

Lemma 3.1.4 Gn acts on Hn by the mapping (3.1).

From definition of Hn it is clear that each element of Gn must fix
the position 0, i.e., Gn � Sf0g � Sf1�����2n�1g. Obviously, G1 � Sf0g � Sf1g.
We invite the reader to convince herself/himself that G2 � Sf0g� Sf1�2�3g.
Actually, n � 1�2 are the only trivial cases with Gn � Sf0g� Sf1�����2n�1g.
For example, jG3j � 168 whereas jSf0g� Sf1�����7gj � 5040.
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3.1.2 The Group GL�n�2�

The group of all n � n non-singular matrices over GF�2� is usually
called the nth general linear group over GF�2� and denoted by GL�n�2�.
The group operation is matrix multiplication. Each matrix from GL�n�2�
can be thought of as an n-tuple of non-zero rows �r1� � � � � rn� such that
ri does not belong to the subspace of GF�2�n spanned by r1� � � � � ri�1.
Hence, the order of GL�n�2� is equal to ∏n

i�1�2
n � 2i�1�.

GL�n�2� acts on GF�2�n by multiplication:

GL�n�2��GF�2�n � GF�2�n

�M� f � �� �M � f T�T � f �MT �

Observing the orders of first few stabilizers Gn, Paule stated a con-
jecture that Gn is isomorphic to GL�n�2�. In the next section we show
that this is true and, moreover, we provide the isomorphism which
carries over the respective group actions. Before stating the two main
theorems, we prove some important lemmas about the objects intro-
duced so far.

3.2 Preparatory Statements

Lemma 3.2.1 Let π � Sf0�1�����2n�1g and consider the action

π f :� � f �π�1�0��� f �π�1�1��� � � � � f �π�1�2n � 1���

of π on GF�2�2n
. Then π acts as an invertible linear operator on GF�2�2n

,
i.e., π acts as an automorphism of GF�2�2n

. (A linear operator on a vector
space W is a linear transformation from W to W.)

Proof. Let f and g be two members of GF�2�2n , i.e., f � g is in GF�2�2n .
Then for 0 � i � 2n � 1 we have

π� f � g��i� � � f � g��π�1�i�� � f �π�1�i�� � g�π�1�i�� � π f �i� � πg�i�
� �π f � πg��i��

Thus, π� f � g� � π f � πg. The invertibility follows from the definition
of group action. �
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Lemma 3.2.2 The set Hn of Hadamard patterns of length 2n is an n-dimen-
sional subspace of GF�2�2n

. Further, if for k � 0� � � � �n� 1 the vector vk�n

is defined as

vk�n :� Φ�1
n �0� � � � �0� 	z 


k

�1�0� � � � �0� 	z 

n�k�1

� � Φ�1
n �ek�n�

(i.e., vk�n has alternately 2k zeros followed by 2k ones and so on), then set

fvk�n j 0 � k � n� 1g
is a basis for Hn.

Proof. �Induction on n.� The statement is clear for n � 0 and 1; thus,
assume it is true for Hn, consider Hn�1. Each of the members of Hn�1

is of the form �x�x� or �x� x̄�, where x is in Hn. Since Hn is a sub-
space, it is easily seen that the sum of two elements of this form is
again of the form; i.e., �x � x� � �y � y� � ��x� y� � �x� y��, �x � x� � �y � ȳ� �
��x � y� � �x � y��, �x � x̄� � �y � ȳ� � ��x� y� � �x� y��. Closure under scalar
multiplication is trivial since the only scalars are 0 and 1 so Hn�1 is
a subspace. Since Hn�1 has 2n�1 members and is a vector space over
GF�2�, a counting argument shows its dimension must be n�1. Finally,
since fvk�n j 0 � k � n� 1g is a basis for Hn, it follows that the vectors
�vk�n�vk�n�, 0 � k � n� 1, are n independent elements of Hn�1. Further,
the 2n�1-long vector vn�n�1 of 2n zeros followed by 2n ones is in Hn�1

and is independent of the �vk�n�vk�n�. Then the set of n� 1 vectors taken
together is a basis for Hn�1 and the proof is complete. �

Example. For H3, the basis is v0�3 � �0�1�0�1�0�1�0�1�, v1�3 � �0�0�1�1�
0�0�1�1�, v2�3 � �0�0�0�0�1�1�1�1�. Thus, H3 � fb0v0�3 � b1v1�3 � b2v2�3 j bi �
GF�2�g.

Now consider the n� 2n matrix Vn whose i-th row, 0 � i � n� 1, is
the vector vi�n. It is easily seen that the k-th column, 0 � k � n� 1, of
Vn is

uk�n :� �φn�k��T �

For example, with n � 3 we have

V3 �

�
� 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


A
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whose columns are, respectively, the binary representations of the num-
bers 0, 1, 2, 3, 4, 5, 6, 7.

Since the elements of Hn are precisely the set of vectors of the form

h � b0v0�n � � � �� bn�1vn�1�n � bVn

where b � �b0� � � � � bn�1� � GF�2�n, we see that the k-th component of the
vector h � bVn is the scalar product b � uk�n � b � �φn�k��T , i.e.,

Hn � f�b � u0�n� b � u1�n� � � � � b � u2n�1�n� j b � GF�2�ng�
For example,

H3 � fb0v0�3 � b1v1�3 � b2v2�3 j bi � GF�2�g �

� f�0� b0� b1� b0 � b1� b2� b0 � b2� b1 � b2� b0 � b1 � b2� j bi � GF�2�g�

Lemma 3.2.3 The bijection Φn is an invertible linear transformation from
Hn to GF�2�n.

Proof. Each h can be written uniquely in the form h � b0v0�n � � � � �
bn�1vn�1�n where bi is in GF�2�. By definition of Φn, we have Φn�h� �
�b0� � � � � bn�1� which is clearly a linear, bijective mapping. �Actually the
fact is obvious as Φn maps the base vectors of Hn to those of GF�2�n.�

�

Lemma 3.2.4 Let h � GF�2�2n
and let Φn�h� � �b0� � � � � bn�1�� Then h � Hn

if and only if
h � b0v0�n � b1v1�n � � � �� bn�1vn�1�n�

Proof. If h � Hn, then by Lemma 3.2.3, h � b0v0�n � b1v1�n � � � �� bn�1vn�1�n

where Φn�h� � �b0� b1� � � � � bn�1�. The converse is clear. �

Lemma 3.2.5 If π is in Gn, then π acts on Hn as an invertible linear
operator.

Proof. From Lemma 3.2.1, any π � Sf0�1�����2n�1g when restricted to Hn acts
as an invertible linear transformation. The fact that π is in Gn simply
means that the image of Hn is Hn. �
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Lemma 3.2.6 For each π in Gn, the mapping Lπ : GF�2�n � GF�2�n defined
by the composition

Lπ�x� :� Φn � π �Φ�1
n �x�

is an invertible linear operator. Further, if π1 and π2 are in Gn, then

Lπ1π2 � Lπ1Lπ2

and if π1 �� π2, then Lπ1 �� Lπ2 .

Proof. Note that Lπ1π2�x� � Φn � π1 � π2 � Φ�1
n �x� � Φn � π1 � Φ�1

n � �Φn � π2 �
Φ�1

n �x�� � Lπ1�Lπ2�x�� so Lπ1π2 � Lπ1Lπ2� The remaining statements are im-
mediate from properties of linear transformations. �

3.3 Isomorphism between Gn’s and GL�n� 2�’s Ac-
tions

Let n be an arbitrary but fixed positive integer. In this section we es-
tablish an isomorphism between Gn’s action on Hn and GL�n�2�’s action
on GF�2�n.

Consider a linear operator Lπ corresponding to π in Gn �cf. Lemma
3.2.6� and set

Rk :� Lπ�ek�n��

Then for x � �x0� � � � �xn�1� in GF�2�n, we may write �by linearity�

Lπ�x� � x0R0 � � � �� xn�1Rn�1 � xMT �

where MT is the n� n matrix whose k-th row is Rk, 0 � k � n� 1. We
use this relation to associate with each π in Gn an invertible matrix
M � GL�n�2�; i.e., we use the relation to define a function

In : Gn � GL�n�2�

where In�π� :� M. Clearly, the function In is one-to-one �since Φn � π1 �
Φ�1

n � Φn � π2 �Φ�1
n implies π1 � π2�.
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Moreover, if In�π1� � M1 and In�π2� � M2, then it is easily checked
that In�π1π2� � M1M2 : Let In�π1π2� � M3, then

xMT
3 � Φn � �π1 � π2� �Φ�1

n �x� � Φn � π1 �Φ�1
n �Φn � π2 �Φ�1

n �x��
� Φn � π1 �Φ�1

n �xMT
2 � � �xMT

2 �M
T
1 � x�M1M2�T

Thus, M3 � M1M2.
Finally, we show that In is onto; i.e., for each M in GL�n�2� there is

a π in Gn such that In�π� � M. To this end, let M � GL�n�2� be given,
let Ck denote the k-th column of MT , and consider the linear operator
Π on Hn defined by the composition

Π � Φ�1
n LΦn�

where L�x� � xMT .
For each h � Hn we may write �recall the definition of base vectors

vk�n in Lemma 3.2.2� h � b0v0�n � � � �� bn�1vn�1�n and Φn�h� � �b0� � � � � bn�1�.
Hence,

Φ�1
n LΦn�h� � Φ�1

n L�b0� � � � � bn�1� � Φ�1
n �bMT� � Φ�1

n �bC0� � � � � bCn�1� �
� �0� bC0� bC1� bC0 � bC1�

bC2� bC0 � bC2� bC1 � bC2� bC0 � bC1 � bC2� bC3� � � ���

But this is exactly the result one gets from πh, the action of π on h,
where π is that member of Gn such that π�1�2i� � φ�1

n �Ci�. We have now
established the following two theorems.

Theorem 3.3.1 For each n  1, the mapping In is an isomorphism between
Gn and GL�n�2�.

Theorem 3.3.2 For each n  1, the action of Gn on Hn and the action of
GL�n�2� on GF�2�n are isomorphic in the sense of Definition 2.1.9.
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Proof. Let n be an arbitrary but fixed positive integer. In Definition
2.1.9 we put τ :� In and ω :� Φn. Our theorem then follows from the
fact that the following diagram commutes:

GF�2�n GF�2�n

Hn Hn

�

�

� �

Φn Φn

π

In�π�

.

�

Before coming to applications, we provide two examples illustrating
Theorems 3.3.1 and 3.3.2.

Example 1. Let n0 � 3, π0 � �1�2�5��3�7�4� � G3. We have

Lπ0�e0�3� � �1�1�1��
Lπ0�e1�3� � �0�0�1��
Lπ0�e2�3� � �1�0�1��

Thus

I3�π0� :�

�
� 1 1 1

0 0 1
1 0 1


AT

�

�
� 1 0 1

1 0 0
1 1 1


A �

Example 2. Let us have n0, π0 and I3�π0� as in Example 1 and ad-
ditionally take the Hadamard pattern h0 � �0�0�1�1�1�1�0�0� � H3. We
compute

π0h0 � �0�1�0�1�0�1�0�1��

Φ3�π0h0� � �1�0�0��

On the other hand,
Φ3�h0� � �0�1�1�

and

�0�1�1� �
�
� 1 1 1

0 0 1
1 0 1


A � �1�0�0��

Indeed, Φ3�π0h0� � Φ3�h0� � �I3�π0��T .



3.4. Orbits of Hadamard Pattern Sets 57

3.4 Orbits of Hadamard Pattern Sets

To stay consistent with the physical model of Folk, Kartashov and Or-
tbauer �1992� we will now exclude from our investigations the excep-
tional Hadamard pattern �0�0� � � � �0�:

Hn :� Hn n f�0� � � � �0� 	z 

2n

�g for each n�

Since this pattern forms a singleton orbit in Gn’s action on Hn, we can
change to the action

Gn �Hn � Hn

merely by mapping restriction.
In this section we study the induced action

Gn �H �k�
n � H �k�

n �3.2�

of Gn-permutations on k-subsets of Hn, i.e., on pattern sets with cardi-
nality k:

πfh1� � � � �hkg :� fπh1� � � � �πhkg
for π � Gn and fh1� � � � �hkg � Hn, where

πhi :� �hi�π�1�0���hi�π�1�1��� � � � �hi�π�1�2n � 1���

for each hi, cf. �3.1�.
Our ultimate goal is to learn as much as possible about (3.2) because

this action answers many questions about neural networks storing Hada-
mard patterns. See �Folk, Kartashov, Lisoněk and Paule, 1993� for the
discussion of physical implications that follow from our results.

The crucial point in studying �3.2� is to realize the natural corre-
spondence between the k-subsets of Hn and functions from f0�1gHn with
content �n� k� k�, i.e., with n� k zeros and k ones. We can now move
to the action

Gn �f0�1gHn � f0�1gHn

that fits perfectly the “symmetry classes of mappings” paradigm in-
troduced in Chapter 2. In order to apply Pólya’s Theorem �Theorem
2.1.23� we need the cycle index of Gn’s action on Hn. By Theorem 3.3.2
this cycle index is equal to the index of GL�n�2�’s action on Fn where

Fn :� GF�2�n n f�0� � � � �0� 	z 

n

�g�
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3.4.1 Cycle Indices of Linear Groups

The cycle types of GL�n�2�-matrices acting on GF�2�n have been studied
by Lidl and Niederreiter �1983�, pp. 523–525. The authors call them
“cycle sums” and give an algorithm to compute the cycle sum for a
given matrix. Since for increasing n the order of GL�n�2� grows rapidly,
this method is not suitable for evaluating the whole cycle index.

Accidentally, another kind of “cycle indices” of linear groups was
defined by Kung �1981� and refined slightly by Stong �1988�. Their cy-
cle index characterizes properties of decomposition of invertible linear
transformation into direct sums of cyclic linear transformations. Both
authors give generating functions for their indices but they do not be-
lieve in an immediate link between their view of cycle index and the
cycle index used in Pólya’s Theorem.

We developed our own method for computing the �Pólya� cycle in-
dex. Since cycle types are invariant on conjugacy classes, it is enough
to solve the following tasks (I) and (II) for each conjugacy class:

(I) Evaluate the cycle type. This can be done by
(Ia) constructing a class representative and
(Ib) using the Lidl-Niederreiter algorithm.

(II) Evaluate the class length.

The number Conj�n� of conjugacy classes of GL�n�2�, which clearly
puts a limitation on the applicability of our method, can be evaluated
from �Brawley, 1967�, p. 177. For small values of n it is close to 2n:

n Conj�n�
5 27

10 1002
15 32559
20 1047690

All three issues (Ia), (Ib), (II) can be solved using the Smith normal
form �SNF� of matrices which is invariant on conjugacy classes.

The SNF of an n�n non-singular matrix M over GF�2� is an n-tuple
of monic polynomials f1� � � � � fn � GF�2��x� such that

∑n
i�1 deg� fi� � n,

fi j fi�1 for i � 1� � � � �n� 1,
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all fi’s have non-zero constant terms,
M is similar to the direct sum of companion matrices of polynomials

f1� � � � � fn.
The Smith normal form enables us to cope with tasks (Ia), (Ib), (II)

in the following way:
(Ia) A class representative is the direct sum of companion matrices

of polynomials f1� � � � � fn.
(Ib) The cycle sum is determined from elementary divisors which are

irreducible factors of polynomials fi. See �Lidl, Niederreiter, 1983�,
p. 526.

(II) Also the class length can be figured out from elementary divi-
sors. See �Hodges, 1958�, pp. 291–2.

3.5 Computation of Orbit Numbers

The coding was done in computer algebra system Maple. We used the
method described above �computing cycle index by decomposition to
conjugacy classes and evaluating cycle type and class length for each
conjugacy class, and finally using Pólya’s Theorem�. The cycle indices
of groups up to GL�5�2� have been verified by computational group
theory system Cayley. The linear groups of higher degree could not
have been checked by Cayley because of their huge orders. �The order
of GL�6�2� is about 2 � 1010.�

A table summarizing the number of orbits of

GL�n�2��F �k�
n � F �k�

n �3.3�

�and hence also the number of orbits of �3.2�� for modest values of n
and k can be found in �Folk, Kartashov, Lisoněk and Paule, 1993�.

3.6 Length of the Winning Orbit

For each k, n � N such that k � n we single out one special orbit of the
action �3.3�, namely the orbit of the set

fe0�n� e1�n� � � � � ek�1�ng� �3.4�
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Folk, Kartashov and Ortbauer �1992� showed that, for any fixed k, the
length of this orbit approaches the cardinality of F �k�

n as n approaches
infinity. Hence, they call it the winning orbit.

To establish the cardinality of this orbit we just need to find the
order of the stabilizer of �3.4�. We will denote this stabilizer by Stn�k.

Obviously, each matrix in Stk�n is of the form�
BBBBBBB�

M1

M3

M2


CCCCCCCA

where
M1 is an n� k matrix obtained as a permutation of the column vec-

tors eT
0�n� e

T
1�n� � � � � e

T
k�1�n,

M2 is any k� �n� k� matrix over GF�2� and
M3 is an �n� k�� �n� k� matrix from GL�n� k�GF�2��.
Thus the order of the stabilizer is k!�2k�n�k��jGL�n� k�GF�2��j and the

length of the winner’s orbit is by Fact 2.1.12

�2n � 1� � � � � � �2n � 2n�1�

k!�2k�n�k���2n�k � 1� � � � � � �2n�k � 2n�k�1�
�

�2n � 1� � � � � � �2n � 2k�1�

k!
�

Let us point out that just the case study of k � 1�2 takes one page
in �Folk, Kartashov and Ortbauer 1992�.

3.7 Methodological Aspects

Folk, Kartashov and Ortbauer �1992� attempted to distinguish the
equivalence classes of Hadamard pattern sets by defining a heuristic
set of invariants. Unfortunately, these invariants were not powerful
enough to split all classes apart, as was found by our later study, in
particular after computing the table of orbit numbers.

We approached the same problem by methods of finite group ac-
tion. To find the correct group, we experimented with small cases.
Then, after proving the correctness of the group action setting, we ap-
plied standard methods of group action which gave more powerful and
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transparent solution methods. This setting seems to be appropriate for
solving problems related to symmetries in neural networks.

Since the original problem was rephrased in the paradigm of sym-
metry classes of mappings, also the construction of orbit representatives
was an easy task. �We deal with constructional issues in Part III of our
thesis.� We regret that this information was not used when the results
were transformed back to the level of neural network theory.
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Quasi-polynomials
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Much effort was put into answering the question if a given sequence
has a generating function within a specific domain or not. In this chap-
ter we prove that certain interesting combinatorial quantities �typically
depending on two parameters� possess compact closed forms when one
of the parameters becomes fixed. The examples include necklaces, 0�1-
matrices, bipartite graphs, multigraphs and polygon dissections. A sub-
set of the examples can be treated in a uniform way which resides in
the generalization of restricted partitions by instruments of finite group
action.

In Section 4.1 we recall some concepts from enumerative combina-
torics. In particular, we define quasi-polynomials as a natural general-
ization of polynomials and show the form of their generating functions.
Later on, we explain how the experimental methods were used by other
authors to conjecture generating functions of various sequences. This
approach has a twofold effect: (i) We can collect together more exam-
ples of quasi-polynomials comparing to what the textbooks normally
present. (ii) We can try proving quasi-polynomiality of other sequences,
which is the main objective of this chapter.

It turns out that a certain subset of examples can be treated in a
uniform way by generalizing the concept of so-called “restricted parti-
tions” by instruments of finite group action. Section 4.3 is devoted to
this topic. However, there still remain sequences that probably cannot
be handled this way, and different methods must be taken to prove
that they have generating functions of the desired form. An example
of such situation is given in Section 4.4.

In Section 4.5 we briefly introduce a computer algebra package for
efficient computations in the domain of quasi-polynomials. This tool
may be used to convert generating functions for quasi-polynomial se-
quences into corresponding closed forms. Consequently, it may pro-
duce the closed form for any sequence studied in this chapter. Only
few samples are included in order to keep the modest size of this sec-
tion. However, it should be noted that long tables of generating func-
tions and/or quasi-polynomial closed forms could be manufactured in
a routine way.
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4.1 Definitions

For a polynomial �formal power series� P�x�, let �xs�P�x� be the coeffi-
cient of xs in P.

In this chapter we study a natural generalization of polynomials,
namely so-called quasi-polynomials. In the sequel, we will be using the
word quasi-polynomial both as a noun and as an adjective.

Definition 4.1.1 Let �an�n�0 (or simply �an�) be an integral sequence, an �Z
for all n � N. We say that �an� is quasi-polynomial if and only if there
are integers p  1, n0  0 and polynomials P0�n��P1�n�� � � � �Pp�1�n� � Q�n�
such that for each n  n0

an � Pk�n� where k � n mod p� �4.1�

There are two differences of this definition from the usual one, see
for example �Stanley, 1986�, p. 210: In our setting it suffices that the
polynomials Pk determine the sequence’s values only from some point
onwards. Later the reader may recognize why this comes useful: Con-
sider, for example, the sequences of Section 4.4. The second difference
is that we define the quasi-polynomiality only for sequences with in-
tegral entries. The reason for this limitation is that in this chapter we
deal exclusively with sequences that count combinatorial objects.

Definition 4.1.2 The number p will be called the quasi-period of the se-
quence. The polynomials P0� � � � �Pp�1 will be called the class polynomials
of the sequence because they determine its entries on residue classes of the
index.

Let D be the maximum degree amongst polynomials Pk and suppose
Pk � ∑D

l�0 ck�lnl. Instead of equation �4.1� one usually writes

an � �c0�D� c1�D� � � � � cp�1�D�nD � � � �� �c0�0� c1�0� � � � � cp�1�0��

Further abbreviation is achieved by writing �c0� � � � � ct� instead of �c0� � � � �
ct� c0� � � � � ct� � � � � c0� � � � � ct� and c instead of �c� c� � � � � c�. We will use such
notation in Section 4.5.1.

Let bxc denote the floor function. The reader may verify that also
each equation of the following form

an � bP�n�c� P�n� � Q�n� �4.2�
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defines a quasi-polynomial sequence. Unfortunately, the converse does
not hold in general.

We start with two warm-up examples: The sequence �2�1�2�1�1�4�1�
1�6�1� � � �� of terms in the continued fraction expansion of the well-
known number e � 2 � 1��1 � 1��2 � 1��1 � 1��1 � 1��4 � 1� � � ������ is
quasi-polynomial with p � 3, n0 � 1 and P1 � 1, P2 � 2�3�n � 1�, P0 � 1.

The �sorted� sequence of numbers k such that b
p

kc divides k �AMM
problem E 2491� is the sequence of numbers of the form m2, m2 � m,
m2 � 2m with m  1. Indexing these items by 0�1� � � � we get a quasi-
polynomial sequence with p � 3, n0 � 0, P0 � �n�3 � 1�2, P1 � ��n �
2��3�2 � �n � 2��3 and P2 � ��n � 1��3�2 � 2�n� 1��3.

For a more general example of a quasi-polynomial quantity we re-
call the number of restricted partitions of a given positive integer n into
parts of possible sizes s1� � � � � sk. Comtet �1974� calls this number the
denumerant N�n; s1� � � � � sk�. �See also Definition 5.1.1.� The denumerant
is quasi-polynomial in n. It is common to use the notation pk�n� as an
abbreviation for N�n; 1�2� � � � � k� and we will do so in Section 4.5. We
will learn more about denumerants in Chapter 5 of our thesis.

For an introduction on quasi-polynomials we recommend �Ehrhart,
1977� or �Stanley, 1986�.

4.1.1 Generating Functions

Lemma 4.1.3 The integral sequence �an� is quasi-polynomial (in the sense
of the preceding section) if and only if the following two conditions hold.

(QP1) The generating function for �an� is rational, ∑n�0 anxn � P�x��Q�x�
with P�x��Q�x� �Z�x�, gcd�P�x��Q�x�� � 1.

(QP2) All roots of the polynomial Q�x� are roots of unity (not necessar-
ily with same primitive periods). This can be rephrased by saying
that all irreducible factors of Q�x� are cyclotomic polynomials,
see (Lang, 1984), p. 316.

Proof. The proof of this statement relies on Proposition 4.4.1 in �Stanley,
1986� which in our setting reads as follows: “The integral sequence
�an� is quasi-polynomial with n0 � 0 if and only if �QP1� and �QP2�
hold and, moreover, deg P � deg Q.” In the general case �no restriction
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on degrees of P and Q� we can always find polynomials R�S � Z�x�
such that P�Q � R� S�Q with deg S � deg Q. Let r :� deg R and S�Q �

∑n�0 a�nxn. Then an � �xn�R�x� � a�n for n � r while an � a�n for n  r � 1.
Hence, �an� is quasi-polynomial �in our sense� with n0 � r � 1. �

Definition 4.1.4 We will say that a generating function has �QP�-form if
it fulfills both conditions (QP1) and (QP2).

Quasi-polynomials are closed under addition, convolution and in-
definite summation. They are also closed under multiplication, as may
be seen by a direct argument �without consideration of generating func-
tions�.

4.1.2 Closed Forms

Mathematicians like to see things in “closed forms”. For example, the
following three equations �equation systems� define the same sequence
�an�n�0, cf. Exercise 5.15 in �Graham, Knuth and Patashnik, 1989�:

an � ��1�m�3m�!�m!3 for n even� n � 2m
an � 0 for n odd �4.3�

an �
n

∑
k�0

�
n
k

�3

��1�k �4.4�

�n � 2�2an�2 � 3�3n � 4��3n � 2�an � 0� a0 � 1� a1 � 0� �4.5�

For many reasons �computation complexity, getting more mathemat-
ical insight, asymptotic analysis, or even aesthetic reasons etc.� we pre-
fer the definition �4.3� to the other two cases. �Cf. also the discussion
in Section 1.1.� No fixed definition exists that would specify which
operations are allowed to appear in a “closed form expression”. Typi-
cally, closed forms may include addition, multiplication, exponentiation
and factorials. In the present chapter we adopt quasi-polynomials as
“closed forms”, since they very well meet all demands listed at the
beginning of this paragraph.
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4.2 On the Search for Quasi-polynomials

Recently, Bergeron and Plouffe �1992� as well as Salvy and Zimmer-
mann �1993� developed Maple programs that, among other things, can
guess the generating function for a sequence from its initial terms. Us-
ing these programs, Plouffe �1992� computed an amazingly large cat-
alog of more than one thousand conjectured generating functions or
recurrence relations. His work will be incorporated into the second
edition of �Sloane, 1973�.

�Remark. Meanwhile, this second edition of Sloane’s famous Hand-
book �1973�, now called The Encyclopedia, is available electronically by
sending an e-mail request to

superseeker�research�att�com.
Such request is handled not only by a table look-up in the Encyclo-
pedia but also by activating the aforementioned Maple programs for
guessing the explanation of the sequence.�

Interestingly enough, more than 60 guess entries of �Plouffe, 1992�
have �QP�-form. �Recall Definition 4.1.4.� Based on the references pro-
vided with each such entry, one can track down the circumstances un-
der which the respective sequence appears in the literature, and find
out if its suspected quasi-polynomiality has been recognized by the au-
thor�s� introducing this sequence. Depending on whether the answer
to the last question is positive or negative, one can

(i) add the sequence to a data base of quasi-polynomials, and hence
collect more examples of quasi-polynomials than is usually listed
in the textbooks, i.e., organize the knowledge,

(ii) try to rigorously prove that the respective sequence indeed is quasi-
polynomial, i.e., extend the knowledge.

It is a pleasure for us to note that in the course of our work with
Plouffe’s list �1992� we did not meet any wrong guess, i.e., each se-
quence that we picked for a detailed study turned out to be an in-
stance for task (i) or (ii). Moreover, a great majority of items falling in
class (ii) was generalized by showing not only the quasi-polynomiality
of the particular sequence appearing in �Plouffe, 1992�, which typically
is a specialization of some general quantity for a small concrete value
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of some parameter, but also the quasi-polynomiality of the respective
sequence in general, i.e., for any value�s� of the parameter�s�.

Since task (i) is better suited for a textbook, we concentrate on task
(ii). This is done in Sections 4.3 and 4.4.

4.3 G-partitions of Numbers

As mentioned at the beginning of this chapter, some instances of quasi-
polynomials can be gathered together by viewing them as restricted
partitions under an action of a permutation group.

Let n :� f1�2� � � � �ng and let G be a subgroup of Sn acting naturally
on n. Then Ḡ, the permutation representation of G, is identical with
G itself and we will not distinguish between them in this chapter. Af-
ter putting Y � N in the “symmetry classes of mappings” paradigm
�Chapter 2� we arrive at the action

G�Nn � Nn �4.6�

defined by �π f ��x� :� f �π�1�x�� for π � G, f � Nn.

Definition 4.3.1 Let n be a positive integer and let G� Sn. For an f � Nn,
let

c f :� ∑
x�n

f �x�

and let
G� f � :� fπ f jπ � Gg

be the orbit of f w.r.t. G’s action on Nn. We say that G� f � is a G-partition
of the number c f .

This definition is sound, since the value ∑n
i�1 f �i� is obviously invariant

on G’s orbits.
Informally, given a natural number c and a permutation group G �

Sn, then a G-partition of the number c is a set T of n-tuples over N
where each tuple sums up to c, and for any two n-tuples t1� t2 � T
there is a permutation π � G such that t2 � πt1. Since the length of
tuples must be equal to n, we speak about restricted partitions. We
note that zero parts are allowed as well, a fact that fits the combinato-
rial applications and ensures that the set of G-partitions of c is always
non-empty.
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Definition 4.3.2 Let n be a positive integer and let G� Sn. For any c � N,
the number of G-partitions of c will be denoted by PG�c�.

Lemma 4.3.3 Let n be a positive integer and let G � Sn. For any c � N,
the value PG�c� is equal to the coefficient of tc in

C�G�nj 1
1� t

�� �4.7�

In words, PG�c� is equal to the coefficient of tc in the formal power series
that results from Pólya-substitution of the series

1
1� t

� 1 � t � t2 � � � �

in the cycle index of G’s action on n.

Proof. By introducing the weight mapping W : N�Z�t�, W�i� � ti and
considering the multiplicative weight of functions as defined in �2.2�
we see that PG�c� is equal to the number of orbits of weight tc in �4.6�.

In order to use group action methods for enumeration of these or-
bits we use a little trick. The theory of Chapter 2 applies only to finite
actions, which is not the case in �4.6�. However, orbits of weight tc in
�4.6� are identical with orbits of weight tc in

G� f0�1� � � � � cgn � f0�1� � � � � cgn

and we can use Theorem 2.1.24 for the latter action. We get that PG�c�
is equal to the coefficient of tc in

C�G�nj
c

∑
i�0

ti�� �4.8�

where C�G�n� is the cycle index of G’s action on n and expression �4.8�
means Pólya-substitution. Furthermore, the coefficient of tc in �4.8� is
clearly equal to the coefficient of tc in

C�G�nj
∞

∑
i�0

ti�

because introducing powers with exponents greater than c is of no con-
sequence. The last expression is equal to �4.7�. �

As an immediate application of Lemma 4.3.3 we note a quick proof
of the following identity.



4.3. G-partitions of Numbers 71

Theorem 4.3.4 For each positive integer n we have

∑
a�n

∏
k

1
ak!

�
1

k�1� xk�

�ak

�
n

∏
k�1

1
1� xk �4.9�

where the sum extends over all a � �a1� a2� ���� such that a1 � 1� a2 � 2� � � ��
n and ai � N for 1 � i � n.

Proof. The left-hand side of �4.9� is exactly C�Sn�nj1��1� x��. �For the
cycle index of Sn’s natural action, see �Kerber, 1991�, p. 72.� The right-
hand side is the well-known generating function for the number of
�unordered� partitions in parts of size 1�2� � � � �n, which in our termi-
nology are the Sn-partitions. The identity now follows from Lemma
4.3.3. �

The identity �4.9� appears in MacMahon �1984�, Vol. II, p. 62. It is
normally used as the first step in a partial fraction decomposition of
its right-hand side. This identity is typically derived using symmetric
functions, even in the textbooks that introduce Pólya’s counting theory,
see for example �Riordan, 1958�, pp. 118–119.

The following theorem will be later used to prove quasi-polynomial-
ity of diverse combinatorial quantities.

Theorem 4.3.5 Let n be a positive integer. For each permutation group
G � Sn, the number PG�c� of G-partitions of c is quasi-polynomial in c.

Proof. The generating function for the sequence �PG�c��c�0 is �4.7�. Since
C�G�n� is a polynomial in all its indeterminates, the Pólya-substitution
of 1

1�t in C�G�n� clearly yields a generation function in �QP�-form. �

By taking suitable subgroups of Sn, we can prove quasi-polynomial-
ity of various combinatorial quantities. All of the following exam-
ples were treated elsewhere but only occasionally the quasi-polynomial
closed forms for some special cases were recognized. We aim at a uni-
fying treatment of all situations.
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4.3.1 Necklaces and Bracelets

Taking G � Cn to be the cyclic group acting naturally on n, the Cn-
partitions of a number m are models for two-colored necklaces �black
and white, say� with the fixed number n of black beads and a varying
number m of white beads. The bijection between these two sets is as
follows: For a given Cn-partition of the number m with a representative
�m1�m2� � � � �mn� we construct a necklace with n black beads and n blocks
of white beads �of sizes m1�m2� � � � �mn, respectively� by inserting one
white block between each consecutive pair of black beads, keeping the
cyclic order of the mi’s unchanged. Thus the black beads provide the
“marks” between consecutive parts in the Cn-partition.

Similarly, if G � Dn is the dihedral group acting naturally on n then
the Dn-partitions of a number m are models for two-colored bracelets with
the fixed number n of black beads and a varying number m of white
beads. �Chapter 9 is entirely devoted to necklaces and bracelets.�

From Theorem 4.3.5 we obtain:

Proposition 4.3.6 Let Nn�m� denote the number of necklaces with n black
and m white beads. and let Bn�m� denote the number of bracelets with n
black and m white beads. For each fixed n � N, the functions Nn�m� and
Bn�m� are quasi-polynomial in m.

The values involved in Proposition 4.3.6 are of interest in diverse ap-
plications, see �Hoskins, Penfold Street, 1982� or �Ethier, Hodge, 1985�.

For quasi-polynomials enumerating Cn- and Dn-partitions, the class
polynomials can be expressed explicitly by binomial sums, providing
this way an alternative proof of the quasi-polynomiality of the quantities
under examination. This approach is less elegant �comparing to the
argument using generating functions�. Pólya’s Theorem is now applied
for the cyclic and dihedral group of degree m � n, respectively.

Next we show these computations for the case of Cn-partitions. The
number of necklaces with n black and m white beads is the coefficient
of xm in

1
m� n ∑

dj�m�n�

φ�d��xd � 1��m�n��d



4.3. G-partitions of Numbers 73

which by the binomial theorem turns out to be

1
m � n ∑

djgcd�m�n�

φ�d�
�
�m � n��d

n�d

�
� �4.10�

The basic property of greatest common divisor

gcd�m�n� � gcd�m mod n�n�

allows us to change the description of summation range in a convenient
way: It is now clear that the summation range depends just on the
value of m mod n, i.e., on the residue class of m, and that �4.10� is
polynomial in m on each such residue class. This means that Nn�m� is
quasi-polynomial with quasi-period n.

4.3.2 0�1-matrices and Bipartite Graphs

Many problems in switching theory can be recast as problems involving
0�1-matrices. Harrison �1973� develops methods for finding number of
equivalence classes of 0�1-matrices with m rows and n columns under
two definitions of equivalence:

�E1� equivalent matrices are obtained by row and column permuta-
tions;

�E2� equivalent matrices are obtained by row permutations together
with column permutations and/or complementations.

For the equivalence �E1�, the number sm�n of classes of m� n matri-
ces may be determined as follows: Consider the action �cf. Definition
2.1.14�

Sn �f0�1gn � f0�1gn� �4.11�

If we introduce some bijection f0�1gn � 2n then �4.11� induces S�n � S2n,
a permutation representation of Sn in S2n. Then each �E1�-equivalence
class of m� n binary matrices is in an obvious correspondence with
one S�

n-partition of the number m. The formula for the cycle index of
S�

n appears in �Harrison, 1965�. For example, C�S2�f0�1g2� �C�S�
2�2

2� �
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1�2�s4
1 � s2

1s2� and so the generating function for �E1�-classes of m� 2
matrices is

∑
m�0

sm�2xm �
1
2

�
�

1
1� x

�4 � �
1

1� x
�2 1

1� x2

�
�4.12�

�
1

�1� x�3�1� x2�
� 1� 3x � 7x2 � 13x3 � � � �

In order to find tm�n, the number of classes under �E2�, Harrison
�1973� proceeds in a similar way, arriving at the group S��

n which is the
exponentiation group Sf0�1g

Sn .
Putting G � S�

n and G � S��n in Theorem 4.3.5 we obtain:

Proposition 4.3.7 Let sm�n and tm�n be number of classes of m � n 0,1-
matrices under the equivalence (E1) and (E2), respectively. For fixed n, the
sequences sm�n and tm�n are quasi-polynomial in m.

It is worth mentioning that for m �� n, sm�n gives also the number of bi-
partite graphs with vertex set partition �m�n�. The bijection is achieved
by viewing 0�1-matrices of the shape m� n as a special kind of inci-
dence matrices for bipartite graphs with m and n vertices. Thus �4.12�
tells us that we have thirteen non-isomorphic bipartite graphs with the
vertex partition �3,2�. They are drawn in �Harary, Palmer, 1973�, p. 95
as an illustration for their enumeration via the cycle index of Sm � Sn.
The case m � n needs a different treatment, see �Harary, Palmer, 1973�,
pp. 97–99.

4.3.3 Multigraphs

Consider the symmetric group Sn acting on pairs from n. Viewing these
pairs as unordered �ordered� and introducing a numbering of them, we
obtain two permutation representations of Sn in S�n

2�
and Sn�n�1�, respec-

tively. �Let us call the first one S�2�
n .� Taking these two representations

for group G in Theorem 4.3.5 we obtain:

Proposition 4.3.8 For fixed n, the number of (unoriented, oriented) multi-
graphs on n points with e edges is quasi-polynomial in e.

The Pólya-substitution of 1
1�x into the cycle index of S�2�

n is �without
any further comments� mentioned in �Harary, Palmer, 1973�, p. 88.
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4.4 Polygon Dissections

There are some examples of quasi-polynomials that we could not ad-
just into the framework of G-partitions. Instead, we had to use other
methods in our proofs. One prominent example is presented in this
section.

By a polygon dissection we mean each subdivision of the interior of
a convex s-gon into smaller polygons by means of non-intersecting di-
agonals. The enumeration of dissections was treated by many authors.
In the special case when all parts happen to be triangles, the number
of triangulations of the s-gon is well-known to be the Catalan number
Cs�2, see Exercise 7.22 in �Graham, Knuth and Patashnik, 1989�. Up
to now, no symmetries have been considered so that, for example, the
two possible triangulations of the square are regarded as distinct.

Restricting the attention to regular s-gons, one can make the prob-
lem more natural by viewing two dissections as identical if one can be
obtained from the other by rotating and/or reflecting the s-gon. De-
pending on whether the reflection is or is not allowed as a possible
symmetry, we come to two different problems, and the counted objects
will be called “dissections with reflection” and “dissections without re-
flection”, respectively.

In the general setting when the regular s-gon is to be divided into
r polygons, the symmetry classes of dissections were enumerated by
Read �1978b�. We will extend the results of this article by showing
that for fixed r, all arising quantities happen to be quasi-polynomials
in the variable s.

First of all, we introduce Read’s notation and illustrate it on a sim-
ple example. Since the general idea of �Read, 1978b� is to turn the
dissection problem into a cell-growth problem, we will use the term
cells for the polygons arising in the dissection. With each pair �r� s�
we associate five numbers counting different kinds of dividing up the
regular s-gon into r polygons:

Vr�s number of dissections without reflection rooted at an edge
Fr�s number of dissections without reflection rooted at a cell
Hr�s number of unrooted dissections without reflection
fr�s number of dissections with reflection rooted at a cell
hr�s number of unrooted dissections with reflection
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Obviously, these values are non-zero exactly if s  r � 2. Additionally,
we set V0�1 :� 1.

To enlighten the definition of these sequences, let us have a look at
their values for �r� s� � �3�6�. The following picture will help us:

A B C D

Since each dissection of the hexagon into 3 parts is rotationally
equivalent to one of A, B, C, D, we have H3�6 � 4. Under reflection,
A and B fall into one class, hence h3�6 � 3. If the reflection is not al-
lowed, we may root each of A, B and C at 3 cells and D at 2 cells,
which together gives F3�6 � 11. Allowing the reflection, we must give
up one rooting of C and all rootings of B, hence f3�6 � 7. Finally, under
rotational symmetry we may root A, B, C at any outer edge and D at
half of its outer edges which implies V3�6 � 21.

Since we deal with double-indexed sequences, their generating func-
tions are bivariate:

V�x�y� :� ∑
r

∑
s

Vr�sxrys�

Similarly we define F�x�y�, H�x�y�, f �x�y� and h�x�y�. We recall the
formulas derived by Read, for detailed proofs see �Read, 1978b�:

Vr�s �
1
r

�
s� 2
r� 1

��
r � s� 1

s

�
�r  1� �4.13�

F�x�y� � x ∑
k�3

C�Ck� kjV�x�y�� �4.14�

H�x�y� � F�x�y�� 1
2
�
U2�x�y��U�x2�y2�

�
�4.15�

f �x�y� �
1
2

F�x�y� �
1
4
�
2T�x�y� �V�x2�y2� �T2�x�y�

�
R�x�y� �4.16�

h�x�y� � f �x�y�� 1
4
�
U2�x�y�� 2U�x2�y2� �W2�x�y�

�
�4.17�
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where U�x�y� �V�x�y��y, xR�x�y� � �1�x2�V�x2�y2��y2 and W�x�y� �
T�x�y�� y with

T�x�y� �
y �R�x�y�
1�R�x�y�

� �4.18�

In the equation �4.14�, the expression C�Ck� kjV�x�y�� denotes the
Pólya-substitution of the formal power series V�x�y� in

C�Ck� k� �
1
k ∑

djk

φ�d�zk�d
d �

Here C�Ck� k� denotes the cycle index of the cyclic group Ck in its natural
action on k and φ is the Euler function. See �Kerber, 1991�, pp. 70–72
for details.

We will now show that, for each fixed r, the five enumerating se-
quences �Vr�s�, �Fr�s�, �Hr�s�, � fr�s� and �hr�s� �all viewed as single-indexed�
are quasi-polynomial in s. To this end, for each r we introduce five
univariate generating functions Vr, Fr, Hr, fr and hr in the variable y:

V�x�y� �: ∑
r

Vr�y� � xr

and analogously for the other four functions. Clearly, our goal is to
show that for any r, each of these five univariate functions meets the
conditions �QP1�, �QP2�, see Section 4.1.1.

This statement is trivial for the functions Vr because for r  1, Vr�s

is polynomial in s of degree 2r� 2, hence

Vr�y� �
Pr�y�

�1� y�2r�1 �r  1� �4.19�

for some polynomial Pr. For r � 0 we have

V0�y� � y� �4.20�

This simple form of V0 will consequently play a notable role in our
computations.
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The series Fr is obtained by a rearrangement of �4.14�:

Fr�y� � �xr� F�x�y� � �xr�1� ∑
k�3

∑
djk

φ�d�
k

Vk�d�xd�yd�

� �xr�1� ∑
d�j�r�1�

∑
md��3

φ�d��
md�

Vm�xd��yd���

By multinomial theorem and another rearrangement we find

Fr�y� � ∑
d�j�r�1�

∑
�a1�a2������

r�1
d�

∞

∑
m�

l
max�3�∑ai�

d�

m
φ�d��
md�

m!
a1!a2! � � � �m�∑ai�!

Vm�∑ai
0 �yd�� �Va1

1 �yd�� �Va2
2 �yd�� � � � �

where the second sums extends over all sequences �a1� a2� � � �� such that
a1 � 1 � a2 � 2� � � � � �r� 1��d�, dxe is the ceiling of x and ∑ ai � a1 � a2 �
� � � . The multinomial coefficient multiplied by φ�d���md� is a polyno-
mial in m of degree �∑ ai�� 1, let us call it A�m�. Due to �4.20�, the
innermost sum in the last equation is

∞

∑
m�m0

A�m� � yd�m��d� ∑ai� �Va1
1 �yd�� �Va2

2 �yd�� � � � �

where the summation bound was replaced by a symbol. The factors
independent of m may be put apart, which gives

C�y� �
∞

∑
m�m0

A�m� � yd�m �4.21�

with C�y� in �QP�-form because of �4.19�. Hence, the expression �4.21�
meets �QP�-form and finally the generating function Fr, being a fi-
nite sum of expressions of the type �4.21�, must also fit �QP�-form.
Hence, we have proved that for any fixed r, the sequence Fr�s is quasi-
polynomial in s. Taking r � 3 as an easy example, we compute

F3�y� � ∑
m�3

ym�1V2�y� � ∑
m�3

m� 1
2

ym�2V2
1 �y� � ∑

m�2

1
2
�y2�m�1V1�y2�
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� V2�y� � y2

1� y
�V2

1 �y� �
y�2� y�
2�y� 1�2 �V1�y2� � y2

2�1� y2�

� ��y3 � y2�5y� 3�y5

�1� y2�2�1� y�2 � 3y5 � 11y6 � 24y7 � 46y8 � 75y9 � � � � �

cf. Table 2 in �Read, 1978b�.
The functions Hr give little trouble since from �4.15� we directly

obtain

Hr�y� � Fr�y�� 1
2

�
r�1

∑
i�1

Vi�y� �Vr�i�y��
�
Vr�2�y

2�
��

where the term in curly brackets is �or is not� present depending on if
r is even �odd�. In both cases, the yet known forms of Fr and Vi imply
that Hr meets �QP�-form for any r.

Next we must deal with the functions fr�y�. We will show that
also the functions Rr�y� and Tr�y� happen to be in �QP�-form which
obviously will settle the problem for fr, see �4.16�.

We observe that Rr�y� � 0 for r even and

Rr�y� � V�r�1��2�y2� �V�r�1��2�y2�

for r odd which again meets �QP�-form. The treatment of Tr needs a
bit of rewriting of �4.18�:

Tr�y� � y �R�
r�y� �

r

∑
k�0

Rk�y� �R�
r�k�y�

where

R�
l�y� :� �xl�

∞

∑
i�0

Ri�x�y� ���� �xl�
l

∑
i�0

Ri�x�y�

� ∑
�a1�a2������l

�a1 � a2 � � � ��!
a1!a2! � � �

�Ra1
1 �y� �Ra2

2 �y� � � � �

The step ��� is possible due to R0�y� � 0. We conclude that each R�
l is in

�QP�-form. Thus, also Tr fulfills �QP�-form. Now fr can be expressed
as a finite sum of products involving constants, Fr, Vi’s, Ti’s and Ri’s.
Hence, fr meets �QP�-form.
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The last remaining series is hr. Again, hr can be written a finite sum
of products involving constants, fr, Vi’s and Ti’s. Hence, also hr meets
�QP�-form.

Theorem 4.4.1 For any fixed r 1, the enumerating sequence �Vr�s� is poly-
nomial in s and the four enumerating sequences �Fr�s�, �Hr�s�, � fr�s� and �hr�s�
are quasi-polynomial in s.

Proof. The statement about �Vr�s� follows clearly from Read’s formula
�4.13�. Concerning the other four sequences, we have recently shown
that their generating functions, i.e., the functions Fr, Hr, fr and hr, have
�QP�-form. �

Finally, we would like to remark that the change from bivariate to
univariate generating functions not only proves the existence of cer-
tain closed forms for the studied sequences but also provides a practi-
cal method for computing these closed forms and hence the terms of
the respective sequences. To our opinion, this computational method
is more straightforward than the somewhat cumbersome evaluations of
coefficients of bivariate power series as suggested in �Read, 1978b�. Us-
ing computer algebra systems it is very easy to compute explicitly the
generating functions Fr, Hr, fr and hr for modest values of r along the
preceding lines.

While doing so, we had the pleasure to verify the huge amount of
data contained in �Read, 1978b�, Tables 2 to 5 with the exception of the
three positions f3�16, f6�16 and h8�15 that according to our results should
hold the values 372, 624355 and 384035, respectively. �Remark. The
quasi-polynomial closed form for the sequence � f3�s�, deduced from the
generating function f3, is shown in Section 4.5.1.� For each of these
three entries, the value given in �Read, 1978b� and our value disagree
only at a single decimal position so the difference clearly should be ac-
counted to a transcription mistake rather than to a mathematical error.

4.5 Computational Considerations

We shortly introduce the Maple package QP which we developed for
easy computations with quasi-polynomials.
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This package, as each computer algebra product, is not supposed
to replace the knowledge �of working with generating functions, in this
case�. Rather, it should support tedious computations by saving time
and human energy. For an interesting discussion on usage of such sys-
tems, see �Buchberger, 1991�.

We give an idea about the package by a very brief survey of its
functions:
gf�qp takes a rational generating function and decides whether the un-
derlying sequence is quasi-polynomial. If this is the case, the quasi-
polynomial coefficients are computed.
eval qp evaluates the given quasi-polynomial at a given integer.
denumerant computes the denumerant from given part sizes.
p computes pk�n�.

A special message is printed if the result may be represented in
terms of the floor function.

To give some feeling about the performance, we include three exam-
ples with their reference and CPU time needed to compute the quasi-
polynomial closed form �i.e., the class polynomials� by our package on
a DEC-5200 running Maple V Release 2.

problem reference CPU time
p3�n� S, p. 211 1.0 sec
p6�n� S, p. 211 3.5 sec
N�n; 1�5�10�25�50� GKP, p. 331 37.9 sec

Abbreviations:
S �Stanley, 1986�
GKP �Graham, Knuth and Patashnik, 1989�

4.5.1 Examples of Closed Forms

Finally, we tabulate a couple of quasi-polynomial closed forms for some
of the sequences treated in this chapter. In front of each sequence we
include the number of the section where it was introduced. The bracket
and ceiling notations for quasi-polynomials were explained in Section
4.1.
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4.3.1 B4�m� � 1
48 m3 � 1

16m2 � �1
6 �� 1

48 �
1
6 �� 1

48 �m� �0� 1
16 ��1

4 �
1
16 �

4.3.2 sm�2 � b 1
24�m� 2��m � 4��2m � 3�c

4.4 f3�s � 1
8s3 � 1

2s2 � ��1��9
8�s � �4� 9

2 � �s  5�

4.6 Methodological Aspects

The combinatorial theory given in this chapter bases on �yet unex-
ploited� empiric results of other authors. The essential methodological
issues of the approach taken in this chapter were discussed in Section
4.2. The usefulness of this approach is documented by theorems proved
in Sections 4.3 and 4.4.
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In Chapter 4 of our thesis we dealt with various quasi-polynomial
quantities that appear in combinatorial enumeration. Many of our ex-
amples were in some way related to number partitions.

In the present chapter we restrict our attention to partitions with
prescribed part sizes. More specifically, let a� b� c be fixed, pairwise rel-
atively prime integers. We investigate the number of non-negative in-
tegral solutions of the equation ax � by � cz � n as a function of n.

We present a new algorithm that computes the “closed form” of this
function. This algorithm is simple and its time performance is better
than the performance of yet known algorithms. We also recall how
to approximate the aforementioned function by a polynomial and we
derive bounds on the “error” of this approximation for the case a � 1.

5.1 Definitions

We recall that bxc means the integer part of x. Let fxg :� x�bxc denote
the fractional part of x.

Definition 5.1.1 Let m be a positive integer and let �a1� � � � � am� be an m-
tuple of positive integers. Let n be a non-negative integer. Each m-tuple of
non-negative integers �x1� � � � �xm� such that

m

∑
i�1

aixi � n

is called a partition of the number n into parts of size a1� � � � � am. For a
given n, let N�n; a1� � � � � am� denote the number of all such partitions.

The number N�n; a1� � � � � am� will be called the denumerant of n with
respect to the sequence �ai�1�i�m.

The term “denumerant” appears in �Comtet, 1974�, p. 108. The gener-
ating function for the denumerant is well-known to be

∞

∑
n�0

N�n; a1� � � � � am�tn �
m

∏
i�1

1
1� tai

� �5.1�

We deal with the problem of determining N as a function of n for
certain sequences �ai�. This issue is also known as the money changing
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problem �when we consider n as an amount to be changed in coins or
bills of size ai�.

In this chapter we extend several results of Popoviciu �1953� who
studied the case m � 3 in a great detail. His work is quoted in most
textbooks on combinatorial enumeration, such as �Comtet, 1974� or
�Stanley, 1986�. While Popoviciu’s paper is more static �aiming at iso-
lating denumerants with a certain property�, we advance its results for
dynamic purposes, namely for computing arbitrary denumerants with
m � 3 and a1, a2, a3 pairwise relatively prime.

5.2 Facts about Denumerants

We begin our investigations with recalling several known facts.

Fact 5.2.1 Let k be a non-negative integer. With the notation as above, we
have

N�n� kam; a1� � � � � am��N�n; a1� � � � � am�

�
k

∑
i�1

N�n� iam; a1� � � � � am�1�� �5.2�

Proof. Consider the the following equation with unknowns x1� � � � �xm

a1x1 � � � �� amxm � n � kam�

The solutions of this equation are of two types: (i) those with xm  k,
(ii) those with xm � k. Each solution �x1� � � � �xm�1�xm� of the type (i) is
in a one-to-one correspondence with the non-negative solution

�y1� � � � �ym� � �x1� � � � �xm�1�xm � k�

of the equation
a1y1 � � � �� amym � n�

Each solution of the type (ii) is in a one-to-one correspondence with
the non-negative solution

�y1� � � � �ym�1� � �x1� � � � �xm�1�
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of the equation

a1y1 � � � �� am�1ym�1 � n � �k� xm�am�

The formula �5.2� now follows by summation. �

In the present paper we study the denumerants in the case when
the part sizes ai are pairwise relatively prime. From the theory of ratio-
nal generating functions it follows that Nm�n� :� N�n; a1� � � � � am� is then
expressible in the nice form

Nm�n� � Rm�n� � Gm�n�

where Rm is a polynomial of degree m� 1 in n whose coefficients are
symmetric functions in the parameters ai and Gm is a periodic sequence
with the period ∏m

i�1 ai. The coefficients of Rm for m � 4 can be found
in �Comtet, 1974�, p. 113.

In the case m � 1 we have R1�n� � 1�a1 and G1�n� � �1�a1 � 1 or
�1�a1 according as a1 divides or does not divide n.

Definition 5.2.2 For relatively prime numbers p� q, let the symbol�
n
q
j p
�

denote the unique integer x � f0� � � � � p� 1g such that

qx � n �mod p��

Fact 5.2.3 In the case m � 2 we have

R2�n� �
n

a1a2
� G2�n� � � 1

a1

�
n
a2
j a1

�
� 1

a2

�
n
a1
j a2

�
� 1� �5.3�

Proof. �Popoviciu, 1953�, pp. 24–25. �

The interesting cases are m  3 where it becomes less trivial to de-
termine the periodic part Gm�n�. The rest of this chapter deals with
the instance m � 3. For the sake of brevity, we will use the letters
a� b� c instead of a1� a2� a3. The polynomial part of the denumerant can
be extracted from the formulas in �Comtet, 1974�, p. 113:
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Fact 5.2.4 Let a, b and c be pairwise relatively prime positive integers and
let N3�n� :� N3�n; a� b� c� be the denumerant of n w.r.t. �a� b� c�. Then

N3�n� � R3�n� � G3�n�

where

R3�n� �
n�n � a � b � c�

2abc
and G3�n� is a periodic sequence with period abc.

Fact 5.2.5 With the notation introduced in Fact 5.2.4, let r � abc� �a� b�
c�. For each i � 1�2� � � � � a � b � c� 1 we have

G3�r � i� �
i�a � b � c� i�

2abc
�

Proof. �Popoviciu, 1953�, p. 38. �

5.3 Algorithms for Computing Denumerants

5.3.1 Known Methods

The traditional methods for computing denumerants are typically based
on the partial fraction decomposition which is costly. For details see
�Comtet, 1974�, p. 109.

Another solution approach, which is of great advantage when many
of the part sizes ai have a non-trivial common divisor, is shown in
�Graham, Knuth and Patashnik, 1989�, Section 7.3, Example 4.

In our restricted case when the part sizes ai are pairwise relatively
prime, we may observe that the periodic part Gm is expressible as a
sum ∑m

i�1 G�i� where each G�i� is periodic with period ai. Then we may
set up a linear system for the unknowns G�i�� j�, 1� i�m, 0� j � ai� 1,
see �Comtet, 1974�, p. 114. Solving this system by Gaussian elimina-
tion requires O��∑m

i�1 ai�3� elementary arithmetic operations �addition,
subtraction, multiplication and division�. Moreover, we need to com-
pute the vector of right-hand sides for this linear system. To this end
we must evaluate N�n� at �∑m

i�1 ai��m contiguous points. This subgoal
may further increase the total time complexity.
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5.3.2 The New Algorithm

We now present a new algorithm whose time complexity is better than
the complexity of yet known methods and which uses only elementary
arithmetic operations. We add the fifth “elementary” arithmetic opera-
tion in our computational model, namely the binary modulo function
�mod�. In the complexity analysis we will assume that all five opera-
tions are performed at the unit cost.

As before, let a� b� c be three fixed pairwise relatively prime positive
integers and let a � b � c. Our goal is to compute N3�n; a� b� c� as a
function of n. It should be noted that this problem actually includes
two different tasks:

(I) Compute the “closed form” of N, i.e., obtain a representation of N
that will allow us to evaluate N�n� for any given n in a constant
number of arithmetic operations, i.e., in time independent of n, a,
b and c.

(II) Evaluate N�n� for one given n.

As we already know, the central issue that we have to cope with
is to evaluate the periodic part G3�n� on the interval 0 � n � abc, say.
Fact 5.2.5 states that the last a � b � c � 1 points of this interval are
handled with a quadratic formula, whereas we do not know anything
about the remaining points yet. After some experimenting �cf. Figure
5.1� one gets the idea that the values of G3 on the rest of the interval
can be obtained by horizontal and vertical “shifts” of the parabola that
covers the end of the interval. In the next lemmas we prove that this
is indeed true and we show how this knowledge leads to a simple
algorithm for computing denumerants.

Definition 5.3.1 For every non-negative integer t we denote

g�t� :� G3�t � c��G3�t��

Lemma 5.3.2 For any two non-negative integers k, l such that k � l
�mod ab� we have

g�k� � g�l��
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Figure 5.1: The values of G3�n; 2�3�199� for 0 � n � 2 � 3 � 199.
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Proof. Let t � fk� lg. We have

G3�t � c��G3�t� � N3�t � c��N3�t� �R3�t��R3�t � c��

From Facts 5.2.1, 5.2.3 and 5.2.4 we obtain

N3�t � c��N3�t� �
t � c
ab

� G2�t � c�

R3�t��R3�t � c� � �t � c
ab

� 1
2a
� 1

2b
�

Hence,

g�t� � G3�t � c��G3�t�

� �1
a

�
t � c

b
j a
�
� 1

b

�
t � c

a
j b
�
� 1� 1

2a
� 1

2b
� �5.4�

It is easily seen that n� � n�� �mod p� implies �n��q j p� � �n���q j p�,
hence k � l �mod ab� implies g�k� � g�l�. �

Lemma 5.3.3 Let k � l �mod ab� and let q be an integer. Then

G3�k � qc��G3�k� � G3�l � qc��G3�l��

Proof. This is an easy consequence of Lemma 5.3.2. �

Lemma 5.3.4 There are �ab�2 rational numbers ∆ j
i , 0 � i � ab, 0 � j � ab

such that for any k we have

G3�i � c� k� � G3��ab� 1� � c � k� �∆ j
i whenever k � j �mod ab��

Proof. Put ∆ j
i � G3�i � c � j��G3��ab� 1� � c � j�. Using Lemma 5.3.3 we

conclude that k � j �mod ab� implies ∆j
i � G3�i � c� k��G3��ab� 1� � c�

k�. �

Lemma 5.3.4 is the basis for the following simple algorithm which
computes G3�n0� for given 0 � n0 � abc:
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1. Set i0 :� bn0�cc.
2. Set k0 :� n0 mod c.

3. Set j0 :� k0 mod ab.

4. Evaluate G3��ab� 1� � c � k0� by Fact 5.2.5.

5. Return G3�n0� :� G3��ab� 1� � c � k0� � ∆ j0
i0

.

Theorem 5.3.5 Let a� b� c be pairwise relatively prime positive integers. If
ab  c then the task (I) can be solved in time O�abc�. If ab � c then the
task (I) can be solved in time O��ab�2�.

Proof. The values
�

n
a j b

�
and

�
n
b j a

�
for all residue classes of n can be

identified by computing the values

az mod b �0 � z � b�

and
bz mod a �0 � z � a�

using O�b� arithmetic operations �cf. the description of our computa-
tional model�.

Then we can compute g�t� for any t in constant time using �5.4�.
Now we employ two sets of equations

∆ j
0 � g��ab� 1�c � j� �5.5�

and

∆ j
i � ∆ j

i�1 � g��i� 1�c � j�� 1 � i � ab� �5.6�

Using �5.5� and �5.6� we determine ∆ j
i for all indices in the range 0 �

i� ab and 0� j � min�ab� c� in constant time per item. If ab c then we
compute abc such values, if ab � c then we need �ab�2 values. Knowing
these ∆ j

i allows us to evaluate G3�t� and hence also N3�t� for any t in
constant time. �

Theorem 5.3.6 Let a� b� c be pairwise relatively prime positive integers.
Then the task (II) can be solved in time O�ab�.
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Proof. Again we start by computing the values
�

n
a j b

�
and

�
n
b j a

�
in

O�b� time. Now for any given t, we compute G3��ab� 1�c � �t mod c��
by Fact 5.2.5. Then we “jump” to the value G3�t� in at most ab�1 steps
described by equation �5.4�, in a constant time per each step. Actually
at most ab�2 such steps are always sufficient since we can do the steps
in both “directions”. �

5.3.3 Comparison with Other Algorithms

From Theorem 5.3.5 it follows immediately that our algorithm for task
(I) is asymptotically better than the linear system approach described
in Section 5.3.1 since the latter one needs at least order of c3 operations
if Gaussian elimination is used.

Task (II) is treated in �Popoviciu, 1953�, p. 27 with a formula which
has time complexity O�c�. If ab � c then this formula is more efficient
while our approach �Theorem 5.3.6� is asymptotically better in the case
ab � c.

We also have to emphasize the simplicity of our algorithms as they
do not use any procedure other than the basic arithmetic �no linear
systems, no partial fraction decompositions etc.�.

5.4 Approximations

The main goal of �Popoviciu, 1953� was to determine all pairwise rela-
tively prime triples �a� b� c� such that the denumerant N�n� � N3�n; a� b� c�
is expressible as the floor of some polynomial P�n�, i.e., N�n� � bP�n�c.
This is possible exactly if

max
0�n�abc

G3�n�� min
0�n�abc

G3�n� � 1� �5.7�

For the sake of completeness we mention that there are 18 such triples
�a� b� c�. The equality a � 1 turns out to be a necessary condition for
�5.7� to hold.

In our study we extend these investigations by giving bounds on
the values of G3�n� for all cases with a � 1, �b� c� � 1. Hence, we give
bounds on the “error” that occurs if the denumerant N3�n� is approxi-
mated by the polynomial R3�n�.
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Theorem 5.4.1 Let b and c be pairwise relatively prime positive integers,
b � c. For any non-negative n we have

b � c � 1
2bc

� b
8
� N3�n; 1� b� c��R3�n; 1� b� c� � ��b � c � 1��2�2

2bc
�

b
8
�

Proof. Recall that fxg means the fractional part of x. From equation
�5.4� it follows that

G3�n � c; 1� b� c��G3�n; 1� b� c� �
b� 1

2b
�
�

n� c
b

�

for any n. For the rest of the chapter, let G�n� denote G3�n; 1� b� c�. For
any 1 � k � b we have

G�n� kc��G�n� � k � b� 1
2b

�
k

∑
j�1

�
n� jc

b

�
�

Let us examine the function

F�k� � k�b� 1��2�
k

∑
j�1

�n � jc� mod b�

One can write F�k� � ∑k
j�1 f j where

f j � �b� 1��2� �n � jc� mod b�

From �b� c� � 1 it follows that

f f j j 1 � j � bg � f ��b� 1��2� ��b� 3��2� � � � � �b� 3��2� �b� 1��2g�
Denote

f� � f f j j f j � 0g� f� � f f j j f j � 0g�
For any value of b we have

�b2

8
� ∑

x� f�

x� ∑
x� f�

x � b2

8
�

Hence,

�b2

8
� F�k� � b2

8
�
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Incidentally, these bounds are indeed achieved for certain choices of
n, b, c and k. �The proof is left as an exercise.� Coming back to the
definition of F�k�, we see that

�b
8
� ∆ j

i �
b
8

for all i� j. By Fact 5.2.5 we have

b� c � 1
2bc

� G�n� � ��b � c � 1��2�2

2bc

for all bc� �b � c� � n � bc� 1. The rest follows from Lemma 5.3.4. �

Remark. A slight refinement of the last theorem can be achieved by
splitting it in three statements according to the parity of b and c.

5.5 Methodological Aspects

The investigations presented in this chapter represent one circle on the
creativity spiral �Section 0.1�. Using Maple code described in Section
4.5 we examined one special type of quasi-polynomials, and collected
very appealing experimental data, such as for example the drawing
in Figure 5.1. From these data we gained an idea how the function
G3 behaves in general, and we succeeded to prove the corresponding
theorems. These theorems gave us a new, more efficient algorithm for
computing denumerants.
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In Part II of our thesis we approached the problem of counting com-
binatorial objects, mainly in the presence of an equivalence relation.
The general method of solving the counting problem, both in the un-
weighted and in the weighted case, was to replace the equivalence
by a finite group action and to apply algebraic tools like the Cauchy-
Frobenius Lemma and its refinements.

The present part of the thesis is centered around the methods for
constructing unique representatives of equivalence classes of discrete
structures. We will be mainly concerned with the study how con-
structing discrete structures can give us intuition for rigorous proofs
of combinatorial theorems involving these structures. Since the power
of modern computers is exploding continuously, the constructive meth-
ods are becoming an extremely important tool for getting insight in
combinatorial problems.

Also this part starts with a preparatory chapter introducing the con-
cepts and methods that we will be using later on. Since there is an
obvious relation between counting and constructing, we will build on
the definitions and statements about finite group actions as we learned
them in Chapter 2. Due to a huge variety of possible approaches to
the construction problem, the introduction to it will be done in a very
pragmatic style; only topics relevant to our work will be presented in
some detail. We will try to balance this drawback by pointing to other
reading whenever possible. In particular, for excellent surveys of con-
struction methods we refer the reader to Chapter 7 of �Kerber, 1991�
and to �Laue, 1993�.

6.1 Problem Specification

Definition 6.1.1 Let X be a G-set, Y be a finite set and consider G’s in-
duced action on YX as in Definition 2.1.14. The construction problem
related to this induced action is to find a transversal of G–orbits on YX,
i.e., to find a subset T �G nnYX� of YX such that

YX �
��

f�T �G nnYX �

G� f ��

We will write just T instead of T �G nnYX� if no confusion can arise.
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We have to emphasize that the union in the last equation is disjoint,
i.e., T contains exactly one element from each G-orbit.

Definition 6.1.2 The elements of the transversal T will be called represen-
tatives of G-orbits.

It should be noted that until now the transversal is by no means
unique. The uniqueness, which is of great importance for computa-
tional methods, can be achieved by imposing additional conditions con-
cerning certain properties of the representatives. Section 6.2.1 will dis-
cuss this issue in more detail.

Instead of “construction” one sometimes says listing or generation of
class representatives. The transversal may also be called list of repre-
sentatives or, as we will mostly say, the catalog of representatives.

It should be also pointed out that some authors use the word “enu-
meration” as a synonym for counting while others use it in context of
constructions. To resolve this ambiguity, we declare that in our thesis
“enumeration” always means counting while the possible synonyms for
“construction” are listed in the preceding paragraph.

It may be surprising that we bound the construction problem to the
“symmetry classes of mappings” paradigm. We will try to convince the
reader in subsequent chapters that this setting covers a big portion of
the problems that may generally be addressed as “constructional”. One
of the reasons for this fact is the bijection

P �X� � f0�1gX

Y �� χY �6.1�

between the power set of X and the set of all 0�1-functions on X. This
means that, among others, also all problems related to constructing
symmetry classes of X’s subsets are covered by our definition.

Another advantage of our setting is that we can compute the cardi-
nality of the transversal �i.e., we can cross-check the length of the out-
put of the listing program� by Pólya’s Theorem 2.1.25. Indeed, there
is a close relationship between the enumerative applications of finite
group action �as we learned them in Chapter 2� and the constructive
applications which we are learning now.



100 Group Action and Constructions

Of course, there are some other constructive tasks lying beyond our
paradigm. One of well-known examples is Lam and others’ �1989�
search for a projective plane of order 10. See �Lam, 1993� for a more
general setting of a combinatorial search �construction� problem.

6.1.1 Small and Large Problems

Analogous to different methods for multiplying “short” and “long”
integers, for example, there are also different methods for handling
“small” and “large” construction problems. The size of a construction
problem is determined by the order of G and by the cardinalities of sets
Y and X. If both jGj and jYXj are small then we can afford to com-
pletely evaluate G–orbits, see Section 7.1 of �Kerber, 1991� for methods
how to do that.

What is sufficiently “small” depends on computational means that
we have at our disposal. Problems where the order of G is 1010, say,
will probably never belong to this scope, i.e., they are inherently large.
Still one can handle such large actions algorithmically. Let us note that
many construction tasks discussed in subsequent chapters have this or
similar size. Hence, also in this preparatory chapter we will restrict
our attention to large problems.

6.2 Orderly Methods

Orderly methods of generation were invented by Read �1978a�. Ac-
cording to some references, for example �Walsh, 1983� or �Brinkmann,
1992�, similar ideas were independently used by Faradzhev around
1976. Orderly methods belong to the family of branch and bound
methods.

Before we can explain the orderly algorithm, we need two technical
definitions:

Definition 6.2.1 Let T � �ti�1�i�r be a sequence (list) over a set U and let
u � U. We will say that u occurs in T if there is an index j � r such
that z � t j.

Definition 6.2.2 Let T � �ti�1�i�r be a sequence (list) over a set U. The
set of all elements of U that occur in T will be denoted by Set�T�.
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Figure 6.1: One augmentation step in orderly generation.
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We describe the orderly methods for a special case when we look
for the transversal of G–orbits on the set f0�1gn for some G� Sn, n �N�.
In our thesis we use the orderly approach only for this kind of actions.

Definition 6.2.3 Let G � Sn be acting naturally on n and let �,  be the
lexicographic orderings induced on f0�1gn by the total ordering 1 � 0 of
f0�1g. For each orbit of G on f0�1gn we define its canonical representa-
tive to be the lexicographically greatest element in that orbit, i.e.,

f canonical :�
 �	π � G�� f  π f ��

Definition 6.2.4 With the assumptions of Definition 6.2.3, the G–transver-
sal of f0�1gn consisting entirely of canonical representatives will be called
the canonical G–transversal of f0�1gn.

Definition 6.2.5 Let f � f0�1gn and let k :� maxf j � n j f � j� � 1g. We
define the augmentation of f to be the sequence (list)

aug� f � :�
�

f �k�1�� f �k�2�� � � � � f �n�
�
�

where for any l � n and f � f0�1gn, f �l� is defined by

f �l� � f0�1gn� f �l��m� � f �m� if m �� l and f �l��l� � 1�

If k � n then aug� f � is the empty list.

The idea behind the name “augmentation” is the following: Let f �
f0�1gn and let S � n such that f � χS. Then the list aug� f � consists of
all functions f � such that f � � χS� where S� � S� flg for some l � maxS.

Definition 6.2.6 For any non-empty sequence (list) L, let last�L� denote the
last element in L.

Definition 6.2.7 Let L � � fi�1�i�r be a sequence (list) of functions from
f0�1gn. We define the augmentation of L to be the sequence (list) Aug�L�
obtained by the following algorithm:

1. Put L� :� � �, the empty list.
2. For i :� 1 to r do

A :� aug� fi�; let A � �aj�1� j�s
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For j :� 1 to s do
If a j canonical and �L� is empty

or a j � last�L���
then append aj at the end of L�.

3. Return Aug�L� :� L�.

An example illustrating Definition 6.2.7 will follow soon.
The essence of the orderly approach �here for cataloging 0�1-func-

tion representatives� is contained in the following theorem.

Theorem 6.2.8 (Read) Let G be acting on f0�1gn. The following algorithm
delivers the canonical G–transversal of f0�1gn:

1. Put L0 :� ��0�0� � � � �0��.

2. For i :� 1 to n do Li :� Aug�Li�1�.

3. Return T �G nn f0�1gn� :�
Sn

i�0 Set�Li�.

In particular, Li is the canonical G–transversal of functions with content
�n� i� i�, i.e., with n� i zeros and i ones.

Proof. �Read, 1978a�, Section 2. �

The adjective orderly means that the method under description pro-
duces canonical representatives ordered by content and, moreover, the
representatives of the same content are ordered lexicographically.

As an example illustrating Definition 6.2.7 and Theorem 6.2.8, con-
sider listing of �simple, undirected� graphs on 5 vertices. Each labeled
graph on 5 vertices is in an obvious one-to-one correspondence with a
function from f0�1g10: The numbers 1� � � � �10 denote edges f1�2g, f1�3g,
f1�4g, f1�5g, f2�3g, � � �, f4�5g, respectively, and for any f � f0�1g10,
f �i� � 1 exactly if the edge number i is present in the graph encoded
by f . An unlabeled graph on 5 vertices is then a G–orbit on f0�1g10

where G � S10 is the permutation representation of S5 in its action on
unordered pairs fi� jg, 1 � i � j � 5.

In Figure 6.1 we see one augmentation step in the orderly gener-
ation of unlabeled graphs on 5 vertices. In each graph, vertex num-
bering starts at the lower left vertex of the pentagon and proceeds
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counter-clockwise. The labeling of edges is then derived from vertex
numbers as explained in the preceding paragraph. We invite the reader
to check that the displayed graphs are canonical representatives of or-
bits with content �6�4� and �5�5� and also to check the augmentation
L5 :� Aug�L4�, see Definition 6.2.7 and Theorem 6.2.8.

6.2.1 Canonical Forms

The only difficult step in the orderly algorithm is to check if a given
function f � f0�1gn is the canonical representative of its G–orbit. Read
�1978a� in his historical paper does not address this problem in much
detail, and indeed the time complexity of the canonicity check has been
for a long time the limiting issue for the applicability of orderly meth-
ods. The naive approach would be to test the inequality

f  π f �6.2�

for all π � G. This is of course prohibitive if jGj is large.
A fast canonicity check was developed by Grund �1992�. The group

G is stored in a tree form using coset representatives in the Sims chain
of stabilizers. �See �Kerber, 1991�, p. 330.� The main goal is to cut
this tree efficiently so that the inequality �6.2� has to be tested for as
few permutations π as possible. In the general case, Grund’s method
requires some preprocessing of the group G which can be done using
systems for computational group theory such as Cayley or Magma, see
�Bosma, Cannon, 1993�. In our constructions we have used Grund’s
canonicity check for large groups such as PGL�5�3� or PGL�3�16�, see
Chapters 10 and 11.

For another solution to the canonicity testing problem see �Hager,
Kerber, Laue, Moser and Weber, 1991�, p. 163.

Finally, we have to point out the essential difference between math-
ematical and algorithmic understanding of the adjective “canonical”.
The canonical forms as discussed here have algorithmic meaning only.
This means that most probably they are difficult to “digest”, i.e., it
is difficult to understand on their basis the �mathematical� properties
of the classes that these canonical functions represent. Consider, for
example, the canonical graphs in Figure 6.1: A graph theorist would
draw most of these pictures in a different way. We will return to this
problem in more detail at the end of Chapter 7.
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6.2.2 Restricted Generation

It occurs very often that we are not interested in exhaustive catalogs
of class representatives but rather we want to list only the represen-
tatives satisfying a given property P. We will show that, for certain
“nice” properties P, the orderly methods can be used for generation of
restricted catalogs.

Definition 6.2.9 Let Z be a G–set and let P be a predicate defined on Z.
We say that the action GZ preserves the predicate P if for each g � G
and each z � Z we have P�z� �
 P�gz�.

Obviously, if a predicate is not constant on orbits then it makes no
sense to consider it in the frame of group action.

Definition 6.2.10 Let P be a predicate defined on f0�1gn and let for any
f � f0�1gn the sequence aug� f � be as in Definition 6.2.5. We say that P is
consistent with augmentation if the following holds for any f � f � � f0�1gn:

�P� f � � f occurs in aug� f ��� �
 P� f ���

It is now easy to see that if a predicate P possesses both properties
defined above then it can be used for restricting the generation process:

Theorem 6.2.11 Let G�f0�1gn� be an action that preserves the predicate P
and let P be consistent with augmentation. Let Restr Ord be Read’s or-
derly algorithm (as described in Theorem 6.2.8) modified by inserting the
condition P�aj� in the if-statement in Definition 6.2.7, and suppose that
P�0� � � � �0� is true. Let L be the canonical G–transversal of f0�1gn. Then
the algorithm Restr Ord outputs the set L� such that

L� � f f � f0�1gn j f � L � P� f �g �

Proof. For this and many more thoughts on restricted generation we re-
fer to the papers �Colbourn, Read, 1979� and, in particular, �Brinkmann,
1992�. �

Remark. In our statement of the last theorem, some of the assumptions
can be weakened or rephrased. For example, in Definition 6.2.10 it is
enough to require that the implication holds if f � f � are canonical.
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As the first example of restricted orderly generation, consider the
generation of unlabeled triangle-free graphs on v vertices. As explained
earlier in this chapter, unlabeled simple graphs on v vertices are G–
orbits on f0�1gn where n �

�v
2

�
and G �the “graph group”� is a sub-

group of Sn isomorphic to Sv. Each element of f � f0�1gn is a unique
encoding of a unique labeled graph on v vertices; with a slight abuse of
notation we will speak about the labeled graph f . Let us put P� f � :�

“ f is triangle-free”. It is straightforward to verify that P satisfies the
assumptions of Theorem 6.2.11, and so we can use restricted orderly
generation in this case.

For a more involved example, consider generation of graphs on
v vertices with girth equal to 6. �Girth of a graph Γ is the length
of the shortest cycle in Γ. If there are no cycles in Γ then we put
girth�Γ� � ∞.� We note that the predicate P� f � :�
 “girth� f � � 6” is
not consistent with augmentation because adding an edge to a given
graph may decrease its girth. What we can do is to use the predicate
P�� f � :�
 “girth� f �  6” which is consistent with augmentation, con-
struct the catalog L� of all graphs on v vertices with girth greater or
equal 6 and finally single out from L� those items whose girth is 6.

In general, if we aim at a restricted generation w.r.t. predicate P
that is not consistent with augmentation, a way out is to find a weaker
predicate P� �i.e., P� f � �
 P�� f � for all f � such that P� is consistent with
augmentation, use the restricted orderly generation controlled by P� and
then extract from the resulting list the entries that satisfy P.

We would like to emphasize that the last two examples are some-
what artificial because more efficient methods exist for graph genera-
tion restricted by girth. We took these examples because they are easy
to present and understand.

6.3 Other General Methods

After the detailed presentation of the orderly methods, we recall very
briefly some other constructive methods that are applicable for any fi-
nite G, X and Y.
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6.3.1 Recursive Methods

These methods apply to cases when Y has more than two elements.
The recursion is by cardinality of Y and relies on the homomorphism
principle, see �Kerber, 1991�. For many other applications of the ho-
momorphism principle in construction problems see �Laue, 1993�.

6.3.2 Double Coset Representatives

Construction of �non-canonical� transversals can be reduced to con-
struction of double coset representatives:

Theorem 6.3.1 (Ruch) Let G � Sn and let m � N. Let ∑m
i�0 λi � n, λi � N

for 0 � i � m. There is a one-to-one correspondence between double cosets
SλnSn�G and G–orbits on f0�1� � � � �mgn with content �λ0� � � � �λm�. (Here
Sλ means the Young subgroup determined by the partition λ, i.e., Sλ �
Sλ0 � � � �� Sλm.)

Proof. E.g., �Krishnamurthy, 1986�, pp. 185–189. �

A construction method relying on double cosets was invented by
Schmalz �1990�. He calls his method “ladder game” �Leiterspiel�. A
slight drawback of this approach in computer applications is a high
requirement on computer memory which makes the program applica-
ble only for values of n up to 50 or so.

6.3.3 Combined Methods

Hager, Kerber, Laue, Moser and Weber �1991� present two combined
methods for transversal construction. The ingredients are orderly ap-
proach, recursion and homomorphism principle.

6.3.4 Generation by Stabilizer Type

Suppose that X is a G–set, Y is a finite set and let f �YX. The subgroup
Gf of G which fixes f is called the stabilizer of f , see Definition 2.1.10.
If f and f � belong to the same G–orbit then Gf and Gf � are conjugate
subgroups of G. By Burnside’s Lemma, see Chapter 3 of �Kerber, 1991�,
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it is possible to determine the number of G–orbits with stabilizers in
the given conjugacy class of subgroups of G. Laue �1989� refined this
counting lemma to a constructive method, i.e., to an algorithm that
constructs class representatives with a given stabilizer.

6.3.5 Random Generation

Dixon and Wilf �1983� invented an algorithm that generates orbit rep-
resentatives uniformly at random, i.e., a representative of any orbit is
likely to appear with equal probability.

Kerber, Laue, Hager and Weber �1990� showed how to use this
method for building exhaustive catalogs: The number of orbits com-
puted by Pólya’s Theorem serves as a stopping rule, and canonical
representatives of yet constructed orbits can be efficiently maintained
for later comparisons in an AVL-tree. In this case, for the “canonical
form” w.r.t. the action GZ we may use any mapping can : Z � Z such
that can�z� � can�gz� for all g and z, i.e., we are not restricted to special
canonical forms like it was in the case of orderly generation.

It is known from statistics that the expected number of random
“drawings” necessary to build in this way the catalog of length L is
approximately L logL. For the calculation see, e.g., �Nijenhuis, Wilf,
1978�, p. 40.

6.4 Specialized Listing Methods

In Sections 6.2 and 6.3 we focused our attention on general construc-
tive methods that are applicable to any action G�YX�, G � Sn. It often
happens that for special permutation groups G and special restrictive
properties �Section 6.2.2� more efficient methods exist. A brief survey
of several selected cases follows.

6.4.1 Graphs

The best known method for exhaustive generation of simple unlabeled
graphs is due to B.D. McKay �1990�. It is a great service to the math-
ematics community that the author makes the algorithms available as
C language code in the form of nauty package which can operate on
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different computing platforms. Among nauty’s features we find makeg,
the program for graph generation, as well as the procedure nauty itself,
which can compute canonical forms of graphs �in the sense of Section
6.3.5� and the automorphism groups of graphs.

Using nauty for computing canonical forms of graphs �“practical
graph isomorphism”� has been of great help for us for getting insight
in classification of chordal rings as presented in Chapter 8 of our thesis.

6.4.2 Rooted and Unrooted Trees

An algorithm for generation of unlabeled rooted trees in constant time
per tree was developed by Beyer and Hedetniemi �1980� and later ex-
tended by Wright, Richmond, Odlyzko and McKay �1986� for the case
of unlabeled free trees.

6.4.3 Regular Graphs

Brinkmann �1992� invented a fast, orderly-like method for generation
of unlabeled 3-regular �cubic� graphs. Beezer �1991� developed an al-
gorithm that is applicable for unlabeled r-regular graphs, r  3. It
should be mentioned, however, that for r  4 the number of unlabeled
r–regular graphs grows very quickly with the number of vertices so
cataloging such graphs is not very practical.

Some thoughts about building catalogs of cubic graphs will be pre-
sented in Section 7.4 of our thesis.

6.4.4 Necklaces

If we take the cyclic group Cn for G in Definition 6.1.1 then the Cn–
orbits on Yn are called necklaces with n beads. Similarly, the Dn–orbits
on Yn are called bracelets with n beads. Generation of necklaces and
bracelets will be treated in much detail in Chapter 9 of our thesis.
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A graph is r-regular if each its vertex has degree �valence� r. Regular
graphs occur so often in graph theory that they deserve special interest;
many of them serve as counterexamples to conjectures or play crucial
role in proofs.

In this chapter we will see a particular 3-regular �cubic� graph dis-
prove one of the recent conjectures of Graffiti, a computer system which
is designed for making graph-theoretical hypotheses. We present an en-
tire family of counterexamples. The way in which the counterexamples
were derived bases both on the search of the catalogs of cubic graphs
and on mathematical understanding and generalization of the search
results.

7.1 About Graffiti

Graffiti is a computer system which makes graph-theoretical conjec-
tures. The system was developed by S. Fajtlowicz at the University
of Houston. The main principles of Graffiti are described in �Fajtlow-
icz, 1988�. There have been several updates to this paper, which have
reported on new conjectures as well as on the status of old ones. The
state of the art is periodically resumed in the report �Fajtlowicz, 1991�.

In the present chapter we deal with one of the recent conjectures
which was recorded with number 750 in October 1992.

7.2 The Conjecture

Let G � �V�E� be a connected simple undirected graph. The distance
of two vertices u�v � V is the number of edges on any shortest path
from u to v and will be denoted as dist�u�v�. Any set X �V with the
property �	w� z � X��fw� zg �� E� is an independent set of G. If Y is an
independent set of G such that for each other independent set Z the
inequality jZj � jYj holds, then Y is a largest independent set of G.

Definition 7.2.1 The cardinality of any of G’s largest independent sets will
be denoted by Indep�G�.
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Definition 7.2.2 Let v be a vertex of G. The number of vertices at odd
distance from v will be denoted by odd�v�:

odd�v� :� jfw � V jdist�v�w� is oddgj�

Definition 7.2.3 If both endpoints of an edge e � E happen to have the
same distance from a vertex v � V, then e is a horizontal edge w.r.t. v.

Definition 7.2.4 The number of edges that are horizontal with respect to a
given vertex v is denoted by horiz�v�:

horiz�v� :� jffx�yg � E jdist�v�x� � dist�v�y�gj�

Graffiti made the following conjecture �Fajtlowicz, 1992�:
Conjecture 750. For every connected graph G � �V�E�,

max
v�V

odd�v� � min
v�V

horiz�v� � Indep�G�� �7.1�

The author of the program mentioned that this conjecture is in fact not
very likely to be true, and asked for counterexamples that would enrich
Graffiti’s knowledge base and prevent the system from generating other
weak conjectures. In the next section we describe how an entire family
of such examples was obtained.

7.3 Derivation of Counterexamples

In the run for counterexamples we first examined some small graphs
which led to no results. Afterwards, we turned to a systematic inspec-
tion of regular graphs, and soon a cubic graph on 10 vertices popped
up as a counterexample to �7.1�. For the reasons that become clear
later, we will call it G3. See Figure 7.1.

We invite the reader to investigate on her/his own why G3 does
refute �7.1�. Let us just mention that the “error” in Conjecture 750
�difference between the left-hand side and the right-hand side in �7.1��
is equal to 1 for our graph. One may ask whether there are graphs
for which this “error” takes larger values, and now the creative part
of our deal comes.
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Figure 7.1: The graph G3

We show that �7.1� cannot be “repaired by an additive constant”,
i.e., it keeps false even if the right-hand side is replaced by the term
Indep�G� � p, where p is a fixed positive integer.

To this end, we introduce and study the following sequence of
graphs �Gn�n�3:

Gn :� �Vn�En� � where
Vn :� fu1�u2� � � � �un�v1�v2� � � � �vn�u��x�y�v�g �

En :� ffui�vjg j1 � i � n� 1 � j � ng n ffun�vngg
� ffun�u�g�fu��xg�fu��yg�fvn�v�g�fv��xg�fv��yg�fx�ygg �

Informally, Gn is obtained from the complete bipartite graph Kn�n by
inserting a “diamond” �two triangles glued together along a common
edge� at one of its edges.

Proposition 7.3.1 For each n  3, the following holds for the graph Gn:

1. Indep�Gn� � n� 1.

2. maxv�Vn odd�v�  2n � 1.

3. minv�Vn horiz�v� � 2.

Proof. 1. Note that the graph Gn is symmetric w.r.t. the mutual ex-
change of u- and v-vertices. Let I be one of Gn’s independent sets. If
both un and vn belong to I, then I is one of fun�vng, fun�vn�xg, fun�vn�yg
and so jIj � 3. If just one of them �un, say� belongs to I, then I can be
as large as fu1�u2� � � � �un�xg, i.e., jIj � n � 1. If none of un, vn is in I,
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then w.l.o.g. I � fu1� ����un�1�u��v�g or I � fu1� ����un�1� zg where z is one
of x�y. We see that Indep�Gn� � n� 1.

2. This follows easily from odd�x� � 2n � 1. The 2n � 1 vertices at
an odd distance from x are u��y�v��u1�u2� � � � �un�1�v1�v2� � � � �vn�1.

3. This follows easily from horiz�un� � 2. Consider that none of the
edges fui�vjg is horizontal w.r.t. un. The examination of the remaining
edges shows that fx�yg and fvn�v�g are the only two edges in En that
are horizontal w.r.t. un. �

Corollary 7.3.2 In Gn, the difference between left-hand side and right-hand
side of (7.1) is at least �2n � 1�� 2� �n � 1� � n� 2, i.e.,�

max
v�Vn

odd�v� � min
v�Vn

horiz�v�
�

� Indep�Gn�  n� 2�

The author of Graffiti wrote about our constructions: “Your coun-
terexamples can be easily modified to get other useful examples. By
attaching the path with two vertices to the vertex x one gets arbitrar-
ily large difference for the even version of the conjecture. ... So your
examples are indeed very valuable.”

7.4 Methodological Aspects

We used computer-generated catalogs of cubic graphs to find our graph
G3 as a simple counterexample to �7.1�. The full understanding of un-
derlying graph-theoretical mechanisms allowed us to derive generaliza-
tions of G3 into Gn. Since both computer search and human mind were
inevitable to end up with the family �Gn�n�3—which disproves not only
the original conjecture but also any conjectures resulting from it by in-
cluding an additive constant—the material presented in this chapter is
a good example of experimental combinatorics as discussed in Section
0.2.

While the discovery �and correctness proof� of the general pattern
Gn certainly belongs to the human part of the deal, we have to stress
that another human step was necessary at the earlier stages of the work:
This was the “perception” of the graph G3. As we explained at the
end of Section 6.2.1, the “canonical” forms that appear in the process
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of graph generation are far from what a graph theorist would under-
stand as a canonical drawing of the respective graph. While this issue
was not that critical in the case of G3 which has only 10 vertices, it
may become a real obstacle for larger graphs. The problem “how to
decipher a given cryptic isomorph of some interesting graph” may be
very difficult in general. At least in the case of cubic graphs, however,
a practical solution may be possible.

As early as 1889 it was proven by de Vries that each cubic graph
can be obtained from the complete graph K4 �tetrahedron� by juxtaposi-
tion of three simple augmentation operations. A modern account of de
Vries’ theorem was given by Gropp �1992�. Hence, one could think of
“illustrated catalogs” of cubic graphs in the following sense: One takes
a certain set of well-understood cubic graphs as a basis set; the remain-
ing cubic graphs are then “illustrated” or “explained” in terms of the
basis graphs and de Vries’ augmentation operations. The total number
of cubic graphs on v vertices is known for all meaningful values of v,
which may serve as a stopping rule �criterion of completeness�. �For
a table see �Robinson, Wormald, 1983�.� Avoiding duplicates can be
easily done by McKay’s isomorphism code �see Section 6.4.1�.

Production of such “illustrated” catalogs would certainly take much
longer than for example Brinkmann’s �1992� fast algorithm and in cer-
tain sense this process would never be finished because we may always
try to improve the “readability” of the catalog. �With each entry in the
catalog one may store the “complexity” of its illustration; if a simpler
illustration pops up then it replaces the old one.� On the other hand,
such a catalog would probably provide a graph theorist with a more
valuable information than the “canonical” forms produced by standard
generation methods.
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A Hamiltonian circuit in a graph is a closed path �circle� that passes
through each vertex of the graph exactly once. A chordal ring is a bi-
partite cubic graph obtained by adjoining k chords of equal length to
a Hamiltonian circuit formed by 2k vertices. We are dealing with the
problem of determining the isomorphism types of the chordal rings for
given k and varying chord length. The solution has been known for k
prime while it was conjectured that the problem is difficult if k is com-
posite. We develop theory that allows us to approach the problem for
composite values of k, and on a particular example �k � 2e p, e a posi-
tive integer, p an odd prime� we show how to use this machinery in
proving a classification theorem.

This means that in the present chapter we deal with a task that
slightly reminds us about the constructive problem �Chapter 6� in the
sense that also here we are interested in producing redundancy-free
�isomorphism-free� lists of certain structures. However, due to the rel-
atively small universe of these structures we can afford to determine
the entire isomorphism classes which are also very small �none of them
contains more than three objects�.

After presenting definitions and motivations, the exact statement
of the problem is given in Section 8.3. In Sections 8.4 and 8.5 we
present graph-theoretic and number-theoretic results, and in Section 8.6
we show how to use them in proving a classification theorem.

Our contribution is an extension of the work by Boreham, Bouwer
and Frucht �1974� who solved the classification problem in the case
when k is a prime. Wherever we use a result of these authors, we
present it as a “fact” while our own results are called “lemma” or “the-
orem”. This terminology is used throughout the chapter.

8.1 Definitions

By the term “graph” we mean a simple undirected graph. As always in
our thesis, the edge joining vertices x and y is denoted by fx�yg. More-
over, we use various terms from graph theory in their usual meaning.
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Definition 8.1.1 Let k and m be integers with k  3 and 2 � m � k �
1. The chordal ring with parameters k and m is the graph CR�k�m� :�
�V�k�m��E�k�m�� where

V�k�m� :� fi j 0 � i � k� 1g �� fi j 0 � i � k� 1g

(to be understood as a disjoint union of two copies of Z�kZ) and

E�k�m� :�
k�1�

i�0

�fi� ig� �
k�1�

i�0

�fi� i� 1g� �
k�1�

i�0

�fi� i� mg�
where addition is taken modulo k.

In definitions and theorems involving two or more chordal rings, we
will use the extended notation for vertices: we will write �k�m� i� and
�k�m� i� instead of i and i to emphasize the parameters of the chordal
ring that the vertex in question belongs to. If, however, only one
chordal ring is involved in the discussion then we will use the short
notation without danger of confusion.

Informally, the graph CR�k�m� may be viewed as derived from the
2k-gon with vertices �in an order of transversal�

0� 0� 1� 1� 2� 2� � � � � k� 1� k� 1

by the adjunction of the chords

fi� i �mg �i � 0�1�2� � � � � k� 1��

Hence, CR�k�m� is a bipartite cubic Hamiltonian graph.

Please note that throughout this chapter, all arithmetic concerning
vertex numbering is—in accordance with Definition 8.1.1—performed
modulo k.

For first examples of chordal rings we refer the reader to the draw-
ings in Figures 8.1 and 8.2.

Definition 8.1.2 By Aut�CR�k�m�� we will denote the automorphism group
of CR�k�m�.
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8.1.1 Alternating Paths and Alternating Cycles

By definition, in the graph CR�k�m� we have edges of three types.
Hence, it is natural to think of CR�k�m� as an edge-colored graph and
assign the edges of the type fi� ig, fi� i� 1g and fi� i�mg the colors a,
b and c, respectively. We introduce the function C : E�k�m� � fa� b� cg
that maps each edge to its color.

Definition 8.1.3 Let I : V�k�m1� � V�k�m2� be an isomorphism between
CR�k�m1� and CR�k�m2� and let I� be the bijection between E�k�m1� and
E�k�m2� induced by I. We say that I is color-faithful if

�	e� f � E�k�m1�� �C�e� � C� f �� �
 �C�I��e�� � C�I�� f ����

Definition 8.1.4 Let x, y be two different colors, i.e., fx�yg � fa� b� cg,
x �� y. The alternating path A�x�y� in CR�k�m� is the (doubly infinite)
sequence of vertices �vi�i�Z such that v1 � 0, fvi�vi�1g � E�k�m� for all i
and C�fv2 j�1�v2 jg� � x, C�fv2 j�v2 j�1g� � y for all j �Z.

The uniqueness of A�x�y� follows easily from the definition of CR�k�m�.
We will now examine the alternating paths algebraically.
1. The path A1 :� A�b� a� obtained by alternating the colors b and a.

Let A1�n be the n-th node on this path. We get A1�2i � i, A1�2i�1 � i. This
is the outer polygon of CR�k�m�.

2. The path A2 :� A�c� b�. Here A2�2i � i�m� 1� � 1, A2�2i�1 � i�m� 1�
for each i.

3. The path A3 :� A�c� a�. Here A3�2i � im, A3�2i�1 � im.
We now invite the reader to consult the drawing in Figure 8.3, at-

tach properly the colors a, b and c to the edges in this drawing and
examine the segments of the paths A1, A2 and A3 in this drawing.

From the algebraic description it is clear that each of the three paths
A1, A2 and A3 consists of a simple cycle which is repeated infinitely
many times. The lengths l1, l2 and l3 of these three cycles are even
numbers and they all divide 2k. More precisely,

l1 � 2 � k�
l2 � 2 � k�gcd�k�m� 1��
l3 � 2 � k�gcd�k�m��
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Moreover, it is clear that for any two colors x and y, A�y�x� is ob-
tained from A�x�y� by changing the orientation of the path. Since we
are dealing with undirected graphs, we can identify A�y�x� with A�x�y�
and speak of the �finite� alternating cycle instead of the �infinite� alter-
nating path.

Definition 8.1.5 By C1, C2, C3 we will denote the three alternating cycles
obtained from A1, A2, A3, respectively. In Section 8.5 we will speak about
the first, second and third alternating cycle, respectively.

8.2 Motivations

The motivation for the study of chordal rings is twofold:

8.2.1 Combinatorics

Chordal rings were introduced by Coxeter �1950�, pp. 426ff. Coxeter
himself did not propose any name for CR�k�m� while Foster later called
them “graphs of equal-chord type”. Coxeter �1950� pointed out that
many chordal rings represent interesting combinatorial objects, for ex-
ample CR�7�3� which is at the same time the �3,6�-cage �smallest cubic
graph of girth 6� and the point-line graph �Levi graph� of Fano’s plane
PG�2�2�.

8.2.2 Distributed Computing

Independently, chordal rings have enjoyed much attention in the con-
text of distributed computing. Arden and Lee �1981� showed that with
a suitable choice of m, the diameter of CR�k�m� is O�

p
k�, yielding a de-

sign for dense processor �workstation� interconnection networks. The
past decade has seen as many as several dozens of articles examin-
ing other aspects of chordal ring architectures �such as reliability� and
generalizing chordal rings in various directions.

8.3 Problem Statement

Before stating the problem exactly, we note:
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Fact 8.3.1 We have CR�k�m� � CR�k� k � 1�m�.

Proof. The mapping I : V�k�m��V�k� k� 1�m�

I : �k�m� i� �� �k� k � 1�m� i� 1�
�k�m� i� �� �k� k � 1�m� i�

provides the isomorphism. �

Hence, we will restrict our attention to the following values of m:

2 � m �
�

k � 1
2

�
� �8.1�

With respect to Fact 8.3.1 it makes sense to introduce the following
definition:

Definition 8.3.2 For each 2 � m � k� 1 we define its normalized value

norm�m� :� minfm� k � 1�mg�

We will use the function “norm” in Sections 8.5 and 8.6.
The inequality �8.1� still does not ensure that the graphs are pair-

wise non-isomorphic. We can illustrate this with the example of graphs
CR�9�3� and CR�9�4�, see Figures 8.1 and 8.2. We invite the reader to
prove that these two chordal rings are isomorphic.

For any fixed positive integer k  3, we will address the problem of
determining the isomorphism classes of CR�k�m� �2 � m � b�k � 1��2c� as
classification of chordal rings.

Frucht �1976� writes about this problem: “An easy answer can be
given only for k � p �prime�.” The paper by Boreham, Bouwer and
Frucht �1974� contains the classification for k prime, and announces a
paper by Foster that will treat the general case. However, according
to R. Frucht �personal communication, April 1993� the second paper
never appeared.

With the modern computing devices and appropriate software
�“practical graph isomorphism”, see Section 6.4.1� it is possible to ap-
proach the classification problem computationally for values k � 500
or so. Interestingly, the results reveal highly regular patterns also for
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Figure 8.2: CR�9�4�
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non-prime values of k. Based on, but independent of the computational
experience, we prove rigorous theorems that allow us to theoretically
solve the classification problem for wider ranges of the parameter k.
In Section 8.6.2, we give as an example the full classification for val-
ues k � 2e p where e is a positive integer and p an odd prime, and we
explain that also classifications for other families of k can be obtained
easily.

8.4 Initial Results

Fact 8.4.1 For each k and m, the graph CR�k�m� is vertex-transitive, i.e.,
Aut�CR�k�m�� acts transitively on the set of vertices of CR�k�m�.

Proof. The graph CR�k�m� admits �among others� the following two
automorphisms: Cyclic shift of the outer polygon

S : i �� i � 1
i �� i � 1

and reflection of the outer polygon

R : i �� k� i
i �� k� i�

The subgroup of Aut�CR�k�m�� generated by S and R is transitive.
Hence is Aut�CR�k�m�� transitive. �

8.4.1 Local Structure of CR�k�m�

In the following investigations we will often make use of the drawing
in Figure 8.3.

Fact 8.4.2 Let k  3 be an integer and m an integer subject to (8.1). If
2 � m � k�2 then girth of CR�k�m� is 6.

Proof. Let T be the shortest cycle in CR�k�m�. By vertex transitivity we
may assume that T contains 0. It follows from Figure 8.3 that in the
case 3�m � k�2 there cannot be cycle of length less than 6 while there
are cycles of length 6. Hence the girth is 6. �
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k�m�1k�m k�m�2

k�m k�m�1

k�1 0 1 2

k�1 0 1

m�1 m m�1

m�1 m

2m�1 2m

Figure 8.3: Neighborhood of 0 in CR�k�m�.

Fact 8.4.3 Let k  3 be an integer and m an integer such that

3 � m � k�3 or k�3 � 1 � m � �k� 1��2� �8.2�

Then each edge of CR�k�m� belongs to exactly two hexagons (cycles of
length 6).

Proof. Let e be the edge in question. By vertex transitivity we may
assume that one of the endpoints of e is 0. If m is as in �8.2� then all
19 vertices in Figure 8.3 are pairwise different. Obviously, each edge
incident with 0 belongs to exactly two hexagons. �

Definition 8.4.4 Let e1, e2 be two adjacent edges in CR�k�m� with m sub-
ject to (8.2). The Petrie path P�e1� e2� is defined as the (doubly infinite)
path containing e1� e2 as consecutive edges, such that no three consecutive
edges belong to the same hexagon.

From Fact 8.4.3 it follows readily that the definition is sound. More-
over, it is clear that each Petrie path consists of a simple cycle which
is repeated infinitely many times and that these simple cycles are iden-
tical with alternating cycles.
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8.4.2 Singular Cases

In order to solve the classification problem, we will make much use
of the alternating cycles. In the preceding section we saw that if m is
as in �8.2� then the alternating cycles have a very natural description
using incidence with hexagons. The cases not covered by �8.2� will be
called “singular” since the local structure of CR�k�m� is different from
the general pattern exhibited in Figure 8.3.

Fact 8.4.5 Let k 3 be a positive integer and m an integer subject to (8.1).
If m � f2� k�2� �k � 1��2g then girth of CR�k�m� is 4.

Proof. Clearly is CR�k�m� triangle-free for each m. Vertices �in shortened
notation� forming the cycles of length four are, for example,

0, 0, 1, k� 1, 0 in CR�k�2�,
0, 0, k�2, k�2, 0 in CR�k� k�2�,
0, 0, �k � 1��2, �k� 1��2, 0 in CR�k� �k � 1��2�.

The local structure of these three graphs is shown in Figures 8.4 to 8.6.
�

...
0 0 2 2 4

...

... k�1 1 1 3 3 ...

Figure 8.4: CR�k�2�

Lemma 8.4.6 If k is odd then CR�k�2� � CR�k� �k � 1��2�. If k is even
then CR�k�2� �� CR�k� k�2�.

Proof. Let k be odd. The isomorphism I between CR�k�2� and CR�k� �k�
1��2� is given by

I : �k�2� i� �� �k� �k � 1��2� i�2�� i even
�k�2� i� �� �k� �k � 1��2� i�2�� i even
�k�2� i� �� �k� �k � 1��2� �k � i��2�� i odd
�k�2� i� �� �k� �k � 1��2� �k � i��2�� i odd�
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Figure 8.5: CR�k� k�2�

...
0 0 1 1 2

...

... �k�1��2 �k�1��2 �k�1��2 �k�3��2 �k�3��2...

Figure 8.6: CR�k� �k � 1��2�
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We note that I is color-faithful.
Next we show CR�k�2� �� CR�k� k�2� for k even. To this end, observe

that for any fixed vertex v �V�k�2� there are exactly four vertices at dis-
tance 2 from v in CR�k�2� whereas for any fixed vertex w � V�k� k�2�,
there are exactly five vertices at distance 2 from w in CR�k� k�2�. Ob-
viously the graphs cannot be isomorphic. �

In the following proofs we will be constructing isomorphisms be-
tween various chordal rings. In order to ensure the bijectivity of these
isomorphisms we note this simple fact:

Lemma 8.4.7 Let k � N�, c�d � Z and consider the mapping h : Z�kZ�
Z�kZ defined by h : i �� c � i � d. If gcd�k� c� � 1 then h is a bijection.

Proof. We show that h is injective: Let i1, i2 be representatives of two
residue classes and suppose h�i1� � h�i2�. By definition of h we have
k j c � �i1 � i2�. Since gcd�k� c� � 1, k must divide i1 � i2. Hence, i1 and i2
are representatives of the same class and h is injective. Since the do-
main and the codomain of h have the same cardinality, the surjectivity
of h follows from its injectivity. Hence, h is a bijection. �

Using the last lemma, one can prove the bijectivity of all graph
isomorphisms �defined as mappings between vertex sets� that appear
in the subsequent proofs. �Checking the property gcd�k� c� � 1 amounts
in all cases to just one or two iterations of the Euclidean algorithm.� To
show that these mappings also preserve incidence of vertices one has
to consult the definition of CR�k�m� and do some easy computations
modulo k. As by-products of these computations one obtains proofs of
the color-faithfulness of the respective isomorphisms.

Lemma 8.4.8 If k is not divisible by 3 then CR�k�3� � CR�k� b�k � 2��3c�.

Proof. Let k � 1 �mod 3�. The bijection I : V�k�3�� V�k� �k� 2��3�

I : �k�3� i� �� �k� �k � 2��3� i�k� 1��3�
�k�3� i� �� �k� �k � 2��3� i�k� 1��3 � 1�

is an isomorphism.
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If k � 2 �mod 3� then the bijection I : V�k�3��V�k� �k � 1��3�

I : �k�3� i� �� �k� �k � 1��3� i�k � 1��3�
�k�3� i� �� �k� �k � 1��3� i�k � 1��3�

is an isomorphism.
In both cases is the mapping I color-faithful. �

Lemma 8.4.9 If k is odd then CR�k�3� � CR�k� �k� 1��2�.

Proof. The bijection I : V�k�3��V�k� �k� 1��2�

I : �k�3� i� �� �k� �k� 1��2��i�k� 1��2�
�k�3� i� �� �k� �k� 1��2� �1� i��k� 1��2�

is an isomorphism. Also here is I color-faithful. �

2k�3�12k�3 2k�3�2

2k�3 2k�3�1

k�1 0 1 2

k�1 0 1

k�3�1 k�3 k�3�1

k�3�1 k�3

2k�3�1

Figure 8.7: Neighborhood of 0 in CR�k� k�3�.

Lemma 8.4.10 Let m be a positive integer greater than 3. Let v be any
vertex of CR�3m�m� and denote Sv the stabilizer of v in Aut�CR�3m�m��.
The group Sv is non-trivial if and only if m � �1 �mod 3�.



130 Chordal Rings

Proof. Due to vertex transitivity we can assume w.l.o.g. that v � 0. We
have k � 3m.

First we observe that if k�3 � �1 �mod 3� then the mapping A :
V�k� k�3��V�k� k�3� given by the equations

A�i� � i�2k�3 � 1� and A�i� � i�2k�3 � 1� � k�3

is a non-trivial automorphism of CR�k� k�3� such that A�0� � 0. A is
color-faithful.

We will prove by contradiction that no non-trivial automorphism
stabilizing 0 exists if k�3 �� �1 �mod 3�.

Suppose that A is such an automorphism. We will use the drawing
in Figure 8.7. We invite the reader to check that in the graph CR�k� k�3�,
each edge fi� i� 1g belongs to exactly two hexagons while each other
edge belongs to exactly three hexagons. Hence, the set of fi� i� 1g-
edges must be mapped onto itself by A. This means A�1� � 1 because
A�0� � 0 by assumption. The further discussion will be split into two
cases.

(i) A�0� � 0, A�k�3� � k�3. This implies A�k�3 � 1� � k�3 � 1, A�1� � 1
and A�2� � 2 where the later statements follow from the earlier ones
�and from the assumptions�. We can repeat the argument to show
A�i� � i and A�i� � i for all i. Hence, A is the trivial automorphism.

(ii) A�0� � k�3, A�k�3� � 0. We will use the abbreviation x �A y to
denote A�x� � y, A�y� � x. We derive

k�3 � 1 �A 2k�3 � 1,
k�3 �A 2k�3,
1 �A 2k�3 � 1,
2 �A 2k�3 � 2 and
A�2k�3 � 2� � 2k�3� 2

where again the later statements follow from the earlier ones �and from
the assumptions�.

We can now consider the neighborhood of 2k�3 � 2 instead of that
of 0 by merely adding 2k�3� 2 to all vertices. By repeating the process
we prove that all vertices of the form t�2k�3� 2� for some integer t  0
are fixed by A.

Since gcd�k�2k�3 � 2� � gcd�6� k�3� 2� and 3 j� �k�3� 2� by assump-
tion, we have gcd�k�2k�3 � 2� � 1 �k odd� or gcd�k�2k�3 � 2� � 2
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�k even�. In both cases the congruence t�2k�3 � 2� � k�3 �mod k� is
solvable. Hence, the vertex k�3 is fixed by A, a contradiction to k�3 �A

2k�3. �

2k�32k�3�1 2k�3�1

2k�3�1 2k�3

k�1 0 1 2

k�1 0 1

k�3 k�3�1 k�3�2

k�3 k�3�1

2k�3�2

Figure 8.8: Neighborhood of 0 in CR�k� k�3 � 1�.

Lemma 8.4.11 Let l be a positive integer greater than 2. Let v be a vertex
of CR�3l� l � 1� and denote Sv the stabilizer of v in Aut�CR�3l� l � 1��. The
group Sv is non-trivial if and only if l � 1 �mod 3�.

Proof. The reasoning is very analogous to that in the previous proof.
Now k � 3l, m � l � 1. First we note that if k�3 � 1 �mod 3� then

the mapping A defined by

A�i� � i�k�3 � 1� and A�i� � i�k�3 � 1�

is a non-trivial automorphism of CR�3l� l � 1� stabilizing 0. Also this
mapping is color-faithful.

We will prove by contradiction that no non-trivial automorphism
stabilizing 0 exists if k�3 �� 1 �mod 3�.
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Suppose that A is such an automorphism. Guided by the drawing
in Figure 8.8 we can easily prove that in the graph CR�k� k�3� 1�, each
edge fi� ig belongs to exactly two hexagons while each other edge be-
longs to exactly three hexagons. Hence, the set of fi� ig-edges must be
mapped onto itself by A. This means A�0� � 0. The further discussion
will be again split into two cases.

(i) A�1� � 1, A�k�3 � 1� � k�3 � 1. As in the previous proof we de-
rive that A must be the trivial automorphism.

(ii) 1 �A k�3 � 1. We derive

k�3 �A 2k�3,
k�3 �A 2k�3,
k� 1 �A 2k�3� 1,
k� 1 �A 2k�3� 1 and
A�2k�3� 2� � 2k�3� 2

where again the later statements follow from the earlier ones �and from
the assumptions�.

Hence, all vertices of the form t�2k�3� 2� for some integer t  0 are
fixed by A.

Since gcd�k�2k�3� 2� � gcd�6� k�3 � 2� and 3 j� �k�3 � 2� by assump-
tion, we have gcd�k�2k�3 � 2� � 1 �k odd� or gcd�k�2k�3 � 2� � 2 �k
even�. In both cases the congruence t�2k�3� 2� � k�3 �mod k� is solv-
able. Hence, the vertex k�3 is fixed by A, a contradiction to k�3 �A

2k�3. �

Lemma 8.4.12 If k � 9, k is divisible by 3 and not divisible by 9 then
CR�k� k�3� �� CR�k� k�3 � 1�.

Proof. Suppose k � 9, 3 j k, 9 j� k, CR�k� k�3� � CR�k� k�3� 1�. The isomor-
phism between CR�k� k�3� and CR�k� k�3� 1� would naturally induce an
isomorphism between the groups Aut�CR�k� k�3�� and Aut�CR�k� k�3 �
1��.

Let m � k�3. Since 9 j� k, we have m��1 �mod 3�. In either case we
obtain Aut�CR�k� k�3�� �� Aut�CR�k� k�3 � 1�� from conjunction of Lem-
mas 8.4.10 and 8.4.11. This is a contradiction. �

Lemma 8.4.13 If k is divisible by 9 then CR�k� k�3� � CR�k� k�3 � 1�.
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Proof. If 3 j k�3 then the bijection I : V�k� k�3�� V�k� k�3� 1�

I : �k� k�3� i� �� �k� k�3 � 1���i� 1��k�3 � 1��
�k� k�3� i� �� �k� k�3 � 1��i�k�3� 1��

is a color-faithful isomorphism. �

k�2k�3

k�3 k�2

k�1 0 1

k�1 0 1

2 3 4

2 3

5 6

Figure 8.9: Neighborhood of 0 in CR�k�3�.

Lemma 8.4.14 If k is divisible by 3, k � 9, then CR�k�3� �� CR�k� k�3�.

Proof. If k � 9 then all vertices in Figure 8.9 are pairwise different. For
any fixed vertex v � V�k�3� there are exactly seven vertices at distance
3 from v in CR�k�3� whereas for any fixed vertex w � V�k� k�3�, there
are exactly eight vertices at distance 3 from w in CR�k� k�3�. Obviously
the graphs cannot be isomorphic. �

Lemma 8.4.15 If k is divisible by 3, k � 9, then CR�k�3� �� CR�k� k�3� 1�.

Proof. The argument is the same as in the proof of the preceding lemma.
�
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8.5 Alternating Cycles and Isomorphism

Lemma 8.5.1 Let 2�m1�m2 � �k�1��2 and let CR�k�m1��CR�k�m2�. Let
C�

1, C�
2 and C�

3 be the three alternating cycles incident with �k�m1�0� and let
C��

1 , C��
2 and C��

3 be the three alternating cycles incident with �k�m2�0�. Then
there exists an isomorphism I : V�k�m1� � V�k�m2� and a permutation
π : f1�2�3g� f1�2�3g such that I�C�

i� � C��
π�i� (as graphs) for i � 1�2�3.

Proof. The lemma says that if two chordal rings are isomorphic then
there must be an isomorphism that maps the alternating cycles of the
first chordal ring on the alternating cycles of the second chordal ring.

For m1 subject to �8.2� this follows from the fact that each isomor-
phism must map Petrie cycles on Petrie cycles. For the remaining �“sin-
gular”� values of m1 this follows from the statements of Section 8.4.2
where we proved that whenever the graphs are isomorphic, there is
a color-faithful isomorphism. Obviously, a color-faithful isomorphism
maps an alternating cycle onto an alternating cycle. �

Next we will show that the pairwise correspondence of alternating
cycles in chordal rings CR�k�m1� and CR�k�m2� provides a strong infor-
mation concerning the values of m1 and m2.

Fact 8.5.2 Let 2 � m1�m2 � k � 1 be integers. Let CR�k�m1� � CR�k�m2�
and let I : V�k�m1� � V�k�m2� be an isomorphism. Let C�

1 (respectively,
C��

1) be the first alternating cycle in CR�k�m1� (respectively, CR�k�m2�). If
I�C�

1� � C��
1 (as graphs) then m1 � m2 or m1 � k � 1�m2.

Proof. Suppose I�C�
1� � C��

1. By vertex transitivity we may assume that
I�k�m1�0� � �k�m2�0�. Then either I�k�m1�1� � �k�m2�1� or I�k�m1�1� �
�k�m2�0�. One sees easily that the first case necessarily leads to m2 � m1

while in the second case m2 � k � 1�m1 must hold. �

Lemma 8.5.3 Let 2 � m1�m2 � �k � 1��2 with m1 �� m2. Then CR�k�m1� �
CR�k�m2� if and only if at least one of the following cases occurs:

�i� k and m1 � 1 are relatively prime and m2 � norm�s� for an s such
that s�m1 � 1� � �1 �mod k�.

�ii� k and m1 are relatively prime and m2 � norm�t� for a t such that
tm1 � 1 �mod k�.
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Proof.
�A� The part “
”:
Let I : V�k�m1��V�k�m2� be an isomorphism. By vertex transitivity

we may assume I�k�m1�0� � �k�m2�0�.
Let the notation for alternating cycles and alternating paths be as

introduced in Section 8.1.1 and let C�
i and A�

i be the cycles �paths� in
CR�k�m1� while C��

i and A��
i are the cycles �paths� in CR�k�m2�. By Fact

8.5.2, I�C�
1� ��C��

1. However, I must map alternating cycles to alternating
cycles, hence either (i) I�C�

2� � C��
1 or (ii) I�C�

3� � C��
1.

Ad (i): The length of C�
2 in CR�k�m1� must be 2k, hence gcd�k�m1 �

1� � 1 �see the algebraic description of alternating paths�. Moreover,
I�k�m1�m� � �k�m2�1� or I�k�m1�m� � �k�m2�0�. In the first case we must
have I�k�m1�0� � �k�m2�m2�, the latter being A��

1�2m2
, hence A�

2�2m2
� 0. By

algebraic description of A2, A2�2m2 � m2�m1 � 1� � 1 and we are left with
the congruence

m2�m1 � 1� � 1 � 0 �mod k�� �8.3�

If I�k�m1�m� � �k�m2�0�, then we again derive I�k�m1�0� � �k�m2�m2�,
the latter being now A1�2�k�1�m2� �now we run through A2 and A1 in
different directions�. This leads to the congruence

�k � 1�m2��m1 � 1� � 1 � 0 �mod k�� �8.4�

Since we suppose 2�m2 � �k� 1��2, indeed m2 � norm�s� where s�m1�
1� � 1 � 0 �mod k�.

Ad (ii): The length of A3 in CR�k�m1� must be 2k, hence gcd�k�m1� �
1 �see the algebraic description of alternating paths�. The desired result
for m2 follows from algebraic description of A3 in a manner similar to
the case (i).

�B� The part “�”:
Suppose that (i) holds, i.e., k and m1 � 1 are relatively prime and

one of the congruences �8.3�, �8.4� is fulfilled. If �8.3� holds, then
we construct the mapping I : V�k�m1�� V�k�m2� via alternating paths
I�k�m1� i� � A��

2�2i and I�k�m1� i� � A��
2�2i�1 and we check easily that this

mapping is an isomorphism. If �8.4� holds, then the same construction
works, taking the path A2 in the opposite order.

The case (ii) is treated analogously. �
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The graph-theoretical classification problem has now been to a great
extent transformed in a number-theoretical problem �solving congru-
ences�. In order to support further investigations we need some state-
ments about polynomial congruences.

8.5.1 Solving the Congruences

Lemma 8.5.4 �i� If e  3 is an integer, then x2 � 1 �mod 2e� has exactly
four solutions 1�2e�1� 1�2e�1 � 1�2e � 1.

�ii� If p is a prime greater than 2 and e is a positive integer, then
x2 � 1 �mod pe� has exactly two solutions 1� pe � 1.

Proof. (i) The statement is true for e � 3. Suppose it is true for some e
3. The induction step is done easily by a direct application of material
in Section 8.3 of �Hardy, Wright, 1990�.

(ii) If p is an odd prime, then x2 � 1 �mod p� has exactly two solu-
tions �i.e., 1 and -1� by Theorem 109 of �Hardy, Wright, 1990�. The in-
duction step again follows directly from Section 8.3 of �Hardy, Wright,
1990�. �

Lemma 8.5.5 �i� If e is a positive integer, then x�x� 1� � �1 �mod 2e�
has no solutions.

�ii� If e is a positive integer greater than 1, then x�x� 1���1�mod 3e�
has no solutions.

�iii� If p is a prime, p � 1 �mod 6� and e a positive integer, then
x�x� 1� � �1 �mod pe� has exactly two solutions.

�iv� If p is a prime, p � �1 �mod 6� and e a positive integer, then
x�x� 1� � �1 �mod pe� has no solutions.

Proof. (i) The congruence x�x� 1� � 1 � 0 �mod 2� has no solutions.
Hence, x�x� 1� � 1 � 0 �mod 2e� has no solutions for any e  1.

(ii) The congruence x�x� 1� � 1 � 0 �mod 32� has no solutions. It
follows that x�x� 1� � 1 � 0 �mod 3e� has no solutions for any e  2.

(iii) Proof by induction: For e � 1 the statement follows from ob-
serving that for any odd prime p,

x2 � x � �1 �mod p�
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is equivalent to
�2x� 1�2 � �3 �mod p�

and from Theorem 96 of �Hardy, Wright, 1990�. The induction step
again easily follows from the theory in Section 8.3 of �Hardy, Wright,
1990�.

(iv) For e � 1 the proof goes like in (iii). Since there are no solutions
�mod p�, there can be no solutions �mod pe�, e  1. �

Fact 8.5.6 Let m � ∏t
i�1 pei

i where pi are pairwise different primes and ei
are positive integers. Let c be an integer and let ci � c mod pei

i for each
1� i� t. Let the congruence f �x� � ci �mod pei

i � has si solutions for each
1 � i � t. Then the number of solutions of f �x� � c �mod m� is equal to
∏t

i�1 si.

Proof. This is a consequence of the Chinese Remainder Theorem. See
�Hardy, Wright, 1990�, Theorems 121 and 122. �

8.6 Classifications

We have now collected all necessary knowledge to efficiently handle
the classification problem stated in Section 8.3.

Fact 8.6.1 Let k  3 is an integer and consider the isomorphism classes of
graphs CR�k�m�, 2 � m � �k � 1��2. Each such class consists of at most 3
graphs.

Proof. Let m0 be an integer with 2 � m0 � �k � 1��2. By Lemma 8.5.3
there can be at most two chordal rings CR�k�m�, 2 � m � �k � 1��2,
m �� m0, that are isomorphic to CR�k�m0�. This follows from the fact
that either of the congruences in Lemma 8.5.3 has none or one solution.

�

For the sake of completeness we briefly recall the classification in
the case k prime, as derived in �Boreham, Bouwer and Frucht, 1974�.
In this case, for any 2�m� p�1 we have gcd�p�m�1� � gcd�p�m� � 1.
Hence, by Lemma 8.5.3, we may have isomorphic triples of graphs.
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8.6.1 The Case k � p

Fact 8.6.2 Let p be a prime greater than 7 and let m be an integer, 3 �
m � �p� 1��2, m �� b�p� 2��3c. Let s, t be integers such that s�m� 1� �
�1 �mod p� and tm � 1 �mod p�. Then the three numbers norm�m�,
norm�s� and norm�t� are either all equal or pairwise different. Moreover,
there is at most one value 3 � z � �p � 1��2 such that z � norm�m� �
norm�s� � norm�t�, and it occurs if and only if p � 1 �mod 6�.

Proof. �Boreham, Bouwer and Frucht, 1974�, pp. 220–221. �

This fact completes the classification of isomorphism types in the case
p prime, see Table 8.1 for a global scheme. �For more details, see the
aforementioned reference.�

number description of types remarks
of types �values of m�

1 f2, �p � 1��2g
1 f3, b�p � 2��3c, �p� 1��2g
bp�6c� 1 fnorm�m��norm�s��norm�t�g one singleton

if p � 1 �mod 6�

Table 8.1: Isomorphism types of CR�p�m�, p prime � 7

8.6.2 The Case k � 2ep

Now let k � 2e p where e is a positive integer and p is an odd prime.

Lemma 8.6.3 Let k � 2e p where e is a positive integer and p is an odd
prime and consider the isomorphism classes of graphs CR�k�m� where m
is as in (8.1), i.e., 2 � m � 2e�1p. Each such class consists of one or two
graphs. The one-graph classes will be called singletons. There are exactly

2 singletons if e � 1,
5 singletons if e � 2,
2e�1 � 7 singletons if e  3.
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Proof. It follows from Fact 8.6.1 and Lemma 8.5.3 that a three member
class can occur only if gcd�k�m� 1� � gcd�k�m� � 1 for some m. This
clearly cannot be the case if k is even.

Now we determine the number of singletons. If fCR�k�m�g is a sin-
gleton then according to Lemma 8.5.3 the following two conditions
must hold simultaneously:

(i) gcd�2e p�m� 1� � 1 or the solution of x�m� 1� � �1 �mod 2e p�
satisfies norm�x� � m

and
(ii) gcd�2e p�m� � 1 or the solution of xm � 1 �mod 2e p� satisfies

norm�x� � m.
These conditions can be rewritten as

�i� �
 2 j m� 1 � p j m� 1 � m�m� 1� � �1 �mod 2e p�
� �2e p � 1�m��m� 1� � �1 �mod 2e p�

�ii� �
 2 j m � p j m � m2 � 1 �mod 2e p�
� �2e p � 1�m�m � 1 �mod 2e p��

This can be further simplified to

�i� �
 2 j m� 1 � p j m� 1 � �m� 1�2 � 1 �mod 2e p�

�ii� �
 2 j m � p j m � m2 � 1 �mod 2e p��

In the last two equivalences, we will denote the subformulas on the
right-hand sides by (ia), (ib), (ic) and (iia), (iib), (iic), respectively.

Taking into account what was said about solutions of congruences,
we find that only the following four combinations can lead to an m
satisfying �i� � �ii�:

�ia� � �iib�: Here m must be of the form o � p where o is an odd
number � 2e�1.

�ib� � �iia�: Here m must be of the form o � p� 1 where o is an odd
number � 2e�1.

�ic�: it implies �iia�.
�iic�: it implies �ia�.
Further we note that no m can satisfy more than one of these four

combinations and that the solutions m of �ic� satisfying m� 2e�1p are in
a one-to-one correspondence with solutions m� of �iic� satisfying
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m� � 2e�1p via m � norm�m��. Hence, we can discard �ic� by consid-
ering �iic� on the “doubled” interval 2 � m � 2e p� 1 and taking norms
of the solutions. Finally we note that the solution m � 1 of �iic� does
not lead to a chordal ring, see the definition of CR�k�m�.

The rest of the proof will be split according to the value of e.
e � 1 : (iic) has two solutions m� 1��1 �mod 2p� whose norms are

1 and 2. This gives us one singleton �m � 2�. There is one more sin-
gleton with m � p �case �ia� � �iib��. There are no more singletons.

e � 2 : There are 2 � 2 � 4 solutions of �iic� yielding three singletons
after we disregard m � 1. Further we have singletons for m � p and
m � p� 1, giving a total of 5 singletons.

e  3 : There are 4 � 2 � 8 solutions of �iic� yielding seven singletons.
Further we get 2e�2 singletons for m � o � p �o � 1�3� � � � �2e�1 � 1�, and
2e�2 more singletons for m � o � p� 1, o as before. This gives a total of
2e�1 � 7 singletons. �

Theorem 8.6.4 Let k � 2e p where e is a positive integer and p is an odd
prime and consider the isomorphism classes of graphs CR�k�m� for 2�m�
2e�1 p. The number of these classes is

�p � 1��2 if e � 1,
p � 2 if e � 2,
2e�2�p� 1� � 3 if e  3.

Proof. Lemma 8.6.3 and easy computations. �

8.7 Notes on Other Values of k

Apparently, the classification problem can be decided for many other
families of the parameter k in a similar fashion. In general, simple
formulas like those of Theorem 8.6.4 should exist whenever k contains
at least one of the factors 2, 32 or a prime of the form 6t�1 since we do
not need to care about the congruence x�x� 1� � �1 �mod k� in those
cases, and the other congruences do not disturb us much as we have
seen lately. If k does not contain any of such factors, the additional
congruence will mess up the things a little bit but a general answer
should still be possible by a proper case distinction.
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8.8 Methodological Aspects

It was conjectured by Frucht �1976� that determining the number of
chordal ring isomorphism types is difficult if k is not a prime. We be-
gun attacking this problem by using nauty package �see Section 6.4.1�
to investigate rings of modest size. McKay’s code proved to be ex-
tremely useful for these computations. The results gave us good hope
that simple classifications exist even for composite values of k.

In order to enable the theoretic classification for k composite, we
had to extend the theory of �Boreham, Bouwer and Frucht, 1974� in two
directions: First, graph-theoretical treatment of issues that do not arise
for prime k was necessary. Second, statements concerning solvability
of congruences developed in �Boreham, Bouwer and Frucht, 1974� had
to be proven for cases when the modulus is composite.

Finally, we picked the case k � 2e p to give an easy example demon-
strating how to use this machinery in proving a classification theorem
for k composite.

We are completely convinced that if nauty were accessible to the
authors whose work was mentioned earlier, much more progress would
have been done on the subject in the past two decades. Still, we are
pleased that the problem has remained open until now, since it offered
us a delicious example how experimental and raw data can inspire
proving rigorous theorems of general validity.
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Necklaces and Bracelets
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Rotation and reflection belong to the most natural symmetries in the
world of discrete structures. Orbits of functions whose domain pos-
sesses the rotational symmetry are known as necklaces. In this chapter
we recall the recent algorithm for generating canonical representatives
of necklaces due to Wang and Savage. We will refer to it as the “WS
algorithm”.

We study the generation problem in the similar setting when, addi-
tionally, reflection is allowed. The symmetry then is described by the
dihedral group and the arising orbits will be called bracelets.

This chapter consists of two closely related parts:

In Sections 9.2 through 9.4 we examine the distribution of bracelets
in the necklace tree that is formed by the WS algorithm and we show
how this knowledge can be used to develop an algorithm for bracelet
generation. After presenting the WS-type algorithms we note their ap-
parent resemblance to orderly-type methods. In Section 9.5 we em-
phasize this relationship by showing that WS-like algorithms can be
modified for the purpose of restricted generation in a fashion similar
to restricted orderly generation as we saw it in Section 6.2.2.

In Sections 9.6 through 9.9 we recall an interesting open problem
concerning local and global proportionality of the number of black and
white beads in two-color necklaces �bracelets�. We use our bracelet
generation algorithm to obtain examples of bracelets that improve the
upper bound on global proportionality for fixed local proportionality.
Starting from these examples we derive theorems that simplify and im-
prove the bounds obtained by other authors.

9.1 Definitions

Let n be an arbitrary but fixed positive integer. By ��� we mean
the lexicographic order on f0�1gn induced by 0 � 1. Each function
f � f0�1gn will be viewed as a string of zeros and ones of length n.
This uncommon treatment of functions, which does not appear in other
chapters of our thesis, will greatly simplify the description of algo-
rithms that we will be studying and developing.

In this chapter we will often write fi instead of f �i�. Along with
a string �function� f � f0�1gn, f � f1 � � � fn, we will often consider its
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substrings fi � � � f j for some i� j � n. The concatenation of two strings x
and y is denoted by simply writing xy. The notation ak will be used
to denote the string consisting of k symbols a �a � 0�1�, and f0�1gk

will denote the set of all strings of length k over f0�1g. Hence, in the
special case k � n we can now identify f0�1gn with f0�1gn although we
will prefer the former notation.

When describing the listing algorithms we will need various func-
tions from f0�1gk to f0�1gk. Some of these functions are permutations
�i.e., elements of the acting groups� while some other are not. To avoid
the confusion in notation, we will consequently denote the function ap-
plication by α�x� for any function α : f0�1gk �f0�1gk and any x � f0�1gk.
We will use this symbolics no matter whether it refers to group action
or not.

Definition 9.1.1 The reversal of z � z1 � � �zl is zR :� zl � � �z1.

Some of the following definitions have appeared already in Section
4.3.1 which deals with counting necklaces and bracelets.

Let σ :� �1�n�n�1� � � � �2� � Sn and let ρ� Sn such that ρ : i �� n� i for
all i � n. By Definition 2.1.14, σ�z� is the left cyclic shift of z and ρ�z�
is the reversal of z. The subgroup of Sn generated by σ has n elements
and is called the cyclic group Cn. The group generated by σ and ρ is the
symmetry group of the regular n-gon and is called the dihedral group
Dn. This group has 2n elements 1�σ� � � � �σn�1 and ρ�ρσ� � � � �ρσn�1. The
action of the former elements on x � f0�1gn is described by

σt�x1 � � �xn� � xt�1 � � �xnx1 � � �xt �9.1�

while the latter elements are involutions and act as follows:

ρσt�x1 � � �xn� � xt � � �x1xn � � �xt�1� �9.2�

Definition 9.1.2 The orbits of Cn on f0�1gn will be called n-bead neck-
laces �in two colors�.

Definition 9.1.3 For each necklace, we define its canonical representative
to be the lexicographically smallest element in the orbit.
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Remark. We should emphasize that in the description of the orderly
methods �Section 6.2�, the lexicographically largest element in each or-
bit was taken for the canonical representative. On the contrary, in this
chapter the lexicographically smallest elements will represent their or-
bits. The reason for this confusing setting is that we would like to
be consistent with the original papers, i.e., with �Read, 1978a� and
�Ruskey, Savage and Wang, 1992�.

Necklaces are models for patterns that are allowed to be rotated but
cannot be reflected, such as neckties with parallel strips, some necklace-
like accessories or musical chords, see �Gilbert, Riordan, 1961� for the
last example.

Definition 9.1.4 The orbits of Dn on f0�1gn will be called n-bead bracelets
�in two colors�.

Definition 9.1.5 For each bracelet, we define its canonical representative
to be the lexicographically smallest element in the orbit.

It should be stressed that the terms “necklace” and “bracelet” are by
no means stable, which often causes confusion. So, for example, Gra-
ham, Knuth and Patashnik �1989� use the term “necklace” for Cn–orbits
while in �Harary, Palmer, 1973� the same word denotes Dn–orbits. Al-
though some attempts were made to distinguish the names by extra
tags �“one-sided necklaces” in �Riordan, 1958��, in our thesis we de-
cided to have a completely different term for the Dn–orbits. This name
was suggested to us by Terry Wang �personal communication� and was
already used by other authors for the same combinatorial paradigm, for
example by Whitworth �1959�, p. 20, and by Stockmeyer �1974�.

Bracelets are models for objects which can be rotated and reflected.
For many applications in sciences �Artemi, Alexandru, 1987� the brace-
let paradigm is appropriate. Other applications involve twill manufac-
turing �Hoskins, Penfold Street, 1982� and music �Reiner, 1985�. Brace-
lets certainly deserve as much interest as necklaces do, and Section 9.4
is devoted to an algorithm which lists the canonical representatives of
all two-colored bracelets for a given number of beads n.
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9.2 Necklace Generation

Algorithms for producing catalogs of necklaces �bracelets� that we dis-
cuss in this chapter belong to the class of specialized listing algorithms,
see Section 6.4.

Recalling the confusion of Cn– and Dn–actions �see the preceding
section�, we emphasize that the papers dealing with the “necklace”
generation �surveyed in the next paragraph� consider the orbits w.r.t.
Cn–action. Early motivation for that task came already in the ancient
years of computing from the study of shift registers and de Bruijn se-
quences, see �Fredricksen, 1982� for a historical account.

The first algorithm was designed by Fredricksen and Kessler �1986�
based on work by Fredricksen and Maiorana �1978�. We will refer to
it as the “FKM algorithm”. Its careful time analysis is due to Ruskey,
Savage, and Wang �1992� who showed that FKM generates necklaces
in the constant amortized time, i.e., in total time O�N�n�� where N�n�
is the number of two-colored necklaces of n beads. In this chapter
we focus on the recent algorithm due to Wang and Savage �WS algo-
rithm�. We restrict our description to the two-color case as it was done
in �Ruskey, Savage, and Wang, 1992�. For the the details on k colors,
i.e., on constructing the transversal of Cn nn f0�1� � � � � k� 1gn, see �Wang,
Savage, 1990�.

9.3 The WS Algorithm

For the sake of brevity, instead of saying “x is the canonical representa-
tive of its orbit” we will sometimes say simply “x is canonical”. Also,
instead of “canonical representative” we will say only “representative”.

It will be of some use to keep in mind the following facts about
representatives of two-colored necklaces: The only representative end-
ing with a zero is 0n. The only representative starting with a one is
1n. If x is canonical and x starts with exactly s zeros then all runs of
contiguous zeros inside x have length at most s.

Let τ : f0�1gn � f0�1gn be the involution defined by

τ�x1 � � �xn� :� x1 � � �xn�1xn



148 Necklaces and Bracelets

where xn :� 1� xn is the complement of the last bit. We now rephrase
the main theorem �Theorem 5� of Ruskey, Savage and Wang �1992�
with an alternative proof.

Theorem 9.3.1 Let x � f0�1gn, x � 0z1 (i.e., z � f0�1gn�2). If x is not
canonical, then y :� τστ�x� is also not canonical.

Proof. Suppose x is not canonical while y is canonical. Let

x � 0sx1 � � �xn�s�t�10t1

with s � 0, t  0 and x1 � xn�s�t�1 � 1. Then

y � τστ�x� � 0s�1x1 � � �xn�s�t�10t�11�

There is an r, 0 � r � n, such that σr�x� is canonical. For this r we
have �i� σr�x� � x and �ii� σr�1�y�  y. It must be s � r � n� t � 1 for
otherwise σr�x� would end by a zero. Now �i� implies that

σr�x� � xr�s�1 � � �xn�s�t�10t10sx1 � � �xr�s

starts with at least s zeros which means that

σr�1�y� � xr�s�1 � � �xn�s�t�10t�110s�1x1 � � �xr�s

starts with at least s zeros, too, which is a contradiction to �ii�. �

We now describe the WS algorithm as introduced in �Ruskey, Sav-
age and Wang, 1992�, p. 426. This algorithm produces the canonical
representative for each necklace orbit.

Starting with the string w � 0n as root, we generate as the children
of w all those canonical strings of the form τσ�w�, τσ2�w� � τστ�τσ�w��,
τσ3�w� � �τστ�2�τσ�w��, etc. We keep generating until the smallest j is
reached for which τσ j�w� is not canonical. This procedure is applied
recursively to each canonical child of w.

In Figure 9.1 we see the trace of the algorithm for n � 5. The non-
canonical strings examined by the algorithm are typeset in italics.

Theorem 9.3.2 (Wang, Savage) Each canonical representative is generated
by the WS algorithm.
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Figure 9.1: Trace of the WS algorithm for two colors and 5 beads.
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Proof. Let y be canonical and let a be the number of ones in y. We
will show by induction on a that y is generated by the algorithm: The
case a � 0 is trivial. For a � 0, let us assume that all canonical repre-
sentatives with a� 1 ones are generated. The string y� :� τ�y� has a� 1
ones. Let y� � 0sz0t , where z � f0�1gn�s�t begins and ends with a 1.
Then s � t is the length of longest possible run of contiguous zeros in
any string that belongs to the Cn–orbit of y�. �Note that t  1.� Let ȳ be
the canonical representative of that orbit. Since z does not contain 0s�t

as a substring �otherwise y would not be canonical�, clearly ȳ � 0s�tz.
Hence, y � τσt�ȳ�. By the induction assumption, ȳ is generated by the
WS algorithm. Since τσ j�1�ȳ� � τστ�τσ j�ȳ�� for each j  1, it follows
from Theorem 9.3.1 that all strings τσ�ȳ�, τσ2�ȳ�, � � �, τσt�ȳ� are canon-
ical representatives and hence, by the description given above, all of
them are generated by the WS algorithm. In particular, y � τσt�ȳ� is
generated. �

Lemma 9.3.3 Let x � f0�1gn. We can test in O�n� time if x is the canon-
ical representative of its Cn–orbit.

Proof. Shiloach �1981� gives an algorithm that finds for each x � f0�1gn

in time O�n� an integer t such that

σt�x� � min
0�t ��n

σt��x��

Now x is canonical if and only if x � σt�x� which again can be checked
in O�n� time. �

9.3.1 Time Complexity of the WS Algorithm

Recall that, in this chapter, N�n� denote the number of two-color neck-
laces of n beads. The running time of the WS algorithm can be mea-
sured by the number of nodes visited by the algorithm because at each
node we need O�n� time to generate the respective string and test if
it is canonical or not. We note that while generating the children of
the canonical string y, at most one non-canonical string is examined.
�Precisely, expansion of each canonical node in the tree should end in
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a non-canonical string. However, we can avoid certain tests by not-
ing that a string x starting with a 1 is canonical if and only if x � 1n.�
Consequently, the number of nodes visited by the algorithm is at most
2 �N�n� and the running time is O�n �N�n��.

From the formula for the cycle index of Cn’s natural action, see �Ker-
ber, 1991�, p. 72, we find the total number of two-color necklaces by
unweighted Pólya’s Theorem 2.1.25:

N�n� � ∑
djn

φ�d� � 2n�d

where φ is the Euler totient function. It turns out that with growing n
the number of visited nodes approaches the value 2 �N�n� very quickly.
For example, in the case of 20 beads about 1�97 �N�20� strings are ex-
amined �Wang, Savage, 1990�.

9.4 Bracelet Generation

From now on, we deal with the natural action of the dihedral group Dn

on f0�1gn. Unless stated otherwise, the terms “canonical” and “canon-
ical representative” are from now on meant with respect to Dn–orbits.

The basis of our algorithm is the bracelet analog of Theorem 9.3.1:

Theorem 9.4.1 Let x � f0�1gn, x � 0z1 (i.e., z � f0�1gn�2). If x is not
canonical, then y :� τστ�x� is also not canonical.

Proof. Suppose x is not canonical while τστ�x� is canonical. Let x �
x1 � � �xn so that x1 � 0, xn � 1. There is an ω � Dn such that ω�x� is
canonical, ω�x� � x. According to Theorem 9.3.1, x is the representative
of its Cn–orbit, hence ω �� σr and so ω � ρσr. If we had r � 0 then
ω�x� � ρ�x� starts with a 1 which is impossible. For r � 1 we would
have x1xn � � �x2 � x1x2 � � �xn implying x2 � 1. In this case τστ�x� starts
with a 1 which again is not possible.

Thus r  2 must hold. By rewriting ρσr�x� � x in explicit form we
obtain

xr � � �x201xn�1 � � �xr�1 � 0x2 � � �xn�11� �9.3�
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We have y � τστ�x� � x2 � � �xn�101. Since y is assumed to be canonical,
we must have ρσr�1�y�  y which reads as

xr � � �x210xn�1 � � �xr�1  x2x3 � � �xn�101� �9.4�

Now �9.3� and �9.4� must hold simultaneously. This together with
x1 � 0, xn � 1 gives strong restrictions on the xi’s: From �9.3� we have
xr � 0 which implies x2 � 0 because of �9.4�. Inductively we get xi � 0
for all 1 � i � r. The system �9.3,9.4� now looks as follows:

00 � � �0� 	z 

r

1xn�1 � � �xr�1 � 00 � � �0� 	z 

r

xr�1 � � �xn�11 �9.5�

00 � � �0� 	z 

r�1

10xn�1 � � �xr�1  00 � � �0� 	z 

r�1

xr�1 � � �xn�101� �9.6�

Equation �9.5� yields xr�1 � 1. Then we get xr�2 � 0 from �9.6� which
results in xn�1 � 0 because of �9.5�. By iteration, xj � 0 for r � 2 � j �
n� 1. After all these substitutions, �9.5� has the form

0r10n�r�21 � 0r10n�r�21

which is a contradiction. �

Definition 9.4.2 The canonical representatives of Cn–orbits will be called
N-representatives �necklace representatives� and the canonical represen-
tatives of Dn–orbits will be called B-representatives �bracelet representa-
tives�.

Corollary 9.4.3 (Two-Block Theorem) In the WS necklace generation tree,
any B-representative appears to the left of any N-representative that is not
a B-representative.

9.4.1 The Bracelet Algorithm

Basically, we can exploit the Two-Block Theorem when we like to list
representatives of both necklaces and bracelets. However, if we want to
generate only bracelets then a more efficient method is possible, namely
our bracelet analog of the WS algorithm which generates the canonical
representative of each bracelet orbit:
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Starting with the string w � 0n as root, we generate as the children
of w all those B-representatives of the form τσ�w�, τσ2�w�, etc. We
keep generating until the smallest j is reached for which τσ j�w� is not
canonical. Additionally, if w � 0qz �where z � f0�1gn�q starts with a
1� and z �� zR then we also generate all B-representatives of the form
τσ�0qzR�, τσ2�0qzR�, etc. Again, we keep doing this until the smallest
j is reached for which τσ j�0qzR� is not canonical. This procedure is
applied recursively to each bracelet child of w.

In Figure 9.3 we see the trace of our algorithm for n � 8. Only
a subtree of the generation tree is displayed. Branches that are omit-
ted from the picture are indicated by dots, and the strings failing the
canonicity test are again typeset in italics. For the sake of brevity, also
the strings beginning with 1 are omitted from the picture. �In fact,
they need not to be tested by the algorithm, see above.� To improve
the readability, for each string w � 0qz the children of the form τσ j�0qzR�
are emphasized by an R at the end of the tree edge.

Theorem 9.4.4 Each B-representative is generated by our algorithm.

Proof. Let y be canonical and let a be the number of ones in y. We will
show by induction on a that y is generated by the algorithm: The cases
a � 0�1 are trivial. For a � 1, let us assume that all B-representatives
with a � 1 ones are generated. The string y� :� τ�y� has a � 1 ones.
Let y� � 0sz0t , where z � f0�1gn�s�t begins and ends with a 1. Then
s � t is the length of longest possible run of contiguous zeros in any
string that belongs to the Dn–orbit of y�. Let ȳ be the B-representative
�lexicographically smallest string� in that orbit. Since z does not contain
0s�t as a substring �otherwise y would not be canonical�, clearly �i�
ȳ � 0s�tz or �ii� ȳ � 0s�tzR. It follows from Theorem 9.4.1 that in the case
�i� all strings τσ�0s�tz�, τσ2�0s�tz�, � � �, τσt�0s�tz� are B-representatives
while in the case �ii� all strings τσ�0s�tzR�, τσ2�0s�tzR�, � � �, τσt�0s�tzR� are
B-representatives. By the induction assumption, ȳ is generated by our
algorithm and, hence, so is y. Note that the test z �� zR in the expansion
step of our algorithm is necessary to avoid duplicate generation. �
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Two Color Bracelets

procedure reverse tail�x�;
find s such that x starts with exactly s zeros;
find z such that x � 0sz;
return concat�0s,reverse�z��;

procedure search�y�;
output�y�;
done :� false;
while not�done� do

v :� σ�y�;
x :� τ�v�;
if x is canonical

then search�x�;
else done :� true;

if y �� reverse tail�y�
then v :� reverse tail�y�;

done :� false;
while not�done� do

v :� σ�v�;
x :� τ�v�;
if x is canonical

then search�x�;
else done :� true;

main;
output�00 � � �00�;
search�00 � � �01�;

Figure 9.2: The algorithm to generate n-bead bracelets in two colors.



9.4. Bracelet Generation 155

R

R

R R

R

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������
������ ������

������

������

Figure 9.3: A subtree of the bracelet generation tree for n � 8.
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9.4.2 Time Complexity

With each B-representative y � 0qz we examine at most two non-canoni-
cal strings. Hence, the total number of strings �tree nodes� examined
by our algorithm is at most 3 � B�n� where B�n� is the number of two-
color bracelets of n beads. Using formulas for the cycle index of Dn’s
natural action, see �Kerber, 1991, p. 72�, B�n� can be expressed as

B�n� � 1�2 �N�n� � 2
n�1

2 if n is odd�
B�n� � 1�2 �N�n� � 3�4 � 2 n

2 if n is even�

Combining with N�n�  2n�n, the last two equations give the obvious
asymptotic result limn�∞ B�n��N�n� � 1�2. Hence, the ratio of strings
examined by WS and by our algorithm is approximately

3 �B�n�
2 �N�n�

� 3
4
�

This means that if we aim at bracelet generation then the use of our
algorithm asymptotically saves about 25% of the number of vertices
that have to be visited, when compared to the “brute force” approach
which resides in generating all N-representatives by WS necklace algo-
rithm and select the B-representatives from them. In fact, the ratio 3�4
between the numbers of vertices visited by the respective algorithms
is approached already for small values of n, as can be seen from the
table:

WS algorithm our algorithm
nodes number of nodes number of

beads examined Cn–orbits examined Dn–orbits
10 186 108 165 78
15 4196 2192 3347 1224
20 103444 52488 79017 27012

Another reduction is possible if we do not insist on canonical repre-
sentatives. In this case, the representatives of orbits with m � n�2 ones
are found as pointwise complements of the representatives with n�m
ones, saving about a half of the generation time. In general, the gener-
ation of canonical representatives with m � M ones is possible for any
M by cutting the WS tree at level M.
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9.5 Restricted Generation

There is an apparent resemblance between WS-type algorithms and the
orderly generation methods �Section 6.2�. In particular, in the Wang-
Savage algorithm the sequence of children of each N-representative re-
minds �to some extent� of the augmentation of that string �function� as
introduced in Definition 6.2.5. This gives us hope that certain features
of orderly approach may project to the WS-type algorithms, in partic-
ular the restricted generation should be possible. �See Section 6.2.2 for
exposition on restricted listing.�

In the context of necklaces and bracelets, the restrictive predicate P
often has the form “The given �fixed� string u is not allowed to appear
as a substring in the generated object.” Such restrictions typically arise
in sciences �chemistry etc.� It should be clear that this kind of require-
ments can be easily embedded into our algorithms since we have a
direct control over the adjacency relations in the process of generation.

More precisely, if x is a N-representative �B-representative�, x � 0ty
where y begins with a 1, and if a “forbidden” string u appears as a
substring of y then u appears as a substring of every child of x in the
generation tree. Hence, if we detect u to be a suffix of y, then we can
cut off the whole branch of the tree descending from x.

We now present an example of restricted bracelet generation. El-
Basil �1988� studies so-called Clar structures which are binary strings
not containing 02 or 13 as substrings. If we wish to list all bracelets
subject to these conditions �let us call them Clar bracelets� then the fol-
lowing table shows the notable reduction in the number of strings to
be examined. The entry in the column “full tree” indicates the number
of nodes to be visited in the unrestricted generation whereas the col-
umn “pruned tree” shows the size of the tree in restricted generation,
where pruning proceeds using the idea from the preceding paragraph.

beads full tree pruned tree Clar bracelets
10 165 23 3
15 3347 77 5
20 79017 278 14
25 � 2 � 106 1025 31
30 � 5�4 � 107 3992 104
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Figure 9.4: Clar bracelets of 15 beads.
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For an illustration, in Figure 9.4 we see the five Clar bracelets of 15
beads. Zeros are displayed as black circles, ones correspond to white
circles.

9.6 Proportionalities in Ball Rings

In the preceding sections we have proven correctness of algorithms for
generating necklaces and bracelets. In the rest of the chapter we will
see an application of bracelet listing. We will recall the interesting prob-
lem about local and global proportionalities in ball rings posed by Fish-
burn, Hwang and Lee �1986�. For the symmetric neighborhood case,
we decrease the upper bounds �which were conjectured to be tight�
by giving a uniform construction for the three subcases distinguished
in the original paper. Furthermore, we describe our technique of ob-
taining upper bounds because it may be re-used for the study of other
instances of the original problem.

9.6.1 Local and Global Majorities

Suppose a ring R of n balls

R � �B0�B1� � � � �Bn�1��

each of which is either black or white, contains at least one white ball.
Denote by wh�R � and bl�R � the number of white and black balls in
R , respectively.

Definition 9.6.1 For given integers r  l  0 define for each ball Bi its
�l� r�-ball neighborhood

Nl�r�Bi� :� �Bi�l� � � � �Bi�1�Bi�1� � � � �Bi�r�

where indices are taken modulo n if necessary.

Definition 9.6.2 Let r  l  0 be given integers and let c be an integer,
having the same parity as l � r and satisfying ��l � r� � c � l � r. We say
that R is �l� r� c�-admissible if it satisfies the following local condition: For
every white ball B in R , Nl�r�B� contains at least c more white balls than
black balls.
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Figure 9.5: A �6�6�6�-admissible ring.

For example, the ring in Figure 9.5 is �6�6�6�-admissible but not �6�6�8�-
admissible.

Fishburn, Hwang and Lee �1986� studied the function

R�l� r� c� :� inf
R

wh�R �

bl�R �

where the infimum is taken over all �l� r� c�-admissible rings R . Thus
Figure 9.5 shows us that R�6�6�6� � 10�3.

Special interest was paid to the symmetric case, where l � r � k, 0 �
c � 2k and c is even since it must have the same parity as l � r � 2k.
We will assume these additional conditions throughout the rest of this
chapter. Fishburn, Hwang and Lee �1986� derived the lower bound

R�k� k� c�  2k � c
2k� c

and they showed that R�k� k� c� � �2k � c���2k � c� if k and c
2 have the

same parity. For the remaining case when

0 � c � 2k and k �� c
2

�mod 2� �9.7�

three upper bounds were constructed �together with respective rings�
for various combinations of values k and c:

Fact 9.6.3 Suppose k �� c
2 �mod 2�. Then

R�k� k� c� � 2k � c � 2
2k� c

if k � c � 2k� �9.8�

R�k� k� c� � 2k2 � 2k � ck
2k2 � 2k� ck� 2c

if 0 � c � k and k is even� �9.9�

R�k� k� c� � 2k2 � 4k � 2� ck � c
2k2 � 4k � 2� ck� 3c

if 0 � c � k and k is odd� �9.10�
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The right-hand sides of inequalities �9.8�–�9.10� will be denoted by
U1�k� c�, U2�k� c� and U3�k� c�, respectively.

Fishburn, Hwang and Lee �1986� conjectured that the bounds in
�9.9� and �9.10� are tight, i.e., that R�k� k� c� is equal to U2�k� c� or U3�k� c�
in those cases. As for the first bound, it was conjectured that it is “best-
possible”.

In the rest of this chapter we show that these conjectures are not
valid by presenting a uniform construction which covers all three sub-
cases distinguished above. We show that our bound is strictly better
than �9.8�–�9.10� except for certain rare cases where both bounds are
equal. Finally, we give a detailed description of the method that led to
our results. It can be easily adapted for other values of l, r and c.

There is no overlap between our results and the work by Woodall
�1992� who developed the ideas of Fishburn, Hwang and Lee �1986� in
a different direction.

9.7 Models for Ball Rings

Obviously, both informations that are of interest to us �admissibility
and global proportionality� are invariant under rotation of the ball ring.
In the symmetric neighborhood case �l � r� these properties are invari-
ant under reflection, too. This means that in the case l �� r we can take
necklaces as the proper model for ball rings, whereas in the case l � r,
bracelets will serve us well.

In our work we concentrate on the symmetric case �l � r� since it
was treated in big detail in the original paper introducing the problem.
Hence, we can use our algorithm to generate bracelet representatives
and run it subsequently for increasing number of beads. While doing
so, we check if we can detect a bracelet that would improve some of
the bounds �9.8�–�9.10�.

Surprisingly, we indeed came across such bracelets. Although we
found only a couple of them, the careful study of their properties was
motivating enough to give us an idea how to proceed further. In Sec-
tion 9.8 we show the improved upper bound and in Section 9.9 we
sketch how this bound was found. The whole way from bracelet list-
ing to the pattern �9.11� is then summarized in Section 9.10.
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9.8 A New Upper Bound for the Symmetric Case

Let p be a non-negative integer such that p � k� 2 and consider the
following �k� p� 1�� 6 array.

p k� p p 1 1 k� p� 2
p k� p p 2 1 k� p� 3
...
p k� p p k� p� 2 1 1
p k� p p k� p� 1 p � 1 k� p� 1

�9.11�

�If p � k� 2 then just the last row of �9.11� should be present.� Con-
struct a ring R in which the lengths of successive runs of consecutive
balls of the same color are given by concatenating the rows of �9.11�,
with each entry being the length of a run of consecutive black or white
balls according as it occurs in an odd-numbered or an even-numbered
column. Note that R is symmetrical about the run of p � 1 consecu-
tive black balls. It is lengthy but straightforward to prove that for each
white ball B, Nk�k�B� contains exactly 2p� 1 black balls.

As before, let k and c be as in �9.7�. Then

p :�
2k� c� 2

4
�9.12�

is a non-negative integer. Moreover, p � k � 2 in all cases except for
�k� c� � �2�2�, when p � k� 2. In all cases we construct the ring R from
the array �9.11� with p determined by �9.12�. We can easily check that
R is �k� k� c�-admissible.

As an example, for �k� c� � �6�6� we get p � 1 and the ring R as
depicted in Figure 9.6.

In the array �9.11� we have altogether �k � p� 1��k � p� � �k � p�
2��k � p� 1� � 2�k� p� 1� � 2�k� p� 1��k� p� white beads and 2�k�
p� 1�p� �k� p� 2� � �p � 1� � 2�k� p� 1�p � k� 1 black beads. After
substitution from �9.12�, the global proportionality of white and black
beads in R is

U�k� c� :�
4k2 � 4ck � c2 � 4

4k2 � c2 � 4
� �9.13�

We arrive at the following theorem:
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Figure 9.6: R�6�6�6� � 40�13.

Theorem 9.8.1 Let k �� c
2 �mod 2� and 0 � c � 2k. Then

R�k� k� c� � 4k2 � 4ck � c2 � 4
4k2 � c2 � 4

�

An easy computation yields the comparison of this �uniform� bound
and bounds due to Fishburn, Hwang and Lee �1986�:

Theorem 9.8.2 Let k �� c
2 �mod 2� and 0 � c � 2k.

(i) If k � c � 2k then U�k� c� � U1�k� c�. Equality holds if and only if
c � 2k� 2.

(ii) If 0 � c � k and k is even then U�k� c� � U2�k� c�. Equality holds if
and only if c � 2.

(iii) If 0 � c � k and k is odd then U�k� c� � U3�k� c�. Equality holds if
and only if c � 4.

One may note that the equality takes place for the extreme values of
c. �In fact, for c � 2 and c � 4 the rings drawn by our scheme �9.11�
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coincide with those constructed by Fishburn, Hwang and Lee �1986�.�
The smallest instance where the bounds are different is �k� c� � �6�6�.
Here Figure 9.5 shows �the period of� the ring suggested by Fishburn,
Hwang and Lee �1986� whereas Figure 9.6 presents the ring resulting
from our arrangement.

9.9 Deriving Upper Bounds

We now describe the way in which the scheme �9.11� was discovered.
Unfortunately, the paper �Fishburn, Hwang and Lee, 1986� is lacking
any information of this kind.

Again, let k and c be as in �9.7�.

Definition 9.9.1 A �k� k� c�-admissible ring will be called a �k� k� c�-dense
ring if the �k� k�-ball neighborhood of every white ball contains precisely c
more white balls than black balls.

The intuition suggests that density decreases the ratio of white and
black balls and good upper bounds on R�k� k� c� might be obtained this
way. The definition of density as given above is compatible with the
concept of �k� k� c�-admissibility. However, for our purposes it will be
reasonable to introduce the dual definition:

Definition 9.9.2 Let q :� k� c�2. A ring is �k� k� c�-dense if for each white
ball B there are precisely q black balls C1� � � � �Cq such that B is contained
in the �k� k�-ball neighborhood of each Ci (1� i� q) and B is not contained
in the �k� k�-ball neighborhood of any other black ball.

Note that q � 2p� 1 where p is as in �9.12�.
Our approach was, for certain values of k and c, to list all different

dense rings. �By “different” rings we mean such rings that cannot be
transformed into each other by a cyclic shift.� We need some more
definitions in order to describe how this task was accomplished.

Definition 9.9.3 Each finite or infinite sequence of black and white balls
(b’s and w’s) beginning with a black ball will be called ball sequence.

Definition 9.9.4 For a ball sequence, we define its gap sequence as the
sequence of lengths of white ball runs between consecutive black balls.
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For example, the gap sequence of �b�w�w�w� b� b�w� b� � � �� is �3�0�1� � � ��.
Obviously, there is a one-to-one correspondence between ball sequences
and gap sequences.

Definition 9.9.5 A sequence �ai�i�N is periodic if there is a positive integer
P such that ai � ai�P for each i.

Definition 9.9.6 A sequence �ai�i�N is eventually periodic if there are in-
tegers P �� 0 and T such that ai � ai�P for each i  T.

Definition 9.9.7 Two sequences �ai�i�N and �bi�i�N are similar, a � b, if
there are integers S�T such that ai � bi�S for each i  T.

Hence, two eventually periodic sequences are similar if their periods
have the same pattern. Clearly, � is an equivalence relation.

Definition 9.9.8 The �-equivalence classes of eventually periodic gap se-
quences will be called clusters.

Further we note that each ball ring �when unfolded infinitely many
times� gives rise to a periodic �and, a fortiori, eventually periodic� ball
sequence and, conversely, each eventually periodic ball sequence gives
rise to a ball ring by folding its period.

Let �gj� j�0 be a gap sequence and let �Bi�i�0 be the corresponding
ball sequence. Let �bj� j�0 be the sequence of black ball indices,

b0 � 0 and bj � bj�1 � gj�1 � 1 for j � 0� �9.14�

As before, let q :� k� c�2.

Definition 9.9.9 We will say that �gj� j�0 is �k� c�-tight if g0�g1� � � � �gq�2

are arbitrary non-negative integers less than or equal to 2k � q and for
each j  q� 1, gj is the least non-negative integer such that N0�k�Bbj�q�1

�
and Nk�0�Bbj�1

� have no white ball in common.

�Recall �9.14�. In the one case gj�q�1 � � � � � gj�1 � 0, we must specify
also that N0�k�Bbj�q�1

� contains at least one white ball.�
For each tight sequence this gives a recurrence relation of order q�1

gj � f �gj�q�gj�q�1� � � � �gj�1� �9.15�
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Figure 9.7: A part of the digraph G for �k� c� � �4�2�.

with initial values g0� � � � �gq�2. Since also for each j  q � 1 we have
gj � 2k � q, each tight sequence is bounded. The last two properties
together imply that each tight sequence is eventually periodic. Folding
the period, we get a �k� k� c�-dense ring. Conversely, each �k� k� c�-dense
ring may be unfolded to a �k� c�-tight sequence.

Thus the problem of construction of all dense rings reduces to exam-
ination of all clusters of tight sequences. The recurrence �9.15� induces
the mapping

F : �x0�x1� � � � �xq�2� �� �x1�x2� � � � �xq�2� f �x0� � � � �xq�2��

between �q� 1�-tuples over f0� � � � �2k� qg. We may visualize F as the
directed graph G � �V�E�, where V � f0� � � � �2k� qgq�1 and �x�F�x�� � E
for each x � V . Clusters of tight sequences correspond to connected
components of G, which are easily found algorithmically.

We invite the reader to try this method on the particular case k �
4� c � 2 and q � 3. A part of the digraph G is drawn in Figure 9.7. �The
entire digraph has �2k� q � 1�q�1 � 36 vertices.� In the picture we see
two clusters, each giving rise to one �4,4,2�-dense ring: The left-hand
cluster leads to the dense ring with white ball runs 0�2�3�1�1�3�2 which
is just the ring with proportionality 17/12 from Figure 1 in �Fishburn,
Hwang and Lee, 1986�. The right-hand cluster implies the �4,4,2�-dense
ring with two white balls and one black ball, which is not optimal.
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Thus, for given k and c subject to �9.7�, we may construct all �k� k� c�-
dense rings and single out the optimal one�s�. In the course of exper-
imentation, we proceeded by fixing p � 1�2�3� � � � �q � 3�5�7� � � �� and
finally we derived the pattern �9.11� which covers all optimal dense
rings known to us. It is very likely that this general scheme gives the
optimal ball proportionality amongst the dense rings and subsequently
we may conjecture that U�k� c� is the value of R�k� k� c� when k and c�2
have different parities.

In our work, we have treated the open part of the symmetric case
l � r � k because this subproblem was studied in great detail in �Fish-
burn, Hwang and Lee, 1986�. Nevertheless, our approach may be used
to derive upper bounds for any l� r and c.

9.10 Methodological Aspects

From Section 0.1 we recall that the creativity spiral is marked by an in-
terleaved sharpening of results �theorems� and methods �algorithms�.
The research described in this chapter provides an example of ascend-
ing the creativity spiral in several iterations. In each iteration, the in-
sight gained from computer-aided experiments was inevitable for form-
ing concepts and proving rigorous theorems.

We based our spiral when we developed the bracelet listing algo-
rithm. Using this method, we found first few examples of bracelets
that revealed that the bounds �9.8�–�9.10� are not tight. A careful ex-
amination of these initial results led us to the concept of dense rings
�cf. Definition 9.9.1�. To generate the dense rings was the next algorith-
mic challenge and once we mastered this problem, we could get our-
selves a load of them. Once more we had results to analyze, and finally
the pattern �9.11� popped up, giving us hints how to prove a rigorous
theorem which simplifies and improves the proportionality bounds.
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In Section 6.2 we paid much attention to the description of orderly
listing methods. In this chapter and in Chapter 11 we will see how
restricted orderly generation can be used to look for interesting objects
in finite geometry and in coding theory.

In the present chapter we focus on configurations in finite projective
planes. In particular, we will be dealing with the Desarguesian planes
over the field GF�q�, i.e., with the planes PG�2� q�. We will also call
them “classical planes”.

The symbolics and also some statements are introduced in Section
10.1. However, the presentation of all definitions and preparatory theo-
rems would be far beyond our possibilities, hence the basic knowledge
of projective geometry will be assumed. In Section 10.2 we establish a
link between configurations in finite planes and the “symmetry classes
of mappings” paradigm �Chapter 2�. This link allows us to apply the
theory of Chapter 6. Introductory remarks on this particular applica-
tion of constructive methods are in Section 10.3. Then in Sections 10.4
and 10.5 we use the orderly methods to compile catalogs of semiovals
and arcs, respectively. After describing how the concrete generation
task was accomplished, we analyze the outputs �catalogs� and evalu-
ate their geometric meaning.

10.1 Definitions and Facts

Throughout this chapter, let GF�q� denote the finite field with q ele-
ments, q being a prime power, and let PG�2� q� be the projective plane
over GF�q�.

We regret that a detailed exposition on classical projective planes
is beyond the possibilities of our thesis. For this purpose we can rec-
ommend �Hughes, Piper, 1982�. For an introduction on finite classical
planes we refer to �Hirschfeld, 1979�, or to Chapters 19, 23 and 26 in
�van Lint, Wilson, 1992�.

10.1.1 Finite Fields

Definition 10.1.1 Let GF�q�� be the cyclic multiplicative group of non-zero
elements of GF�q�. We say that t is a square in GF�q� if there exists
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u � GF�q� such that t � u2 holds in GF�q�. Otherwise we say that t is
non-square in GF�q�.

We will write 1�y instead of y�1 and x�y instead of xy�1 for x �
GF�q�, y � GF�q��.

Fact 10.1.2 Let q be an odd prime power. Then �1 is a square in GF�q� if
and only if q � 4r�1, r �N�. Consequence: Let t be square in GF�q�, q an
odd prime power. Then �t is a square in GF�q� if and only if q � 4r� 1,
r � N�.

Proof. �Biggs, 1989�, p. 365. �

Fact 10.1.3 Let q be an odd prime power. Then 2 is a square in GF�q� if
and only if q � 8r� 1, r � N�. Consequence: If q � 8r� 1 or q � 8r� 3,
r � N�, q a prime power, then �2 is non-square in GF�q�.

Proof. �Lidl, Niederreiter, 1986�, p. 182. �

10.1.2 Finite Field Planes

Definition 10.1.4 Let S�2� q� denote the point set of PG�2� q�.

Definition 10.1.5 Let F � F�x�y� z� be a trivariate homogeneous polynomial
over GF�q�. Then F � V�F� will denote the variety of F, i.e., the set of
points from PG�2� q� on which F vanishes,

V�F� � fP � S�2� q� j F�P� � 0g�
If F is linear then F is a line having q� 1 points.

Definition 10.1.6 If S is any set of two or more collinear points then l�S�
will denote the line containing S. For any two different points P �� Q, the
notation l�PQ� will serve as shorthand for l�fP�Qg�.

If the polynomial F in Definition 10.1.5 is quadratic then F is a conic.
The conic can be either singular �in which case it is a point, a repeated
line, or two lines� or non-singular, in which case it consists of q � 1
points, none three of them being collinear.
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Fact 10.1.7 Let K � GF�q� and let F � K�x0�x1�x2�, F � ∑0�i� j�2 ai jxix j. As
before, let F � V�F�. Then F is singular if and only if δ � 0 where

δ � 4a00a11a22 � a01a02a12 � a00a2
12 � a11a2

02 � a22a2
01�

Proof. �Hirschfeld, 1979�, p. 144. �

Definition 10.1.8 Let F be a non-singular conic in PG�2� q�, q odd. The
line l is called an external line, a unisecant or a bisecant of F according
as it has 0, 1 or 2 common points with F .

Definition 10.1.9 Let F be a non-singular conic in PG�2� q�, q odd, and
let P be a point in PG�2� q�, P �� F . The point P is called external or in-
ternal to the conic F according as it lies on two or none of the unisecants
(tangents) of F .

Fact 10.1.10 Let F be a non-singular conic in PG�2� q�, q odd, let P be
a point in PG�2� q�, and let l be the polar of P with respect to F . Then
l is the tangent to F at P, an external line, or a bisecant according as P
is a point of F , a point internal to F , or a point external to F .

Proof. �Hirschfeld, 1979�, p. 170. �

As a special case we have:

Fact 10.1.11 Let F � V�x2 � yz� in PG�2� q�, q odd. The point �x0�y0� z0�
is on F , external to F , or internal to F , according as x2

0 � y0z0 is zero,
a non-zero square or non-square in GF�q�.

Proof. �Hirschfeld, 1979�, p. 171. �

Definition 10.1.12 Let F and G be two non-singular conics. If each point
of F nG is internal to the conic G then we say that the conic F is internal
to the conic G.

Definition 10.1.13 Let F and G be two non-singular conics. If F is inter-
nal to G and G is internal to F then we say that F and G are mutually
internal.
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10.2 Group Action Setting

Let GL�3� q� denote the group of all 3� 3 non-singular matrices over
GF�q� and let Z�GF�3� q�� be its center, which is the group of all GF�q��-
scalar multiples of the 3� 3 identity matrix.

The group of all projectivities of PG�2� q� is denoted by PGL�3� q�
�projective general linear group�. We have

PGL�3� q� � GL�3� q��Z�GL�3� q��� �10.1�

Hence, to each projectivity Π � PGL�3� q� there correspond q�1 matrices
from GL�3� q�. We can take any of them to represent Π.

Definition 10.2.1 Let VT denote the transpose of the vector V and let Π �
PGL�3� q� be a projectivity represented by the matrix

M�Π� �

�
� t00 t01 t02

t10 t11 t12

t20 t21 t22


A �

Let X be a point in PG�2� q�. The projectivity Π acts on points by matrix
multiplication:

Π : X �� �M�Π� �XT�T � �10.2�

Remark. It may be of some use to notice how the action of Π on
varieties follows from the action on points:

Π : V�F� ��V�F��

where F ��x�y� z� � F�x��y�� z�� is the polynomial obtained from F via the
substitution fx �� x��y �� y�� z �� z�g defined by�

� x�

y�

z�


A � �M�Π���1 �

�
� x

y
z


A �

Fact 10.2.2 The mapping (10.2) is a group action.

Definition 10.2.3 Each bijection C : PG�2� q�� PG�2� q� that preserves col-
linearity (i.e., C maps lines to lines) is called a collineation of the plane.
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Definition 10.2.4 The group of all collineations of PG�2� q� is called the
collineation group of PG�2� q�.

An automorphism σ of GF�q� acts on points of PG�2� q� by σ�x�y� z�
� �σx�σy�σz�.

Theorem 10.2.5 (Fundamental Theorem of Projective Geometry) Let K
be a field. Each collineation of the projective plane over K is a composition
of a projectivity and an automorphism of K.

Proof. �Hirschfeld, 1979�, p. 30. �

The collineation group of PG�2� q� is denoted by PΓL�3� q� �projective
semilinear group�.

Let q � pr where p is a prime. Since non-trivial automorphisms of
GF�q� exist exactly if r � 1, we have PGL�3� p� � PΓL�3� p� for r � 1. In
general, PGL�3� pr� is a normal subgroup of PΓL�3� pr�.

The geometric properties of objects in PG�2� q� are mostly defined
using line incidence �cf. Definitions 10.4.1 and 10.5.1�. Hence, these
properties are invariant under collineation and it makes good sense to
study the objects “up to collineation”.

In particular, if the objects that we wish to study are simply point
sets in PG�2� q� then we can use the correspondence �6.1� to define
the geometric problems in the frame of the “symmetry classes of map-
pings” paradigm.

Which subgroup of PΓL�3� q� we take for the acting group depends
on the particular motivation. In geometric studies we typically choose
PGL�3� q�, since the collineations arising from field automorphisms usu-
ally do not have a good geometric meaning. If, however, we do not
care about how objects get screwed by field automorphisms then we
may take the entire PΓL�3� q�. The former approach (reasoning “up to
projectivity”) may be considered a more geometrical one while the latter
(reasoning “up to collineation” = “up to automorphism”) would be more
combinatorial, viewing PG�2� q� merely as a design and somewhat hid-
ing its geometric origin.

In this chapter we work “up to projectivity”, i.e., we construct rep-
resentatives of PGL�3� q�-orbits.
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total number
plane of configurations

PG�2�5� 7,152
PG�2�7� 25,598,921,348

Table 10.1: Number of configurations in some small planes.

Definition 10.2.6 Recall that S�2� q� means the point set of PG�2� q�. Let
G be the projective group PGL�3� q� and let f � f0�1gS�2�q�. The orbit G� f �
is called a configuration in PG�2� q�.

Fact 10.2.7 The order of PGL�3� q� is

jPGL�3� q�j � �q3 � 1��q2 � 1�q3�

Proof. Each matrix from GL�3� q� can be thought of as an ordered triple
of non-zero rows �r1� r2� r3� such that ri does not belong to the subspace
of GF�q�3 spanned by r1� � � � � ri�1. Hence, the order of GL�3� q� is equal to
�q3 � 1��q3 � q��q3 � q2�. The order of PGL�3� q� is then jGL�3� q�j��q� 1�
by �10.1�. �

10.3 Configuration Listing

In the last section we have explained that, in geometric reasoning on
subsets of PG�2� q�, it is enough to work with configurations rather than
with the sets themselves. A single configuration may comprise as many
as jPGL�3� q�j subsets of PG�2� q�. Hence, it follows from Fact 10.2.7
that a considerable reduction of the amount of data is possible even
for small values of q.

Moreover, since we succeeded to define geometric configurations in
terms of the symmetry classes of mappings, we can use the theory of
Chapter 6 to list the configurations. The total number of configurations
in PG�2� q� can be evaluated by unweighted Pólya’s Theorem 2.1.25 us-
ing the cycle index of PGL�3� q�’s action on S�2� q�.

Table 10.1 shows that the exhaustive �unrestricted� listing of config-
urations is possible exactly if q � 5.
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Fortunately, in geometric applications only configurations satisfying
certain given predicate P are of interest. Hence, we can use restricted
generation �Section 6.2.2� which further reduces the number of data to
be processed.

Furthermore, it is usual that we know in advance some facts about
the number of points in the configurations that are to be listed, see for
example Facts 10.4.2 and 10.5.4. Since orderly generation proceeds by
content �i.e., by the number of points in the configurations�, we have
an easy stopping condition.

The ideas from last two paragraphs make it possible to list config-
urations also in planes of order q � 5. In Sections 10.4 and 10.5 we
document this by showing how restricted orderly generation was used
to obtain new examples of two geometric phenomena, namely semio-
vals �q � 7� and arcs �q � 16�. Then in Chapter 11 we use the same
approach to list certain optimal ternary linear codes. The details of the
listing task are discussed in each of the three cases separately.

10.4 Semiovals

Definition 10.4.1 Let T be a set of points of PG�2� q�. We say that T is
a semioval if and only if for each point P � T there is a unique line l
of PG�2� q� such that T � l � fPg. This line l is called the tangent to T
at P.

Thas �1974� proved the following lower and upper bounds on the size
of semiovals in the plane of order q:

Fact 10.4.2 If T is a semioval in the finite projective plane of order q, then

q � 1 � jTj � q
p

q� 1�

The bounds are achieved when T is an oval or an unital, respectively.
M. de Finis wrote in �1987�: “The existence of semiovals whose

sizes are neither maximum nor minimum is still an open problem.”
Blokhuis �1991� gave two constructions of distinguished semiovals �sat-
isfying certain additional property� with sizes 2�q� 1� and 3�2 � �q� 1�,
respectively.
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In our work we could find much more examples of semiovals in
PG�2� q�. Table 10.2 reveals that semiovals are not at all rare phenom-
ena. Rather, they include a broad kaleidoscope of shapes, probably an
interesting subject for a classification theory.

10.4.1 Constructions

Following Definition 10.4.1, if χT � f0�1gS�2�q� is a characteristic function
of a set T which is a semioval then this function satisfies the predicate
P�χT�:�“T has exactly one tangent at each point.”

This predicate P, however, is not consistent with augmentation �Def-
inition 6.2.10� and so it cannot be used to restrict the orderly genera-
tion. Instead, we have to look for a weaker predicate P� that is con-
sistent with augmentation and then follow the idea from the end of
Section 6.2.2. In our case we can use the predicate P��χT�:�“T has at
least one tangent at each point.”

As we already know, in planes of order q � 5 we can easily list all
configurations, hence also the determination of all semiovals is easy.
In case q � 7, listing semiovals by restricted orderly generation using
predicate P� is still a manageable task whereas the order q � 8 lies be-
yond our computational possibilities. In Table 10.2 we summarize the
results for planes of order less or equal to 7.

10.4.2 Analysis of Results

Definition 10.4.3 We say that a semioval T is regular if it is of the type
�0�1�n�, i.e., if each line of the plane intersects T in 0, 1 or n points for
some n � N.

It was conjectured by Blokhuis and Szőnyi �1992� that the only regular
semiovals in the Desarguesian plane are the ovals �n � 2� and the uni-
tals �n �

p
q � 1�. We can support this conjecture with the observation

that the only regular semiovals in PG�2� q�, q� 7, are ovals and unitals.
Also, the low appearance of semiovals of small size attracts one’s

eyes. It follows from the results of Blokhuis �1991� that semiovals of
size q � 2 can exist in planes of order 4 and 7 only. A subclass of
semiovals of size q � 4 is discussed in Section 10.4.3.
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q 2 3 4 5 7
k
3 1 - - - -
4 - 1 - - -
5 - 0 1 - -
6 - 1 1 1 -
7 - - 0 0 -
8 - - 1 1 1
9 - - 1 2 1
10 - - - 3 0
11 - - - 2 0
12 - - - 1 10
13 - - - - 21
14 - - - - 69
15 - - - - 118
16 - - - - 82
17 - - - - 21
18 - - - - 7
19 - - - - 1

Table 10.2: Number of k-point semiovals in PG�2� q� up to projectivity.
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Each semioval on our list was tested for diverse patterns to appear
in it �few intersection numbers, large collinear sets, large arcs, etc.� In
particular, for any semioval that could be completely decomposed into
a union of several ovals, the permutation group facilities of Cayley �the
new version known as Magma� were employed to find all projectivities
that would transform one of the ovals into the canonical form V�x2 �
yz�. The analytic representation of the transformed semioval was then
studied to possibly extract the desired relative position of its ovals in
general.

This approach resulted in an intimate interplay between the con-
structive combinatorics �permutation groups� on one side and the al-
gebraic geometry over finite fields on the other side. Several general
constructions obtained in this way can be found in Section 10.4.4. One
of them led to the rediscovery of the construction of a non-classical
unital that was first discovered by Hirschfeld and Szőnyi �1991�.

10.4.3 Semiovals and Regular Arrangements

Blokhuis �1991� gives the complete characterization of semiovals con-
sisting of q� a points in Desarguesian plane of order q, with one addi-
tional condition imposed, namely that through each point of the semio-
val there is exactly one a� 1-secant. He proves that each such semioval
is a union of two or three large sets of collinear points.

In our work, we have concentrated on the possibility of obtaining
semiovals as unions of several ovals. A couple of theorems in this di-
rection can be found in Section 10.4.4. Before coming to that, we note
another interesting possibility to obtain semiovals, namely as realiza-
tions of regular arrangements.

Definition 10.4.4 An n3-arrangement A is a pair A � �P �B� where P is
a set of n points, and B is a set of n point blocks such that each block
contains exactly three points from P and each point is contained in exactly
three blocks from B. Moreover, any two blocks intersect in at most one
point.

Hence, n3-arrangements are special instances of �n�3�3�-designs.
Remark. Instead of n3-arrangements, one usually speaks of n3-config-

urations. However, in this chapter we use the word “configuration” to
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mean something else, so we had to pick a different name in order to
avoid confusion.

Definition 10.4.5 As before, let S�2� q� be the point set of PG�2� q�. A
realization of the arrangement A � �P �B� in the plane PG�2� q� is an in-
jective map R : P � S�2� q� such that for any block B0 � B, B0 � fX�Y�Zg,
the points R�X�, R�Y� and R�Z� are collinear.

Several algorithms for deciding realizability of a given arrangement in
a given geometric space are developed in the book by Bokowski and
Sturmfels �1989�.

When moving from the arrangement �P �B� to its realization, we
may loose some information. For example, if jP j� n� q� 1 and P1� � � � �
Pn are n collinear points in PG�2� q� then any bijection between P and
fP1� � � � �Png is a realization of �P �B�. Hence, it makes sense to distin-
guish some “nice” realizations.

Definition 10.4.6 We say that a realization R : P � S�2� q� is faithful if
the following holds for any three points P1�P2�P3 � R�P �: If P1, P2 and P3

are collinear then fR�1�P1��R�1�P2��R�1�P3�g � B.

Very informally, faithful realizations are those which do not introduce
any “additional collinearities” �apart from those collinearities that are
present in the arrangement�. The next proposition shows that faithful
realizations are of some interest to us.

Proposition 10.4.7 Let A � �P �B� be an n3-arrangement. If n � q� 4 and
R�A� is a faithful realization of A in PG�2� q� then R�P � is a semioval
in PG�2� q�.

Proof. Let S� R�P � and let S0 be an arbitrary point from S. Let B1�B2�B3

be those blocks from B which contain R�1�S0�. Let Q � R�B1��R�B2��
R�B3� and let S� � S nQ. Hence, jS�j � n� 7. Consider the q � 1 lines
of PG�2� q� going through S0. Three of them are l�R�B1��, l�R�B2�� and
l�R�B3��. There are n� 7 � q� 3 other lines connecting S0 with points
from S� since, for any S�1�S

�
2 � S�, S�

1 �� S�
2 implies l�S0S�

1� �� l�S0S�
2�. Hence,

there is exactly one unisecant of S at S0. Since S0 was an arbitrary
point, S is a semioval. �
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To have some illustration, we will discuss faithful realizations of
several n3-arrangements.

An n3-arrangement exists only for n  7. The only 73-arrangement
up to isomorphism is the Fano plane �if we take its lines as the blocks�.
This arrangement can be realized only in planes of even order, hence
it does not lead to a semioval in PG�2�3�.

The 83-Arrangement

Also for n � 8, there is �up to isomorphism� just one 83-arrangement,
see �Vajda, 1967�, p. 69.

Proposition 10.4.8 The 83-arrangement can be faithfully realized in
PG�2�4�.

Proof. Take three non-concurrent lines l1, l2 and l3. Each li contains two
points where it intersects the other two lines, and three more points
which we shall call inner points. Let S bet a point set composed of
three inner points of l1, three inner points of l2 and two inner points of
l3. We check easily that S is a faithful realization of an 83-arrangement.

�

Remark. This is in fact the only semioval in a plane of an even order
that we meet. Everywhere else, we consider only semiovals in planes
of odd order. The main reason is that certain parts of the theory of
conics are different for planes of odd and even order.

The 93-Arrangements

There are three essentially different 93-arrangements, see �Vajda, 1967�,
p. 69. Among them, the prominent one is the Pappus arrangement so
we will deal with it first.

Proposition 10.4.9 The Pappus 93-arrangement cannot be realized as a
semioval in PG�2�5�.

Proof. Let the nine points forming a realization of the Pappus arrange-
ment consist of two collinear triples P1, P2, P3 and Q1, Q2, Q3 together
with the three points R12, R13, R23 lying on the Pappus line. We will
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label the points so that R12 � l�P1Q2� � l�P2Q1�, R13 � l�P1Q3� � l�P3Q1�,
R23 � l�P2Q3� � l�P3Q2�.

W.l.o.g. we may assume that P1 � �1�0�0�, P2 � �0�1�0�, Q1 � �0�0�1�,
Q2 � �1�1�1�. Then P3 � �1� a�0� for some a � GF�5�� and Q3 � �b� b�1�
for some b � GF�5��. Also, a �� 1 and b �� 1 for otherwise the realization
would not be faithful. We compute R12 � �0�1�1�, R13 � �b� ab� a�, R23 �
�b� ab� a � 1� 1�. Apart from the nine collinear triples that are always
present in any Pappus configuration, some additional collinearities may
arise in non-faithful realizations. Our realizations are parameterized by
two parameters a and b. The following table lists the conditions under
which certain triples in a particular realization happen to be collinear:

triple collinearity condition
P1, Q1, R23 a � 1��1� b�
P2, Q2, R13 a � b
P3, Q3, R12 a � �b� 1��b

Consider the three values 1��1� b�� b� �b� 1��b. Recalling that b ��
f0�1g it is easy to prove that (i) all of them are pairwise different, (ii)
none of them is 0, (iii) none of them is 1.

This means that for any fixed b � GF�5� n f0�1g,

f 1��1� b�� b� �b� 1��b g � GF�5� n f0�1g�

Hence, for any admissible choice of a and b, exactly one of the triples
listed in the table will be collinear, additionally to the nine default
collinearities. Two unisecants exist at each point which belongs to this
additional collinear triple. Hence the Pappus arrangement cannot be
realized as a semioval in PG�2�5�. �

Proposition 10.4.10 The other two 93-arrangements can be faithfully real-
ized in PG�2�5�.

Proof. For the sake of brevity, we show only the easier case and we
will omit the other one.

Let C � f1�2�3g � GF�5� and put

S � f�0�1� c� j c � Cg � f�c�0�1� j c �Cg � f�1� c�0� j c �Cg�
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The points �x�0�1�, �1�y�0� and �0�1� z� are collinear if and only if xyz�
1 � 0. For the points belonging to S, this is only possible when fx�y� zg
� f1�2�2g or fx�y� zg � f1�3�3g �as multisets�. From this we easily de-
duce that each point from S belongs to exactly three collinear triples
and that S is a faithful realization of a 93-arrangement. �

10.4.4 Semiovals Built from Conics

Theorem 10.4.11 (General construction of semiovals from conics.) Let
�Fi�1�i�m be a family of non-singular conics. Denote S � �1�i�mFi. More-
over, let the following two conditions be fulfilled:

(i) For any subset I � f1� ����mg and point P such that P � �i�IFi, all
conics Fi with i � I have the same tangent at P.

(ii) For any 1 � i� j � m, i �� j, Fi is internal to F j.

Then S is a semioval.

Proof. (i): Existence of tangents. Let S0 be an arbitrary point of S. If
S0 belongs to a unique conic F then the tangent t to F at S0 becomes
also the tangent to S at S0 since F � is internal to F for any F � �� F ,
hence t � F � � /0. If S0 lies in the intersection �i�IFi then the common
tangent t� to all Fi at S0 is also the tangent to S at S0 since t� � F j � /0
for each j �� I.

(ii): Uniqueness of tangents at their respective points of contact. Let
t, t� be two different tangents at S0 and w.l.o.g. let S0 � F1. Then at least
one of t, t� intersects F1 in two points. Since F1 � S, this bisecant cannot
be a tangent to S, a contradiction. �

Planes of Order q � 2r � 1

Proposition 10.4.12 Let q be an odd prime power. In PG�2� q�, let F �
V�x2� yz� and G � V��a� 1�x2 � yz� where a � GF�q� such that a is non-
square and a � 1 is square. Then F and G are non-singular conics and
F �G is a semioval in PG�2� q� consisting of 2q points.
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Proof. Since a is non-square, a �� 0. Clearly, there are exactly two com-
mon points of F and G, namely �0�1�0� and �0�0�1�. At these points
have F and G common tangents �namely, V�z� and V�y��. Both F
and G are non-singular since δ � 1� a for the conic G and, since a is
non-square, 1� a �� 0.

In order to show that G is internal to F it is enough to notice that
�a� 1�x2 � yz � 0 implies ax2 � x2 � yz. Since a is non-square, ax2 must
be non-square whenever non-zero.

Conversely, to show that F is internal to G we consider the projec-
tivity Π given by the matrix

M�Π� �

�
� b 0 0

0 �1 0
0 0 1


A

where b � GF�q� such that a� 1 � b2. Π maps G to V�x2 � yz� and F
to F � �V�1��a� 1�x2 � yz�. Now 1��a� 1�x2 � yz � 0 implies a � �x�b�2 �
x2 � yz. Since a is non-square, a � �x�b�2 must be non-square whenever
non-zero, which means that F � is internal to V�x2 � yz�. Hence F is
internal to G. �

Proposition 10.4.13 Let q be an odd prime power. In PG�2� q�, let F �
V�x2 � yz�, G � V�ax2 � yz� and H � V�b1x2 � b2y2 � b2z2 � yz� where
a� b1� b2 � GF�q�, a �� 1, a is a square, a � 1 non-square and

b1 � 2b2 � �1
b1 � 2ab2 � a�

Then F , G and H are non-singular conics and F � G �H is a semioval
in PG�2� q� consisting of 3�q� 1� points.

Proof. (i) Common points and tangents. We note that a �� 0. Let t � GF�q��

such that a � t2. Since a �� 1, t �� �1. Each pair of conics has two
common points with common tangents at these points:
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conics common point common point
common tangent common tangent

F and G �0�1�0� �0�0�1�
V�z� V�y�

F and H �1�1�1� �1��1��1�
V�2x� y� z� V�2x� y � z�

G and H �1� t��t� �1��t� t�
V�2ax� ty� tz� V�2ax� ty� tz�

(ii) Non-singularity.

conic value of δ �Fact 10.1.7�
F �1
G �a
H b1�4b2

2 � 1�

We only have to clarify that b1�4b2
2 � 1� �� 0. First of all, b1 �� 0, for

b1 � 0 would imply 2b2 � �1 and 2ab2 � a, which is impossible due
to a �� 0. Next, 4b2

2 � 1 � 0 would mean b2 � �1�2. Both eventuali-
ties would imply b1 � 0 and hence lead to a contradiction. Therefore,
b1�4b2

2 � 1� �� 0.
(iii) F , G, H pairwise mutually internal. We first show that F and G

are mutually internal. To this end, we notice that ax2 � yz � 0 implies
�a � 1�x2 � x2 � yz and that a � 1 is non-square, making �a � 1�x2 non-
square if non-zero. Hence G is internal to F . In order to show that F
is internal to G we write

F � f�0�1�0�g � f�s� s2�1� j s � GF�q�g�

�0�1�0� lies in the intersection F �G so it cannot be an external point.
The polar of �s� s2�1� with respect to G has the equation 2asx� y� s2z �
0. Let us examine the possible intersections of this line with the conic
G. This leads us to the system

ax2 � yz � 0
2asx � y � s2z � 0

Let �x̄� ȳ� z̄� be a solution of this system. If z̄ � 0 then x̄ � 0 and ȳ � 0
which does not correspond to a point in PG�2� q�. If z̄ � 1 then we
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eliminate ȳ from the first equation and substitute it in the second, ob-
taining

ax̄2 � 2asx̄� s2 � 0�

Viewing this as a quadratic equation in x̄, we compute its discriminant
to be

4a2s2 � 4as2 � �2s�2a�a � 1��

The value s � 0 leads to the point �0�0�1� � F �G. If s �� 0, the whole
expression is non-square since a is square while a � 1 is non-square.
Hence none of the points �s� s2�1� is external to G. Hence F is internal
to G. This concludes the proof that F and G are mutually internal.

In order to prove that also the remaining two pairs of conics are
mutually internal, we notice the existence of the helpful projectivity Π
with the matrix

M�Π� �

�
� 0 1 1

2t �1 1
�2t �1 1


A �

Using a computer algebra system it is straightforward to verify that
this projectivity performs the cyclic shift of the three conics F , G and
H . More precisely, Π�F � � H , Π�H � � G and Π�G� �F . Since F and G
are mutually internal, any two conics out of F , G, H must be mutually
internal, too. �

Remark. Due to many conditions imposed on values a, b1 and b2, the
very existence of the configuration may not be obvious. However, for
q � 5 it is always possible to find an a � GF�q� such that a �� 1, a is
square and a�1 non-square. The determinant of the 2�2 linear system
for b1 and b2 is then equal to 2�t2 � 1� � 2�a� 1�, and hence for each
such a there do exist �uniquely determined� values for parameters b1

and b2.

Planes of Order q � 4r � 1

Proposition 10.4.14 Let q be a prime power with q � 1 �mod 4�. Let
A � fa1� ���� amg be a subset of GF�q� such that ai �� 0 for 1 � i � m and
a2

i � a2
j is non-square for each 1 � i� j � m, i �� j. In PG�2� q�, let Fi �

V��aix�2 � yz�. Then each Fi is a non-singular conic and S � �1�i�mFi is
a semioval in PG�2� q�. S consists of m�q� 1� � 2 points.
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q m A
5 2 f1�2g
9 2 fξ�ξ2g �ξ prim. el. of GF�9�, ξ2 � ξ � 1�
13 3 f1�3�4g
17 3 f1�2�7g
25 3 fξ�ξ2�ξ6g �ξ prim. el. of GF�25�, ξ2 � ξ � 3�
29 4 f1�3�7�12g

Table 10.3: Examples of sets A applicable in Proposition 10.4.14.

Proof. Let Fi � �aix�2�yz. The value of δ from Fact 10.1.7 is a2
i �� 0, hence

Fi is non-singular. For 1 � i � j � m, the conics Fi and F j have exactly
two common points, namely �0�0�1� and �0�1�0�. At both points have
Fi and F j common tangents �V�y� and V�z�, respectively�. Let Π be
the projectivity given by the matrix

M�Π� �

�
� ai 0 0

0 1 0
0 0 1


A �

Π maps Fi to V�x2 � yz� and F j to V��aj�ai�2x2 � yz�. Since a2
i � a2

j is
non-square, also �a2

i � a2
j��a2

i is non-square and hence ���aj�ai�2 � 1�x̄2

is non-square for any x̄ � GF�q��. But ���a j�ai�2 � 1�x̄2 is the value of
the polynomial x2 � yz on a point �x̄� ȳ� z̄� � V���aj�ai�2x2 � yz�. Hence,
F j is internal to Fi. Similarly we can show that Fi is internal to F j.
Hence, F j and Fi are mutually internal for any i �� j, fi� jg � f1� ����mg.
Hence, S is a semioval. �

Some maximal index sets A for initial values of q are shown in Table
10.3.

Proposition 10.4.15 Let q be a prime power with q � 1 �mod 4�. Let
A � fa1� ���� amg be a subset of GF�q� such that ai � a j is non-square for
each 1 � i� j � m, i �� j. In PG�2� q�, let Fi � V�x2� aiy2 � yz�. Then each
Fi is a non-singular conic and S � �1�i�mFi is a semioval in PG�2� q�. S
consists of mq � 1 points.

Proof. Let Fi � x2 � aiy2 � yz. The value of δ from Fact 10.1.7 is equal
to 1, hence Fi is non-singular. For 1 � i � j � m, the conics Fi and F j
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q m A
5 2 f0�2g
9 3 f0�ξ�2ξg �ξ prim. el. of GF�9�, ξ2 � ξ � 1�
13 3 f0�2�7g
17 3 f0�3�6g
25 5 f0�ξ�2ξ�3ξ�4ξg �ξ prim. el. of GF�25�, ξ2 � ξ � 3�
29 4 f0�2�10�12g

Table 10.4: Examples of sets A applicable in Proposition 10.4.15.

have exactly one common point, namely �0�0�1�. At this point have Fi

and F j the common tangent V�y�. Let Π be the projectivity given by
the matrix

M�Π� �

�
� 1 0 0

0 1 0
0 ai 1


A �

Π maps Fi to V�x2� yz� and F j to V�x2 � �ai � a j�y2 � yz�. Since aj � ai

is non-square, also �aj � ai�ȳ2 is non-square for any ȳ � GF�q��. But
�a j � ai�ȳ2 is the value of the polynomial x2 � yz on a point �x̄� ȳ� z̄� �
V�x2 � �ai � a j�y2 � yz�. Hence, Fj is internal to Fi. Similarly we can
show that Fi is internal to F j. Hence, Fj and Fi are mutually internal
for any i �� j, fi� jg � f1� ����mg. Hence S is a semioval. �

We display some maximal index sets A for initial values of q in Table
10.4. In this table, the rows corresponding to the order q � p2 deserve
special interest. We will need one technical lemma.

Lemma 10.4.16 Let p be an odd prime, q � p2 and let ξ be a primitive
element of GF�q�. Consider GF�p� as a subfield of GF�q� with GF�p� �
GF�q� � f0�1� � � � � p� 1g. For each k � GF�p��, kξ is a non-square element
of GF�q�.

Proof. Let α � ξp�1. Then αp�1 � ξp2�1 � 1 and αi �� α j for 1 � i � j �
p� 1. Hence, α is a primitive element of GF�p�. Hence,

f1�2� � � � � p� 1g � GF�p�� � fξt�p�1� j 1 � t � p� 1g�
It follows that

fξ�2ξ� � � � � �p� 1�ξg � fξt�p�1��1 j 1 � t � p� 1g�
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Since p is odd, t�p � 1� � 1 must be odd, too. Since ξ is primitive in
GF�q�, ξs is non-square for any odd s. �

Proposition 10.4.17 Let p be an odd prime, q � p2. In PG�2� q�, Proposi-
tion 10.4.15 yields semiovals of size q

p
q � 1.

Proof. In Proposition 10.4.15, take A� fkξ j k �GF�p�g where ξ is a prim-
itive element of GF�q�. Then m � jGF�p�j�p

q and jSj� q
p

q� 1. More-
over, for any ai� a j � A, ai �� a j, we have ai� a j � lξ for some l � GF�p��,
hence ai � a j is non-square. �

Remark. The construction given in Proposition 10.4.17 was first pub-
lished �with a different proof� by Hirschfeld and Szőnyi in 1991, see
Corollary 5.6 in �Hirschfeld, Szőnyi, 1991�. It can be shown that the
resulting semioval is regular and that it is a non-classical unital, see
�Hirschfeld, Szőnyi, 1991� for details.

Planes of Order q � 8r� 1

Proposition 10.4.18 Let q be a prime power with q � �1 �mod 8�. In
PG�2� q�, let F � V�x2 � yz� and G � V�2x2 � y2 � z2�. Then F and G
are non-singular conics and F �G is a semioval in PG�2� q� consisting of
2�q � 1� points.

Proof. First we examine common points of F and G: From the system

2x2 � 2yz � 0
2x2 � y2 � z2 � 0

we obtain
�y � z�2 � 0�

Suppose �x̄� ȳ� z̄� � F � G. Then z̄ � �ȳ and so x̄2 � ȳ2 � 0. Since q �
8r�1 � 4r��3 �r� �N�, �1 is non-square in GF�q� by Fact 10.1.2. Hence,
the last equation has the only solution �x̄� ȳ� � �0�0� implying z̄ � 0. But
�0�0�0� is not a point of PG�2� q� and thus F and G are disjoint.

Using Fact 10.1.7 it is easy to verify that both F and G are non-
singular. Next we want to show that F and G are mutually internal.
We proceed in two steps.
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(i) F is internal to G. We have

F � f�0�1�0�g � f�s� s2�1� j s � GF�q�g�
The polar of �0�1�0� w.r.t. G is V�y�. We must decide the relative po-
sition of V�y� and G. The system

2x2 � y2 � z2 � 0
y � 0

leads to 2x2 � z2 � 0. Since �2 is non-square �Fact 10.1.3�, this system
has none but the trivial solution. Hence �0�1�0� is internal to G.

The polar of �s� s2�1� w.r.t. G is V�2sx � s2y � z�. We are about to
solve the system

2x2 � y2 � z2 � 0
2sx � s2y � z � 0

Let �x̄� ȳ� z̄� be the solution. If x̄ � 0 then we obtain by substitution

ȳ2 � ��s2ȳ�2 � 0

which leads only to the trivial solution �and hence no crossing point�.
If x̄ � 1 then we eliminate z̄ from the second equation and by substi-
tuting in the first we get

2� ȳ2 � ��2s� s2ȳ�2 � 0�

This can be viewed as a quadratic equation in ȳ

�s4 � 1�ȳ2 � 4s3ȳ � �4s2 � 2� � 0�

The discriminant of this equation is

16s6 � 4�s4 � 1��4s2 � 2� � ��2� � 22 � �s2 � 1�2�

Since �1 is non-square, the discriminant is non-zero for any value of
s. Moreover, since �2 is non-square, the entire discriminant is non-
square and so the polar does not intersect G. Thus, for any s � GF�q�,
the point �s� s2�1� is internal to G.

(ii) Now we prove that G is internal to F . The equation

2x2 � y2 � z2 � 0
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is equivalent to
�1�2�y� z�2 � x2 � yz�

Since �2 is non-square, �1�2 must be non-square, too. Hence for any
point �x̄� ȳ� z̄� � V�2x2 � y2 � z2� the value x̄2 � ȳz̄ is non-square which
means that G is internal to F . �

10.4.5 Semiovals with Deleted Points

It was observed by several authors that a new semioval may be ob-
tained from a given one by deleting some of its points as long as no
new tangents are introduced. This paradigm often applies to the con-
figurations that we described in the preceding propositions. We include
just one illustrative example.

Proposition 10.4.19 Let q be an odd prime power and let F and G be
conics in PG�2� q� as in Proposition 10.4.12. Let F � G � fP�Qg. Then
F �G n fP�Qg is a semioval in PG�2� q�.

Proof. Let S � F �G, S� � S n fP�Qg and similarly F � � F n fP�Qg, G� �
G n fP�Qg. Let S0 be any point in S�. Clearly, the tangent t to S at S0

is also a tangent to S �. Suppose there is another tangent t� to S � at S0.
W.l.o.g. we may assume that t� � l�PS0� and that S0 � F �. Since t� is
a tangent, t� � G � � /0. Recall that F and G have a common tangent at
P, hence fl�PX� j X � F �g � fl�PY� jY � G�g. Hence t� must intersect G �,
a contradiction. �

10.5 Arcs

We now turn our attention to another geometric phenomenon, namely
to the arcs.

Definition 10.5.1 Let A be a point set in PG�2� q�. If no three points of
A are collinear then the set A is called an arc.

Definition 10.5.2 Let A be an arc in PG�2� q�. We say that A is a com-
plete arc if there is no arc A� in PG�2� q� such that A is a proper subset
of A�.
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Definition 10.5.3 If A is an arc in PG�2� q�, jAj � k, then A is sometimes
also called a k-arc.

Fact 10.5.4 Let A be an arc in PG�2� q�. If q is odd then jAj � q� 1. If q
is even then jAj � q � 2.

Proof. Hirschfeld �1979�, pp. 164. �

If q is odd then any �q � 1�-arc is a non-singular conic.
If q is even then a �q � 2�-arc is called a hyperoval. Each hyperoval

is either regular in which case it is the union of a conic and its nucleus
�a point where all tangents meet�, or irregular. The complete classifica-
tion of hyperovals in PG�2�2r� is known only for r � 4. If r � 3 then
each hyperoval is regular. For r � 4 an irregular hyperoval was found
by Lunelli and Sce in 1957 using a computer. Later it was shown that
�up to projectivity� there are no more hyperovals in PG�2�16�.

The catalogs of all arcs in PG�2� q� �up to projectivity� have been
known for q � 13. For q � 9, the lists can be found in �Hirschfeld,
1979�, pp. 387–414. For q � 11 and q � 13 the lists were computed by
Gordon �1993�.

10.5.1 Constructions

Following Definition 10.5.1, if χA � f0�1gS�2�q� is a characteristic function
of a set A which is an arc then this function satisfies the predicate
P�χA�:�“No three points of A are collinear.”

This predicate P is consistent with augmentation �Definition 6.2.10�
and hence we can use it to control the restricted orderly generation
�Section 6.2.2�.

Using restricted orderly generation, we have listed the full catalog
of arcs in PG�2�16�. The statistics on them is in Table 10.5.

Just before finishing the thesis we learned that Tim Penttila �per-
sonal communication, August 1994�, Gordon Royle and Michael Simp-
son at the University of Western Australia recently used the same idea
�orderly generation� to compile the catalogs of arcs for q � 16�17�19.
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number of number of
k k-arcs complete k-arcs
1 1 0
2 1 0
3 1 0
4 1 0
5 4 0
6 61 0
7 454 0
8 2633 0
9 6014 6

10 4899 1944
11 1171 113
12 587 32
13 260 1
14 100 0
15 30 0
16 9 0
17 3 0
18 2 2

Table 10.5: Number of k-arcs in PG�2�16� up to projectivity.
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10.5.2 Analysis of Results

It has been known that, in PG�2�16�, the second greatest value of k for
which a complete k-arc exists is k � 13. A complete 13-arc in PG�2�16�
was constructed by Fisher, Hirschfeld and Thas �1986�. From our cat-
alog it follows that this complete 13-arc is unique.

The analysis of the catalogs by Penttila, Royle and Simpson is cur-
rently undertaken by de Resmini and Scipioni. Our catalogs will be
analyzed in our cooperation with Storme.

10.6 Methodological Aspects

In this chapter we have proven that the restricted orderly generation is
a useful approach for listing interesting configurations in finite classi-
cal planes. We applied this approach for computer-aided study of two
geometric phenomena in classical planes of small orders. It was not
surprising that the constructive methods have produced many yet un-
known instances of these phenomena. It was more pleasant to observe
that these concrete instances can be developed to rigorous theorems of
general nature.
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In this chapter we will be using orderly generation to classify �up to
equivalence� certain optimal ternary linear codes. After giving all nec-
essary definitions from coding theory we explain the classification prob-
lem in Section 11.2. Then in Section 11.3 we embed this classification
task in the “symmetry classes of mappings” paradigm. In the last two
sections we discuss the relevancy of computer-aided methods for clas-
sifications in coding theory.

11.1 Definitions

Let GF�q�n denote the n-dimensional vector space over GF�q�. Let 0 �
GF�q�n be the zero vector.

Definition 11.1.1 Let x � GF�q�n and let wt�x� denote the number of non-
zero coordinates in x. We say that wt�x� is the weight of the vector x.

Definition 11.1.2 Let x�y � GF�q�n. We define the Hamming distance of
x and y by

d�x�y� :� wt�x� y��

The value d�x�y� is equal to the number of coordinates in which x and
y differ. Hamming distance is a metric on GF�q�n.

Definition 11.1.3 We say that C is an �n� k�d� linear code over GF�q� if
C is a k-dimensional subspace of GF�q�n and

min
x�C� x	�0

wt�x� � d�

For a classical textbook on linear codes we refer to �MacWilliams,
Sloane, 1977�.

In this chapter we deal only with linear codes, hence we will omit
this adjective in the following. The codes over GF�q� for q � 2�3� ��� are
called binary, ternary,... �in general q-ary� codes.

Fact 11.1.4 Let C be an �n� k�d� q-ary code. Then

min
x�y�C� x	�y

d�x�y� � d�
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The values n, k, d in Definition 11.1.3 are called length, dimension and
minimum distance of the code C. The elements of C are called codewords.

The minimum distance of C is of essential importance when C is
used for information transmission. Roughly spoken, the greater the dis-
tance between the codewords is, the better chances we have to properly
recognize the codewords at the receiving end even if they are spoiled
by noise that occurred during the transmission.

Definition 11.1.5 Let C be an �n� k�d� q-ary code. The polynomial ∑n
i�0 Aiyi,

where Ai is the number of weight i codewords in C, will be called the
weight enumerator of C.

Definition 11.1.6 Let C be an �n� k�d� q-ary code. We say that C is an
optimal code if there is no �n� k�d�� q-ary code with d� � d.

Definition 11.1.7 Let C be an �n� k�d� q-ary code and let M be a k � n
matrix over GF�q� such that C is generated by the rows of M. We say
that M is a generator matrix for C.

Definition 11.1.8 Let C be an �n� k�d� q-ary code. If there exists a matrix
M such that M a is generator matrix for C and the columns of M are n
pairwise different points in PG�k� 1� q� then we say that C is a projective
code.

Fact 11.1.9 Let C be a projective �n� k�d� q-ary code. Then the columns of
any generator matrix for C are pairwise different points in PG�k� 1� q�.

The following fact can be used to prove that certain codes must be
projective �in the case that they exist at all�.

Fact 11.1.10 Let C be an �n� k�d� q-ary code and let M be a generator ma-
trix for C. Suppose that no coordinate of C is identically zero, i.e., M
does not contain a zero column. If C is not projective then there exists an
�n� 2� k� 1�d�� q-ary code with d�  d.

Proof. �MacWilliams, Sloane, 1977�, p. 592. �
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Definition 11.1.11 A permutation matrix is any n� n matrix P that has
exactly one 1 in each row and each column; other entries of P are all 0. A
diagonal matrix is any n� n matrix D � �li� j� such that di� j �� 0 exactly
if i � j.

Definition 11.1.12 Let C1, C2 be two �n� k�d� q-ary codes. We say that the
codes C1 and C2 are equivalent if there exists a generator matrix M1 for C1

and a generator matrix M2 for C2 such that M2 � M1DP for some diagonal
matrix D and for some permutation matrix P.

Informally, if codes C1 and C2 are equivalent then C2 can be obtained
from C1 by multiplying the i-coordinate of each codeword by a non-
zero scalar ai and applying one arbitrary but fixed permutation π � Sn

to all vectors.

11.2 Classification of Optimal Codes

There are two classical problems related to optimal codes:

(i) Given n, k and q, determine

dq�n� k� :� maxfd j an �n� k�d� q-ary code existsg�

(ii) Given n, k, q and dq�n� k�, determine �up to equivalence� all
�n� k�dq�n� k�� q-ary codes.

Much more is known about (i) as compared to (ii). For example, in
the case q � 2 the exact value of d2�n� k� is known for any pair �n� k�
such that k � 7, and for many more combinations of n and k. A table
of known lower and upper bounds on d2 is periodically published, see
�Brouwer, Verhoeff, 1993� for the most recent edition. An up-to-date
on-line data base of known lower and upper bounds on dq�n� k� for
q � 2�3�4 and n� 130 �n� 255 for q � 2� is maintained by Brouwer. This
data base can be accessed by sending an e-mail message to aeb�cwi�nl

with subject line exec lincodbd.
In this chapter we are concerned with the problem (ii), i.e., with

classification of certain optimal codes �namely those optimal codes that
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are projective�. We will be particularly dealing with the case q � 3
�ternary codes� and k � 4�5.

Before approaching the classification task, we will rephrase it in
terms of the “symmetry classes of mappings” paradigm which will then
let us exploit the methods of Chapter 6.

11.3 Group Action Setting

Definition 11.3.1 Let S�k� 1� q� denote the point set of PG�k� 1� q�.

We denote by PGL�k� q� the group of all projectivities of PG�k� 1� q�.
We now think of the projective points as column vectors, hence the
action of a projectivity Π � PGL�k� q� on a point X � S�k� 1� q� is simply
Π : X �� M�Π� �X where M�Π� is a matrix representing Π.

Definition 11.3.2 Let P � fP1� � � � �Png and Q � fQ1� � � � �Qng be two sub-
sets of S�k � 1� q�. We say that P and Q are projectively equivalent
sets if their characteristic functions χP�χQ � f0�1gS�k�1�q� belong to the same
PGL�k� q�-orbit on f0�1gS�k�1�q�.

Fact 11.3.3 Let C1 and C2 be two projective �n� k�d� q-ary codes. Let C1 have
a generator matrix M1 whose columns are points P1� � � � �Pn � S�k� 1� q� and
let C2 have a generator matrix M2 whose columns are points Q1� � � � �Qn �
S�k� 1� q�. The codes C1 and C2 are equivalent (Definition 11.1.12) if and
only if the sets fP1� � � � �Png and fQ1� � � � �Qng are projectively equivalent.

Proof. If C1 and C2 are equivalent then there is a matrix M�
2 such that

�i� M�
2 can be obtained from the matrix M2 by permuting its columns

and multiplying them by GF�q�-scalars, �ii� M�
2 generates the code C1.

From �ii� it follows that there is a k� k invertible matrix L over GF�q�
such that L �M1 � M�

2. Since L is invertible, it represents a projectivity,
hence the set fP1� � � � �Png is projectively equivalent to the set of columns
of M�

2 �regarded as projective points�. But the latter one is equal to
fQ1� � � � �Qng, hence fP1� � � � �Png and fQ1� � � � �Qng are projectively equiv-
alent.

Now suppose that the sets fP1� � � � �Png and fQ1� � � � �Qng are projec-
tively equivalent. Then there is a projectivity Π � PGL�k� q� such that
ΠχP � χQ. Let M�Π� be one of the q� 1 matrices representing Π. Since



200 Linear Codes

M�Π� is invertible, M�Π� �M1 generates the code C1. The columns of
M�Π� �M1 are the projective points M�Π� � P1� � � � � M�Π� � Pn. More-
over, we know that fM�Π� � P1� � � � � M�Π� � Png � fQ1� � � � �Qng �as sets
of projective points�. This means that the columns of M2 are obtained
by permuting columns of M�Π� �M1 and multiplying them by GF�q�-
scalars. Since M�Π� �M1 generates C1 and M2 generates C2, the codes
C1 and C2 are equivalent. �

We now introduce the notion of a configuration in PG�k� 1� q� sim-
ilarly as we did it in Definition 10.2.6 for PG�2� q�.

Definition 11.3.4 Recall that S�k�1� q� means the point set of PG�k�1� q�.
Let G be the projective group PGL�k� q� and let f � f0�1gS�k�1�q�. The orbit
G� f � is called a configuration in PG�k� 1� q�.

The relation between finite spaces and projective codes is widely
used. To document this, we refer at least to a long series of papers by
Hamada and co-workers who related certain optimal projective codes
�namely those meeting the Griesmer bound� to certain geometric con-
figurations �so-called “minihypers”�, see �Hamada, Helleseth, 1990�,
�Hamada, Helleseth, 1992�, �Hamada, Helleseth and Ytrehus, 1993� as
well as about 20 other papers in that series. For other examples of
geometric proofs in classification of codes see �van Eupen, 1993�.

11.4 Constructions

Fact 11.3.3 states that equivalence classes of k-dimensional q-ary pro-
jective codes are in a one-to-one correspondence with configurations
in PG�k � 1� q�. From Chapter 10 we know that orderly methods can
be used for �possibly restricted� generation of configurations, hence we
will be able to use these methods for classification of projective codes.

In this chapter we deal with ternary codes, i.e., we will be listing
configurations in PG�k � 1�3�. We restrict our attention to the optimal
codes �see Definition 11.1.6�.

Using Fact 11.1.10 and tables of values of d3�n� k� �see, e.g., Table
I in �van Eupen, 1993�� we can determine whether, for given n and
k, all �n� k�d3�n� k�� ternary codes must be projective. If so, then we can
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generate all n-point configurations in PG�k�1�3�, for each configuration
compute the minimum distance of the corresponding projective code,
and single out the codes with minimum distance equal to d3�n� k�. This
way we can list all pairwise non-isomorphic �n� k�d3�n� k�� codes.

The total number of configurations in PG�k � 1�3� can be evalu-
ated by unweighted Pólya’s Theorem 2.1.25 using the cycle index of
PGL�k�3�’s action on S�k� 1�3�.

total number
space of configurations

PG�3�3� 111,832
PG�4�3� 11,180,165,801,375,240,179,617,696

Table 11.1: Total number of configurations in some GF�3�-spaces.

Table 11.1 reveals that all configurations in PG�3�3� can be listed
without problems. The orderly generation of l-point configurations in
PG�3�3� for l � 20 takes about 8 CPU hours on an SGI workstation.
The �non-canonical� representatives of the remaining configurations are
obtained by complementation.

Hence, we can classify up to equivalence all optimal 4-dimensional
ternary codes if these happen to be projective. The upper part of Table
11.2 shows the statistics.

In the case of PG�4�3�, Table 11.1 documents that generation of
all configurations is impossible. Since the orderly generation proceeds
by content �Theorem 6.2.8� and taking into account the unimodality
of the number of symmetry classes of mappings �see �Kerber, 1991�,
p. 237 for details on this�, we might want to undertake the full gen-
eration of l-point configurations for some l � lmax and then proceed
by restricted generation. Pólya’s Theorem 2.1.23 for enumeration of
symmetry classes by content can help us to find a feasible value of
lmax. For example, there are exactly 9,260 eleven-point configurations
in PG�4�3�. By a complete generation of all l-point configurations �1 �
l � 11� we classify the optimal projective codes with parameters �6,5,2�
up to �11,5,6�, see the lower part of Table 11.2.

From this place on, the full generation would be very time and
space consuming. Fortunately, we note that the next three triples of op-
timal projective code parameters �namely, �14,5,7�, �15,5,8� and �16,5,9��
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all satisfy the equality n� d3�n� k� � 7 which proposes an idea for a
predicate that would control the restricted generation. This predicate,
however, is not consistent with augmentation �Definition 6.2.10� be-
cause the value n� d can increase when we lengthen the code. On the
other hand, the difference n� d can never decrease by augmentation,
because, when adding one coordinate to a given code, its minimum
distance cannot increase by more than 1. Hence, the weaker predicate
P��χS�:�“parameters n�d of the code corresponding to the projective set
S satisfy n� d � 7” is consistent with augmentation, and we can use it
to control the restricted orderly generation �Section 6.2.2� to determine
the bottom three rows of Table 11.2.

11.5 Analysis of Results

In Table 11.2 we display the basic statistics of the classifications that
we obtained.

In collaboration with van Eupen we collected references on the
codes and/or geometric descriptions of them, see the last column of
Table 11.2.

Most of the references contain the complete classification proof �the-
oretical or computer-based�; in general they give geometric description
of the code�s� or at least geometric constraints on the corresponding
configurations in PG�k� 1�3�.

In the trivial cases when there is no particular paper dealing with
the respective triple of parameters we include the geometric description
of the code, i.e., we characterize the set of points in PG�k� 1�3� which
form the columns of the generator matrix for the respective code. To
keep Table 11.2 in a modest size we allowed us a little sloppiness in
these descriptions: For example, the phrase “PG�3�3� minus a hyper-
plane” should be interpreted as

S�3�3� n fP � S�3�3� jP � Hg� H a fixed hyperplane in PG�3�3��

�Cf. Definition 11.3.1.� The remaining descriptions should be inter-
preted in a similar manner.

In the current collaboration of Lisoněk and van Eupen �1994� we
look for theoretical proofs for some of the computer-based classifica-
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number of reference
�n� k�d� classes or description
�5,4,2� 1
�7,4,3� 4
�8,4,4� 3
�9,4,5� 1 �van Eupen, 1993�, Lemma 3

�10,4,6� 1 �van Eupen, 1993�, Lemma 3
�17,4,10� 18
�18,4,11� 2
�19,4,12� 1 �Hamada, Helleseth, 1990�
�25,4,16� 1 �Hamada, Helleseth, 1992�
�26,4,17� 1 �Hamada, 1993�, Theorem 3.1
�27,4,18� 1 PG�3�3� minus a hyperplane
�30,4,19� 8 �Hamada, Helleseth, Ytrehus, 1993�
�31,4,20� 2 �Hamada, 1993�, Theorem 3.4.�7�
�32,4,21� 1 �Hamada, 1993�, Theorem 3.1
�34,4,22� 3 �Helleseth, 1992�, Theorem 2
�35,4,23� 1 �Hamada, 1993�, Theorem 3.1
�36,4,24� 1 PG�3�3� minus a line
�38,4,25� 1 PG�3�3� minus two points
�39,4,26� 1 PG�3�3� minus a point
�40,4,27� 1 PG�3�3�

�6,5,2� 1
�8,5,3� 3
�9,5,4� 1

�10,5,5� 1 �van Eupen, 1993�, Lemma 4
�11,5,6� 1 dual of the Golay code
�14,5,7� 236
�15,5,8� 4
�16,5,9� 1 �van Eupen, Hill, 1994�, Lemma 10

Table 11.2: Number of some optimal ternary codes �up to equivalence�.
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tions from Table 11.2 in the cases that have not been treated in the
literature yet.

For example, the computer-based result that there are exactly two
�18,4,11� codes together with the fact that Hamada-Helleseth �1990�
uniqueness construction of the �19,4,12� code uses one distinguished
point �point Q in their paper� inspired us to the following theoretic
classification of �18,4,11� codes:

(i) One shows that any �18,4,11� code is obtained by puncturing the
�19,4,12� code. �Puncturing a code means simply deleting one coordi-
nate from it.�

(ii) One shows that the automorphism group of the �19,4,12� code
has two orbits; one of them being the singleton fQg, the other one
being the set of the remaining 18 points. This means that there are
�up to equivalence� two ways to puncture the �19,4,12� code. Finally
one shows that these two puncturings give non-equivalent codes. �The
resulting codes have different weight enumerators.�

11.6 Methodological Aspects

Similarly as in Chapter 10 we found the concept of configurations and
their orderly generation to be a fruitful approach to obtain new results
in the respective field. In coding theory this approach seems to be a
novelty application of the “symmetry classes of mappings” paradigm.
Computer-based results inspire theoretical proofs, moreover the meth-
ods of these proofs may be reusable also for other instances. For ex-
ample, the idea of �18,4,11� code classification �see the end of the pre-
ceding section� can be modified for the purpose of �19,5,11� code classi-
fication, i.e., for parameters that are out-of-reach of the direct computer
approach �orderly generation�. Hence, also in this field we succeeded
to ascend the creativity spiral of computer-assisted algebraic combina-
torics.
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Blokhuis, A., Szőnyi, T. �1992�. Note on the structure of semiovals in
finite projective planes. Discr. Math. 106/107, 61–65.

Bokowski, J., Sturmfels, B. �1989�. Computational Synthetic Geometry.
Lecture Notes in Mathematics 1355. Berlin: Springer.

Boreham, T.G., Bouwer, I.Z., Frucht, R. �1974�. A Useful Family of Bicu-
bic Graphs. In Graphs and Combinatorics, 213–225. Berlin: Springer.

Borwein, J., Borwein, P. �1992�. Some observations on computer aided
analysis. Not. Amer. Math. Soc. 39, 825–829.

Bosma, W., Cannon, J. �1993�. Handbook of Magma Functions. Depart-
ment of Pure Mathematics, University of Sydney.

Brawley, J.V. Jr. �1967�. Enumeration of canonical sets by rank. Amer.
Math. Monthly 74, 175–177.
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born April 17, 1964
marital status single, no children
citizenship Czech Republic
languages English, German �fluent�

Education

1970–1978 ground school, Olomouc, Czech Republic
1978–1982 high school, Olomouc, Czech Republic
1982–1987 undergraduate studies in Computer Science
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