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Abstract

Following Jens Voß, let T (n, k) be the number of “modular partitions” of n into k parts,
that is, the number of k-tuples (u1, u2, . . . , uk) with 0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ n − 1 such
that

∑
j uj ≡ 0 mod n. The purpose of this note is to use Molien’s theorem to show that

T (n, k) is also equal to the number of bi-colored necklaces with n beads of one color and k
beads of another color.

1 Introduction

Following Jens Voß [9], let T (n, k) be the number of k-tuples u = (u1, u2, . . . , uk) with 0 ≤
u1 ≤ u2 ≤ · · · ≤ uk ≤ n − 1 such that

∑
j uj ≡ 0 mod n. Stated another way, T (n, k) is the

number of ways to write 0 as a sum of k elements of Z/nZ. Voß calls u a modular partition
of n into k parts. He computed the numbers T (n, k) for n + k ≤ 20, and part of his table is
shown here (the rows correspond to n = 0, 1, 2, . . . , 10 and the columns to k = 0, 1, 2, . . .):

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,...

1,1,2,4,5,7,10,12,15,19,22,26,31,35,40,46,51,57,...

1,1,3,5,10,14,22,30,43,55,73,91,116,140,172,204,245,...

1,1,3,7,14,26,42,66,99,143,201,273,364,476,612,776,...

1,1,4,10,22,42,80,132,217,335,504,728,1038,1428,1944,...

1,1,4,12,30,66,132,246,429,715,1144,1768,2652,3876,...

1,1,5,15,43,99,217,429,810,1430,2438,3978,6310,...

1,1,5,19,55,143,335,715,1430,2704,4862,8398,...

1,1,6,22,73,201,504,1144,2438,4862,9252,...

...

The OEIS [5] now contains three versions of this table: see entries A047996, A241926, and
A037306. The table appears to be symmetric about the main diagonal, although this is not
obvious from the definition. For example, the entry T (3, 5) = 7 corresponds to these seven
u-vectors:

00000, 00012, 00111, 00222, 01122, 11112, 12222 . (1)

These vectors have five components, entries 0, 1, and 2, and a sum which is a multiple of 3.
On the other hand, the entry T (5, 3) = 7 corresponds to these seven u-vectors:

000, 014, 023, 113, 122, 244, 334 . (2)
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These have three components, entries from 0 to 4, and a sum which is a multiple of 5. There
is no obvious bijection between the two lists.

Consulting the OEIS, it appears that the nth row of the table gives (a) the coefficients of
the Molien series for the regular representation of the cyclic group of order n, and also (b)
the numbers of inequivalent necklaces with n + k beads, n of one color and k of a another
color. (Rows 2, 3, ... appear to match OEIS entries A008619, A007997, A008610, A008646,
A032191, A032192, A032193, etc.) It is the purpose of this note to use Molien’s theorem to
prove that these empirical observations are in fact correct.

2 Molien’s theorem

Molien’s theorem states that if G is a finite group of complex n × n matrices, and ad (d =
0, 1, . . .) is the number of linearly independent homogeneous polynomials of degree d that
are invariant under the action of G, then

ΦG(λ) =
∞∑

d=0

adλ
d =

1

|G|
∑
M∈G

1

det(I − λM)
(3)

(see for example [4]; [2, p. 77], [7, p. 87], [8, p. 29]). ΦG(λ) is called the Molien series for G.
We apply the theorem to two different (but equivalent) matrix groups, G1 and G2, both

abstractly isomorphic to the cyclic group Cn of order n. The first, G1, is the group of n × n
permutation matrices generated by the cyclic permutation σ := (0, 1, 2, . . . , n − 1). For
example, if n = 4, G1 consists of the four powers of the matrix

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 . (4)

The second group, G2, is the group of n × n diagonal matrices generated by the matrix

diag{1, ζ, ζ2, . . . , ζn−1} , (5)

where ζ = e2πi/n. For n = 4, the generator is diag{1, i,−1,−i}.
Since G2 is in fact the result of diagonalizing the elements of G1, corresponding elements

of the two groups have the same eigenvalues, and G1 and G2 have the same Molien series.
We will show that the invariants of G1 of degree k correspond to necklaces of n+k beads,

n of one color and k of another color, and that the invariants of G2 of degree k correspond
to ways to write 0 as a sum of k terms in Z/nZ. Evaluating the Molien series for G1 gives
a familiar formula (see (8)) for the number of such necklaces, and since the two Molien
series are the same, this is also the number of modular partitions T (n, k). The results are
summarized in Theorem 1. The fact that T (n, k) = T (k, n) is then an immediate corollary.

3 The group G1 and its invariants

The group G1 is the regular permutation representation of the cyclic group Cn. It is well-
known that for each d dividing n, Cn contains ϕ(d) elements which are a product of n/d
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cycles of length d, where ϕ(d) is the Euler totient function (A000010) (see for example [1]).
Each such element contributes a term (1 − λd)−n/d to the Molien series, so

ΦG1(λ) =
1

n

∑
d|n

ϕ(d)
1

(1 − λd)n/d
. (6)

We wish to determine ak, the coefficient of λk in this expression. The contribution to the
sum from the d term will be zero unless d also divides k, so we may restrict the sum to values
of d that divide the greatest common divisor of n and k. Using the binomial theorem, we
obtain

ak =
1

n

∑
d|gcd(n,k)

ϕ(d)

(n
d

+ k
d
− 1

k
d

)
. (7)

This may be rewritten more symmetrically as

ak :=
1

n + k

∑
d|gcd(n,k)

ϕ(d)

(n+k
d
k
d

)
, (8)

and now it is obvious that interchanging the roles of n and k leaves the number unchanged
(as it must, since we can obviously exchange the names of the colors of the two kinds of
beads without affecting the number of necklaces). This is a classical formula (Lucas, [3,
pp. 501–503], Riordan, [6, p. 162]). It can also be easily derived using Pólya’s theorem (cf.
[1]).

Next we consider the invariants themselves and show how they correspond to necklaces.
Let the variables on which G1 acts be labeled x0, x1, . . . , xn−1. If we take an arbitrary
monomial of degree k, say

xℓ0
0 xℓ1

1 · · ·xℓn−1

n−1 , with
∑

j

ℓj = k , (9)

and form the sum of its images under all cyclic shifts of the subscripts, the result is invariant
under the action of G1, and conversely, every invariant can be decomposed into a sum of
such invariants.

We describe necklaces with n + k beads of two colors by binary vectors of length n + k,
containing n 0’s and k 1’s, with the understanding that cyclic shifts of the vector correspond
to the same necklace. For example, there are five necklaces with four beads of one color and
three of the other color, which are described by the binary vectors

0000111, 0001011, 0001101, 0010011, 0010101 . (10)

The correspondence between invariants of degree k and necklaces with n + k beads is that a
monomial (9) corresponds to the necklace with binary vector

0ℓ01 0ℓ11 0ℓ21 · · · 1 0ℓn−11 , (11)

where there are n 0’s and k 1’s. In other words, the exponents in the monomial (9) specify
the lengths of the successive strings of beads of one color. Choosing a different monomial
term from an invariant just gives a different cyclic shift of the necklace. The invariants
corresponding to the necklaces in (10) are respectively

x4
0+x4

1+x4
2, x3

0x1+x3
1x2+x3

2x0, x3
0x2+x3

1x0+x3
2x1, x2

0x
2
1+x2

1x
2
2+x2

2x
2
0, x2

0x1x2+x2
1x2x0+x2

2x0x1 .
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4 The group G2 and its invariants

The eigenvalues of the rth power of the generator (5) are ζjr, j = 0, 1, . . . , n − 1, so the
Molien series for G2 is

ΦG2 =
1

n

n−1∑
r=0

1∏n−1
j=0 (1 − λζjr)

. (12)

Since G2 consists of diagonal matrices, any monomial term in an invariant must itself be
invariant. If (9) is an invariant of degree k, then we have

n−1∑
j=0

ℓj = k,

n−1∑
j=0

jℓj ≡ 0 mod n , (13)

which is the definition of a modular partition of n into k parts, the parts u1, u2, . . . , uk being
0 (ℓ0 times), 1 (ℓ1 times), ..., n − 1 (ℓn−1) times. So by Molien’s theorem,1

ΦG2(λ) =
∞∑

k=0

T (n, k)λk .

Since ΦG1(λ) = ΦG2(λ), we have proved:

Theorem 1 The following are equal:
(i) T (n, k), the number of ways of writing 0 as a sum of k terms in Z/nZ,
(ii) the number of bi-colored necklaces with n beads of one color and k beads of another color,
(iii)

1

n + k

∑
d|gcd(n,k)

ϕ(d)

(n+k
d
k
d

)
. (14)

Corollary 2 T (n, k) = T (k, n).
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