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Abstract
Here, we prove some conjectures on the monotony of combinatorial and number–

theoretical sequences from a recent paper of Zhi–Wei Sun.
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1. Introduction

In [Sun], it was conjectured that the sequences of general term a
1/(n+1)
n+1 /a

1/n
n , or a1/nn are

monotonically increasing (or decreasing) for all n ≥ n0, for a large class of sequences a =
(an)n≥1 appearing in combinatorics. Three of these conjectures were confirmed recently
in [HSW]. Here, we confirm eight more of these conjectures (some partially, up to an
explicit starting index n0).

For a sequence u = (un)n≥1 and a positive integer k we write

∆(k)un = un+k −
(
k

1

)
un+k−1 + · · ·+ (−1)j

(
k

j

)
un+k−j + · · ·+ (−1)kun,

for the kth iterated difference of (un+k, . . . , un).
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2. Bernoulli, Tangent and Euler numbers

The Bernoulli numbers B0, B1, B2, . . . are rational numbers given by

B0 = 1 and
n∑
k=0

(
n+ 1

k

)
Bk = 0 for all n ≥ 1,

whose exponential generating function is

z

ez − 1
=
∞∑
n=0

Bnz
n

n!
.

It is well-known that B2n+1 = 0 for all n ≥ 1. Closely connected to the Bernoulli num-
bers are the Tangent numbers Tn and the Euler numbers En, defined by their exponential
generating functions

tan z =
∞∑
k=0

(−1)k+1T2k+1z
2k+1

(2k + 1)!
, (2.1)

sec z =
∞∑
k=0

(−1)k
E2kz

2k

(2k)!
. (2.2)

Thus, E2k−1 = 0, T2k = 0, k ≥ 1. We recall Stirling’s formula

n! = (n/e)n
√

2πn eθn , where
1

12n+ 1
< θn <

1

12n
, for all n ≥ 1. (2.3)

Our first result gives an affirmative answer to Conjecture 2.15 and 3.5 in [Sun].

Theorem 2.1. The sequences (|B2n|1/n)n≥1, (|T2n−1|1/n)n≥1, (|E2n|1/n)n≥1
are all increasing. Furthermore, the sequences (|B2n+2|1/(n+1)/|B2n|1/n)n≥2,
(|T2n+1|1/(n+1)/|T2n−1|1/n)n≥1, (|E2n+2|1/(n+1)/|E2n|1/n)n≥1 are decreasing.

Proof. We start with the Bernoulli numbers. We use the formula

|B2n| =
2(2n)!

(2π)2n
ζ(2n).

Clearly,

ζ(2n) = 1 +
1

22n
+

1

32n
+ · · · = 1 + ηn,

where

ηn =
1

22n

(
1 +

1

1.52n
+

1

22n
+ · · ·

)
≤ 1

22n

(
1 +

1

1.52n
+ 2(ζ(2n)− 1)

)
≤ 3

22n

(2.4)
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for n ≥ 1. Thus, putting |B2n| = exp vn, we have that

vn
n

=
log
(
2(2n)!(2π)−2n(1 + ηn)

)
n

=
log 2

n
+

log(2n)!

n
− 2 log(2π) +

log(1 + ηn)

n

=
log 2

n
+ 2 log(2n)− 2 +

log(4πn)

2n
+
θ2n
n
− 2 log(2π) +

log(1 + ηn)

n

= 2 log n+ c+
log n

2n
+

log(16π)

2n
+
θ2n
n

+
log(1 + ηn)

n
, (2.5)

where c = 2 log 2 − 2 − 2 log(2π) = −2 − 2 log π. Taking the first iterated difference in
(2.5) above, we get

∆(1)
(vn
n

)
=

vn+1

n+ 1
− vn

n

= 2 log

(
1 +

1

n

)
+

(
log(n+ 1)

2(n+ 1)
− log n

2n

)
− log(16π)

2n(n+ 1)

+

(
θ2n+2

n+ 1
− θ2n

n

)
+

(
log(1 + ηn+1)

n+ 1
− log(1 + ηn)

n

)
.

By the Intermediate Value Theorem

log(n+ 1)

n+ 1
− log n

n
=

d

dx

(
log x

x

) ∣∣∣
x=ζ∈[n,n+1)

,

therefore ∣∣∣∣ log(n+ 1)

n+ 1
− log n

n

∣∣∣∣ < log(n+ 1)

n2
.

Using the inequalities

log

(
1 +

1

n

)
≥ 1

2n
for n ≥ 1,

log(1 + x) ≤ x for all real numbers x, (2.6)

with x = ηn and x = ηn+1, inequality (2.4) together with Stirling’s formula (2.3), we get

∆(1)
(vn
n

)
≥ 1

n
− log(n+ 1)

2n2
− log(16π)

2n(n+ 1)
− 1

12n2
− 6

22nn
, (2.7)

and the above expression is positive for n ≥ 3. This proves that |B2n|1/n is increasing for
n ≥ 3, and by hand one checks that this is in fact true for all n ≥ 1.
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Taking now the second iterated difference in (2.5), one gets

∆(2)
(vn
n

)
=

(
vn+2

n+ 2
− vn+1

n+ 1

)
−
(
vn+1

n+ 1
− vn

n

)
= 2

(
log

(
1 +

1

n+ 1

)
− log

(
1 +

1

n

))
+

1

2

(
log(n+ 2)

(n+ 2)
− 2 log(n+ 1)

(n+ 1)
+

log n

n

)
+

log(16π)

n(n+ 1)(n+ 2)

+

(
θ2n+4

n+ 2
− 2θ2n+2

n+ 1
+
θ2n
n

)
+

(
log(1 + ηn+2)

n+ 2
− 2 log(1 + ηn+1)

n+ 1
+

log(1 + ηn)

n

)
. (2.8)

We have

log

(
1 +

1

n+ 1

)
− log

(
1 +

1

n

)
= log

(
1− 1

(n+ 1)2

)
< − 1

(n+ 1)2
. (2.9)

log(n+ 2)

n+ 2
− 2 log(n+ 1)

n+ 1
+

log n

n
= (log n)

(
1

n+ 2
− 2

n+ 1
+

1

n

)
+

1

n+ 2
log

(
1 +

2

n

)
− 2

n+ 1
log

(
1 +

1

n

)
≤ 2 log n

n(n+ 1)(n+ 2)
+

2

n(n+ 2)
− 2

n(n+ 1)
+

2

(n+ 1)n2

≤ 2 log n+ 4

n(n+ 1)(n+ 2)
, (2.10)

where we have used the fact that

x− x2 < log(1 + x) < x holds for all x ∈ (0, 1/2).

Next,
θ2n+4

n+ 2
− 2θ2n+2

n+ 1
+
θ2n
n

<
1

6n2
, (2.11)

by (2.3). Further, by using inequality (2.6) with x = ηn, x = ηn+1, x = ηn+2 together
with inequality (2.4), we get∣∣∣∣ log(1 + ηn+2)

n+ 2
− 2 log(1 + ηn+1)

n+ 1
+

log(1 + ηn)

n

∣∣∣∣ < 12

22nn
(2.12)

for n ≥ 3. Putting all these together, we have

∆(2)
(vn
n

)
≤ − 2

(n+ 1)2
+

log n+ 2 + log(16π)

n(n+ 1)(n+ 2)
+

1

6n2
+

12

n22n
, (2.13)
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and this last expression is negative for n ≥ 3. So, the sequence of general term
|B2n+2|1/(n+1)/|B2n|1/n is increasing for n ≥ 3, and then one checks by hand that it is
also increasing for n = 2, 3.

We next deal with the Tangent numbers. We have (see [BBD]),

|T2n−1| = 22n(22n − 1)
|B2n|

2n
= 42n

(
2(2n)!

(2π)2n

)(
1

2n

)((
1− 1

22n

)
ζ(2n)

)
. (2.14)

Since

1 <

(
1− 1

22n

)
ζ(2n) < ζ(2n),

it follows by (2.4) that(
1− 1

22n

)
ζ(2n) = 1 + ηn for some 0 < ηn <

3

22n
. (2.15)

Writing |T2n−1| = exp vn and following along calculation (2.5), we get that

vn
n

= 4 log 2 +
1

n
log

(
2(2n)!

(2π)2n

)
− log(2n)

n
+

log(1 + ηn)

n

= 2 log n+ c1 −
log n

2n
+

log(4π)

2n
+
θ2n
n

+
log(1 + ηn)

n
, (2.16)

where c1 = 4 log 2+c = 4 log 2−2−2 log π. Comparing the last row of (2.5) with the last
row of (2.16), we see that the only differences are in the value of c, the fact that the term
(log n)/(2n) has now changed sign and the positive constant log(16π) has been replaced
by the smaller positive constant log(4π). Following along the arguments from (2.7) and
(2.8), we note that such changes do not induce any significant change in the subsequent
argument and so we get that the first iterated difference of vn/n is positive for all n ≥ 3 and
the second iterated difference of vn/n is negative for n ≥ 4. The remaining small values of
n are checked by hand.

Regarding the Euler numbers, we use the inequality

42n+1(2n)!

π2n+1
> |E2n| >

42n+1(2n)!

π2n+1

(
1

1 + 3−2n−1

)
. (2.17)

Since
1 >

1

1 + 3−2n−1
> 1− 1

32n+1
,

we can write

|E2n| = 16n
(

2(2n)!

(2π)2n

)(
2

π

)
(1 + ηn),

where
0 < |ηn| <

1

32n+1
<

3

22n
. (2.18)

Writing |E2n| = exp vn and following along calculation (2.5), we get that

vn
n

= 4 log 2 +
1

n
log

(
2(2n)!

(2π)2n

)
+

log(2/π)

n
+

log(1 + ηn)

n

= 2 log n+ c1 +
log n

2n
+

log(64/π)

2n
+
θ2n
n

+
log(1 + ηn)

n
. (2.19)
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Since now ηn is negative, instead of (2.6) we need to use

| log(1− x)| ≤ 2|x| for x ∈ [0, 1/2]

with x = −ηn and n ≥ 2. Comparing the last row of (2.5) with the last row of (2.19),
we see that the only differences are in the value of c and the positive constant log(16π)
has been replaced by the smaller positive constant log(64/π). So, in (2.7) and (2.13), aside
from replacing log(16π) by log(64/π), also the terms 6/22nn and 12/22nn need to be
replaced by their doubles 12/22nn and 24/22nn, respectively. As in the case of the Tangent
numbers, such changes do not induce any significant change and so we get that the first
iterated difference of vn/n is positive for all n ≥ 3 and the second iterated difference of
vn/n is negative for n ≥ 4, and the remaining values are checked by hand.

3. Apéry, Delannoy and Franel numbers

Let r = (r0, r1, . . . , rm) be fixed nonnegative integers and put

S(r)(n) =
n∑
k=0

(
n

k

)r0(n+ k

k

)r1
· · ·
(
n+ km

k

)rm
for n ≥ 0. (3.20)

In what follows, we put r = r0 + · · · + rm. We assume that r0 > 0. When r = (r) for
some positive integer r, we get that

S(r)(n) =

n∑
k=0

(
n

k

)r
= b(r)n for all n ≥ 0, (3.21)

where b(1)n = 2n, b(2)n =
(
2n
n

)
is the middle binomial coefficient, and b(3)n is the Franel

number. When r = (1, 1), we get that

S(1,1)(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)2

= dn for all n ≥ 0, (3.22)

is the central Delannoy number. When r = (2, 2), we get that

S(2,2)(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

= An for all n ≥ 0, (3.23)

where An is the nth Apéry number. The next result answers in the affirmative the three
Conjectures 3.8–3.10 from [Sun].

Theorem 3.2. For each r such that r > 1, there exists nr such that the sequence
(S

(r)
n+1)

1/(n+1)/(S
(r)
n )1/n is strictly decreasing for n ≥ nr.

Proof. We start with McIntosh’s asymptotic formula for S(r)(n) (see [Mc]).
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Lemma 3.1. For each nonnegative integer p,

S(r)(n) =
µn+1/2√
ν(2πλn)r−1

(
1 +

p∑
k=1

Rk
nk

+O

(
1

np+1

))
, (3.24)

where 0 < λ < 1 is defined by

1 =
m∏
j=0

(
(1 + jλ)j

λ(1 + (j − 1)λ)j−1

)rj
,

µ =

m∏
j=0

(
1 + jλ

1 + (j − 1)λ

)rj
,

ν =
m∑
j=0

rj
(1 + (j − 1)λ)(1 + jλ)

,

and each Rk is a rational function of the exponents r0, r1, . . . , rm and λ.

Put f(n) for the function such that

S(r)
n =

µn+1/2√
ν(2πλn)r−1

f(n).

Put S(r)
n = exp vn. Then

vn
n

= logµ+
c

n
− (r − 1) log n

2n
+

log(f(n))

n
,

where c = log(µ1/2ν−1/2(2πλ)(1−r)/2). Thus,

∆(2)
(vn
n

)
=

2c

n(n+ 1)(n+ 2)

− (r − 1)

2

(
log(n+ 2)

n+ 2
− 2 log(n+ 1)

n+ 1
+

log n

n

)
+

(
log(f(n+ 2))

n+ 2
− 2 log(f(n+ 1))

n+ 1
+

log(f(n))

n

)
.

The argument from the proof of Theorem 2.1 shows that

log(n+ 2)

n+ 2
− 2 log(n+ 1)

n+ 1
+

log n

n
=

2 log n

n(n+ 1)(n+ 2)
+O

(
1

n3

)
=

2 log n

n3
+O

(
1

n3

)
.

Next, write

f(x) = 1 +
R

x
+O

(
1

x2

)
(3.25)
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for some rational R as in Lemma 3.1. For simplicity, put

g(x) = 1 +
R

x
.

Thus,
log f(x)

x
=

log(g(x))

x
+O

(
1

x3

)
. (3.26)

Furthermore, by the Intermediate Value Theorem, we have∣∣∣∣∆(1)

(
log g(m))

m

)∣∣∣∣ =

∣∣∣∣ ddx
(

log g(x)

x

) ∣∣∣
x=ζ∈[m,m+1]

∣∣∣∣
=

∣∣∣∣ζg′(ζ)/g(ζ) + log(g(ζ))

ζ2

∣∣∣∣
= O

(
1

m3

)
for large enough positive integers m, simply by differentiating the form (3.26), and using
the interval for ζ.

Further, this shows that

log(f(n+ 2))

n+ 2
− 2 log(f(n+ 1))

n+ 1
+

log(f(n))

n
= O

(
1

n3

)
.

Hence,

∆(2)
(vn
n

)
= (r − 1)

log n

n3
+O

(
1

n3

)
,

and the above expression is positive when r > 1 for n > nr, which is what we wanted to
prove.

4. Motzkin numbers, Schröder numbers and Trinomial coeffi-
cients

The nth Motzkin number is

Mn =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
1

k + 1

and counts the number of lattice paths from (0, 0) to (n, 0) which never dip below the line
y = 0 and which are made up only of steps (1, 0), (1, 1) and (1,−1).

The nth Schröder number is

Sn =

n∑
k=0

(
n

k

)(
n+ k

k

)
1

k + 1

and counts the number of lattice paths form (0, 0) to (n, n) with steps (1, 0), (0, 1) and
(1, 1) that never rise above the line y = x.
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The nth trinomial coefficient Trn is the coefficient of xn in the expansion of (x2 + x+
1)n. Its formula is

Trn =
n∑
k=0

(
n

k

)(
n− k
k

)
.

The following result gives a partial affirmative answer (up to the values of n0) to Conjec-
tures 3.6, 3.7 and 3.11 from [Sun].

Theorem 4.3. Each of the sequences (M
1/n
n )n≥n0 , (S

1/n
n )n≥n0 and (Tr

1/n
n )n≥n0 is

strictly increasing while each of (M
1/(n+1)
n+1 /M

1/n
n )n≥n0 , (S

1/(n+1)
n+1 /S

1/n
n )n≥n0 and

(Tr
1/(n+1)
n+1 /Tr

1/n
n )n≥n0 is strictly decreasing.

Proof. It is similar to the proof of Theorem 3.2 and it is based on the existence of analogues
of asymptotic expansions for Mn, Sn and Trn to the one of Lemma 3.1 (in fact, as we have
seen in the proof of Theorem 3.2, the existence of an expansion with the first two terms, as
in (3.25), suffices). For example,

Mn =

√
3

4πn3
3n
(

1− 15

16n
+

505

512n2
− 8085

8192n3
+

505659

524288n4
+O

(
1

n5

))
(4.27)

(see Example VI.3 on page 396 in [FlS]),

Sn =

√
4 + 3

√
2

4πn3
(3 + 2

√
2)n

(
1− 24 + 9

√
2

32n
+

665 + 360
√

2

1024n2
+O

(
1

n3

))
(4.28)

(see [W1]), and

Trn =

√
1 +
√

2

4πn
(1 +

√
2)n
(

1− 3

16n
+O

(
1

n2

))
(4.29)

(see [W2]). We give no further details.
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