The n^{n-2} Proof Of The Formula For The Number Of Labelled Trees

 $Doron\ Zeilberger^1$

There are probably already more than 4^2 different proofs of the Cayley-Borchardt formula, n^{n-2} , for the number of labelled trees on n vertices([K],[M].) The one I present here is not the prettiest, this honor goes to Joyal's[J] (see also [L]), and not the ugliest, but it is mine (although it has some similarities with Clarke's proof[C].)

Let R(e, b) be the number of ways of organizing e employees and b bosses, such that every employee has exactly one immediate supervisor (who may be another employee or a boss), in such a way that no employee is her own (immediate or non-immediate) superior. The ways of deciding the organization can be split into four independent decisions:

- (i) How many employees, $s, 1 \le s \le e$, will report directly to bosses? Let's call them *little bosses*.
- (ii) Which s of the e employees will be named little bosses: $\binom{e}{s}$ ways.
- (iii) How to organize the s little bosses and remaining e-s employees amongst themselves: R(e-s,s) ways.
- (iv) For each of the s little bosses, which big boss should she report to?: b^s ways. Hence:

$$R(e,b) = \sum_{s=1}^{e} {e \choose s} b^s R(e-s,s) \quad , \tag{*}$$

which together with the trivial initial condition R(0,b) = 1, uniquely determines R. Since the recurrence (*), and the initial condition, are also satisfied by $b(b+e)^{e-1}$, by the binomial theorem, it follows that $R(e,b) = b(b+e)^{e-1}$. In particular, R(n-1,1), the number of labelled trees on n vertices, equals n^{n-2} .

References

[C] L.E. Clarke, On Cayley's formula for counting trees, J. London Math. Soc. 33(1958), 471-475.

[J] A. Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42(1981), 1-82.

[K] D.E. Knuth, "The Art Of Computing Programming", v.1: "Fundamental Algorithms", 2nd edition, Addison-Wesley, Reading, 1973. (p. 406).

[L] G. Labelle, Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange, Adv. in Math. 42(1981), 217-247.

[M] J.W. Moon, "Counting Labelled Trees", Canad. Math. Congress, Montreal, 1970.

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA. zeilberg@euclid.math.temple.edu . Supported in part by the NSF.