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1. Introduction. While studying the cnumerative uses of generating functions
we have come to the conclusion that a great deal of unity underlics the enu-
meration of “complelely labeled” and “completely unlabeled” objects. The
latter case cssentially refers to applications of Pdlya’s Theorem where the
symmetric group acts on the domain. The schieme is the following.

To enumerate o st of “objeets” (e.g., graphs) a multivalued binary composi-
tion is introduced on the set. This allows us to decompose the objccts into
products of thuse in some subset (e.g., connected graphs). The composition of
objects leads naturally to a composition or convolution of the corresponding
enumerating numbers and this leads to a generating function which reflects
the convolution. (Generating functions such that formal multiplication of these
functions leads to a convolution of their cocflicients of the desired type.)

In Scction 2 we nxiomatize the composition operation of objects introducing
the notion of a prefab. The enumerative propertics of the composition lead us
to a generating function, somewhat Liding the explicit study of the convolution.
Theorerm 1, the product theorem, states the basic property of generating fune-

- tions. Then we show lhow Theorem 1 and some simple corollaries unify many
epumeration problems.

In Section 3 we explain why many scts of combinatorial objects have generat-
ing functions of the form ¢, ‘

Scetion 4 discusses briefly some gencralizations and possible dircctions of
development.

One of the advantages of our approach is that the combinuatorial problem
itsclf suggests which species of generating function should be used and generating
functions are not introduced as ad hoe devices. To illustrate this, at the end of
. Seetion 3, we ennmerate direct sum decompositions of {inite vector spaces using

wliat we believe to be a new type of generating funclion.

* Thig author's work i3 the result of research supported by the Oflice of Naval Research ot
ITarvard University aad research dune during Project Scawmp, Iustitute for Defense Analyses,
Summer 1969,
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Convolutions nid generating funetions arise jn @ more abstract rrmt‘,r;ul
:sc-ltin';l when .'-'1.|:|]_\ ir.g incidenee :1i-,;--1;r:1‘.' uf Il::rii:l”_\-' ordered This ix
developed by Rota and Stanley [1)

We do not discuss the relution of our methods to dillerenee equations arising
in combinatories. We have not been nble to include “partiadly Jableled objects”
{(Polya type theorems) in the prefab scheme. Vurthier exmnples and more
detailed development will be found in our book [2] where the preful point of
view motivates a large part of symbolic methods in enuinceration.

4]%. ;.

2. The general theory. "T'he classical problems of enumcrating unlabeled
graphs [2, 3, 12] and scts of words on a finite alphubet motivate our introduction
of a general structure for generating functions.

We can think of an unlabeled graph as being decomposed into its connected
components. Conversely, given any two graphs we can construct a new graph,
their composition, whose components are the components of each of the given
graphs. The conneeted graphs play the role of basie building blocks or “primes".

Word problems are more complicated. The word 83y can be decomposed
into the words ey and B8. A reasonable definition of the composition of these
two words i3 one that constructs all words which can be decomposed into the
given ones. Thus we compose two words by interweaving them in all ways. The
composition of cy and B8 s the set of words {av88, @8v8, aBBy, favyB, BaSy, BRay].
Thus we are led to a multivalued composition. Decomposing {urthier, oy is
composed of a and v. Ilenee words of one letter play the role of “prime” building
blocks.

Compositions defined by constructions have led us to the following.

Definition 1. A prefab (S, o, f) is a set S together with a multivalued binary
operation o, {(a, bt S implics a o b € 8) and a real valued function f satisfying
properties (a), (b), and (¢) below. We extend o to subsets of Sby 41 ¢ B =
fc]ceaobforsomeas A and be B).

The composition o

a,) is assoclative

a,) is commutative

a,) has anidentity 7; e 0t = 20a = aforallac S. s
Weeceallpe Sa primeif praobimplicsa = iord = ¢. Then

b,) unique factorization—every a & S factors uniquely into primes in the
sense that

acp'ops' o opyt,
where the p;’s are distinet primes and the p’s and the ¢'s are unique up to order.
by) very unique factorization—if ¢ ¢ H.» o [1, ¢ where the p's and ¢’s

arc distinet primes, then there exist unique clements a ¢ [1; p7 and b¢ I1, ¢** ?

such that ceaob.

The function f satisfies
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c) ifer, (‘Tqb then [(c)) = fle2). Dy ¢) we can define flre = b) tu b fle)
forany cea 2% A then we assume
L(fl o }/)
c o bl =
2 12 8= i

whenever a and b liave no comtnon factors other than 4, where |A] denotes the
size of & set A. If the composition is single valied as in unlableled graphs, we
can choose f = 1. Tle situation with common fuctors will be discussed later.

Tiic last axiom is the key to combinatorial problems for it lets us use generating
functious. To introduce generuling functions we need

Definition 2. Let (S, o, [) be a prefub. Then a “multiplicative” function
won S taking values in an integral domain is ealled & weight. By multiplicative
we mean w(c) = wla)w(b) whenever ceaob. The 4-tuple (S, o, §, w) is called
a weighled prefab.

A prefab can have several different weights, e.g. if the clements of the prefab
arc unlabeled graphs, then a graph ¢ with » vertices, and ¢ lines could have
weights such as wi(g) = 2, wa9) = y*, w,(g) = z'y*. If ¢ has m complete
subgraphs then w,(g) = 2" is a weight and so on. In the casc of words wla) = z°,
n = number of letters in g, is a weight.

Definition 3. If (S, o, {, w) i3 a weighted prefab and 4 € S, then the gen-
erating function or enumerator g(d) of A is given by the formal sum

_ ),
M oA = 2 fta

In the examples of graphs and words the generating functions arc formal
power serics (ordinary and exponcential respectively). Weights of the form n
give formal Dirichlct serics.

The following product theorein states for prefabs the basic classical property
of generating functinns as applied in combinatorics. For the case of labeled
graphs it was given by Ford and Uhlenbeck [9].

Theorem 1. (Product Theorem). If (S, o, f, w) is a weighted prefab and 4, B
cre subsets of S such that no element of A has any prime factor in common with
any element of B, then

g(4 o B) = g{A)g(B).

Proof. Letce A o B. By Axiom b, and the assumption of no common fuctors
in A and B we can factor ¢ uniqucly into primes

ce JTp o I1 o,
where H pi e A and I] @¥f ¢ B. By by) there exists a unique a ¢ II p2¢ and
beI] ¢} such that cea o b. Hence

gAoB) = 3 w(e) _ DD w(e)

i 1) arA bLilf cravh 1(5
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- (7 -
but by ¢, ez and the definition of

w(aol) awlmyu(l) < ,

B’@,__aobl_A___z_ \
cian [(0) fla o) flwib)

Therefore

o4 on) = £ T MW — gongm). QED.
Corollary 1. If (S, o, {, w) is a weiyhled prefal, then
@ o) =TT Z 0% 1,
where p° = |£} and p ranges over all primes in S.
Proof. I pi, pa, -+, arc the primes of S and P, is the union of all powers
of p;, then

-5 wl) _ ulp) .
g(P() ?:3 (;i f(C) ,,20 f(P.) lP [

and g(S) = TT. g(P.) QLED.

Corollary 2. If composition is unique, then, we may take f = 1 and we have
1
® ' g(S) = I;I 1= o)

In our first sct of examples composition will be unique so we will take f = 1.

Example 1. Unlabeled Graphs—The clements of S are unlabeled graphs,
¢ is as deseribed in the beginning of this section, f = 1, and w,(a) = z" where

n is the number of vertices in a. The primes are the connected graphs. Then
by Carollary 1

o

el (1 — xi)n.’

where g. counts unlabeled graphs with n vertices and «; is the number of con-
nected unlabeled graphs (primes) with 7 vertices.

@

Remark If we chose only a subset C of connected graphs as primes (or a
set C of connected graphs having some special property I such as being rooted
or colored) then (4) is still true where g, is the number of graphs with n vertices
whose components belong to C (have property P) aud a, counts graphs in €
with n vertices. The closure of €' under o gives a sub-prefab (8, o, f = 1, w)
of (S,0,f{ =1, w).

L.G.,if Cis the sct of unlabeled rooted trees then S’ will be the set of unlabeled
rooted forests, 7.e. those graphs whose components are rooted trees (a graph



GLNTat s i L e voas
i ted by selucgi@mone of ils vertives s distingni-hed vertes or oot und
g UL 1 o ‘ ) i-un orplie iF the graph i~omaorplism pre-crves roots).
two reeled loures I=0Tn i ol ™ :
’l'; " (4) ga counts rovted forests and e, rooted troes. However, every rooted
ien in (4 b oy :
f rLIt on n \'.Cl"ﬁl.'l.. vields o rooteld trec on m 4+ 1 vertices by adding a new
ores 7 A i, iy o o g
vertex as root and conneeling it to the root of each component (Figure 1)
Thercfore

Fioune 1

g0 that (4) becores

. 1
(5) ZG,.I =z II (1 . Ii)a( N

the clussical forniula of Cauchy ({4], pz. 127 where 7 = o).

Example 2. Tartitions of an Tuteger—Let S be the set of all unordered
partitions of non-negative integers into any numbcr’ 9f parts and ]'“’T’ ao b denote
the partition formed from all the parts ofa undnb. The prime pnrtltlons arc t,re
one part partitions 1, 2,3, -~ - . Let w(a) = z .\\‘hcrc the nis the sum of the
parts-of a. This gives the usual theory of partition gencrating functions (5, ).

Example 3. Factorizations of Tntegers—Let S be the set of all ungrdcrcd
factorizations of positive integers into positive integers not cqual t_o 1.. Ii.g., the
frctorizationsof 8 are 2 X 2 X 2,2 X 4,8. Teta o_b bc. th'c factorization whose
factors consist of all factors of @ and b. Compusit}on is single vakl‘uc.d npd the
primes are 2, 3, 4, 5, 6, -+ . In order for our wmghtltf) Le mul:r,lpllcutwe we
let w(n) = n* (the minus ix standard notation for Dirichlet serics). Then by
Corollary 1

(©) éam_' = INI— ! i

n-‘ll—n

where a, counts the factorizations of zn. (6) wus derived by Lloyd {7] using
Paélya’s Theorem.

T aerm

78 E.A.BENDER & 5. R GOLDMAN

In general the examples we have counted with Corollary l + be derived
from ’6lya’s Theorem whiel gives the following form.

Corollary 3. If (S, 0, [ = 1, w) 75 a weighled prefaD with unique composition,
then -

U(S) — en/lu./hn./:ﬂ...
where

9= 2 u@) = X wb).
Proof. 'fake logarithms in Corollary 2 and expand log (I — w(p)) in a
Taylor series. Q.E.D.

In the following examples composition is multivalued.

Example 4. Words—We wish to count all words on the alphabet {«, 8} in
which cach letter occurs an odd number of times. Let S be the set of all words
on {a, B} and o as described at the beginning of the section viz, (we cannot take S
to be all words in which each letter oecurs an odd number of times, since that
will not be a prefab) all words formed from the given words by intermixing them
while retaining their order. The primes are words on one letter. Let uw(e) = z°
where n is the number of letters in a. If C is the set of words with each letter

appearing an odd number of times, 4 the set of words on a with an odd number
of letters, and B the same for 8, then

C = AoB, . 9(3)=ﬁ.

s g

There are infinitely many variations on word problems such as counting
ordered partitions of a sct. (The letters indicate blocks and the positio
words are the clements of the sct.) :

and therefore

ns in the

Example 5. Labcled Graphs [8, 9]—Let the set S consist of all labeled graphs
(a graph with n vertices uses the labels 1,2, - -+, n for the vertices). Composition
a o b of two graphs @ and b with m and n vertices respectively is defined as
follows: With each partition of 1,2, --- , m + n} into a sct of size m and one
of sizen, say {r, <, < -+ <.} and fuy < up, € -+ < w,} associate the
graph whose components arc those of @ and b (as in the unlabeled case) labeled
by replacing ¢in a by », aud 7in b by u, . Run through all partitions of {1,2, -+ - ,
m = n} to get @ o . If a graph arises in more thun one way by this construction

~we keep only one copy of it ina ob. The primes are the conneeted graphs. If a has

m vertices and b has n vertices and @ and b have no common factors then

laob| = (7":n) - (m+

mln!
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This leads Ue ,ch.')nsc fla) = ml

(e

Let w(a) = z™. We upply Corolliry 1 to
compute g(5). Let p be a prime wected graph) with m vertices. Then from
this ldcﬁnit.ion of o, p* hns mk vertices and thus f(p') = (mk) 1. Further

1 (it

Pl =5 (mh*’

the k! arises since cach graph in p* comes up /! times in the construction. Thus

- wpt 1 1 (wm)Y = =PI
0 SR - T4 () -
Substituting in (2)
( ) - M . LC)
© 79 = T e (42) = exp (£ 22) = e,

where ¢(C) is the enumcrator of connceted graphs. Since.w and f are ouly
functions of the number of vertices, collecting terms in (8) gives

© ig.%=0xp<i‘c.§:!).

n=0

where ¢, cnumerates graphs on n vertices and c. connected graphs (¢, = 0,
= 1 from the construction). .

o The weight could have been yz™ where ¢ is the number of edges. Other

variations are obvious.

Remark. Just as mentioned in Example 1, we can Tcstrict ourselves to a
subset of graphs all of whose componer?ts bclong to a given st or have szme
special property . Then (8) and (9) will hold with npprolpnatc mtcrplr.ctzz' ion
of g. and ¢, . Gilbert [8] applies this to several cases and we give some applications
latIi'rc;Lice that we were led to exponential generating functions by the nature
of the problem and not as an ad hoc tool.

Example 6. E-colored Graphs (Rend [lQ])—/\ {;~colorct.1 graph is a Iak;clcd
graph together with a proper coloring of its VCTLl?CS '(adjnccn.t, ycrtzlccs | avg
different colors) using all of the eolors C, ,l C12 , 'l, C, . Several distinet k-colore

aphs spond to the same Inbelad graph. '
Er;i‘;b;glc’ :ﬁzrzzsoof labeled graphs which have 'bccn properly colored using
any of thecolors ¢y, - -+, C. The compositionacb mvolyes two stcps: constr}uct
the graphs as in Example 5 keeping the colors ﬁ.\fcd d‘urlng rgl:lbclmg n.n(?_ tllctn
add some edges connceting vertices inla to vertices in b which do.nnb violate
proper coloring. A prime is a colored point. If a amd b ll.'L\'.C no factor in common,
i.c. no common colors and have m and n vertices respectively, then

m-l—n)

m

(10) laob| = 2"(

Ul oA BENDLT & b G LA
-
m 4 n . ; e
where ( + ) comes Trom the relabeling st ad 2 q vumber of ways
n )
of adding edges. Fram (100 we see that we iy toke flu) = 271 Let

wla) = 2" I pis wprime [pY] = 1 sinen e anly properly colored gruph on
vertices using 1 eolor is the completely disconneefod one. Henee

- win)” fp"| = i: -

o J(07) 2™t
and by Corollary 1

m -

o @ k
Sy = M) =S = ( -’“—)
0 = 20 s = \ D)
where M .(k) counts properly colored Iabeled graphs on m vertices using at
most & colors. If F.(k) counts those graphs where every color is used, the
k-coloted graphs, then we clearly have by the product theorem

L3 Iﬂ o zwl L]
R man = (S

If ,,(k) counts connected &-colored graphs on m vertices, and G.(k) connceted
graphs on m vertices each of whose conneeted components is a k-colored graph,
then by equation (9) and (he remark following it we have .

é G,.(/-:)i—; = exp (g 1.(8) 1%)

This correets a formula of Read {10] where he assumes G.(k) = F.(k). This
invalidates some results of Cuarlitz [11].

The product theorem is actually true in greater generality
here. Thus the fact that the eyele index of the product of tw
product of the cycle indices [12] and the fact {hat the genera
the sum of two independent random variables is the product of the generating
functions of the individual variables (13} arc corolluries of a general product

theorem. The unique factorization essumptions must be changed for the general
theorem.

then presented
o groups is the
ting function of

3. The exponential formula. I'or the special eise of graphs in Ixample 5
Corollary 1 became y(5) = ¢**, where C is the scb of primes of S. This type of
formula comes up in several places and generalizing to prefabs seems to put it
in proper.eontext. Many of these applications ean alo be derived by setting up
our relation as equations in the incidence algebra of partitions of a sct and using
a theorem of Rota relating exponentinl generaling funetions to the semigroup
of multiplicative funetions in the incidence algebra {14, 1, 2]

Theorem 2. If (8, o, f, w) isa weighted prefal such that

ML ST N TR ORI ' i
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" ) 5= (22) /.
(1) ]Pﬂp),mm‘cluualmlly (") i) )1
for all primes p and inlegers k, then
(12) g(Sy = ¢,

where P, the set of primes of S, has enumeralor

g(p) — z l”@

prd I(.I’)
Furthermore, under our assumpliong

ry
(13) gn!

is the generating function of the sct of clements which are products of n (not neces-
sarily distinct) primes. :

Proof. (12) follows immediately by substituting (11) into enuution (2) of
Corollary 1. This is just what we did in Ixample 5. To prove (13) we define o
new weight w*(a) = w(a)y” when a is a product of 2 (not necessarily distinet)
primes. Then by the first part of the theorem, (12) holds for (S, o, [, w*) and
expanding (12) the cocflicient of y* yiclds (13). QLE.D.

Equation (12) will be culled the crponential formula. Roughly speaking (11)
says that multiplying cqual pritaes is like multiplying distinct primes, cxcept
for confusion which allows the same product in p” to arisc in n! ways,

Example 8. TRooted Labeled Trees (Pélya [3])—Let S be the set of rooted
labeled forests, i.c. each compouent is a rooted labeled tree [3, 4]. Composition,
f and w are defined as in Example 5, and the primes are rooted labcled trees.
The remark in Example 5 now applics and by the exponential formula

19 F@) = L5 =cxp (Z n. ?‘—) =",
FrrSe 13! per 73
where R, counts rooted labeled trees on = vertices and F, rooted labeled forests.
But a rooted labcled forest on n vertices gives rise to n 4 1 rooted labeled
trecs on n + 1 vertices by adding a new vertex labeled 7 + 1, connecting it to
each root of each component of the forest, and choosing cach point of the resulting
tree as a possible root. Ilence, (n + 1)F. = R.., which implics R(z) = zF(z)
and substituting into (14) we have Polya’s formula )

R(z) = ze™*.

Example 9. Cyecle Index of the Symmetric Group—Let Co(4, +-+ , 4)/n!
be the cycle index of the symmetric group on n letters. We shall prove the well
known identity {4, 12}

. ~C(h e 1) P R IR 7LV R
(ID) ;ﬂ_» 1 71' = e‘ 1 /2 et .

~
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Let S be wll permutations aeting on 01,2, - ni for i].[r7| written i
evele notation. Let e b be justinosition of the fwo ]wr;rnml:xli:mt e
the relabeling operation introduced in Example 5 for graphs .(\‘
d(,":L“Il,Lf with directed graphs all of whose components :n:e «lir(.-c.-l,c-d cyeles.) 11
primes are_cyelic permutations. If @ has a, eveles of length ¢ and ac)tka .
{1, 2, -« , n} then f(a) = n! and we lot wla) = (15 --'-a("'z" Sinc il fm
are (b — 1)1 distinct cycles (primes) on 11,2 - erating function
for primes is

ogether with
¥e are roully

* k} the generating funetion

o) = TG0 - 502

<
T
and (15) follows from the exponential formula.

Example 10. TPartitions of a Set—A partition of a set B3 is a sct of subscts
B, of B_s.uch that U B, = B, B, N\ B, = ¢if i 5= 3. Let S be the collection of
all pmjtl.tmns of {1,2, -+, n} for all integers n. If we think of the elements of
a partition as vertices of a graph and all vertices in the same block of & partit:ion
are connected to cach other, then a partition can be thought of as a labeled .n h
where com.poncnts are completely connccted. Composition is now deﬁnizl r:\s
for graphs in Example 5, so0 f(a) = =! where the partition is on a set of n clements

and we let w(a) = z". The primes arc the iti i i
: S o partitions with one bl
(1,2}, {1, 2,3}, --- . We have ne block viz {1,

- swp _ &Sz
W) = Loy = L= -1

and by the exponential formula we have the well known formula

A 10O

,nl.

6 =~ T
(16) 23,77!:8 1

n=i

where the Bell number B, counts all partitions of |1, 2, - .-

Example 11.  Dircct Sums of Finite Vector Spaces—If V
over the ficld GF(g) with ¢ clements, then we gay Vi + Vo + -+ Vi is a direct
sum dccom‘position of Vif Vy, -, Vispan Vand dim V = Z di.m vV, Tclc
latter condlt_ion is cquivalent to requiring that no V, meets the su‘m of th(‘: ;;th o
Vs gxccpt in 0. Two decompositions are the same if and only if the; d'ﬁcr
only in tl!c. order of the V/’s. We wish to compute the number of dire};t ;uer
dccompnmthns of an n-dimensional veetor space over 1'(q). o

Ak + ¢ dimensional space V.., ean be decomposed into £ und ¢ dimensional
'sIE))accs as follows: pick an ordered basis for V., Gy SAY @yt e, Gy, e “Iam

ienay, o, o and oy, o0, a ar < ; q {di Sonal
spaces. There are (g*'¢ — 1,)(q"" - ql)c -t~] l-c g%’?siorqfl‘]’c"ls ::)I::lictrcddml‘)imo?nl
Viee . }3ut cach k space and each ¢ space has (5t — D' —¢) -+ (¢ jCSl_(:;
and (¢ — 1) -+« (¢* — ¢*7") ordered busis respectively. Therefore since we lqm\’(-

is & vector space
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overcounted thire arc

O N e VIR (e M

e Y R R A [ (AR ) IR P U
direct sum decompositions of Vi ¢ into u & space und an € spuce.
To reverse the procedure and define composition is a bit 1nore tricky.

Let Vo, be a countable dimensionul veetor space over Gli{gy and let V, C Vo C

Vs C -+ be a fixed sequence of spaces such that dim V, = B\, =v..
For every subspace ¥ of dimension k, k = 0, 1, 2, .-+, we pick a specific iso-
morphism ¢y : Vi — Y. The ¢y stay fixed throughout our argument,

Let the prefab S consist of all dircet sum decompositions of all the V./'s.
If 35 W, and 3 U are dircet sum decompositions of V, and V, respecetively
then 3 W, 0 X U, is the sct of direct sum decompositions of V., constructed
as follows.

Letai,as, «** @, auery v+, asse be an ordered busis of Viee . Then ay ,
@z, o gencrates a k-space ¥ and au.y, c -+, ay.q gencrotes an {-space Z.
Using the fixed isomorphisms ¢, and ¢, we map the decompositions . W,
and 27 U, onto Y and Z. 3 ¢, (IV,) + 2 62(U.) is the resulting decomposition
of V... Now run through all ordered bases of V,,, .

The primes of the prefab are all decompositions consisting of exactly one

spaceviz V, ,V,, --- . If Z W, and 2 U, are as above and have no common
factor then

IZ W, o E v .
_ @ = D@~ ) -+ (¢ = gy
@ =D ~9 @~ N =D~ @ — ¢
for each pair of spaces (¥, Z) occurs (¢* — e g~ ¢ - 1) -
(@' — ¢*™" times as we run through all ordered bases of V., .

Henee we take 0 W) = (1 — 1(* — Q) -+ (¢~ ¢ and let
w(p, W) = z*. (S, o, f, w) is a weighted prefub. Tor the exporential formula
to hold we must verify cquation (11).

By our construction V2 will have

@ =D~ g) - (" = )
"= D" =@ - ("= ¢" )
elements if we count multiplicities, Z.. the same decomposition constructed in

more than one way in the process. However, each decomposition is constructed
exactly k! times. IHence

- S

Vil = sv 3

and the expounential formula is

D.(g)2" = .
1 S = :
(17 T+ ;l(q-_ Do =g cxp (;((l‘ il IR 7 Qh_'))

i
:
]
;
]

iU L T U P PO P ST PR

/2

Variations of this preblem can be (reated with the | el theorem, eqg.
conditions on the size of the spaces in the decomposition.”

Direct sum decompositions are a g-unalog of partitions of a finite set. If we
treated this problem in projective instead of affine form, then the projective
form of (17) would converge to (16) us g — 1. A general discussion of g-analogs
has been giten by Goldman and Rota [15].

where [),(y) is the number of direct sum d(-('umprr—itiur:s%uvcr G (q).

4. Remarks. In several applientions sueh as labeled graphs, when com-
puting |p*{ a resulting objcet may arise in more thuan one way. This also occurs in
constructing a o b where g, b have common fuctors. In siuch eases we eould allow
objects to occur in a o b with multiplicities, nce for each way of constructing
them, 1.¢. @ o b would be a multisct. When Axiom ¢; can be extended to allow for
arbitrary @ and b, we can prove the product theoremi for multisets. "Ihis is
essentially the approach of the proofs of Ford and Ublenbeek [9], for labeled
graphs. Theorem 2 can then be proved by first establishing (13) which implies (12).

A generalization of the star-tree decomposition of graphs [9] should exist
for prefabs.

Is there a natural way of associating a partially ordered set with the objects
such that the convolution of the associated incidence algebra or one of its
subalgebra’s corresponds to the generating function of the prefab?

Tinally, the prefab approach should be unified with enumeration of partially
labeled objects by Pélya type theorems [3, 4, 12]. :

Notes added in Proof:

(1.) The error in [10) mentioned in example 6 was correeted in R. C. Read &
E. M. Wright, Cand. J. of Math., 22 (1970) 594-506.

(2.) Ideas similar to those developed here, in the case of exponential type
generating functions, are presented in Foata & Schittzenberge, Théorie Géoméiri-
zue des Polynémes Euleriens, Lecture notes in Mathematics, no. 138, Springer-
Verlag, Berlin-N. Y., 1970.
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