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An Asymptotic Formula for the Bell Numbers

'

LEO MOSER and MAX WYMAN, F.RS.C

L. Introduction. Properties of the Bell numbers G,, defined by
(1.1) | ILL L

have been studied by many authors. A recent thesis of Finlayson (5) lists
over fifty references to these numbers. The problem of determining a
formula for the asymptotic behaviour of G, for large » has been suggested
several times. However, as far as we are aware, only two such formulae
have been derived. Knopp (6) gives the formula

(12) G o (L)
n! log n

where 7, 50 as # — o, Since the way in which 7 approaches zero is not
specified the formula is of no value for computation and does not constitute
an asymptotic expansion for G,. Epstein (4) gives the formula

ne'ls ")‘
. &t

$ we shall see, this result is in error. The method used to obtain it is rather

ong, but could be used to get a correct expression for the first term of an
asymptotic expansion for G,. In the present paper a complete asymptotic
expansion for the Bell numbers will be obtained by an entirely different
method.

2. Asymptotic expansion. Since the iterated exponential function
occurs throughout the paper we shall use both e* and exp s to denote the
exponential function,

From (1.1) and Cauchy's theorem

« 3 _ﬁ'_ S |+l.
@.1) G = g [l = 1)1/ e,
where Cis the circlez = Re'. Hence,

n!

(2.2) G, = o f_ ) explexp(Re") — in6] do.

Ihis can be put in the form

(2.3) Gy=A j‘: exp(F(9)) de,
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where

(2.4) A = [n!exp(e® — 1)]/2xR"

and

(2.5) F(8) = exp(Re") — ind — exp R.
Let us define ¢ by

(2.6) ¢ = iR

and consider the integral /, defined by

(2.7) J = f exp(F(0)) de.

An easy computation proves the existence of a constant k > 0 such that
(2.8) [J| < exp(—k& Re®’%)

Since we shall show that the terms of this order may be neglected in our
asymptotic expansion, we shall anticipate this result and use (23 to
obtain

(2.9) G, ~ A f exp(F(0)) de.

Our next step is to expand F(8), as given by (2.5) in a Maclaurin expanson
about 8 = 0. If we introduce the operator O defined by

2.10) 6 = Rd‘%

we may write
o —(i‘ll
(211)  F(8) = (Re® — m)i0 — }(R'+ R) "6’ + 3 (8%") g
k=3 :
At this stage we choose R to be the unique real solution of the equatisn

(2.12) Re® = g,

With this choice (2.11) becomes

@ ‘an k

(2.13) F6) = — W& + R ' + 3 (Gtcn)(—lg.

We now introduce the following notation:
(2.14) ¢ = [§(R* + R) e®]¥0
(2.15) B = A/[4(R* + R) e*}
(2.16) k= e[}(R? + R) e*]} = }(R* + R)}ern
(2.17) ay = e % 0M2(e") (19)*+?/ (k + 2)![§(R? + R+
(2.18) z = ¢ R
(2.19) f(z) = ga,x‘.

We note in passing that the a, are polynomials in ¢.
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Making the substitution (2.14) in (2.9) we find

. h
(2.20) G,~B f O
—A

From (2.17) an easy calculation shows that there exists a fixed Ro such that
forall R > Ro,
(2.21) laal < [20]**2.

We have defined z as a function of R. However for the moment we consider
s to be an independent variable and expand ¢/ in a convergent Maclaurin
expansion of the form

(2.22) P =Y b, bo=1
=0
Further, by (2.21), 2 = e~ ®/2 is inside the domain of convergence. Hence
at this stage we may again take z = ¢—R/2_ We note in passing that the b

are polynomials in ¢. Further, bars1 contains only odd powers of ¢ and by
only even powers of ¢.

Using (2.22) we may write (2.20) in the form

Pt 7] oM N

L i
where
v h o
(2.25) R, = e—"<2 b.z‘) d¢.
—A k=3

From (2.12) we see that R — = asn — «. Further, (2.16) implies that
h — @ as R — «. From these facts and the known asymptotic expansion of
functions of the form S._; ¢~ . (polynomial in ¢) d¢, the replacement of
hby o in (2.24) is easily justified. Hence

(2.25) B B{ 5 r e“'b.d¢) &+ R,} !

k=0

In order to complete our proof we must show that R, = 0(|s|"). By a
lemma of the authors (7), (2.21) implies

(2.25) 1Bl < 265411 + [26[9*.
This yields

2.27) 3 0| < PuloD lsl'/M,
where P,(|¢|) is a polynomial in [¢| and A is given by

(2.28) M=1— s (26] (1 + 2lel").

¢



52 THE ROYAL SOCIETY OF CANADA

Since |[¢| < hand 5 = ¢ &1, i#%s| < [$(R? + R)]*2%—B" 40 as R — =,
Hence for large R, M > }. Finally,

f e*'P.(|é]) de

exists, which implies |R,| = O(|2[*). This completes the proof that

(2.29) ' G, NBi (J"" e—-"btd¢> ean
=0 —

We have noted that the bu+1, as polynomials in ¢, contain only odd powers.
Hence

(2.30) & ~al ( f . e”"'b,,,dda) e
=0 53

3. The first terms of the expansion. By calculation we obtain

R'+6R’+ 7R + 1 ¢« R'+3R+1,
6RR+1)" ® " 9RER+17*

B T kel e
Hence from (2.29) we find
2R' + 9R* + 16R® + 6R + 2}
e’ — 28 _+ 9K + 16R
3.2) G 4 Bl:l 24Re* (R +1—)r———— .

Using (2.12) we may write

(3.3) b i r’B[l Loy 9;‘” & liRI);}- 6R tg]
From (2.4) and (2.15) we have

(3.4) B = nlexp(e® — 1)/R*[2x (R + 1) Re®t,
Since Re® = 1 we have e® = nR~!, R* = pre—"E,

This implies

3.5) B = {nlexp[n(R + R-1) — 1}/ [2x(R + 1)t

We now use Stirling's expansion for n!, namely
1
1 . —n Las I8
(3.6) nl~ 2x)'¢™n (1 - __12n) [

to obtain from (3.5),

3.7 B ~ (exp[n(R + R-' — 1) — 1IN+ 1/120) /(R + 1Y,
Hence from (3.3) and (3.7) we obtain

38) G~ @+ 1Texpln(R+R"' - 1) — 1]

(1 _R'C@R' + 1R + 10))
24n(R + 1)°
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It would be natural to express R asymptotically in terms of n by means

of (2.12) and thus to obtain an asymptotic expression for G, entirely in

terms of n. However, this procedure is not satisfactory as we shall now
show. We may rewrite (2.12) in the form

(3.9) R = logn — log R.
Starting with the approximation R = log n and iterating we find
(3.10) R=logn—log(|ogn)+l-9glgé)-g”—"l+....

Further terms contain higher powers of log 7 in the denominators. However,
in (3.8) we have a term of the type nR. It is clear that none of the terms in
nR will approach zero asn — «. Hence none of these terms can be dropped.
For this reason it is better to retain (3.8) as our final result.

This point is overlooked by Epstein (4) thus leading to the inaccuracy
of (1.3). For n = 50, (2.12) gives R = 2.8608902 . .. and (3.8) then yields
Gso = 1.85730 ... X 109. This is an excellent agreement with exact value
of Gy given in the next section.

4. Table of values of G . Using the recursion formula

(4.1) B okt e (:’) -3

i)

(3) constructed a table of G, for n < 20. By means of an algorithm due
to Aitkin (1), H. Finlayson recalculated these values and extenderd the table
up to n = 25. At the request of the authors, F. L. Miksa checked these
values and calculated the G, up to n = 51. G, was independently calculated
by H. W. Becker (2). The Table will be found on page 54.
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Tams of G, (0 < n < 51)

nooaqao-»wun—c:

B ARERLRNEEENERREREEIRRRRNN

4140

21147

1 150975

6 78570

42 13597

276 44437

1908 99322
13829 58545

1 04801 42147

8 28648 69804

68 20768 08159
583 27422 05057
5172 41582 35372
47486 98161 56751

10738 82333 07746 92832 76885 79864 25200

1 57450 58839 12040 31280 32434 47025 31087
23 51152 50774 06176 28200 69407 72437 BS088
357 42549 19887 26172 91353 50865 66266 42567
5520 50118 79716 54843 21714 60328 (Tg

22761 58355
42006 43151 01201 74682
542 02104 54071 84953 77460 15761
22155 18500 00263 39172 47281
185 72426 87710 78270 43825 77671 B1008 91749 92218 52770
85005 18301 91582 52441 92558 19477




