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A FUNCTION RELATED TO THE SERIES FOR ¢~ (7

By Leo F. EpsTEIN 2 b =]

1. Introduction and Definitions. In deriving a series expansion for
¢, an interesting group of integral constants is encountered, the coeffi-
" cients in the expansion

(1) & = e[l iBarBasbh, s Eey ]
- 21 3! n! _
- The numerical values of these constants can be obtained most directly
by substituting the value z = 0 in the deriyatives of ¢, the n’th deriva-
tive thus yielding K., following the rule for a Maclaurin® series. In
this paper, we shall discuss a few of the simpler properties of these
integers, and of & function derived from them.

As a study of the derivation from the derivatives of ¢ will show, '
the K-numbers -(a8 we shall call them) are given by the following
iteration formula ' '

a(n — 1) a(n — 1)(n — 2)

(2) F '+' nKn—l + Kn

Koy =14 nky +

K,

i
b

= (n
@) K =1+ 2, (m Kn

where (;;) is the ordinary binomial eoefficient. Thus K, ean be calcu-

lated at once if the values of K, to K,., are known following the above
equations. In this respect, the K-numbers resemble Fuler's numbers,
which are also integers derivable from similar equations involving
binomial coefficients providing all the values from E, to E,_; are known.
Since the binomial coefficients, which are the multiples of the K’s,

j

! Whittaker and Watson Modern Analysis (Cambridge, 1935).
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154 LEO F. EPSTEIN

are all whole numbers, and since K, = 1, K, musi always be an inieger.
It should be observed that symbolically, we may write’

(4) Kopr = (1 + '15)’I

where, in the expanded series, we substitute K, for k™ in each term.
It has further.-been demonstrated by various writers’ that we may
express K, in the infinite series form

(5) Kn =

® |
L["]‘

% (n=l'2:33"')

This equation is restricted to positive integral values of n; we shall
now demonstrate that this restriction is unnecessary. In fact, we shall
define the K-function
-t
®) 20
=0 t!
where 2 is any number, real or complex. This definition is quite valid,

for (6) converges absolutely for all values of z: applying the well-known
ratio test, the ratio of the (¢ + 1)st term to the {'th term is

¢+ 1) 0
t+ e
and as ¢ becomes infinite, the limit of this expression is identically zero
for all finite values of z, real or complex.

By simple algebraic manipulation of the definition of K, (Equation 6),
we obtain, when z is a real positive integer,

”’g[cc . (i - 7:) + (rin)'cf—r?)]

the first term of the sum vanishing for n = z. This equation is valid
for all values of z = 0, and is especially useful for the calculation of K.
for very large values of the argument.

mp--

K, ="+ (z -
!

t Equation (4) was known to d’Ocagne: Am. Jour. Math., 9, 370 (1887).

* This equation (5) for poaitive integers, the coefficients in the series expansion
for ¢ was given by Dobifiski: Grunert’s Archiv., 61, 333 (1877), and is said to
have been known hy Kuler (of Bell, footnate 24¢).  Another early referenee to
these numbers, which seem to have been rediscovered many times is Cesaro:
Nouvelles Annales de Math., 4, 39 (1885).

Q)

FUNCTION RELATED TO THE SERIES FOR e 155

For negative values of z, equation (6) assumes the Dirichlet series
form

- i &

Although equations (6) and (7) both converge absolutely for all values
of z, it will be observed that while (7) converges very rapidly, the

mls—

TABLE I
K-Numbers for Posttive and Negative Integers
K, ' K.,
0 1 —1/e 1 — 1/e = 0.63212 05588
1 i .48482 91072
2 2 .42177 34383
3 5 .39340 93945
4 15 .38019 78350
5 52 .37389 58961
6 203 .37084 15557
7 877 .36934 54823
8 4,140 .36860 75427
9 21,147 .36824 18738
10 115,975 .36806 01230
11 678,570 .36796 96382
12 4,213,597 .36792 44638
13 27,644,437 36790 19333
14 190,899,322 .36789 06810
15 1,382,958,545 .36788 50591
16 10,480,142 ,147 .36788 22496
17 82,864,869 ,804 .36788 08447
18 682,076,806,159 .36788 01431
19 5,832,742,205,057 . 36787 97922
20 51,724 ,158,235,372 36787 96167
© w© l/e = 36787 94412
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successive terms ¢ontinually becoming smaller for all positive values
of z, and approaching a limiting value most rapidly when z is large,
the lower terms (small £) of equation (6) actually diverge at first since
each term is greater than the preceding one, but eventually, when
it > t', the terms become successively smaller and the series converges.
This initial divergence of the terms of (6) becomes increasingly apparent
as we attempt to calculate K. for large positive values of z from it.
An asymptotic expansion, valid for large values of z is consequently
highly desirable, and we shall show later how such an expansion can be
obtained. For the exact computation of K, equation (3) is most
convenient; Table I has been calculated” using these principles.

We may derive several interesting relations from equation (7).
Thus when z = 1

Sl 1
Ka=; 2
Now since
ez 1 nxz—-l
=it &
zez [ - zl
[La=mz+ E 5
Hz=1
1 =z ‘
e 1
dz=1In -
fl’):l:d:c 1+¢—)t'l!
or
11
(8) K-1=~f ~dzx
€ Jo Z

¢ For this table, and other numerical computations, free use was made of the
following tables:

a. Fry Brobability and its Engineering Usges. New York, 1928, Appendix TIL

b. Hayashi Sieben- und Mehrslellige Tafeln. Berlin, 1926,

¢. Barlow's Tables (ed. by Comrie}. London, 1935.

d. Oakes Tables of Reciprocals. London, 1865.

e. Davis Tables of the Higher Mathematical Functions, v. [ and [I. Blooming-
ton, Ind., 1933 and 1935.

f. Thompson Logaritmetica Brittenica, Cambridge U. Press, 1924-1937.

g. Smithsonian Mathematical Formulae (Adams, ed.), Washington, 1922.

A Millionaire computing machine with 8 ten place keyboard was employed.
The values of Ki, K, and Kz were not computed independently, but were
taken from the paper by Bell (cf. footnote 24c¢).

[
|
;'r.-.
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¢tz
The exponential integral f e;i dx can be found tabulated in various
0

places,” and can be used to caleulate K_, very accurately. Similarly
we can readily prove

ex

I B
K._g = —f - f ——dl:zd:ﬁ
eJo T1do I

» 1 x) zy T3
K= 1 [ ! f ! f e—dz,dz',dzl
€ Jg Iy Jo T2 do T3

‘or in general

Y EY SRR T

Z2 T3 Tn—1 Tn

. a continued integral form, made up of n integrations, the final one with

the limits zero to one. This equation applies, of course, only to integral

values of n.

11. Properties of the K-Function. In this section we shall develop
equations for some of the properties of the K-function. First, by
Taylor’s expansion

_ ’ .E‘Z 17 Em {m)
K:+E—K=+EKZ+‘2—‘!K:+"'+;!K: +"'
(10) k™ =13 L on
€ =} t!
80 that
(1 K=t B Lanym
€ m=0 m! iz t!

This equation is most useful for computing K, for large non-integral
values of y, taking y = z + & where { is less than one. The series

m

converges for all values of z and £; for the coefficient of fr;' in each case is

Lalz) = 3 E (In )™
=1t

s ) Jahnke-Emde Funktionentafeln. Leipzig, 1933.
b) British Assoc. Adv. Seci, Mathcmatical Tables I. London, 1931L.
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The ratio of the (£ 4+ 1)st to the #’th term of this series is

BT C o

and as ¢ approaches infinity, this approaches

L t(l + :) '
Lim 1 { = 0, for all values of m, finite or infinite.
t4+1 Int :

t—w

The series for Ln.(z) thus converges to a constant value. The ratio
of the (m + 1)st to the m’th term of equation (14) is

E”ﬂ m! Lm+1 _ & Lun

= m+1)! L m+1 La
Then as m — «, this equation also approaches zero as a limit, since
the ratio of the two finite constants LL—"'—“ is always finite. Thus equa-

tion (14) converges for all values such that
—wo < < 4o,
As a special case of (14), we have the Maclaurin series expansion for K.

Em

(12)

3["’

the coefficients of this series

2 (ln H”

¢=1 l

have been calculated, and are summarized in Table II. A check on

this computation is obtained from the interesting relation

Z ilz(lnt)

me=l M w1 m! =1

which can be derived from (12). The power series formulation is
limited in its usefulness for calculating K, only by the wearily slow
convergence of the series for large values of z.
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TABLE 1I
Coeflicients of the Power Seriss Exzpansion for K.
m Pw Pa/ml pIF NI
=1
* 0 1.71828 18285 oo —
1 0.60378 28628 | 0.60378 28628 .60378 28628
2 - . 54837 82849 .27418 91425 .87797 20053
3 .54296 35131 .09049 39188 7 .968846 59241
4 .58570 49319 .02440 43721 6 .99287 02963
5 .68236 68995 .00568 63908 29 .99855 66871
6 .84815 49252 .00117 79929 52 .99973 46801
i 1.11172 0107 .00022 05793 851 .99995 52594
8 1.52259 0134 .00003 77626 5211 .99999 30221
9 2.16436 2125 00000 59644 01799 - .99999 89865
10 3.17790 0086 .00000 08757 44071 .99999 98622
11 4 .80224 7807 .00000 01203 06433 .99999 99826
12 7.44736 1338 .00000 00155 47675 .99999 99981
13 11.82463 354 .00000 00018 98923 1.00000 00000
14 19.18356 156 .00000 00002 20050 1.00000 00002
15 31.74519 554 .00000 00000 24276 1.00000 00002

The last figure is uncertain in the second and fourth eolumns'.-

We have already considered the differentiation of K. in equation (10).
Integration formulae may be readily derived from our definition (6).
Thus

(13) fK,f(z)da: = l—g 21-’ ff(z)e’ n*de

A large number of indefinite and definite integrals involving K. may
be evaluated using this equation.
So far, we have discussed K, only as a function of a real variable;
if r =ty
19 K, =13t - %[i cos (In )y |, 3~ sin (In 011]
e =0 t! e =0 i

10 t

that is, Ki, is a complex quantity. Similarly, for a complex argument

(15) . ![;ﬂ’ 00_5___(“1 I sm (n t)y]

€ | =0
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In this last equation, we bave terms of the form
sin
£ oos Iy
11

sincenéithersinxnorcoszisg‘reatef than one

} £ oos I8 t)y

| t!

ét'

But f is the 'th term of the series for K, which we have already proven

a.bso]utely convergent. Thus following the comparison test for con-
vergence,' equation (15) is absolutely convergent for all values of z
and y; and therefore, equation {14) whmh 1s a sperial case of (15) is

also absolutely convergent. Now since ™™ = /¥

(16) Koriyrony = Koty

where k is an integer, and it follows that the K-function is periodic
with the imaginary period 2xi.

~ We shall conclude this section with a number of simply: derived
summation formulas, which we write without proof: ;

3 “K"—l * 1) = PR
an Zﬁ = (& — 1) = 5206

E( 1)‘ K" = %(e”‘ — 1) = 0.16359 ---

- K!n 1 ¢ ¢

21 — e
(L@~ a@ )
( €Y eos (siny) = e+ e ZIS'—r cos nd
(19) “ K
ecxcuy Sin (Sin y) = ¢ E ;;: T" Sin 7'-0
nel .

In these last interesting Fourier series, the symbols » and 8 have their
usual polar-eoordinate significance.

¢ Cf. Whittaker and Watson (1), 72.34.

-
=
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11I. An Asymptotic Expansion’ for K.. In this section, we shall
attempt to develop a more convenient asymptotic formula for the func-
tion considered above. Briefly, the procedure to be followed consists

~ of two steps: (A) the convergent infinite series formulation of K.

{equation 6) is converted into an asymptotically equivalent infinite
integral by the use of the Euler-Maclaurin sum forniula; and (B) this
integral is then approximated asymptotically using a method developed

by Laplace.
{A) We start then with the Euler-Maclaurin equatlou

S 1@ = [ 1@ dz — Jli(=) — SO+ FH (=) = O

- ﬁ[f”(w) - "o+

(20)
(D7 o () = S
4 ..
In the case of the K-function
IVI
(21) . b (z) = m

where the Gamma function now replaces the factorial in the denom-
inator in order to obtain & continuous analytic function. Then we may

Y Indn »
gD~ W) — O+ dlf (=) — £ O
720[f"'(°°) — O 5, 240U’( ) — ()]
(22) _
- '(’2”’)1”“"””( w) — f(0)]
4 ..

? The restriction to integral values of the argument is made here only for
eomvenience in formulation. Many of the results finally obtained, it will subse-
quently appear, are also valid for K., where z is non- -integral.

8 Cf. Ford Studies on Divergent Series, Maemillan (1916); also Ford Asymptotic
Developments (U. of Mich., 1836).
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or sinee f( ) and f(0) are both zero, we may write

® zdz

(23a) eK, = T 1) 8a
where
(23b) = (-1 o 1 () — 40
We shall now evaluate f*’() and f*(0) using. Leibnitz’s theorem®
in the form ‘

o080 £t
(24) f(z)zgo —( )dx,‘_,m
But since

d%(:ﬂ") =nn—1Dn-2 - (n—3i+ 2™

(n — i+ 12"}

& 1
L)

We shall first use (25) to prove f¥(=) = 0; since 1/I(z) resembles
¢ " in its behavior at z = =, in that the function and all of its finite
derivatives are zeros of infinite order, it follows that

1@ = () ntn - 0n -2 -
(25) ‘

) ar z"
26) Jw) = Lim 2o [ﬁm} =0

Again from (25), we observe that f*’(0) is zero unless i = n. When

this is true
wegy - (FY. 0 & [ql_}
7o = (n) "3 | T F 1) oo

Such a term will occur only when k& 2 »; so that

¥ =0 when0 < k < n

(27) R
= (k= m)tdz [r‘(i :C'ﬁl_u whenk = n

* Cf. e.g. Hardy Pure Mathematics, Cambridge (1933).
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Now Weirstrass long ago demonstrated that the reciprocal of the Gamma
function can be developed in a convergent power series

z akz

I‘(x) k-1

Z ak:c

r(z + 1) =1

From Taylor’s theorem, we observe that the expression required for
(27) can be written most simply as

d 1
dzr*— [m L.a = Genilk — m)!
 Whenee

(28) f(k)(o) =0

(0 <k<n)
= k! Qhonss k = n)

Substituting the values of the derivatives at infinity and at the origin
{equations 26 and 28) in (23b), we obtain

(29) =T (D" P
g m
where
30) _ {(n + 1)/2 when n is odd
(n+ 2)/2 when 7 is even

" A table of the coefficients a, to ag to sixteen places (the last doubtful
according to Jensen") is given by Bourguet." Schismileh™ also studied
the properties of these constants and obtained a recursion formula
and an infinite integral form. Nevertheless, the behavior of a, in the
limit of large values of k seems to be only poorly known; and cor-
respondingly, an exact study of the properties of our series (29) is not
possible on the basis of present knowledge. Applying the ratio test

19 Ann. of Math., 17, 123 (1915). Translated by Gronwall.

1 Actu[Mathematica, 2, 261 (1883). CIf. also Bull. dee Sci. Math., 16, 43 (1883),
Davis (cf. 4e), v. I, p. 185.

12 Z. fir Math, und Physik, XXV, 103 (1880).
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for absolute convergence, and using the familiar expression for the
Bernoulli numbers™ %%

(31) Ba= @n )2,, -£(2m) - (2m)!
where {(z) is the Riemann Zeta function, we obtain
32) Lim (&R 2D o gy Gmeen|

2‘!‘2 | m—so . {(27") Qom—n
Thus, in order to obtain absolute convergence

a:-.—n+n, %t
Li S
n—olman | Gom—n l = m(2m -+ l)

an extremely rigorous requirement, probably not fulfilled by a.. We

can however prove that the series is at least asymptotic, so that it is

suitable for calculation, using the following theorem,” (using the
following theorem,") given by Knopp (Equation 300): “If f(z) is of
constant sign for z > 0, and, together with all its derivatives, tends
monotonely to zero as £ — =, Euler’s summation formula may be
stated in the simplified form

>0 = ff<z>dx~uf<n>+f<on+ /) - 70

(33) — (=D om “), e Pn) — P 0)]
_ (__ 1)m+10 (217-18»:!27)' [f(2m+l)(n) - f(2m+l)(0)]

where 0 < 8 < 1.” Since, by equation (26) the required condition is
fulfilled, we may terminate series (29) after any number of terms, with
the assurance that the error thus committed will be less in absolute
magnitude than the next term of the series.

(B) We now consider the infinite integral which we have developed
above

a0 n

(34) I, = j(: y(x)dz;  yl@) = I‘(z;;_l-)

1 Theory and Application of Infinite Series, translated by Young. Blackie
(London, 1928).
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Laplace' demonstrated that a definite integral of this type, taken
- between the limits of z which cause y(z) to vanish, can be developed
in an asymptotic series (subject to restrictions that are rather readily

fulfilled),
11d 1-3 1 d&
f el Y‘/-(l‘ éi 2 3l gr
e 1-3-5 -(2m — 1) &
. X il L O 2m-+1 " en
+ + o (2m)‘ ot U + )
where Y is the piaximum value of y between the assigned limits and
. y]ﬂ
(36) £ o [_2_# afl
 In the limit then, we may use only the firat term of this series,
e . o \/2_7 )}3!2
{37 dz o~ Y-
@7 f ¥ ‘<\> 7Y
' T da?
2
where Y, i8 written for (dal/) We shall not attempt to justify
d 2 d:r:’ y=Y

this formula of Laplace’s further at this time, but shall proceed to
employ it for the evaluation of K, .

In this problem, y goes through a maximum when dy = 0; but

dz
v = r(zx+ 1)[ ’p(”“]

where

V(z) = (—j; In I (z)

80 that ¥ is a maximum when £ = a., where «, is the solution of the
transcendental equation

(]

1 (Jeuvres, Tome 7, p. 103.
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This equation can quite readily be solved numerically by successive
approximations using the Newton-Raphson method. Thus if z. is the
k’th approximation to the root of

¥(z + 1) = n,

n — o ¥(ze + 1)
¥ (ze + 1) + ¥z + 1)

_n¥@ + 1) — n¥(@+ 1)
iz, + 1) + a¥ (1 + 1)

These equations lead to very rapid and convenient convergence in
solving for a, with tables of ¥ and ¥’. Then
B s

S e dy ar [n , ]
ey S e+
Substituting these values in (37) and (23a) .
" dz attt 1

L Tot D) " VY M D VAT v et D

Tiyr = T

=It

39

and

K N\/?n’_ axtt ] 1
"T e TMawt1) Vatai¥(a.+ 1)

1 m Bm
+a...z.,(‘“ o Oamn

(40) -

Generally speaking, the first term of equation 40, omitting the
summation term entirely, iz quite a fair approximation for the higher
values of K.. Thus while at n = 10, the result is about eighteen
percent too high, at n = 16 where :

as = 7.63200 18618
we caloulate
Ks == 10,481,629,010

which is greater than the true value of Ky (c¢f. Table I) by only about
0.01497. The first term of the series, m = mg = 9, is —1.76279; we
note that, in this case at least, the summation term amounts to only
a negligible fraction of the net error; so that the higher terms of the
Laplace expansion (35) are much more important than the higher
terms of (40).
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For very large values of n, leading to large values of «,, we may

apply further approximations to (40). Introducing the approxima-
tions, vahd for large n,

T{an + 1) = V2ran (‘—2—“)"

V(n + 1) = In (o + 1)
¥'(as + 1) — 0

41

we obtain

B~ an—l
an ™

Vin ay,

If the restrictions of (41) are valid, a. is the solution of the transcen-
dental equation, .

(42) K,

n

= ham D)

and the solution of this equation can be obtained by iteration in the
curious convergent form

(43) (s 29

n
an = —

Inf{l+4

(44)

If n is taken quite large, this is equivalent to

n

* T inn - In(na)

or as a very crude approximation, valid only in the limit of extremely
large n,

(45) Ay O -

With this value of a, , equation (42) becomes

1/ln n™n
(46) K.~ [“ ]

Inn
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By taking logarithms of this equation, we obtain

47) InK,~n [ln ( p—») + {1 + 1_1]
- elnn Inn)

which is nearly identical with the asymptotic expansion for In K, given

by Knopp"
In K, o n[ln («7}—) + e,}
elnn

where, the author says ¢, — 0 as n — «. We observe that from our
caleulations above ¢, approaches one rather than zero, a difference
which is negligible, since the two expressions for In K, rapidly approach
each other for large values of n.

By a direct comparison of the higher terms of the infinite series for
K, , z"¢, andve“, we can show that in the limit of large

(48a) "¢ < K. < €
for all finite values of m. A much tighter inequality follows from (46):

K o e" ln n+n/ln n—=n In(ln »n}
n

so that
e(n tn n){l-na) < Kn < e(n la n)(14+Ea)

where

" ‘[1], b= L fin ()]

T hnllnn
Defining g(n) as the difference between 7, and £., so that
gin) = ! l: L_ In (lnn)}

Inn{lnn

we note that

Lim g(n) = —Lim In (nn) _ 0
n—o new DR
and hence
Lim ga/¢n = 1

n —o0

15 Cf. Knopp (footnote 13), examnple 236.
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Then letting the limiting value of n. and £, as n approaches infinity
be {., we have _
e(n tn n){1—{a) < Kn < e(n In n¥i+{,)

‘.;._:. (48[)) nn(l—(’») < Kn < nn(l'?:{n)

where

tn = o(m)

In conclusion, the writer wishes to sincerely thank Professor Philip

: Franklin for his inspiration and many helpful suggestions in the prep-

aration of this paper, and Julius E. Epstein for his aid with the lengthy

~ numerical calculations.

Appendix [
Subsequent to the preparation of the larger part of this paper, several
references with bearing on the problems herein considered came to the

_attention of the writer. These results are here presented.in brief.

1. Schwatt,” in studying the properties of the differential operator

Y
(za) , finds

K, = 3D gy (k) -

& & ,
£ r e ]
- (‘I)WB*:"(TF_I‘ 0t '22"(k__1")! oo T

— e (=D %]

2. Chiellini" studies 2_ Z—' for integral r, by expanding in the inverse
» =) .

factorial series
r r
n bex

12 =X

nl - = (n— k)

16 An Iniroduction to the Operations writh Series. U. of Penn. Press, Phila-
delphia (1924).
17 Boll. Un. Mat. It., X, 134 (1931).
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where
k _k
13 e SHOS G B
k! a=1 (44
14 b = kbrap + bt i
80 that
_brl el 1'—1
ba + by =277
brl 3v~—l
b L JRE
s + b2 + o1 3
br.r— b b et
15 By boeoy ot g =
S TR TR o TR GRS )T
finds
18 ] En—‘=e2b,k'=b,e
nom] H k=1

:So that his b, is identical with our K,. He includes a table of b, for
integral r’s from 1 to 10, with the misprints ’

4,140 = by = 4,138
21,147 = by » 22,147

0 k ;
3. Broggi® also studies ):1 Z-', h being integral and positive, by using
the classical Stirling expansion

1.7 11 Sy &

1
pui (z +p) = e

where
-1 .
o =1 ﬁ (=1)"n — r)"*'(">,
n! i) r

8 Iat. Lombardo Rend. LXVI (118}, 196 {(1933).

1 : @
1-10 ‘ 3[ letdt = ! + 2 (=" K.
# € Jo x
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" o that the C%’s are what Nielsen"” calls the Stirling numbers of the
" gecond kind, and designates €h41. Then from the known properties
of these numbers, he demonstrates

N
.Q_ﬁ@*w

LT ,

. Ri=i# o # Yyt &
: 3 1—1/1' 4 1/2'— - + (~1)P1/(h = 2)t
- \

19 KA=C?.+C}|+CL:+"'+C:_I

and he proves that C;* is identical with Chiellini’s by . Finally he
derives the agymptotic series

pyenr] In+1

4. Whitworth™ shows that “the total number of ways in which n
different things can be distributed into 1, 2, 3,4, .- orn indifferent
parcels is n! times the coefficient of " in the expansion of ¢ /e,” i.e. K.

- He further proves

I-11 _ K. =n! Y N,

é=1

where N, is the number of t-partitions of n different things, and shows
that N, is n! times the coefficient of z" in the expansion of

-~ v
t!

Glover” used equation I-11 above to compute the first six values
of K,/n!

1 Handbuch der Theorie der Gamma funktion. Leipzig, 1908. 26, 27, 109.

20 Choice and Chance, p. 96. Stechert, New York, 1925.

31 Tables of Applied Mathematics, Ann Arbor, 1923. The writer is indebted
to Dr. Glover for the reference to Whitworth above, and for his method of com-
puting K./nl (private communication).
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5. Anderegg™ proves

() 07 G

|

E _(n—2 n— 2
C ()
!

12 K.= 1 0 1 ~-(”‘3)
. n — 4
Lo
|
' 0 0 i (1)
- 0
(1 0 0 -~ 0 1

and also gives t,he values of K; to Ko 10 -

6. P. Epstein,” Krug, Tauchard, and Aitken have studled the arith-
metical properties of K, . Tauchard gives K, to Ky .

7. Bell™ has contributed several papers on the numbers we have
considered here. He shows™ that

13 £2(Bell) = = .:1 G I:Z (=1) ( ) (s — r),.q]
(n > 0)

and discusses some of the arithmetic Vproperties of these numbers.
Further applications to the theory of numbers are also treated in the
second™ and third™ papers. In the second paper he demonstrates

| Fat
1-14 ):A O

=1

where A”0" are the “differences of zero” discussed by various writers.”
Equation I-14 is used, with tables of differences of szero, to find K;

2 Am. Math. Monthly, 8, 54 (1901) and 9, 11 (1901).
#a) P. Epstein: Archiv. der Math. und Physik., 8, 329 (1904-5).
b) Krug: Ibid., 9, 189 (1905).
c) Aitken: Math. Notes (Edinburgh), 28, 18 (1933).
d) Tauchard: Ann. Boc. Sci. Bruxelles A, 53, 21 (1933).
% a) Am. Math. Monthly, 41, 411 (1934).
b) Ann. of Math., 35, 264 (1934).
c) Ibid., 39, 539 (1938).
# Cf. Steffensen Interpolation, Williame & Wilkins, Baltimore (1927). See
alao Davis, v. II (footnote 4e), p. 210.
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to K». The last three values in our Table I are taken from this paper
—the rest were computed independently as indicated. The latest
paper contains some interesting generalizations of the K-numbers,
and discusses applications to computation; also an interesting inter-
pretation of the significance of K, in combinatory analysis: K, “is the
total number of possible rhyme schemes for a stanza of n verses.”
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