A classic proof of a recurrence
for a very classical sequence

Dominique Foata! and Doron Zeilberger?

To Marco Schiitzenberger, in memoriam.

Richard Stanley [St96] has recently narrated the fascinating story of
how the classical Schréder [Sch1870] numbers s(n) are even more classical
than has been believed before. They (at least s(10) = 103049) have been
known to Hipparchus (190-127 B.C.). Stanley recalled the three-term linear
recurrence ([Co64]; [CoT4], p. 57)

(1) 32n—1)s(n)=(n+1s(n+1)+(n—2)s(n—1) (n>2),
s(1) =s(2) =1,

and stated that “no direct combinatorial proof of this formula seems to
be known.” The purpose of this note is to fill this gap.

The present proof reflects the ideas of our great master, Marcel-Paul
Schiitzenberger (1920-1996), who taught us that every algebraic relation is
to be given a combinatorial counterpart and vice versa. The methodology
has been vigorously and successfully pursued by the Ecole bordelaise (e.g.,
[CorT75], [Vi85].)

The recurrence (1) is tantalizingly similar to the linear recurrence

(2) 22n —1)c(n) = (n+e(n+1) (n>1), c(1) =1,
that is obviously satisfied by the Catalan numbers c(n) = (1/n)(>"77).

Our proof is inspired by Rémy’s elegant combinatorial proof [Re85] of 1(2)
shown to us by Viennot [Vi82].

Recall ([Co74], pp. 56-57) that a Schrdder tree T is either the tree
consisting of its root alone T' = r, or an ordered tuple [r; T1,...,T;], where
l>2and Ty, ..., T; are smaller Schroder trees. The first symbol r is called
the root of T and the roots of T7, ... , T; are called the sons of T. A son-
less node is called a leaf. The number of Schroder trees with n leaves is
denoted by s(n).

The first values of the s(n)’s appear in Table 1.

n | 123 4 5 6 7 8 9 10
s(n) | 1 1 3 11 45 197 903 4279 20793 103049
Table 1
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Our proof will be based on another combinatorial model for the
Schroder numbers, the well-weighted binary plane trees. Recall that a plane
tree is said to be binary, if each node has either no sons or exactly two
sons. As is well-known (see, e.g., [Co74], pp. 52-53), the number of such
trees with exactly n leaves is the Catalan number c¢(n). A node is said to be
interior, if it is not a leaf. The binary trees we will be using are weighted.
This means that each interior node is given a weight equal to 1 or equal
to 2. A node is said to be well-weighted, if, whenever it has weight 2, its
right son is not a leaf.

A binary plane tree is well-weighted if it is weighted and if all its
interior nodes are well-weighted. In short, we will speak of a well-weighted
tree. As shown in Table 2, there are ¢(4) = 5 binary plane trees with four
leaves, and s(4) = 11 well-weighted trees with four leaves. The nodes that
can get either weight 1 or weight 2 are indicated by the symbol “().”
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Table 2

A well-weighted tree can be also defined recursively as follows. It
is either a single unweighted node (serving both as root and leaf), or a
triple [r; Ty, T3], where r is either 1 or 2, and where T} and T5 are smaller
well-weighted trees, with the provision that if 75 is a mere leaf, then r
must be 1.

Define a mapping from the set of Schroder trees to the set of well-
weighted trees as follows: if T' = r, then ®(T') := r; if the root of T has
exactly two sons, i.e., T = [r; T1, T3], then &(T) := [1; ®(T), ®(T»)]; if the
root of T has more than two sous, i.e., T = [r;Ty,...,T;] with [ > 2, then
O(T) := [2;9(T1), D([r; To,...,T1])]- It is clear that ® is a bijection that
preserves the number of leaves.

Being binary, every well-weighted tree with n leaves, possesses exactly
(n—1) interior nodes and hence (2n—1) nodes altogether. A well-weighted
tree with n leaves is said to be pointed, if exactly one of its (2n — 1) nodes
is pointed; it is leaf-pointed if exactly one of its n leaves is pointed; it is
interior-pointed if exactly one of its (n — 1) interior nodes is pointed. Let
PT(n), (resp. LT (n), resp. IT(n)) be the set of pointed (resp. leaf-pointed,
resp. interior-pointed) well-weighted trees with n leaves.



As (2n — 1)s(n) = #PT(n), (n+ 1)s(n + 1) = #LT(n + 1) and
(n—2)s(n—1) = #IT(n—1), formula (1) will be proved combinatorially
(or bijectively, as some people say to-day), if we can construct a bijection o
of {1,2,3} x PT(n) onto the disjoint union LT (n + 1) U IT(n — 1).

The construction of such a bijection will consist of adding a new
leaf to each pointed well-weighted tree of PT(n), in three different ways
denoted by L1, Lo, R1. We shall get all of LT (n+1) plus a set B(n+1) of
leaf-pointed weighted trees, but not well-weighted, which is in one-to-one
correspondence with IT(n — 1).

To construct the bijection o we proceed as follows. Start with ¢ in
PT(n) and let s be the subtree of ¢ whose root is the pointed node of t.
For j = 1,2 define o'(L;,t) to be the leaf-pointed weighted tree with
(n + 1) leaves obtained from ¢, by performing the following replacement:
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Notice that the new interior node receives weight 7 and the point gets
moved from the root of s to the new leaf.

In the same manner o'(Ry,t) is defined by performing the replace-
ment:
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Clearly, o’ is an injection of {Ly, Ly, R1} X PT(n) into the set of
leaf-pointed weighted trees with (n+ 1) leaves. Furthermore, o/(L1,t) and
o'(Ry,t) are always well-weighted and o'(Ls,t) is well-weighted when the
subtree s is not a leaf. Define o = ¢’ in all those cases.

When s is a leaf, the subtree of ¢ whose root is the father of the
pointed node is one of the following forms

t’ s s t’ s t"
1 1 2
case (a) case (b) case (c)

where the subtree ¢ may be any tree, while the subtree " must not be a
leaf. When applying o’ to (Lo, t), we will get



s s s
t/ t/ tll
2 2 2
1 1 2
case (a) case (b) case (c)

Alas, none of those trees is well-weighted (since s is a leaf). To remedy
cases (a) and (b) replace them by:

s s
t’ t’
Q]—/ \>1/
2 2
case (a) case (b)

and define o(Ls,t) to be the tree thereby obtained. It now belongs to
LT(n + 1). It is straightforward to verify that o is a bijection of the set
of all pairs in {L1, Ly, R1} X PT(n) that do not belong to case (c) onto
LT(n+1).

Finally, to obtain o(Lj,t) in case (c), replace the portion depicted
above that belongs to o’(Lg,t) by just the subtree t” (losing two leaves)
and make the root of ¢ be the pointed node of the new tree. We get an
interior-pointed well-weighted plane tree with (n —1) leaves. Furthermore,
the restriction of o to case (c) is a bijection onto IT(n — 1).
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