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Occurrences of the integer (2n—2)!/n!(n—1)!

1. 'Introduction_. In a multiplicative set G lacking both the associative
and the commutative properties, an element z may have two distinet

. third powers; namely, z(xx) and (2x)z. Let N(n) denote the maximum

number of possibly distinet n-th powers of an element in a non-associative
and non-commutative groupoid. In [3], [6], and [2] appear proofs of
the equality

(1) N(n) = (2n—2)!n!(n—1)!, ‘@“ ‘ O,X

where n is a positive integer. All three of these proofs rely upon the
obvious recursive relation

am N = D N(ER)N (n—h),
- . ‘ k=1 T :

~and the first two of the proofs, which use generating functions, are ana-

lytic in character.

In Section 2 we offer an elementary combinatorial proof, of (I),
which we sidestep relation (II) by establishing a one-to-one correspond-
ence between the set of formal n-th powers of an element and the set
of circular permutations of n objects of one sort with 5-1 objects of another
sort. :

In Section 3 we prove that the integer (2n—2)!/nl{n—1)! is odd
if and only if n is a power of 2.

The author is indebted to his former students P. K. Daws and T. T.
Cooper for their assistance in the work in Scetion 2, and also to J. R.
Isbell for his suggestions leading to increased clegance in the present

paper.

2. The powers problem. Lower-case Greek letters denote words in
the alphabet {x, 0}. The length of the word a is written |al, and the car-
dinal number of the set 4 is written |4]. For each positive integer n < |af
the symbol a(n) denotes the n-th letter in the word a. By a"(y) we
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mean {k: a(k) = y} for ye{z, o}. For each positive integer n the symbol
S, denotes the set {a: o~ (x)i = la™"(0)|+1 = n}.

By P, we mean {z}, and for each integer n > 1 we mean by P, the
set {0fo: SeP and fePn_, for some positive integer k< n}. Elements
in P, are called explicit n-th powers of . It can be seen that N(n) = |Pal (2).

A word a8, is called n-appropriate if and only if 12" z)|— 147 (0)| = 1
for every non-empty left segment . of a. The set of all n-appropriate
words is written A,. : o

\We omit the easy induective proof that P, = S, for every positive
integer m. '

THEOREM 2.1. P, = A, for each positive integer n.

Proof. It is clear that P, = {#} = 4,. Let m be-an arbitrary integer
greater than 1. Suppose that the equality Py = A holds for every positive
integer k< m. Let o be any element in P,,. It follows that a = udo,
where ueP; = 4;, and where JePn_; = A,_;, for some positive integer
j < m. Let A be a non-empty left segment of a. It is plain that |A~1(z)|— -
_2~Y(0)] > 1 if || < |ul, and also that |u~* (@)|— [#~(0)| = 1. Therefore,
we now suppose that |ul < (il < |ud|. It follows that 2 = ur for some
non-empty left segment 7 of 9, and that 1A= (@) — A7 (o) = |~ (@) +
4l (@) — T (o) — [T (o) = 1+ v (@) — |z7'(0)| = 2. Furthermore,
()~ (@) — [(u0) (o) = 1p~ (@)1 — |~ ()] + 187 (@) — |6~ (0)| = 2. Thus
we see that |a~'(x)|—le " (0)| = 2—1, and hence aeAn and Pp S Am.

Let f be an arbitrary element in 4,,. The set {i: 0 <1< Bl and
Al = i for a left segment 2 of B such that |1~} (z)|— 127" (0)| = 1} is non-
empty since it contains 1, and therefore this set contains a largest ele-
ment p. There exist 6 and y such that g = 0y, and such that 18] ="p.
It is clear that deApiye = Posye- — ' f

We claim that y = go, and that @edgm_p_np = Pom_p—y2- FOT,
if ¢ is a left segment of y, and if 1< lof <yl then |~ (x)|— o~ (0)|
= |(60)" (@) — |(60)"*(0)|—1 > 2—1. And, furthermore, if ¢ is the left
segment of y such that l¢| = [y|—1, then |(8p)~ ()| — |(8p)~"(0)| =
167 (@) — 167} (o) + g @) — 197 (0)] = 1+ I¢7 (@) — lp” (0)] > 2. Bus
187} ()| — |~ (0)] = 1, and our claim is established. The theorem follows
by mathematical induction. .

Gummer [1] showed that (4, = (2n—2)!n!(n—1)!. We present
a simple and intuitive alternate proof of this fact. To this end we remark
that there are exactly -

1 (2n—1)!
on—1 nl(n—1)!

(1) Treat o as a binary operation symbol and Pn as a set of terms generated
by o and one variable z in a bracket free notation. :
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distinguishable circular permutations of n occurrences of the letter x
with #—1 occurrences of the letter o. It therefore suffices to demonstrate
a one-to-one correspondence between A, and the collection of all such
circular permutations. This follows from our next theorem. '

Let I" be any circular arrangement of occurrences of z and o. Let y -
be such an occurrence in I'. We call y worthy in I' if and only if every
non-empty word B, spelled counterclockwise around I' by consecutive
letters the first of which is y, satisfies the inequality |87 (@)l > 187" (0)I.

THEOREM 2.2. Let I' be any circular arrangement of m occurrences
of 0 with n+k occurrences of «, where n and k are any non-negative inlegers.
Then there occur in I' exactly k worthy letters. .

Proof. Fixing an arbitrary non-negative integer k, we employ in-
duction on n. The basis (n = 0) is trivial. Let m be any non-negative
integer, and suppose that the theorem holds when n = m. .

Let X be any circular arrangement of m-+1-+Fk occurrences of z
with m-+1 occurrences of o. Reading counterclockwise around X we
encounter at least once the two-letter word zo. Isolating this word o
from X we obtain a circular arrangement 4 of mJk occurrences of
with m occurrences of o. By the inductive hypothesis there are in 4
exactly k& worthy occurrences ¥y, ¥z, -+ Y& of the letters x or 0. It is now
evident that y,, ¥a, ..., Y aTe worthy also in X, and that these are the
only occurrences of letters worthy in X. The theorem follows.

Tt is an obvious corollary of 2.2 that each circular arrangement of n
occurrences of # with n—1 occurrences of o unwraps, from exactly one
letter in the arrangement, into an n-appropriate word. The desired equal-
ity (I) now follows from 2.1. - : -

" It is another obvious corollary of 2.2 that the number of distinet
paths in two-space, from the lattice point <0, 0) to the lattice point
(n—1,nY, is (2n—2)!nln—1)}, when each of these paths is subject
to the following three conditions: ' !

If the lattice point (%, j) lies in the path, and if 0 < % < n—1, then
exactly one of the lattice points <k+1, 7> or (k,j-1) lies in the path.

The path is 2n—1 units long. - ’ :

No point (a, b) lies in the path if b < a.

Let G be any set. Let » and k be any positive integers. Let g,, g2y -« n
be any » not nccessarily distinet elements in G. And let *;, %5, ..., %
be k distinet and independent, non-commutative and non-associative
binary operations on @ (*). Then & routine argument from 2.1 and 2.2
shows that there are exactly

KN (n)

() Le. {G;*y, ..., %) 18 & oompletely free algebra.
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. distinet elements, in the algebra (G %y, *ay ey ¥EDs associated with the
ordered n-tuple gy oy ---y Jary WHETE cach such element is obtained
by o judicious insertion, among the terms of the n-tuple, of n—1
operation symbols.

3. The parity of N (n). For each real number y the symbol inty
denotes the greatest integer not exceeding ¥. '

We acknowledge the assistance of H.S. Zuckerman in the proof
of the following lemma:

Leyia 3.1, Let n be any positive inleger. Let f be the non-negative:
integer such that n! = 2'p for some odd vnleger . Then: ¥

(3.1.1) If n is a power of 2, then f=mn—1

(3.1.2) If n is not a power of 2, then f<n—L

Proof. It is folklore (e.g., p- 29 of [4]) that

f= D int(n/2).

First, we suppose that n = 2™ for some non-negative integer m.
Then it is obvious that int(n/2") = n/2" for every positive integer @< m,
and also that int(n/2') = 0 for every integer j > m. Therefore ‘we have

f= D2 =n-1.
i=1 .

The assertion (3.1.1) follows. - L

Next, we suppose that the integer n is not a power of 2. It follows
that n = 2F¢ for some non-negative integer k, and for some odd integer
g > 2. Let s be the-largest integer ¢ such that int(n/2%) > 0. It follows .
that int (n/2°7') = 0, and hence 1> p 2t = 2bgjettt =2 lg > 2k-2,
Therefore, since the integer ¢ is odd, we now §e€e that 2% % is not an
integer, und hence n/2°—int(n/2°) = 2k‘sq—int(2k"q) > 0.
' Therefore, from the choice of the integer s it is now clear that
1 < int(n/2%) < »/2°, and hence

f= int(n/2%) < Zn/? = n—(n2") < n—1.

The assertion (3.1.2) follows, and the lemma is proved.

COROLLARY 3.2. Let n be any positive tnleger. Let f be the non-negative
integer such that n! = o' d for some odd intcyer d. Let g be the non-negative
integer such that (2n)! = 2% for some odd integer c¢. Then:

(3.2.1) If n is a power of 2, then g—2f—1 = 0. M

(3.2.2) If n is nol a power of 2, then g—2f—1> 0.
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Proof. The lemma is trivial in the case that n = 1 = 2°. Suppose
that » > 1. Then the set {i: 4 is a positive integer such that int(n/zi) > 0}
is Doth finite and non-empty, and contains a largest element k. The set
{i: i is a positive integer such that int(2n/2%) > 0} also is both finite
and non-empty, and the integer k41 is its largest element. We now
have

g—2f—1 = D) (2n/2h)—2 D int(n/2%)—1
:+l - k
= Y int(n/27")—2 ) int(n/2)~1
S | . o
= Y'int(n/2°)—2 D int(n/2")—
V=m0 iml .

. k
= int(n2")— D int(n/2)—1

i=l

= n— Zint(n/2i)—1 = n—f—~1_. oo

Therefore, when % is a power of 2, then by (3.1.1) we have f = n—1,
and hence g—2f—1 =n—(n—1)—1 =0 Likewise, on the other hand,
when « is not a power of 2, then by (3.1.2) we have f< n—1, and hence
g—2f—1>n—(n—1)—1 = 0. . :

THEOREM 3.3. The integer N (n) is 0dd if and only if n is a power of 2.

Proof. It is easy to see that - : '

2n)! 1
(n!)? ) 2pl’

N(n) =

where p, is the odd integer 2n—1. Let f be the non-negative integer such
that n! = 2'p, for some odd integer p,. Let g be the non-negative integer
such that (2n)! = 27p, for some odd integer ps. It now follows that -

N(n) = 2°7¥ pq/pip.

From this equation together with (3.2.1) we see that if » is a power
of 2, then N (n) = p,/p3p,. Therefore, since in this case the integer N (n)
is a quotient of products of odd integers, N (n) itself is odd.

Likewise, we see by (3.2.2) that if » is not a power of 2, then N{(n)
— 2'p,/pip,, where { is the positive integer g—2f—1. Therefore, since
pip, is an odd integer, it follows in this case that the integer N(n)
is even.




96 "D. M. Silberger

References

{1] C. F. Gummer, Solution to problem 2681 proposed by P. Franklin, Amer. Math.
Monthly 26 (1919), pp. 127-128. ‘

{2] 1. Niven, Mathematics of choice, Random House 1965, pp. 140-152.

{3] P. Quarra, Calcolo delle parentesi, Torino Atti 53 (1918), pp. 1044-1047.

[4] I.M. Vinogradov, Elements of number theory, Dover, 1954.

[5] J. H.M. Wedderburn, The functional equation g(2?) = 2ax+(g(x))?, Ann.
Math. 24 (1922), pp. 121-140. . :



