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-L-' DISSECTING A POLVGON INTO TRIANGLES
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-

; L. gQF?Q@E?E%QQ: This paper is an almost verbatim reprint of
. [44], but the opvortunity has been taken to add Bill Brown's
- excellent bLiblicgraphy [5%1 and to check the table of results
r against Motzkin's [36!., There was agreement, except for the
f error noted by Moon and loser [501, The note arose from a

.. problem [43] taken from Polya [39]7, which may be expressed as:
- find D, the number of dissections of a convex polygon of 7

- sides into n-2 triangles by drawing various sets of n-3 non-

. intersecting diagonals.

-

- - 2. We give two arguments: First argument: Take any such dissection.
-

-

- FICUPE 1

.;

_ Fix a side (marked in figure 1), This determines a unique

- triangle of the dissection of whose sides this is one (shaded
- in figure). There remain two polygons of r+1 and n-r sides,
- where r may be any number from 1 to n-2. The case r=1 giving
' a 'two-sided polygon' corresponds to that in which the shaded
-

L!-' triangle has two sides in common with the original polygon.

- In what follows D, is a convenient way of writing unity.



The two polygons may be dissected in D ways, so that all

r+1Dn-r

dissections of the original polygon are given by

Second argument: We may draw a diagonal in the original polygon

(1)

in 4n(n-3) ways. For convenience, we will attach a direction
to the diagonal, giving n(n-3) possibilities. Take a dissection,
Select a diagonal and attach a direction to it. This may be

done in (n-3)x2 ways. This diagonal divides the polygon into
two of »+I1 and n-r+l1 sides, where r is some number from 2 to

n-2 inclusive., These may be dissected in D ways, and

r+an-r+1
there ave n diagonals which divide the polygon in each of these
ways, SO

- b = + ] + -+
2(n 3)Ln n(D3Dn_1 Dan-z “ee Dn-lDa)'

The first problem I have been unable to solve is to deduce

(1) from (2) or vice versa without recourse to further gsometric

argument, i.e. by algebra, or possibly analysis.
We next require a specific formula for Dn' If we know
the answer

D = (2n=-4)!
n~ (n=1)T(n-2)!

then it is easy to prove by induction, since it is true for
n=2,3, because D,=D;=1, and assuming it true for n=2,3,...r,

(1) gives

ad

q

(3)
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where the braces contaiy the coefficient of z’ in the expanegicn

() (=),..(-»=%)
r! )

% y
of (1tz) 7*(1+x) "2, except for two terms Ix

For r 22, the coefficient of z' in (I+z) is zerc, eo

ey Y2y, (en-P2)
r!

(o)’ =2 (o0 &

I
i

r+l

r-1 1.3.5..,.2r-3 _ (2r-2)!
r! ST (r-1) 12!

, as reqguired,

If we are allowed to use both the above arguments, and hence
both=1) and (2) the problem is much simplified, since multiplving
(1) by (n-1) and subtracting{Z?), after writing n-1 for %] we

have

H|

(n—l)(Dan + D D) «/

(n=-1)D =~ 2(n=4)D
7 n -1 n-1 2

-1
.. (n-Z)Dn

2(2n-5 . n
(2n >bn__| ()

Successive application of (4) now gives (3), To obtain
(3) directly from (1) is not so easy, but may be done by

finding the generating function for Dn:

flx) =

iy v o e I

NS



Tt will be seen that this definition, and the following manipula-
tions, are justified in case |x| < Yu|
We now form the 'Cauchy product' of this series with itself,

combining the terms as shown by the diagonals in figure 2

{f(x)}?

DpDaw? + (D,D34DyD, 03 + (DD +D,Dy+D, D)zt + L.,

2 3 . L -
Dyx? + Dym> + Doz’ + ... by (1)

f(x) - X

FTCURE 2

2plving this quadratic for f(z), we have

1
flz) = %{1 - (1-bz) } (5
where the negative sign has been chosen to make F£C0)Y = 0.
Y-

Then D is the coefficient of x in the binomial
expansion of —‘zé(l—tt:::)!2 (n22), and is found to be given by (3).
D, may be deduced in a similar way from (2), though a

little calculus is required.

The simplicity of relation (4) suggests that it could be

obtained by direct combinatorial argument fron the original figure,



-

an GN o "E = lﬂ(,l.-* .

=

o]

4

i

E

&

¥

A clue might be that 2n-5 is the total number of lines (sides
and diagonals) in a dissection of a (n-1)-sided polygon. The
factor 2 can always be introduced by giving these a divrection,
but this has not so far led to a soultion. Even more tantalising

are the relationships

(2n-3)p, = “"77C, _, = ..
_ 2n=bk
(n—J)Dn = Cn-z
(n=3)D_ = 2.2""5¢ = 2.2 50
7 n-4 -1
(n-1)p_ = 22" %¢ = 9.2N"5k
n N3 Iy

cach of which suggests that there should be a very simple 'choice
argument, giving the required formula immediately. T have been

unable to find such an argument.

3. A more difficult question than the original one is 'how

many essentially different dissections are there?', in the
following sense. If the polygon is regular, how many dissections
are there which cannot be obtained from one another by rotation
or reflexion? TFor example, the original problem was illustrated
by 5 diagrams (figure 3) giving D. = 5. However, these become
mere rotations of each other if the pentagon is regular. Again

the 14 dissections of a hexagon are rotations or reflexions of

one of the three types shown in figure k.

(6)

(7)

(8)

(9)

!
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FTCURE 4

The dissections may be divided into 6 types according to

their symmetries:

(a)
(b)

()

()

(e)

reflexion in an axis only, having the symmetry of a Kite, 5%7
rotation through 180° only, having the symmetry of a P
parallelogram, h
- . . - #
rotation through 120° only. Possible only 1if n 1s a (b\
multiple of 3.
combination of (a) and (b), having the symmetries of a tz
l-‘

rectangle or rhombus. Only possible if n is a multiple

of 4,

combination of (a) and (c¢), having the symmetries of an GQ
equilateral triangle. Only possible if n is a multiple “

of 6,



(f) unsymmetrical, having none of the above symmetries. L(h

We will denote the number of essentially different

6§ and

dissections of each of these types by Sn’ P . Rn’ "

T
n’® n

v, respectively, Then the total number of essentially different

dissections is

= + + R 4 + +
En Pn Qn Fn Sn Tn Un (10)
TTCURE S FICURE 6 FICUPE 7
Tyomr figure 5, R, = Dkn+1 (1)
Tf ve defire D, = 0 when »n is not an integer, then (11) is
true For n o= 2,3,4,..., except that we mav define R, = 1.
Trom figure 6, Q, * D%n+1 o (12)
This 1s again true for all =32, except that 2, = 1.
We calculate Sn in two cases. If n is odd, there must be

a triangle as shown in figure 7 and then the remainder can be
P . - . . i . A s
filled in D%(n+1) ways. “his will include the Qn in the case

where n = 3 only. Since n is odd, it can only vacuously
include the F_. - .
7 S; x{{ovcb 1{ 4] avbl

If n is even, the dissection will contain a kite as shown
in figure & (see page 8), with one or other diagonal drawn.
Tixing our attenticn on the symmetrical diagonal, we see that

half the polvgen can be dissected in D ways. These will

ln+l



FTCURL 9
include the P, in case »n is a multiple of 4, The remainder

occur in mirror image pairs, so we have %(D - Rn) distinct

Ln+l
contributions to the Sn' The diagonal may be drawn in two ways,

giving D - P These will also include the 0, . Fence

Ln+l

S =D, - F_ -0 (13)

n k n n?

where k = 4(n + 1) or “n + 1 according as n is odd or even.

The P will contain a parallelogram and one of its diagonals.,

Fixing this we see that

n Ln+l ~ Pn) (1y)

as in the above argument.

From figure 9, and as in preceding arguments

=]
w
~

= L -
T, = “(g%n+l Qn) (

Finally Un may be calculated from the total number of

dissections, since each of the P 0

P N T U occur "
nb n’ n’ b

n* n?

—

31, 4n, n, %n and 2n times respectively. I.e.

w

+ LnR + nS  + <4nT_  + 2nU (16)
/) 7 3 7 n

Solution of (10) - (16) gives

S LD, . 4
By = Tl Pymer T P0EET T FPLan (7

where the vinculum in the third term is to be removed in case n
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is even, Hf’re is ajable oif/ esx:yts for small values of =,
\ Wi W
n Dr Pn Qn Vet Sn Tn Un M En /f&
2 1 - - 1 - - - 1
3 1 - 1 - - - - 1
Iy 2 - - 1 - - - 1
5 5 - - - 1 - - 1
6 1h 11 - 1 - - 3
7 T 2 - 2 Y
8 132 2 - 1 b < 5 12
9 429 - - - 5 1 21 27
10 1430 7 - - 14 - 61 82
11 48672 - - - 14 - 214 228
12 16796 20 1 2 39 2 669 733
13 58786 - - - 42 2240 2282
14 208012 66 -~ - 132 - 7330 7528
15 742900 - - - 132 7 24685 24834
16 2674440 212 -~ 5 b2y - -83257 83898
17 9694845 - - - 429 - q%gugzsd/ 285357 e
nY oY Y 1o 20 o reresrT 793 244
129644790 - - - 1430 - 34103990 3412420
477638700 2424 ~ 14 4848 - 11937328 1194461k
21 1767263130 - - - 4862 66 420752472 42080170
22 65664120420 8398 -~ - 16796 - 149171958 1891971672
23 24466267020 - - - 16796 -~ 531866972 531883768
24 91482563640 29372 5 42 58739 212 1905842605 1905930975
25 343059613650 - - - 58786 - 6861162880 6861221666
Qof]  (ise] @ Bl (2071
35357670
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