# The On-Line Encyclopedia of Integer Sequences

Neil J.A. Sloane
Visiting Scholar, Rutgers University
President, OEIS Foundation
II South Adelaide Avenue
Highland Park, NJ



This site is supported by donations to The OEIS Foundation.

# THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

# The On-Line Encyclopedia of Integer Sequences® (OEIS®)

Enter a sequence, word, or sequence number:

1,2,3,6,11,23,47,106,235

| Search | Hints | Welcome | Video |

For more information about the Encyclopedia, see the Welcome page.

Languages: English Shqip العربية Bangla Български Català 中文 (正體字, 箇化字 (1), 箇化字 (2)) Hrvatski Čeština Dansk Nederlands Esperanto Eesti فارسي Suomi Français Deutsch Ελληνικά ગુજરાતી עברית हिंदी Magyar Igbo Bahasa Indonesia Italiano 日本語 ಕನ್ನಡ 한국어 Lietuvių मराठी Bokmål Nynorsk Polski Português

Română Русский Српски Slovenščina Español Svenska Tagalog אונים Türkçe Українська פונים Tiếng Việt Cymraeg

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages

The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under <u>The OEIS End-User License Agreement</u>.

Last modified March 16 18:25 EDT 2015. Contains 255620 sequences.

```
Lunar primes (cf. A087062).
A087097
   19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 209, 219, 309
   319, 329, 409, 419, 429, 439, 509, 519, 529, 539, 549, 609, 619, 629, 639, 649, 659, 709,
   719, 729, 739, 749, 759, 769, 809, 819, 829, 839, 849, 859, 869, 879, 901, 902, 903, 904,
   905, 906, 907, 908, 909, 912, 913, 914, 915, 916, 917, 918, 919, 923, 924, 925, 926, 927,
   928, 929, 934, 935, 936, 937, 938, 939, 945, 946, 947, 948, 949, 956, 957, 958, 959, 967,
   968, 969, 978, 979, 989 (list; graph; listen; history; edit; internal format)
   OFFSET
                1,1
   COMMENTS 9 is the multiplicative unit. A number n is a dismal prime if it is not a
                   dismal product (see A087062 for definition) r*s where neither r nor s is
                   9.
                All dismal primes must contain a 9, so this is a subset of A011539.
                Also, numbers n such that the dismal sum of the dismal prime divisors of n
                   is n. (From N. J. A. Sloane, Aug 23 2010)
                David Applegate and N. J. A. Sloane, Table of n, a(n) for n = 1..22095 [all
   LINKS
                   primes with at most 6 digits1
                D. Applegate, C program for dismal arithmetic and number theory
                Index entries for sequences related to dismal arithmetic
                8 is not prime since 8 = 8*8. 9 is not prime since it is the multiplicative
   EXAMPLE
                   unit. 10 is not prime since 10 = 10*8. Thus 19 is the smallest prime.
                Cf. A087062, A087636, A087638, A087984.
   CROSSREFS
                Sequence in context: A047985 A061763 A088474 * A038364 A151360 A109276
                Adjacent sequences: A087094 A087095 A087096 * A087098 A087099 A087100
   KEYWORD
                nonn, easy, base
```

Marc LeBrun (mlb(AT)well.com), Oct 20 2003

AUTHOR

## Outline of Talk

- About the OEIS
- Sequences from Geometry
- Sequences from Arithmetic
- "Music" and Videos
- The BANFF "Integer Sequences and K12"
   Conference

### **OEIS.org**

- Fun: 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, ...?
- Addictive (better than video games)
- Accessible (free, friendly)
- Street creds (4000 citations)
- Interesting, educational
- Essential reference
- Low-hanging fruit
- Need editors

# Facts about the OEIS

- Accurate information about 250000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, music!
- 200 new entries and updates every day
- 4000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Since 2010, a moderated Wiki

## Main Uses for OEIS

- To see if your sequence is new, to find references, formulas, programs
- Catalan or Collatz? (Very easy or very hard?)
- Many collaborations, very international
- Source of fascinating research problems
- Has led many people into mathematics
- Fun, Escape

# Sequences from Geometry

- Slicing a pancake
- Kobon triangles
- Lines in plane
- Circles in plane
- Tiling a square with dominoes

#### Maximal number of pieces formed when slicing a pancake with n cuts



$$a(n)=a(n-1)+n;$$
  $a(n) = n(n+1)/2 + 1$ 

A124

# Kobon Triangles

Kobon Fujimura, circa 1983

A6066

## Kobon Triangles

How many non-overlapping triangles can you draw with n lines?



|   | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9  |
|---|---|---|---|---|---|---|----|----|
| 0 | 0 | 1 | 2 | 5 | 7 | П | 15 | 21 |

A6066

a(10) is 25 or 26



$$\frac{a(i)=1}{L}$$

$$\frac{\alpha(2) = 2}{(2.1)} = 2$$
(2.1) P<sub>2</sub> (2.25 S<sub>2</sub>

No. of ways to arrange n lines in the plane

1, 2, 4, 9, 47, 791, 37830









(3.3) 5





A241600



(4.6) P2 S2 (c)









### A90338

A subset: n lines in general position

1,1,1,6,43,922,38609

Wild and Reeves, 2004

5 lines in general position: 6 ways



### A250001

a(i)=1





a(2) = 3



No. of arrangements of n circles in the plane

0









I, 3, 14, 168

Jonathan Wild









What if allow tangencies?













# Tiling a Square with Dominoes

36 ways to tile a 4X4 square

$$a(2)=36$$



1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, ... (A4003)

$$a(n) = \prod_{j=1}^{n} \prod_{k=1}^{n} \left( 4\cos^2 \frac{j\pi}{2n+1} + 4\cos^2 \frac{k\pi}{2n+1} \right)$$
 (Kastelyn, 1961)

### Two days ago:

Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, Tianyuan Xu, Sandpiles and Dominos, 2015

```
1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000/5, ... !! (A256043)
```



Figure 1: Identity element for the sandpile group of the  $400 \times 400$  sandpile grid graph.

# Two Sequences That Agree For a Long Time

$$\left\lfloor \frac{2n}{\log 2} \right\rfloor = A078608$$

$$\left\lceil \frac{2}{2^{1/n}-1} \right\rceil$$

 $\left[\frac{2}{2^{1/n}-1}\right]$  Differs for first time at n =

777451915729368

(see A129935)

# Sequences from Arithmetic

- Lunar primes
- The EKG sequence
- Curling number conjecture
- Gijswijt's sequence

## Lunar Arithmetic

David Applegate, Marc LeBrun and NJAS (J.I.S. 2011)

(For Martin Gardner)

Arithmetic on the moon!

# Thm.: Lunar arithmetic is commutative, associative, distributive

```
Lunar squares

*I9

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

100, 111, 112, 113, 114, 115,

116, 117, 118, 119, 200, ...

(A87019)

[19]
```

# Lunar primes?

## What is a prime?

Ans. Only factorization is p = 1 × p

But what is "1"?

Ans. The multiplicative identity:

"I"  $\times$  n = n for all n

But  $I \times 3 = I$ , so "I"  $\neq I$ 

So"I" = 9, since  $9 \times n = n$  for all n.

If  $u \times v = 9$  then u = v = 9, so 9 is the only unit.

So p is prime if its only factorization is  $p = 9 \times p$ 

# Lunar primes (cont.)

p is prime if only factorization is  $p = 9 \times p$ 

7? No, 
$$7 = 7 \times 7$$

13? No, 
$$13 \times 4$$

So must have 9 as a digit.

9? No, 9 is the unit

### Lunar primes:

(A87097)

```
19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 209, ...
```

 $(119 = 19 \times 19 \text{ is not a prime})$ 

## There are infinitely many primes

109 is prime!

**Proof:** 

Similarly, 10...009 is prime!

# The EKG Sequence

Jonathan Ayres, 2001

# EKG Sequence (A64413) 1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, ...

$$a(1)=1$$
,  $a(2)=2$ ,  
 $a(n) = \min k \text{ such that}$ 

- GCD { a(n-1), k } > 1
- k not already in sequence
- Jonathan Ayres, 200 I
- Analyzed by Lagarias, Rains, NJAS, Exper. Math., 2002
- Gordon Hamilton, Videos related to this sequence:

https://www.youtube.com/watch?v=yd2jr30K2R4&feature=youtu.be

http://m.youtube.com/watch?v=Y2KhEW9CSOA







### Theorems:

### **EKG** Sequence

• The sequence is a permutation of the natural numbers

• 
$$c_1 n \leq a(n) \leq c_2 n$$

### Conjectures

• 
$$a(n) \sim n \left(1 + \frac{1}{3\log n}\right)$$
 for the main terms

• 
$$\cdots$$
,  $2p$ ,  $p$ ,  $3p$ ,  $\cdots$  (primes  $p > 2$ )

(Proved by Hofman & Pilipczuk, 2008)

### **EKG** Sequence

```
LEMMA I IF OO MANY MULTIPLES
OF PRIME P APPEAR, THEN ALL
 MULTIPLES DO.
Pf. Rp not in sequence
   ∃no s.t. n ≥no =) a(n) > Rp
 .: a(n) = ip : a(n+1) = kp, >
LEMMA 2 IF ALL MULTIPLES OF P
APPEAR THEN ALL NUMBERS DO.
Pf. R not in sequence
 a(n) = kip a(n+1) = k
THEOREM { a(u) } IS PERM. OF [1,2.5]
PJ. IF OD MANY DIFF PRIMES.
   : 00 MANY 2p's, USE LI, LZ.
  IF FINITELY MANY DIFF PRIMES.
    ONE APPBARS OD OFTEN,
                   USE LI, LZ.
                       QED
```

# The Curling Number Conjecture

### The Curling Number Conjecture

Definition of Curling Number



Monday, March 16, 15

# CURLING NUMBER CONJECTURE

- START WITH ANY FINITE STRING
- APPENS CURLING NUMBER
  - ·REPEAT
  - · THEN MUST REACH A !!

E.G.

START: 22322

THEN 23223321...

# Gijswijt's Sequence

Dion Gijswijt, 2004

A90822

## Gijswijt's Sequence

Fokko v. d. Bult, Dion Gijswijt, John Linderman, N. J. A. Sloane, Allan Wilks (J. Integer Seqs., 2007)

Start with I, always append curling number

```
I I 2 <u>2</u> <u>3</u>
          I I 2 2 2 3 2
          I I 2 2 2 3
          I I 2 2 2 3 2 <u>2 3 2 2 3 3 2</u>
                                            (A090822
a(220) = 4
```

Monday, March 16, 15



Is there a 5?

#### Is there a 5?

300,000 terms: no 5

#### Is there a 5?

300,000 terms: no 5

 $2 \cdot 10^6$  terms: no 5

#### Is there a 5?

300,000 terms: no 5

 $2 \cdot 10^6$  terms: no 5

 $10^{120}$  terms: no 5

#### Is there a 5?

300,000 terms: no 5

 $2 \cdot 10^6$  terms: no 5

 $10^{120}$  terms: no 5

NJAS, FvdB: first 5 at about term  $10^{10^{23}}$ 

## First n appears at about term

n-1

•••

5

4

3

7

2

(F.v.d. Bult et al., J. Integer Sequences, 2007)

(A90822)

# Proofs could be simplified if Curling Number Conjecture were true

How far can you get with an initial string of n 2's and 3's (before a l appears)?

THE UNIQUE RECORD STARTS!

LENGTH 8: 232223 -> 66

LENGTH 22:

23223223223223 → 142

LENGH 48 -> 179

LENGTH 77 -> 250

JOINT WORK WITH

BEN CHAFFIN

(INTEL)

#### Conjecture

Curling Number Conjecture, continued

LET 
$$\mu(n) = MAX$$
 LENGTH

ATTAINED STARTING WITH

 $n \ 2's \ 3's$ ,

IF S ACHIEVES  $\mu(n) > \mu(n-1)+1$ 

THEN S DOES NOT

CONTAIN  $W^4$ ,  $W \neq \emptyset$ .

(so NOT 2222) Searched  $n \le 53$ 

Conjecture

· · · S ALSO DOES

NOT CONTAIN 33. Searched n <= 80

#### Curling Number Conjecture, continued



## "Music" and Videos

Reminder: New keywords "hear" and "look"

## Pascal's triangle A7318

#### Hofstadter Q sequence A5185

$$a(1) = a(2) = 1$$
;  $a(n) = a(n-a(n-1)) + a(n-a(n-2))$  for  $n > 2$ .

wt(n) and 4<sup>^</sup>wt(n) together
(A120 and A102376, Taiko drum and xylophone)

## Martin Paech's arrangement of A242353

#### Recaman's sequence A5132

(Midi "instrument" FX-7)

## Samuel Vriezen, Toccata III (2001)

# Faure, Prelude, Op. 103, #3 (in G Minor)

## Videos about sequences

```
Charles McKeague, <u>Fibonacci numbers</u>

Dale Gerdemann, <u>Fibonacci tree</u>

Christobal Vila, <u>Nature by numbers</u>

Robert Walker, <u>Golden Rhythmicon</u>

Gordon Hamilton, <u>Wrecker ball sequence</u>

(Recaman's sequence)
```

There are nearly 200 videos, movies, animations in the OEIS - we need more!

# The BANFF Integer Sequences K-12 Conference

Conference organized by Gordon Hamilton and me

Feb. 27 - March 1, 2015



## Integer Sequences K-12

A conference for mathematicians and educators

Feb. 27-Mar. 1 2015 Banff International Research Station

32-Page Report

## Integer Sequences K-12

Detailed Report on Individual Sequences For Each Grade

54 Pages

#### **Selected Integer Sequences**

Henri Picciotto
<a href="https://www.MathEducationPage.org">www.MathEducationPage.org</a>
henri@MathEducationPage.org



| Slime Numbers: <u>A152242</u> , <u>A166504</u>                           | p. 2  |
|--------------------------------------------------------------------------|-------|
| McNuggets Numbers: <u>A214777</u>                                        | p. 3  |
| Polyomino Perimeter: A027709                                             | p. 6  |
| Staircases (trapezoidal numbers): <u>A069283</u>                         | p. 9  |
| Figurate Numbers: <u>A000217</u> , <u>A005891</u> , <u>A000537</u> , etc | p. 10 |

### The OEIS

The On-Line Encyclopedia of Integer Sequences

https://oeis.org

Supported by The OEIS Foundation Inc: oeisf.org
A 501(c)(3) public charity - please donate!