Skip to content. | Skip to navigation

Log in
Register

The behavior of a bicycle under pedaling forces is not linear but rather asymmetrical.

This is due in most part to pedal forces being applied evenly on both right and left sides (assuming an athlete has a normal and efficient pedal stroke) although the force generated by both right and left is transferred only to the right side of the frame as the chain is located only on the drive side. During part of the pedal stroke forces applied to the bike are opposing and during the other part they are transferred. This, in addition to asymmetric forces being applied to the handlebars as the athlete pushes and pulls even lightly during normal pedaling, creates an input that is not efficient and linear. In other words, pedal forces applied to a symmetric frame can only give an asymmetric and less efficient output. 

This phenomenon is easily verified and can be visible almost to the naked eye. At Cicli Pinarello all new projects are validated first and foremost by theoretical studies using FEM (Finite Element Method) analysis. Upon completion of these theoretical calculations all results are then verified in the laboratory. In both theoretical calculations as well as laboratory studies, the asymmetric behavior of a symmetric frame is evident. The frame can flex up to nearly 5mm on one side and only 1-2 on the other. 

This can only be contrasted by an asymmetric frame construction. On one side the frame is perhaps too rigid in which case some material can be removed. On the other side the frame is too flexible and needs to be reinforced or made more rigid. Working with carbon fiber the task of increasing rigidity and flexibility in determined areas is facilitated with the type of carbon, quantity of material, direction of the fibers and shape of the frame all can be changed to achieve the desired result. Design of an efficient frame, with asymmetry in both form and construction is possible through a long process of advanced analysis, using the latest technological software.

the Effect of the pull on the chain

That was the basic reason for creating DOGMA the first asymmetric racing bike. (patend pending).

The push thrusts on the pedals are symmetric and opposite for left and right side thrusts. Conversely, the pull on the chain is the same in both cases and always applied to the right side of the frame. The result is that the overall deflection produced by the summation of the two stresses:

right-side thrust + pull on chain and 

left-side thrust + pull on chain 

is not symmetric 

because in the first case the two stresses are added to each other and in the second they are subtracted from each other.

Fork and frame together as one: introducing the ONDA 2!

The form of the new ONDA 2 improves aerodynamics significantly, eliminating the empty space between fork and down tube, effectively creating fork and frame that act as one body. By eliminating the space between fork and frame drag is significantly reduced as there is no longer turbulent air between the two.  Equally important is the new form’s impressive effect on stiffness of the front end. The new form is 19% more rigid when analyzing only the form and geometry and becomes even more rigid when taking into account that it is constructed with our new Torayca 65HM1K carbon with Nanoalloy technology. ONDA 2 is strong, resistant and reactive with a special profile to ensure even more rigidity. The right leg is a bit larger with a different structure than that of the left one in an effort to compensate for the asymmetry of forces applied to the bike both during normal use as well as under more extreme circumstances such as sprints or climbs with high gradients.

EPS by PINARELLOLAB: Reduces weight while increasing strength

The PINARELLOLAB has introduced the E.P.S. (Expandable Polystyrene System) production process in an effort to both increase rigidity and safeness as well as to decrease the overall weight of the frame. Increased compaction makes for a more rigid frame which allows you, the rider, to have greater control of the bike and lose less energy due to frame flex laterally.

The E.P.S. process allows Pinarello to eliminate extra and unnecessary material as the compaction of carbon layers is optimized thus translating into an overall weight savings. This process also eliminates small imperfections that come about under traditional frame production methods. These imperfections are often the cause of structural failure and represent a risk for the rider. By eliminating these structural imperfections through EPS processes, Pinarello has improved the safety of its frames above the industry standard.

The E.P.S. system consists in laminating carbon sheets around Polystyrene forms with perfectly smooth surfaces and leaving these forms inside the mold during the pressure phase of production. The mold expands both due to increased heat in addition to added air pressure leaving a controlled and optimized thickness of carbon material throughout the frame. The polystyrene mold is then removed when the production process is complete.

Think2 by PINARELLOLAB: new versatile frame made to function perfectly with both electronic and mechanic groupsets.

The new Pinarello frames was made under the Think2 philosophy, or in other words, designed to adapt perfectly to either mechanical or electronic groupsets thanks to a new system of adaptors that allow for perfect integration and internal cable routing for both systems.

Torayca 65HM1K with Nanoalloy Technology

When subjected to violent impact, carbon fibre can snap, with evident safety hazards: dangerous flying splinters that can injure the cyclist and the possibility of a crash. Toray has solved this problem by inventing a system that prevents microfractures from spreading and avoids immediate collapse with the neat rupture of the fibres.

The extraordinary Torayca Nanoalloy™ technology consists of nanoparticles embedded in the carbon fibre mesh that explode on impact to prevent the fibre from breaking. Our current 50HM1K fibre is already 29% stronger on impact than conventional fibres. The new 65HM1K with Nanoalloy™ technology adds another 23% to that advantage, making it 59% more resistant than conventional fibres.

Toray® has been our exclusive supplier for the last 5 years. The Japan-based industrial colossus supplies the most important aerospace and automobile industries and is a world leader in terms of production output, technology and innovation in the field of special fibers. The Torayca® division, dedicated to carbon fiber processing, will supply the newly developed 65HM1K fiber with Nanoalloy™ technology.

Carbon fiber starts as a filament measuring 5-8 micrometers in width that is produced through a long and complicated process of pirolisi oxidation and carbonization of Polyacrylonitrile and is the material with the highest resistance to breakage weight that exists in the market today.

When we refer 65HM we are referring to fiber with a tensile modulus of 65 tons per square centimeter. When we refer to 1K it means that there are 1000 fibers per strand 

Using a highly resistant and reliable fiber such as Torayca 65HM1K  with Nanoalloy™ allows us to employ less material compared to traditional fibers, hence the final weight is lower, although stability and safety are improved.