
AWS Flow Framework for Java
Developer Guide

API Version 2012-01-25

Amazon Web Services

AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java: Developer Guide
Amazon Web Services
Copyright © 2013 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

AWS Flow Framework for Java Developer Guide

Introduction ... 1
Setting up the Development Environment .. 2
HelloWorld Application .. 6
HelloWorldWorkflow Application ... 8
HelloWorldWorkflowAsync Application ... 20
HelloWorldWorkflowDistributed Application .. 23
HelloWorldWorkflowParallel Application ... 25
Basic Concepts ... 28
Application Structure .. 28
Reliable Execution .. 31
Distributed Execution .. 32
Task Lists and Task Execution .. 34
Scalable Applications .. 35
Data Exchange Between Activities and Workflows ... 36
Data Exchange Between Applications and Workflow Executions ... 37
Timeout Types ... 38
Programming Guide .. 41
Implementing Workflow Applications .. 41
Workflow and Activity Contracts ... 42
Workflow and Activity Type Registration ... 44
Activity and Workflow Clients .. 46
Workflow Implementation ... 57
Activity Implementation ... 60
Running Programs Written with the AWS Flow Framework for Java .. 62
Execution Context ... 66
Child Workflow Executions ... 69
Continuous Workflows .. 70
DataConverters ... 71
Passing Data to Asynchronous Methods .. 72
Testability and Dependency Injection ... 74
Error Handling ... 84

Retry Failed Activities .. 91
Daemon Tasks .. 100
Replay Behavior ... 101
Under the Hood .. 104
Troubleshooting and Debugging Tips ... 109
AWS Flow Framework for Java Reference ... 113
AWS Flow Framework for Java Annotations ... 113
AWS Flow Framework for Java Exceptions .. 117
AWS Flow Framework for Java Packages .. 120
Document History ... 121

API Version 2012-01-25
4

AWS Flow Framework for Java Developer Guide

Introduction to the AWS Flow
Framework for Java

Amazon Simple Workflow Service (Amazon SWF) provides a powerful and flexible way for developers
to implement distributed asynchronous workflow applications.The AWS Flow Framework is a programming
framework that simplifies the process of implementing a distributed asynchronous application while
providing all the benefits of Amazon SWF. It is ideal for implementing applications to address a broad
range of scenarios including business processes, media encoding, long-running tasks, and background
processing.

With the AWS Flow Framework, you can focus on implementing your workflow logic. Behind the scenes,
the framework uses the scheduling, routing, and state management capabilities of Amazon SWF to
manage your workflow's execution and make it scalable, reliable, and auditable. AWS Flow
Framework-based workflows are highly concurrent; they can be readily distributed across multiple
components which can run as separate processes on separate computers and be scaled independently.
The application can continue to progress if any of its components are running, making it highly fault
tolerant.

This section introduces the AWS Flow Framework by walking you through a series of simple applications
that introduce the basic programming model and API.The example applications are based on the standard
introduction to C and related programming languages: an application that prints "Hello World!" to the
console. Here is a typical Java implementation:

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

The following is a brief description of the walkthroughs. They include complete source code so you can
implement and run the applications yourself. Before starting, you should first configure your development
environment and create and create and configure an AWS Flow Framework for Java project, as described
in Setting up the Development Environment (p. 2).

• HelloWorld Application (p. 6) introduces workflow applications by implementing Hello World! as a
standard Java application but structuring it like a workflow application.

API Version 2012-01-25
1

AWS Flow Framework for Java Developer Guide

• HelloWorldWorkflow Application (p. 8) uses the AWS Flow Framework for Java to convert HelloWorld
into an Amazon SWF workflow.

• HelloWorldWorkflowAsync Application (p. 20) modifies HelloWorldWorkflow to use an asynchronous
workflow method.

• HelloWorldWorkflowDistributed Application (p. 23) modifies HelloWorldWorkflowAsync so that the
workflow and activity workers can run on separate systems.

• HelloWorldWorkflowParallel Application (p. 25) modifies HelloWorldWorkflow to run two activities
in parallel.

Setting up the AWS Flow Framework for Java
Development Environment

The AWS Flow Framework for Java is provided in the AWS SDK for Java.You can install the AWS SDK
for Java in one of the following ways:

• Installing the AWS Toolkit for Eclipse (p. 2)

• Installing the AWS SDK for Java (p. 3)

The AWS Flow Framework for Java documentation assumes that you use the recommended Eclipse
development environment with the AWS Toolkit for Eclipse.

Important
The AWS Flow Framework for Java works only with Java 6 (JDK 1.6) and AspectJ; Java 7 (JDK
1.7) is not currently supported.

Installing the AWS Toolkit for Eclipse
Installing the AWS Toolkit for Eclipse is the simplest way to get started with the AWS Flow Framework
for Java. For information about installing the AWS Toolkit for Eclipse, see the AWS Toolkit for Eclipse
Getting Started Guide.

Important
While installing the AWS Toolkit for Eclipse, be sure to install the Amazon SWF Tools, as shown
in the following screenshot of Eclipse's Install New Software dialog:

This is necessary to properly build AWS Flow Framework projects in Eclipse.

API Version 2012-01-25
2

AWS Flow Framework for Java Developer Guide
Setting up the Development Environment

http://aws.amazon.com/sdkforjava/
http://www.eclipse.org/
http://aws.amazon.com/eclipse/
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/tke_setup.html
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/tke_setup.html

Installing the AWS SDK for Java
If you are not using Eclipse, you can download the AWS SDK for Java from
http://aws.amazon.com/sdkforjava/. To build your project from the command line,
aws-java-sdk-flow-build-tools-1.4.7.jar must be in the classpath.

For an example of a properly-configured command line Ant build file, see build.xml in the SDK's
samples/AwsFlowFramework directory.

Creating an AWS Flow Framework for Java Project
To create an AWS Flow Framework for Java project

1. Configure Eclipse to show the Java perspective, which includes Package Explorer.

2. Click File > New > AWS Java Project and create a new project.

3. Configure the project for AWS Flow Framework for Java, as described in the following sections.
These procedures were tested with Eclipse 4.3 (Kepler) and Java Development Kit (JDK) 1.6.

Enable Annotation Processing
The AWS Flow Framework for Java includes an annotation processor that generates several key classes
based on annotated source code.

To enable annotation processing

1. In Package Explorer, right-click the project and select Properties.

2. In the Properties dialog box, navigate to Java Compiler > Annotation Processing.

3. Check Enable project specific settings and Enable annotation processing, as shown in the
following screenshot.

Note
You may need to rebuild your project after enabling annotation processing.

Add the AWS Flow Framework for Java JAR to the Build
Path
If you installed the AWS Toolkit for Eclipse, the AWS Flow Framework for Java JAR file, should be in
your build path. If not, you must add it manually.

API Version 2012-01-25
3

AWS Flow Framework for Java Developer Guide
Installing the AWS SDK for Java

http://aws.amazon.com/sdkforjava/

To add the AWS Flow Framework for Java JAR file to the build path

1. In Package Explorer, right-click your project, and select Build Path > Configure Build Path.

2. On the Properties dialog box's Libraries tab, click Add External JARs.

3. Navigate to the AWS SDK's lib directory, select aws-java-sdk-version.jar and click Open to add
the JAR to the build path; version is the AWS SDK version number. This documentation is based on
AWS SDK version 1.4.7 (aws-java-sdk-1.4.7.jar).

Enable and Configure AspectJ
Certain AWS Flow Framework for Java annotations such as @Asynchronous require AspectJ.You don't
have to use AspectJ directly, but you must enable it by using either of the following procedures. The
recommended approach is load-time weaving.

AspectJ Load-Time Weaving (Recommended)

To enable AspectJ load-time weaving designate the AspectJ JAR file as a Java agent.

To add the AspectJ Java agent

1. On the Window menu, select Preferences.

2. In the Preferences dialog box, navigate to Java > Installed JREs.

3. Select the appropriate JRE and click Edit.

4. Add the following line to the Default VM Argument text box:

-javaagent:<local directory containing the AWS SDK for
Java>/third-party/aspectj-1.6/aspectjweaver.jar

Note
Both the AWS Toolkit for Eclipse and the AWS SDK for Java install aspectjweaver.jar in
your aws-java-sdk/version/third-party/aspectj-1.6 directory, where version
corresponds to the installed AWS SDK version number.

To configure AspectJ for AWS Flow Framework for Java, add an aop.xml file to the project.

To add an aop.xml file

1. Add a META-INF directory to your project's src directory.

2. Add a file named aop.xml to META-INF with the following contents.

<aspectj>
 <aspects>
 <!-- declare two existing aspects to the weaver -->
 <aspect name="com.amazonaws.services.simpleworkflow.flow.aspectj.Asyn
chronousAspect"/>
 <aspect name="com.amazonaws.services.simpleworkflow.flow.aspectj.Expo
nentialRetryAspect"/>
 </aspects>
 <weaver options="-verbose">
 <include within="<expression to match your types>"/>
 </weaver>
</aspectj>

API Version 2012-01-25
4

AWS Flow Framework for Java Developer Guide
Creating an AWS Flow Framework for Java Project

http://www.eclipse.org/aspectj/

The within attribute value depends on how you name your project's packages. For example, if all
your project's packages are named MySimpleWorkflow.XYZ, set the within attribute like this:

...
 <weaver options="-verbose">
 <include within="MySimpleWorkflow..*"/>
 </weaver>
...

AspectJ Compile-Time Weaving

To enable and configure AspectJ compile-time weaving, you must first install the AspectJ developer tools
for Eclipse, which are available from http://eclipse.org/ajdt/downloads/.

To install the AspectJ Developer Tools in Eclipse

1. On the Help menu, click Install New Software.

2. In the Available Software dialog box, enter http://download.eclipse.org/tools/ajdt/version/update,
where version represents your Eclipse version number. For example, if you are using Eclipse 4.3
(Kepler), you would enter: http://download.eclipse.org/tools/ajdt/43/update.

Important
Be sure that the AspectJ version matches your Eclipse version, or installation of AspectJ
will fail.

3. Click Add to add the location. Once the location is added, the AspectJ developer tools will be listed.

4. Select all of the AspectJ developer tools and click Next to install them.

You must then configure your project.

To configure a project for AspectJ compile-time weaving

1. In Package Explorer, right-click your project and select AspectJ Tools, then Convert to AspectJ
Project.

2. In the Properties dialog box, click AspectJ Build and then click the Aspect Path tab.

3. Click Add External JARs and add the add the AWS SDK for Java JAR file to your project's Aspect
Path.

API Version 2012-01-25
5

AWS Flow Framework for Java Developer Guide
Creating an AWS Flow Framework for Java Project

http://eclipse.org/ajdt/downloads/

Note
The AWS Toolkit for Eclipse installs the AWS SDK for Java JAR file in your workspace, in
the .metadata/.plugins/com.amazonaws.eclipse.core/aws-java-sdk/AWS
Version/lib directory, where you replace AWS Version with the installed AWS SDK
version number. Otherwise, you can use the JAR file that is included with the regular AWS
SDK installation, which is in the lib directory.

Working around issues with AspectJ and Eclipse

The AspectJ Eclipse plug-in has an issue that can prevent generated code from being compiled. To work
around this issue, first remove AspectJ and then re-convert your project:

1. Right-click your project, click AspectJ Tools, Remove AspectJ Capability, and then click Yes to
confirm.

2. Right-click your project, click Configure, then Convert to AspectJ Project.

HelloWorld Application
The HelloWorld application introduces the basics of workflow applications. It is structured as and works
much like an AWS Flow Framework for Java workflow application, but is implemented as a conventional
Java application that runs locally as a single process. Although it might seem like an overly complicated
way to perform a simple task, HelloWorld provides a convenient way to introduce the basic structure and
behavior of a workflow application and it can be converted to an AWS Flow Framework for Java application
with only modest changes.

A workflow application consists of three basic components.

• An activities worker supports a set of activities, each of which is a method executes independently to
perform a particular task.

• A workflow worker orchestrates the activities' execution and manages data flow. It is a programmatic
realization of a workflow topology, which is basically a flow chart that defines when the various activities
execute, whether they execute sequentially or concurrently, and so on.

• A workflow starter starts a workflow instance, called an execution, and can interact with it during
execution.

HelloWorld is implemented as three classes and two related interfaces, which are described in the following
sections. Before starting, you should set up your development environment and create a new AWS Java
project as described in Setting up the Development Environment (p. 2). The packages used for the
following walkthroughs are all named helloWorld.XYZ. To use those names, set the within attribute in
aop.xml as follows:

...
<weaver options="-verbose">
<include within="helloWorld..*"/>
</weaver>
...

To implement HelloWorld, create a new Java package in your AWS SDK project named
helloWorld.HelloWorld and add the following files:

• An interface file named GreeterActivities.java

• A class file named GreeterActivitiesImpl.java, which implements the activities worker.

API Version 2012-01-25
6

AWS Flow Framework for Java Developer Guide
HelloWorld Application

• An interface file named GreeterWorkflow.java.

• A class file named GreeterWorkflowImpl.java, which implements the workflow worker.

• A class file named GreeterMain.java, which implements the workflow starter.

The details are discussed in the following sections and include the complete code for each component,
which you can add to the appropriate file.

HelloWorld Activities Worker
HelloWorld breaks the overall task of printing a "Hello World!" greeting to the console into three tasks,
each of which is performed by an activity method. The activity methods are defined in the
GreeterActivities interface, as follows.

public interface GreeterActivities {
public String getName();
public String getGreeting(String name);
public void say(String what);
}

HelloWorld has one activity worker, GreeterActivitiesImpl, which implements the
GreeterActivities methods, as follows:

public class GreeterActivitiesImpl implements GreeterActivities {
@Override
public String getName() {
 return "World";
}

@Override
public String getGreeting(String name) {
 return "Hello " + name + "!";
}

@Override
public void say(String what) {
 System.out.println(what);
}
}

Activities are independent of each other and can often be used by different workflows. For example, any
workflow can use the say activity to print a string to the console.Workflows can also have multiple activity
workers, each performing a different set of tasks.

HelloWorld Workflow Worker
To print "Hello World!" to the console, the activity tasks must execute in sequence in the correct order
with the correct data. The HelloWorld workflow worker orchestrates the activities' execution based on a
simple linear workflow topology, which is shown in the following figure.

API Version 2012-01-25
7

AWS Flow Framework for Java Developer Guide
HelloWorld Activities Worker

The three activities execute in sequence, and the data flows from one activity to the next.

The HelloWorld workflow worker has a single method, the workflow's entry point, which is defined in the
GreeterWorkflow interface, as follows:

public interface GreeterWorkflow {
public void greet();
}

The GreeterWorkflowImpl class implements this interface, as follows:

public class GreeterWorkflowImpl implements GreeterWorkflow{
private GreeterActivities operations = new GreeterActivitiesImpl();

public void greet() {
 String name = operations.getName();
 String greeting = operations.getGreeting(name);
 operations.say(greeting);
}
}

The greet method implements HelloWorld topology by creating an instance of GreeterActivitiesImpl,
calling each activity method in the correct order, and passing the appropriate data to each method.

HelloWorld Workflow Starter
A workflow starter is an application that starts a workflow execution, and might also communicate with
the workflow while it is executing. The GreeterMain class implements the HelloWorld workflow starter,
as follows:

public class GreeterMain {
public static void main(String[] args) {
 GreeterWorkflow greeter = new GreeterWorkflowImpl();
 greeter.greet();
}
}

GreeterMain creates an instance of GreeterWorkflowImpl and calls greet to run the workflow
worker. Run GreeterMain as a Java application and you should see "Hello World!" in the console output.

HelloWorldWorkflow Application
Although HelloWorld is structured like a workflow, it differs from an Amazon SWF workflow in several key
respects:

API Version 2012-01-25
8

AWS Flow Framework for Java Developer Guide
HelloWorld Workflow Starter

Conventional and Amazon SWF Workflow Applications

Amazon SWF WorkflowHelloWorld

Runs as multiple processes that can be distributed across
multiple systems, including EC2 instances, private data
centers, client computers, and so on. They don't even have
to run the same operating system.

Runs locally as a single process.

Activities are represented by asynchronous methods, which
return immediately and allow the workflow to perform other
tasks while waiting for the activity to complete.

Activities are synchronous methods,
which block until they complete.

Workflow workers interact with activities workers by using
HTTP requests, with Amazon SWF acting as an intermediary.

The workflow worker interacts with an
activities worker by calling the
appropriate method.

Workflow starters interact with workflow workers by using
HTTP requests, with Amazon SWF acting as an intermediary.

The workflow starter interacts with
workflow worker by calling the
appropriate method.

You could implement a distributed asynchronous workflow application from scratch, for example, by
having your workflow worker interact with an activities worker directly through web services calls. However,
you must then implement all the complicated code required to manage the asynchronous execution of
multiple activities, handle the data flow, and so on.The AWS Flow Framework for Java and Amazon SWF
take care of all those details, which allows you to focus on implementing the business logic.

HelloWorldWorkflow is a modified version of HelloWorld that runs as an Amazon SWF workflow. The
following figure summarizes how the two applications work.

HelloWorld runs as a single process and the starter, workflow worker, and activities worker interact by
using conventional method calls.With HelloWorldWorkflow, the starter, workflow worker, and activities
worker are distributed components that interact through Amazon SWF by using HTTP requests. Amazon

API Version 2012-01-25
9

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Application

SWF manages the interaction by maintaining lists of workflow and activities tasks, which it dispatches to
the respective components. This section describes how the framework works for HelloWorldWorkflow.

HelloWorldWorkflow is implemented by using the AWS Flow Framework for Java API, which handles the
sometimes complicated details of interacting with Amazon SWF in the background and simplifies the
development process considerably.You can use the same project that you did for HelloWorld, which is
already configured for AWS Flow Framework for Java applications. However, to run the application, you
must set up an Amazon SWF account, as follows:

• Sign up for an AWS account, if you don't already have one, at Amazon Web Services.

• Assign your account's Access ID and secret ID to the AWS_ACCESS_KEY_ID and AWS_SECRET_KEY
environment variables, respectively. It's a good practice to not expose the literal key values in your
code. Storing them in environment variables is a convenient way to handle the issue.

• Sign up for Amazon SWF account at Amazon Simple Workflow Service.

• Log into the AWS Management Console and select the Amazon SWF service.

• Click Manage Domains in the upper right corner and register a new Amazon SWF domain.You can
use any convenient domain name, but the walkthroughs use "helloWorldExamples".

For more details about how to manage Amazon SWF workflows, see Getting Set Up.

To implement the HelloWorldWorkflow, create a copy of the helloWorld.HelloWorld package in your project
folder and name it helloWorld.HelloWorldWorkflow. The following sections describe how to modify the
original HelloWorld code to use the AWS Flow Framework for Java and run as an Amazon SWF workflow
application.

HelloWorldWorkflow Activities Worker
HelloWorld implemented its activities worker as a single class. An AWS Flow Framework for Java activities
worker has three basic components:

• The activity methods—which perform the actual tasks—are defined in an interface and implemented
in a related class.

• An ActivityWorker class manages the interaction between the activity methods and Amazon SWF.

• An activities host application registers and starts the activities worker, and handles cleanup.

This section discusses the activity methods; the other two classes are discussed later.

HelloWorldWorkflow defines the activities interface in GreeterActivities, as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistra
tionOptions;

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
@Activities(version="1.0")

public interface GreeterActivities {
 public String getName();
 public String getGreeting(String name);
 public void say(String what);
}

API Version 2012-01-25
10

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Activities Worker

http://aws.amazon.com/
http://aws.amazon.com/swf/
http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-dev-amzn-swf.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html

This interface wasn't strictly necessary for HelloWorld, but it is for an AWS Flow Framework for Java
application. Notice that the interface definition itself hasn't changed. However, you must apply two AWS
Flow Framework for Java annotations, @ActivityRegistrationOptions (p. 116) and @Activities (p. 115), to
the interface definition. The annotations provide configuration information and direct the AWS Flow
Framework for Java annotation processor to use the interface definition to generate an activities client
class, which is discussed later.

@ActivityRegistrationOptions has several named values that are used to configure the activities'
behavior. HelloWorldWorkflow specifies two timeouts:

• defaultTaskScheduleToStartTimeoutSeconds specifies how long the tasks can be queued in
the activities task list, and is set to 300 seconds (5 minutes).

• defaultTaskStartToCloseTimeoutSeconds specifies the maximum time the activity can take to
perform the task and is set to 10 seconds.

These timeouts ensure that the activity completes its task in a reasonable amount of time. If either timeout
is exceeded, the framework generates an error and the workflow worker must decide how to handle the
issue. For a discussion of how to handle such error, see Error Handling (p. 84).

@Activities has several values, but typically it just specifies the activities' version number, which allows
you to keep track of different generations of activity implementations. If you change an activity interface
after you have registered it with Amazon SWF, including changing the @ActivityRegistrationOptions
values, you must use a new version number.

HelloWorldWorkflow implements the activity methods in GreeterActivitiesImpl, as follows:

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }
 @Override
 public String getGreeting(String name) {
 return "Hello " + name;
 }
 @Override
 public void say(String what) {
 System.out.println(what);
 }
}

Notice that the code is identical to the HelloWorld implementation. At its core, an AWS Flow Framework
activity is just a method that executes some code and perhaps returns a result. The difference between
a standard application and an Amazon SWF workflow application lies in how the workflow executes the
activities, where the activities execute, and how the results are returned to the workflow worker.

HelloWorldWorkflow Workflow Worker
An Amazon SWF workflow worker has three basic components.

• A workflow implementation, which is a class that performs the workflow-related tasks.

• An activities client class, which is basically a proxy for the activities class and is used by a workflow
implementation to execute activity methods asynchronously.

• A WorkflowWorker class, which manages the interaction between the workflow and Amazon SWF.

API Version 2012-01-25
11

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow Worker

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html

This section discusses the workflow implementation and activities client; the WorkflowWorker class is
discussed later.

HelloWorldWorkflow defines the workflow interface in GreeterWorkflow, as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistra
tionOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {
 @Execute(version = "1.0")
 public void greet();
}

This interface also isn't strictly necessary for HelloWorld but is essential for an AWS Flow Framework for
Java application.You must apply two AWS Flow Framework for Java annotations,
@WorkflowRegistrationOptions (p. 114) and @WorkflowRegistrationOptions (p. 114), to the workflow
interface definition. The annotations provide configuration information and also direct the AWS Flow
Framework for Java annotation processor to generate a workflow client class based on the interface, as
discussed later.

@Workflow has one named value, but it is typically used without values to designate GreeterWorkflow
as a workflow interface.@WorkflowRegistrationOptions has several named values that can be used
to configure the workflow worker. HelloWorldWorkflow specifies one timeout:

• defaultExecutionStartToCloseTimeoutSeconds specifies how long the workflow can run and
is set to 300 seconds (5 minutes).

The GreeterWorkflow interface definition differs from HelloWorld in one important way, the
@Execute (p. 114) annotation.Workflow interfaces specify the methods that can be called by applications
such as the workflow starter and are limited to a handful of methods, each with a particular role. The
framework doesn't specify a name or parameter list for workflow interface methods; you use a name and
parameter list that is suitable for your workflow and apply an AWS Flow Framework for Java annotation
to identify the method's role.

@Execute has two purposes: identifies greet as the workflow's entry point—the method that the workflow
starter calls to start the workflow. In general, an entry point can take one or more parameters, which
allows the starter to initialize the workflow, but this example doesn't require initialization.

• It identifies greet as the workflow's entry point—the method that the workflow starter calls to start the
workflow. In general, an entry point can take one or more parameters, which allows the starter to
initialize the workflow, but this example doesn't require initialization.

• It specifies the workflow's version number, which allows you to keep track of different generations of
workflow implementations. To change a workflow interface after you have registered it with Amazon
SWF, including changing the timeout values, you must use a new version number.

For information on the other methods that can be included in a workflow interface, see Workflow and
Activity Contracts (p. 42).

HelloWorldWorkflow implements the workflow in GreeterWorkflowImpl, as follows:

API Version 2012-01-25
12

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow Worker

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

The code is similar to HelloWorld, but with two important differences.

• GreeterWorkflowImpl creates an instance of GreeterActivitiesClientImpl, the activities
client, instead of GreeterActivitiesImpl, and executes activities by calling methods on the client
object.

• The name and greeting activities return Promise<String> objects instead of String objects.

HelloWorld is a standard Java application that runs locally as a single process, so GreeterWorkflowImpl
can implement the workflow topology by simply creating an instance of GreeterActivitiesImpl,
calling the methods in order, and passing the return values from one activity to the next. With an Amazon
SWF workflow, an activity's task is still performed by an activity method from GreeterActivitiesImpl.
However, the method doesn't necessarily run in the same process as the workflow—it might not even
run on the same system—and the workflow needs to execute the activity asynchronously. These
requirements raise the following issues:

• How to execute an activity method that might be running in a different process, perhaps on a different
system.

• How to execute an activity method asynchronously.

• How to manage activities' input and return values. For example, if the Activity A return value is an input
to Activity B, you must ensure that Activity B doesn't execute until Activity A is complete.

You can implement a variety of workflow topologies through the application's control flow by using familiar
Java flow control combined with the activities client and the Promise<T>.

Activities Client
GreeterActivitiesClientImpl is basically a proxy for GreeterActivitiesImpl that allows a
workflow implementation to execute the GreeterActivitiesImpl methods asynchronously.

You don't implement the activities client directly.The AWS Flow Framework for Java annotation processor
uses the annotations and code from the GreeterActivities interface to generate the
GreeterActivitiesClient interface and the GreeterActivitiesClientImpl class. It creates the
class names by simply appending "Client" and "ClientImpl" to the interface name. If you would like to
examine the activities client code, Eclipse generates it each time you save the source files and puts the
resulting class implementations in the project's .apt_generated folder.

A workflow worker executes an activity by calling the corresponding client method. The method is
asynchronous and immediately returns a Promise<T> object, where T is the activity's return type. The
returned Promise<T> object is basically a placeholder for the value that the activity method will eventually
return.

API Version 2012-01-25
13

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow Worker

• When the activities client method returns, the Promise<T> object is initially in an unready state, which
indicates that the object does not yet represent a valid return value.

• When the corresponding activity method completes its task and returns, the framework assigns the
return value to the Promise<T> object and puts it in the ready state.

Promise<T> Type
The primary purpose of Promise<T> objects is to manage data flow between asynchronous components
and control when they execute. It relieves your application of the need to explicitly manage synchronization
or depend on mechanisms such as timers to ensure that asynchronous components do not execute
prematurely. When you call an activities client method, it immediately returns but the framework defers
executing the corresponding activity method until any input Promise<T> objects are ready and represent
valid data.

From GreeterWorkflowImpl perspective, all three activities client methods return immediately. From
the GreeterActivitiesImpl perspective, the framework doesn't call getGreeting until name
completes, and doesn't call say until getGreeting completes.

By using Promise<T> to pass data from one activity to the next, HelloWorldWorkflow not only ensures
that activity methods don't attempt to use invalid data, it also controls when the activities execute and
implicitly defines the workflow topology. Passing each activity's Promise<T> return value to the next
activity requires the activities to execute in sequence, defining the linear topology discussed earlier. With
AWS Flow Framework for Java, you don't need to use any special modeling code to define even complex
topologies, just standard Java flow control and Promise<T>. For an example of how to implement a
simple parallel topology, see HelloWorldWorkflowParallel Activities Worker (p. 25).

Note
When an activity method such as say doesn't return a value, the corresponding client method
returns a Promise<Void> object. The object doesn't represent data, but it is initially unready
and becomes ready when the activity completes.You can therefore pass a Promise<Void>
object to other activities client methods to ensure that they defer execution until the original
activity completes.

Promise<T> allows a workflow implementation to use activities client methods and their return values
much like synchronous methods. However, you must be careful about accessing a Promise<T> object's
value. Unlike the Java Future<T> type, the framework handles synchronization for Promise<T>, not the
application. If you call Promise<T>.get and the object is not ready, get throws an exception. Notice
that HelloWorldWorkflow never accesses a Promise<T> object directly; it simply passes the objects
from one activity to the next. When an object becomes ready, the framework extracts the value and
passes it to the activity method as a standard type.

Promise<T> objects should be accessed only by asynchronous code, where the framework guarantees
that the object is ready and represents a valid value. HelloWorldWorkflow deals with this issue by
passing Promise<T> objects only to activities client methods.You can access a Promise<T> object's
value in your workflow implementation by passing the object to an asynchronous workflow method, which
behaves much like an activity. For an example, see HelloWorldWorkflowAsync Application (p. 20).

HelloWorldWorkflow Workflow and Activities Host
The workflow and activities implementations have associated worker classes, ActivityWorker and
WorkflowWorker. They handle communication between Amazon SWF and the activities and workflow
implementations by polling the appropriate Amazon SWF task list for tasks, executing the appropriate
method for each task, and managing the data flow. For details, see Application Structure (p. 28)

To associate the activity and workflow implementations with the corresponding worker objects, you
implement one or more worker applications which:

API Version 2012-01-25
14

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow and Activities Host

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

• Register workflows or activities with Amazon SWF.

• Create worker objects and associate them with the workflow or activity worker implementations.

• Direct the worker objects to start communicating with Amazon SWF.

If you want to run the workflow and activities as separate processes, you must implement separate
workflow and activities worker hosts. For an example, see HelloWorldWorkflowDistributed
Application (p. 23). For simplicity, HelloWorldWorkflow implements a single worker host that runs activities
and workflow workers in the same process, as follows:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocket
Timeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId, swf
SecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = " helloWorldExamples";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

GreeterWorker has no HelloWorld counterpart, so you must add a Java class named GreeterWorker
to the project and copy the example code to that file.

The first step is to create and configure an AmazonSimpleWorkflowClient object, which invokes the
underlying Amazon SWF service methods. To do so, GreeterWorker:

1. Creates a ClientConfiguration object and specifies a socket timeout of 70 seconds.This value specifies
long to wait for data to be transferred over an established open connection before closing the socket.

2. Creates a BasicAWSCredentials object to identify the Amazon AWS account and passes the account
keys to the constructor. For convenience, and to avoid exposing them as plain text in the code, the
keys are stored as environment variables.

API Version 2012-01-25
15

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow and Activities Host

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html

3. Creates an AmazonSimpleWorkflowClient object to represent the workflow, and passes the
AmazonSimpleWorkflowConfig object and access keys to the constructor.

4. Sets the client object's service endpoint URL. Currently, only US East (Northern Virginia) Region
supports Amazon SWF.

For convenience, GreeterWorker defines two string constants.

• domain is the workflow's Amazon SWF domain name, which you created when you set up your Amazon
SWF account. HelloWorldWorkflow assumes that you are running the workflow in the
"helloWorldExamples" domain.

• taskListToPoll is the name of the task lists that Amazon SWF uses to manage communication
between the workflow and activities workers.You can set the name to any convenient string.
HelloWorldWorkflow uses "HelloWorldList" for both workflow and activity task lists. Behind the scenes,
the names end up in different namespaces, so the two task lists are distinct.

GreeterWorker uses the string constants and the AmazonSimpleWorkflowClient object to create worker
objects, which manage the interaction between the activities and worker implementations and Amazon
SWF. In particular, the worker objects handle the task of polling the appropriate task list for tasks.

GreeterWorker creates an ActivityWorker object and configures it to handle
GreeterActivitiesImpl by adding a new class instance. GreeterWorker then calls the
ActivityWorker object's start method, which directs the object to start polling the specified activities
task list.

GreeterWorker creates a WorkflowWorker object and configures it to handle GreeterWorkflowImpl
by adding the class file name, GreeterWorkflowImpl.class. It then calls the WorkflowWorker
object's start method, which directs the object to start polling the specified workflow task list.

You can run GreeterWorker successfully at this point. It registers the workflow and activities with Amazon
SWF and starts the worker objects polling their respective task lists. To verify this, run GreeterWorker
and go to the Amazon SWF console and selecting helloWorldWalkthrough from the list of domains.
If you click Workflow Types in the Navigation pane, you should see GreeterWorkflow.greet, as
shown in the following screen shot.

If you click Activity Types, you should see the GreeterActivities methods, as shown in the following
screen shot.

API Version 2012-01-25
16

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Workflow and Activities Host

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowConfig.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

However, if you click Workflow Executions, you will not see any active executions. The workflow and
activities workers are polling for tasks, but Amazon SWF hasn't started managing the task lists yet.

HelloWorldWorkflow Starter
The final piece of the puzzle is to implement a workflow starter, which is an application that starts up the
Amazon SWF side of the whole process. HelloWorldWorkflow implements a workflow starter by modifying
the GreeterMain class, as follows:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;

public class GreeterMain {

 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocket
Timeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId, swf
SecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";

 GreeterWorkflowClientExternalFactory factory = new GreeterWorkflowClientEx
ternalFactoryImpl(service, domain);
 GreeterWorkflowClientExternal greeter = factory.getClient("someID");
 greeter.greet();
 }
}

API Version 2012-01-25
17

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Starter

GreeterMain creates an AmazonSimpleWorkflowClient object by using the same code as
GreeterWorker. It then creates a GreeterWorkflowClientExternal object, which acts as a proxy
for the workflow in much the same way that the activities client created in GreeterWorkflowClientImpl
acts as a proxy for the activity methods. Rather than create a workflow client object by using new, you
must:

1. Create an external client factory object and pass the AmazonSimpleWorkflowClient object and
Amazon SWF domain name to the constructor. The client factory object is created by the framework's
annotation processor, which creates the object name by simply appending "ClientExternalFactoryImpl"
to the workflow interface name.

2. Create an external client object by calling the factory object's getClient method, which creates the
object name by appending "ClientExternal" to the workflow interface name.You can optionally pass
getClient a string which Amazon SWF will use to identify this instance of the workflow. Otherwise,
Amazon SWF represents a workflow instance by using a generated GUID.

The workflow client exposes a greet method that GreeterMain calls to direct Amazon SWF to start
managing the task lists.

Note
The annotation processor also creates an internal client factory object that is used to create child
workflows. For details, see Child Workflow Executions (p. 69).

Shut down GreeterWorker for the moment if it is still running, and run GreeterMain.You should now
see someID on the Amazon SWF console's list of active workflow executions, as shown in the following
screenshot.

If you click someID and click the Events tab, you should see events shown in the following screen shot.

Note
If you started GreeterWorker earlier, and it is still running, you will see a longer event list for
reasons discussed shortly. Stop GreeterWorker and try running GreaterMain again.

API Version 2012-01-25
18

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Starter

The Events tab shows only two events:

• WorkflowExecutionStarted indicates that the workflow has started executing.

• DecisionTaskScheduled indicates that Amazon SWF has queued the first decision task.

The reason that the workflow is blocked at the first decision task is that the workflow is distributed across
two applications, GreeterMain and GreeterWorker. GreeterMain directed Amazon SWF to start
managing the task lists but GreeterWorker is not running, so the workers aren't polling the lists and
executing tasks.You can run either application independently, but you need both for workflow execution
to proceed beyond the first decision task. If you now run GreeterWorker, the workflow and activity
workers will start polling and the various tasks will be completed rapidly. If you now check the Events
tab, you should see something like the following screen shot, which shows the first eleven events.

You can click individual events to get more information. By the time you've finished looking, the workflow
should have printed "Hello World!" to your console.

After the workflow completes, it no longer appears on the list of active executions. However, if you want
to review it, click the Closed execution status button and click List Executions. This displays all the
completed workflow instances in the specified domain that have not exceeded their retention time, which
you specified when you created the domain.

The following screen shot shows a list of completed workflows in the helloWorldWalkthrough domain.

API Version 2012-01-25
19

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflow Starter

Notice that each workflow instance has a unique Run ID value.You can use the same Execution ID for
different workflow instances, but only for one active execution at a time.

HelloWorldWorkflowAsync Application
Sometimes, it's preferable to have a workflow perform certain tasks locally instead of using activity.
However, workflow tasks often involve processing the values represented by Promise<T> objects. If you
pass a Promise<T> object to a synchronous workflow method, the method executes immediately but it
can't access the Promise<T> object's value until the object is ready.You could poll Promise<T>.isReady
until it returns true, but that's inefficient and the method might block for a long time. A better approach
is to use an asynchronous method.

An asynchronous method is implemented much like a standard method—often as a member of the
workflow implementation class—and runs in the workflow implementation's context.You designate it as
an asynchronous method by applying an @Asynchronous annotation, which directs the framework to
treat it much like an activity.

• When a workflow implementation calls an asynchronous method, it returns immediately. Asynchronous
methods typically return a Promise<T> object, which becomes ready when the method completes.

• If you pass an asynchronous method one or more Promise<T> objects, it defers execution until all the
input objects are ready. An asynchronous method can therefore access its input Promise<T> values
without risking an exception.

Note
Because of the way that the AWS Flow Framework for Java executes the workflow, asynchronous
methods typically execute multiple times, so you should use them only for quick low-overhead
tasks.You should use activities to perform lengthy tasks such as large computations. For details,
see AWS Flow Framework Basic Concepts: Distributed Execution (p. 32).

This topic is a walkthrough of HelloWorldWorkflowAsync, a modified version of HelloWorldWorkflow that
replaces one of the activities with an asynchronous method. To implement the application, create a copy
of the helloWorld.HelloWorldWorkflow package in your project folder and name it
helloWorld.HelloWorldWorkflowAsync. The following sections describe how to modify the original
HelloWorldWorkflow code to use an asynchronous method.

API Version 2012-01-25
20

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowAsync Application

HelloWorldWorkflowAsync Activities
Implementation
HelloWorldWorkflowAsync implements its activities worker interface in GreeterActivities, as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistra
tionOptions;

@Activities(version="2.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public void say(String what);
}

This interface is similar to the one used by HelloWorldWorkflow, with the following exceptions:

• It omits the getGreeting activity; that task is now handled by an asynchronous method.

• The version number is set to 2.0. After you have registered an activities interface with Amazon SWF,
you can't modify it unless you change the version number.

The remaining activity method implementations are identical to HelloWorldWorkflow. Just delete
getGreeting from GreeterActivitiesImpl.

HelloWorldWorkflowAsync Workflow
Implementation
HelloWorldWorkflowAsync defines the workflow interface as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistra
tionOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "2.0")
 public void greet();
}

The interface is identical to HelloWorldWorkflow apart from a new version number. As with activities, if
you want to change a registered workflow, you must change its version number.

HelloWorldWorkflowAsync implements the workflow as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Asynchronous;
import com.amazonaws.services.simpleworkflow.flow.core.Promise;

API Version 2012-01-25
21

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowAsync Activities Implementation

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 @Override
 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = getGreeting(name);
 operations.say(greeting);
 }

 @Asynchronous
 private Promise<String> getGreeting(Promise<String> name) {
 String returnString = "Hello " + name.get() + "!";
 return Promise.asPromise(returnString);
 }
}

HelloWorldWorkflowAsync replaces the getGreeting activity with a getGreeting asynchronous method
but the greet method works in much the same way:

1. Execute the getName activity, which immediately returns a Promise<String> object, name, that
represents the name.

2. Call the getGreeting asynchronous method and pass it the name object.getGreeting immediately
returns a Promise<String> object, greeting, that represents the greeting.

3. Execute the say activity and pass it the greeting object.

4. When getName completes, name becomes ready and getGreeting uses its value to construct the
greeting.

5. When getGreeting completes, greeting becomes ready and say prints the string to the console.

The difference is that, instead of calling the activities client to execute a getGreeting activity, greet calls
the asynchronous getGreeting method. The net result is the same, but the getGreeting method
works somewhat differently than the getGreeting activity.

• The workflow worker uses a standard function call to execute getGreeting; the interaction is not
mediated by Amazon SWF.

• getGreeting runs in the workflow implementation's process.

• getGreeting returns a Promise<String> object rather than a String object. When you execute
an activity, you call a method on the activities client, which returns a Promise<T> object. The activity
method returns a standard type, which the framework then assigns to the Promise<T>. Because the
workflow calls getGreeting directly, it must explicitly return a Promise<T> type.

getGreeting creates a return value by passing the greeting string to the static Promise.asPromise
method. This method creates a Promise<T> object of the appropriate type, sets the value, and puts it
in the ready state.

HelloWorldWorkflowAsync Workflow and Activities
Host and Starter
HelloWorldWorkflowAsync implements GreeterWorker as the host class for the workflow and activity
implementations. It is identical to the HelloWorldWorkflow implementation except for the taskListToPoll
name, which is set to "HelloWorldAsyncList".

API Version 2012-01-25
22

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowAsync Workflow and Activities Host

and Starter

HelloWorldWorkflowAsync implements the workflow starter in GreeterMain, and it is identical to the
HelloWorldWorkflow implementation.

To execute the workflow, run GreeterWorker and GreeterMain, just as with HelloWorldWorkflow.

HelloWorldWorkflowDistributed Application
With HelloWorldWorkflow and HelloWorldWorkflowAsync, Amazon SWF mediates the interaction between
the workflow and activities implementations, but they run locally as a single process. GreeterMain is in
a separate process, but it still runs on the same system.

A key feature of Amazon SWF is that it supports distributed applications. For example, you could run the
workflow worker on an EC2 instance, the workflow starter on a data center computer, and the activities
on a client desktop computer.You can even run different activities on different systems.

The HelloWorldWorkflowDistributed application extends HelloWorldWorkflowAsync to distribute the
application across two systems and three processes.

• The workflow and workflow starter run as separate processes on one system.

• The activities run on a separate system.

To implement the application, create a copy of the helloWorld.HelloWorldWorkflowAsync package in your
project folder and name it helloWorld.HelloWorldWorkflowDistributed. The following sections describe
how to modify the original HelloWorldWorkflowAsync code to distribute the application across two systems
and three processes.

You don't need to change the workflow or activities implementations to run them on separate systems,
not even the version numbers.You also don't need to modify GreeterMain. All you need to change is
the activities and workflow host.

With HelloWorldWorkflowAsync, a single application serves as the workflow and activity host. To run the
workflow and activity implementations on separate systems, you must implement separate applications.
Delete GreeterWorker from the project and add two new class files, GreeterWorkflowWorker and
GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implements its activities host in GreeterActivitiesWorker, as follows:

 import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

public class GreeterActivitiesWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocket
Timeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId, swf
SecretKey);

API Version 2012-01-25
23

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowDistributed Application

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 }
}

HelloWorldWorkflowDistributed implements its workflow host in GreeterWorkflowWorker, as follows:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorkflowWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocket
Timeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId, swf
SecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

Note that GreeterActivitiesWorker is just GreeterWorker without the WorkflowWorker code
and GreeterWorkflowWorker is just GreeterWorker without the ActivityWorker code.

To run the workflow:

1. Create a runnable JAR file with GreeterActivitiesWorker as the entry point.

2. Copy the JAR file from Step 1 to another system, which can be running any operating system that
supports Java.

3. Run the JAR file.

4. On your development system, use Eclipse to run GreeterWorkflowWorker and GreeterMain.

API Version 2012-01-25
24

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowDistributed Application

Other than the fact that the activities are running on a different system than the workflow worker and
workflow starter, the workflow works in exactly the same way as HelloWorldAsync. However, because
println call that prints "Hello World!" to the console is in the say activity, the output will appear on the
system that is running the activities worker.

HelloWorldWorkflowParallel Application
The preceding versions of Hello World! all use a linear workflow topology. However, Amazon SWF is not
limited to linear topologies. The HelloWorldWorkflowParallel application is a modified version of
HelloWorldWorkflow that uses a parallel topology, as shown in the following figure.

With HelloWorldWorkflowParallel, getName and getGreeting run in parallel and each return part of the
greeting. say then merges the two strings into a greeting, and prints it to the console.

To implement the application, create a copy of the helloWorld.HelloWorldWorkflow package in your project
folder and name it helloWorld.HelloWorldWorkflowParallel.The following sections describe how to modify
the original HelloWorldWorkflow code to run getName and getGreeting in parallel.

HelloWorldWorkflowParallel Activities Worker
The HelloWorldWorkflowParallel activities interface is implemented in GreeterActivities, as shown
in the following example.

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistra
tionOptions;

@Activities(version="5.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public String getGreeting();
 public void say(String greeting, String name);
}

The interface is similar to HelloWorldWorkflow, with the following exceptions:

• getGreeting does not take any input; it simply returns a greeting string.

• say takes two input strings, the greeting and the name.

• The interface has a new version number, which is required any time that you change a registered
interface.

HelloWorldWorkflowParallel implements the activities in GreeterActivitiesImpl, as follows:

API Version 2012-01-25
25

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowParallel Application

public class GreeterActivitiesImpl implements GreeterActivities {

 @Override
 public String getName() {
 return "World!";
 }

 @Override
 public String getGreeting() {
 return "Hello ";
 }

 @Override
 public void say(String greeting, String name) {
 System.out.println(greeting + name);
 }
}

getName and getGreeting now simply return half of the greeting string. say concatenates the two
pieces to produce the complete phrase, and prints it to the console.

HelloWorldWorkflowParallel Workflow Worker
The HelloWorldWorkflowParallel workflow interface is implemented in GreeterWorkflow, as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistra
tionOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "5.0")
 public void greet();
}

The class is identical to the HelloWorldWorkflow version, except that the version number has been
changed to match the activities worker.

The workflow is implemented in GreeterWorkflowwImpl, as follows:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting();
 operations.say(greeting, name);

API Version 2012-01-25
26

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowParallel Workflow Worker

 }
}

At a glance, this implementation looks very similar to HelloWorldWorkflow; the three activities client
methods execute in sequence. However, the activities do not.

• HelloWorldWorkflow passed name to getGreeting. Because name was a Promise<T> object,
getGreeting deferred executing the activity until getName completed, so the two activities executed
in sequence.

• HelloWorldWorkflowParallel doesn't pass any input getName or getGreeting. Neither method defers
execution and the associated activity methods execute immediately, in parallel.

The say activity takes both greeting and name as input parameters. Because they are Promise<T>
objects, say defers execution until both activities complete, and then constructs and prints the greeting.

Notice that HelloWorldWorkflowParallel doesn't use any special modelling code to define the workflow
topology. It does it implicitly by using standard Java flow control and taking advantage of the properties
of Promise<T> objects. AWS Flow Framework for Java applications can implement even complex
topologies simply by using Promise<T> objects in conjunction with conventional Java control flow
constructs.

HelloWorldWorkflowParallel Workflow and
Activities Host and Starter
HelloWorldWorkflowParallel implements GreeterWorker as the host class for the workflow and activity
implementations. It is identical to the HelloWorldWorkflow implementation except for the taskListToPoll
name, which is set to "HelloWorldParallelList".

HelloWorldWorkflowParallel implements the workflow starter in GreeterMain, and it is identical
to the HelloWorldWorkflow implementation.

To execute the workflow, run GreeterWorker and GreeterMain, just as with HelloWorldWorkflow.

API Version 2012-01-25
27

AWS Flow Framework for Java Developer Guide
HelloWorldWorkflowParallel Workflow and Activities

Host and Starter

AWS Flow Framework for Java
Basic Concepts

The AWS Flow Framework for Java works with Amazon SWF to make it easy to create scalable and
fault-tolerant applications to perform asynchronous tasks that may be long running, remote, or both. The
"Hello World!" examples in Introduction (p. 1) introduced the basics of how to use the AWS Flow
Framework to implement basic workflow applications.This section provides conceptual information about
how AWS Flow Framework applications work. The first section summarizes the basic structure of an
AWS Flow Framework application, and the remaining sections provide further detail about how AWS
Flow Framework applications work.

Topics

• AWS Flow Framework Basic Concepts: Application Structure (p. 28)

• AWS Flow Framework Basic Concepts: Reliable Execution (p. 31)

• AWS Flow Framework Basic Concepts: Distributed Execution (p. 32)

• AWS Flow Framework Basic Concepts: Task Lists and Task Execution (p. 34)

• AWS Flow Framework Basic Concepts: Scalable Applications (p. 35)

• AWS Flow Framework Basic Concepts: Data Exchange Between Activities and Workflows (p. 36)

• AWS Flow Framework Basic Concepts: Data Exchange Between Applications and Workflow
Executions (p. 37)

• Amazon SWF Timeout Types (p. 38)

AWS Flow Framework Basic Concepts:
Application Structure

Conceptually, an AWS Flow Framework application consists of three basic components: a workflow
starter, a workflow worker, and an activities worker. The host application is responsible for registering
the workers with Amazon SWF, starting the workers, and handling cleanup.The workers, usually embedded
in the host applications, handle the mechanics of executing the workflow.

This diagram represents a basic AWS Flow Framework application:

API Version 2012-01-25
28

AWS Flow Framework for Java Developer Guide
Application Structure

Note
Implementing these components as three separate applications is convenient conceptually, but
applications can implement their functionality in a variety of ways. For example, you can use a
single host application for the activity and workflow workers, or use separate activity and workflow
hosts.You can also have multiple activity workers, each handling different set of activities with
separate hosts, and so on.

The three AWS Flow Framework components interact indirectly by sending HTTP requests to Amazon
SWF, which manages the requests. Amazon SWF does the following:

• Maintains one or more decision task lists, which queue tasks to be performed by the workflow worker,
such as executing an activity.

• Maintains one or more activities task lists, which queue tasks to be performed by the activities worker.

• Maintains a detailed step-by-step history of the workflow's execution.

With the AWS Flow Framework, your application code does not need to deal directly with many of the
details shown in the figure, such as sending HTTP requests to Amazon SWF.You simply call AWS Flow
Framework methods and the framework handles the details behind the scenes.

Role of the Activities Worker
The activities worker performs the various tasks that the workflow must accomplish. It consists of:

• The activities implementation, which includes of a set of activity methods that perform particular tasks
for the workflow.

• An activity worker, which uses HTTP long poll requests to poll Amazon SWF for activity tasks. When
a task is available, Amazon SWF responds to the request by sending the information required to perform
the task.The activity worker then calls the appropriate activity method, and returns the results to Amazon
SWF.

API Version 2012-01-25
29

AWS Flow Framework for Java Developer Guide
Role of the Activities Worker

Role of the Workflow Worker
The workflow worker orchestrates the execution of the various activities, manages data flow, and handles
failed activities. It consists of:

• The workflow implementation, which includes the activity orchestration logic, handles failed activities,
and so on.

• An activities client, which serves as a proxy for the activities worker and enables the workflow worker
to schedule activities to be executed asynchronously.

• A workflow worker object, which uses HTTP long poll requests to poll Amazon SWF for decision tasks.
If there are tasks on the workflow task list, Amazon SWF responds to the request by returning the
information that is required to perform the task. The framework then executes the workflow to perform
the task and returns the results to Amazon SWF.

Role of the Workflow Starter
The workflow starter starts a workflow instance, also referred to as a workflow execution, and can interact
with an instance during execution for purposes such as passing additional data to the workflow worker
or obtaining the current workflow state.

The workflow starter uses a workflow client to start the workflow execution, interacts with the workflow
as needed during execution, and handles cleanup.The workflow starter could be a locally-run application,
a web application, the AWS CLI or even the AWS Management Console.

How Amazon SWF Interacts with Your Application
Amazon SWF mediates the interaction between the workflow components and maintains a detailed
workflow history. Amazon SWF does not initiate communication with the components; it waits for HTTP
requests from the components and manages the requests as required. For example:

• If the request is from a worker, polling for available tasks, Amazon SWF responds directly to the worker
if a task is available. For more information on how polling works, see Polling for Tasks in the Amazon
Simple Workflow Service Developer Guide.

• If the request is a notification from an activity worker that a task is complete, Amazon SWF records the
information in the execution history and adds a task to the decision task list to inform the workflow
worker that the task is complete, allowing it to proceed to the next step.

• If the request is from the workflow worker to execute an activity, Amazon SWF records the information
in the execution history and adds a task to the activities task list to direct an activity worker to execute
the appropriate activity method.

This approach allows workers to run on any system with an Internet connection, including Amazon EC2
instances, corporate data centers, client computers, and so on. They don't even have to be running the
same operating system. Because the HTTP requests originate with the workers, there is no need for
externally visible ports; workers can run behind a firewall.

For More Information
For a more thorough discussion of how Amazon SWF works, see Amazon Simple Workflow Service
Developer Guide.

API Version 2012-01-25
30

AWS Flow Framework for Java Developer Guide
Role of the Workflow Worker

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto
http://docs.aws.amazon.com/amazonswf/latest/developerguide/
http://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework Basic Concepts: Reliable
Execution

Asynchronous distributed applications must deal with reliability issues that are not encountered by
conventional applications, including:

• How to provide reliable communication between asynchronous distributed components, such as
long-running components on remote systems.

• How to ensure that results are not lost if a component fails or is disconnected, especially for long-running
applications.

• How to handle failed distributed components.

Applications can rely on the AWS Flow Framework and Amazon SWF to manage these issues. We'll
explore how Amazon SWF provides mechanisms to ensure that your workflows operate reliably and in
a predictable way, even when they are long-running and depend on asynchronous tasks carried out
computationally and with human interaction.

Providing Reliable Communication
AWS Flow Framework provides reliable communication between a workflow worker and its activities
workers by using Amazon SWF to dispatch tasks to distributed activities workers and return the results
to the workflow worker. Amazon SWF uses the following methods to ensure reliable communication
between a worker and its activities:

• Amazon SWF durably stores scheduled activity and workflow tasks and guarantees that they will be
performed at most once.

• Amazon SWF guarantees that an activity task will either complete successfully and return a valid result
or it will notify the workflow worker that the task failed.

• Amazon SWF durably stores each completed activity's result or, for failed activities, it stores relevant
error information.

The AWS Flow Framework then uses the activity results from Amazon SWF to determine how to proceed
with the workflow's execution.

Ensuring that Results are Not Lost

Maintaining Workflow History
An activity that performs a data-mining operation on a petabyte of data might take hours to complete,
and an activity that directs a human worker to perform a complex task might take days, or even weeks
to complete!

To accommodate scenarios such as these, AWS Flow Framework workflows and activities can take
arbitrarily long to complete: up to a limit of one year for a workflow execution. Reliably executing long
running processes requires a mechanism to durably store the workflow's execution history on an ongoing
basis.

The AWS Flow Framework handles this by depending on Amazon SWF, which maintains a running history
of each workflow instance. The workflow's history provides a complete and authoritative record of the
workflow's progress, including all the workflow and activity tasks that have been scheduled and completed,
and the information returned by completed or failed activities.

API Version 2012-01-25
31

AWS Flow Framework for Java Developer Guide
Reliable Execution

AWS Flow Framework applications usually do not need to interact with the workflow history directly,
although they can access it if necessary. For most purposes, applications can simply let the framework
interact with the workflow history behind the scenes. For a full discussion of workflow history, see Workflow
History in the Amazon Simple Workflow Service Developer Guide.

Stateless Execution
The execution history allows workflow workers to be stateless. If you have multiple instances of a workflow
or activity worker, any worker can perform any task. The worker receives all the state information that it
needs to perform the task from Amazon SWF.

This approach makes workflows more reliable. For example, if an activity worker fails, you don't have to
restart the workflow. Just restart the worker and it will start polling the task list and processing whatever
tasks are on the list, regardless of when the failure occurred.You can make your overall workflow
fault-tolerant by using two or more workflow and activity workers, perhaps on separate systems. Then,
if one of the workers fails, the others will continue to handle scheduled tasks without any interruption in
workflow progress.

Handling Failed Distributed Components
Activities often fail for ephemeral reasons, such as a brief disconnection, so a common strategy for
handling failed activities is to retry the activity. Instead of handling the retry process by implementing
complex message passing strategies, applications can depend on the AWS Flow Framework. It provides
several mechanisms for retrying failed activities, and provides a built-in exception-handling mechanism
that works with asynchronous, distributed execution of tasks in a workflow.

AWS Flow Framework Basic Concepts:
Distributed Execution

A workflow instance is essentially a virtual thread of execution that can span activities and orchestration
logic running on multiple remote computers. Amazon SWF and the AWS Flow Framework function as an
operating system that manages workflow instances on a virtual CPU by:

• Maintaining each instance's execution state.

• Switching between instances.

• Resuming execution of a instance at the point that it was switched out.

Replaying Workflows
Because activities can be long-running, it's inefficient to have the workflow simply block until they complete.
Instead, the AWS Flow Framework manages workflow execution by using a replay mechanism, which
relies on the workflow history maintained by Amazon SWF to execute the workflow in episodes. Each
episode replays the workflow logic, but does so in a way that executes each activity only once, and
ensures that activities and asynchronous methods don't execute until their Promise (p. 36) objects are
ready.

The workflow starter initiates the first replay episode when it starts the workflow execution.The framework
calls the workflow's entry point method and:

• Executes all workflow tasks that do not depend on activity completion, including calling all activity client
methods.

API Version 2012-01-25
32

AWS Flow Framework for Java Developer Guide
Handling Failed Distributed Components

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history
http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

• Gives Amazon SWF a list of activities tasks to be scheduled for execution. For the first episode, this
list consists of only those activities that do not depend on a Promise and can be executed immediately.

• Notifies Amazon SWF that the episode is complete.

Amazon SWF stores the activity tasks in the workflow history and schedules them for execution by placing
them on the activity task list. The activity workers poll the task list and execute the tasks.

When an activity worker completes a task, it returns the result to Amazon SWF, which records it in the
workflow execution history and schedules a new workflow task for the workflow worker by placing it on
the workflow task list. The workflow worker polls the task list and when it receives the task, it runs the
next replay episode, as follows:

1. The framework runs the workflow's entry point method again and:

• Executes all workflow tasks that do not depend on activity completion, including calling all activity
client methods. However, the framework checks the execution history and does not schedule duplicate
activity tasks.

• Checks the history to see which activity tasks have completed and executes any asynchronous
workflow methods that depend on those activities.

2. When all workflow tasks that can be executed have completed, the framework reports back to Amazon
SWF:

• It gives Amazon SWF a list of any activities whose input Promise<T> objects have become ready
since the last episode and can be scheduled for execution.

• If the episode generated no additional activity tasks but there are still uncompleted activities, the
framework notifies Amazon SWF that the episode is complete. It then waits for another activity to
complete, initiating the next replay episode.

• If the episode generated no additional activity tasks and all activities have completed, the framework
notifies Amazon SWF that the workflow execution is complete.

For examples of replay behavior, see Replay Behavior (p. 101).

Replay and Asynchronous Workflow Methods
Asynchronous workflow methods are often used much like activities, because the method defers execution
until all input Promise<T> objects are ready. However, the replay mechanism handles asynchronous
methods differently than activities.

• Replay does not guarantee that an asynchronous method will execute only once. It defers execution
on an asynchronous method until its input Promise objects are ready, but it then executes that method
for all subsequent episodes.

• When an asynchronous method completes, it does not start a new episode.

An example of replaying an asynchronous workflow is provided in Replay Behavior (p. 101).

Replay and Workflow Implementation
For the most part, you don't need to be concerned with the details of the replay mechanism. It is basically
something that happens behind the scenes. However, replay has two important implications for your
workflow implementation.

• Do not use workflow methods to perform long-running tasks, because replay will repeat that task multiple
times. Even asynchronous workflow methods typically run more than once. Instead, use activities for
long running tasks; replay executes activities only once.

API Version 2012-01-25
33

AWS Flow Framework for Java Developer Guide
Replay and Asynchronous Workflow Methods

• Your workflow logic must be completely deterministic; every episode must take the same control flow
path. For example, the control flow path should not depend on the current time. For a detailed description
of replay and the determinism requirement, see Nondeterminism (p. 108).

AWS Flow Framework Basic Concepts:Task
Lists and Task Execution

Amazon SWF manages workflow and activity tasks by posting them to named lists. Amazon SWF maintains
at least two task lists, one for workflow workers and one for activity workers. However, you can specify
as many task lists as needed, with different workers assigned to each list.You typically specify a worker's
task list in the worker host application when you create the worker object. The following excerpt from the
HelloWorldWorkflow host application creates a new activity worker and assigns it to the "HelloWorldList"
activities task list.

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ...
 String domain = " helloWorldExamples";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 ...
 }
}

By default, Amazon SWF will schedule the worker's tasks on the HelloWorldList list and the worker will
poll that list for tasks.You can assign any name you prefer to a task list.You can even use the same
name for both workflow and activity lists; internally, Amazon SWF puts workflow and activity task list
names in different namespaces, so the two lists will be distinct.

If you don't specify a task list, the AWS Flow Framework specifies a default list when the worker registers
the type with Amazon SWF. For more details, see Workflow and Activity Type Registration (p. 44).

It is sometime useful to have certain tasks performed by a specific worker or a group of workers. For
example, an image processing workflow might use one activity to download an image and another activity
to process the image. It is more efficient to perform both tasks on the same system, and avoid the overhead
of transferring large files over the network. To support such scenarios, you can explicitly specify a task
list when you call an activity client method by using an overload that includes a schedulingOptions
parameter.You specify the task list by passing the method an appropriately configured
ActivitySchedulingOptions object.

For example, suppose that the HelloWorldWorkflow application's say activity is hosted by a different
activity worker than getName and getGreeting. The following example shows how to ensure that say
uses the same task list as getName and getGreeting, even if they were originally assigned to different
lists.

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations1 = new GreeterActivitiesClientIm
pl1(); //getGreeting and getName
 private GreeterActivitiesClient operations2 = new GreeterActivitiesClientIm

API Version 2012-01-25
34

AWS Flow Framework for Java Developer Guide
Task Lists and Task Execution

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivitySchedulingOptions.html

pl2(); //say
 @Override
 public void greet() {
 Promise<String> name = operations1.getName();
 Promise<String> greeting = operations1.getGreeting(name);
 runSay(greeting);
 }
 @Asynchronous
 private void runSay(Promise<String> greeting){
 String taskList = operations1.getSchedulingOptions().getTaskList();
 ActivitySchedulingOptions schedulingOptions = new ActivitySchedulingOptions();

 schedulingOptions.setTaskList(taskList);
 operations2.say(greeting, schedulingOptions);
 }
}

The asynchronous runSay method gets the getGreeting task list from its client object, and creates
and configures an ActivitySchedulingOptions object that ensures that say polls the same task list
as getGreeting.

Note
When you pass a schedulingOptions to an activity client method, it overrides the original
task list only for that activity execution. If you call the activities client method again without
specifying a task list, Amazon SWF assigns the task to the original list, and the activity worker
will poll that list.

AWS Flow Framework Basic Concepts: Scalable
Applications

Amazon SWF has two key features that make it easy to scale a workflow application to handle the current
load:

• A complete workflow execution history, which allows you to implement a stateless application.

• Task scheduling that is loosely coupled to task execution, which makes it easy to scale your application
to meet current demands.

Amazon SWF schedules tasks by posting them to dynamically allocated task lists, not by communicating
directly with workflow and activity workers. Instead, the workers use HTTP requests to poll their respective
lists for tasks.This approach loosely couples task scheduling to task execution and allows workers to run
on any suitable system, including Amazon EC2 instances, corporate data centers, client computers, and
so on. Since the HTTP requests originate with the workers, there is no need for externally visible ports,
which enables workers to even run behind a firewall.

The long-polling mechanism that workers use to poll for tasks ensures that workers don't get overloaded.
Even if there is a spike in scheduled tasks, workers pull tasks at their own pace. However, because
workers are stateless, you can dynamically scale an application to meet increased load by starting
additional worker instances. Even if they are running on different systems, each instance polls the same
task list and the first available worker instance executes each task, regardless of where the worker is
located or when it started. When the load declines, you can reduce the number of workers accordingly.

API Version 2012-01-25
35

AWS Flow Framework for Java Developer Guide
Scalable Applications

AWS Flow Framework Basic Concepts: Data
Exchange Between Activities and Workflows

When you call an asynchronous activity client method, it immediately returns a Promise (also known as
a Future) object, which represents the activity method's return value. Initially, the Promise is in an unready
state and the return value is undefined. After the activity method completes its task and returns, the
framework marshals the return value across the network to the workflow worker, which assigns a value
to the Promise and puts the object in a ready state.

Even if an activity method has no return value, you can still use the Promise for managing workflow
execution. If you pass a returned Promise to an activity client method or an asynchronous workflow
method, it defers execution until object is ready.

If you pass one or more Promises to an activity client method, the framework queues the task but defers
scheduling it until all the objects are ready. It then extracts the data from each Promise and marshals it
across the internet to the activity worker, which passes it to the activity method as a standard type.

Note
If you need to transfer large amounts of data between workflow and activity workers, the preferred
approach is to store the data in a convenient location and just pass the retrieval information. For
example, you can store the data in an Amazon S3 bucket and pass the associated URL.

The Promise<T> Type
The Promise<T> type is similar in some ways to the Java Future<T> type. Both types represent values
returned by asynchronous methods and are initially undefined.You access an object's value by calling
its get method. Beyond that, the two types behave quite differently.

• Future<T> is a synchronization construct that allows an application to wait on an asynchronous
method's completion. If you call get and the object is not ready, it blocks until the object is ready.

• With Promise<T>, synchronization is handled by the framework. If you call get and the object is not
ready, get throws an exception.

The primary purpose of Promise<T> is to manage data flow from one activity to another. It ensures that
an activity doesn't execute until the input data is valid. In many cases, workflow workers don't need to
access Promise<T> objects directly; they simply pass the objects from one activity to another and let
the framework and the activity workers handle the details. To access a Promise<T> object's value in a
workflow worker, you must be certain that the object is ready before calling its get method.

• The preferred approach is to pass the Promise<T> object to an asynchronous workflow method and
process the values there. An asynchronous method defers execution until all of its input Promise<T>
objects are ready, which guarantees that you can safely access their values.

• Promise<T> exposes an isReady method that returns true if the object is ready. Using isReady to
poll a Promise<T> object is not recommended, but isReady is useful in certain circumstances. For
an example, see AWS Flow Framework Recipes.

The AWS Flow Framework for Java also includes a Settable<T> type, which is derived from Promise<T>
and has similar behavior. The difference is that the framework usually sets the value of a Promise<T>
object and the workflow worker is responsible for setting the value of a Settable<T> For an example,
see AWS Flow Framework Recipes

There are some circumstance where a workflow worker needs to create a Promise<T> object and set
its value. For example, an asynchronous method that returns a Promise<T> object needs to create a
return value.

API Version 2012-01-25
36

AWS Flow Framework for Java Developer Guide
Data Exchange Between Activities and Workflows

http://aws.amazon.com/code/2535278400103493
http://aws.amazon.com/code/2535278400103493

• To create an object that represents a typed value, call the static Promise.asPromise method, which
creates a Promise<T> object of the appropriate type, sets its value, and puts it in the ready state.

• To create a Promise<Void> object, call the static Promise.Void method.

Note
Promise<T> can represent any valid type. However, if the data must be marshaled across the
internet, the type must be compatible with the data converter. See the next section for details.

Data Converters and Marshaling
The AWS Flow Framework marshals data across the internet by using a data converter. By default, the
framework uses a data converter that is based on the Jackson JSON processor. However, this converter
has some limitations. For example, it cannot marshal maps that do not use strings as keys. If the default
converter isn't sufficient for your application, you can implement a custom data converter. For details,
see DataConverters (p. 71).

AWS Flow Framework Basic Concepts: Data
Exchange Between Applications and Workflow
Executions

A workflow entry point method can have one or more parameters, which allows the workflow starter to
pass initial data to the workflow. It can also useful to provide additional data to the workflow during
execution. For example, if a customer changes their shipping address, you could notify the order-processing
workflow so that it can make appropriate changes.

Amazon SWF allows workflows to implement a signal method, which allows applications such as the
workflow starter to pass data to the workflow at any time. A signal method can have any convenient name
and parameters.You designate it as a signal method by including it in your workflow interface definition,
and applying a @Signal annotation to the method declaration.

The following example shows an order processing workflow interface that declares a signal method,
changeOrder, which allows the workflow starter to change the original order after the workflow has
started.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 300)
public interface WaitForSignalWorkflow {
 @Execute(version = "1.0")
 public void placeOrder(int amount);
 @Signal
 public void changeOrder(int amount);
}

The framework's annotation processor creates a workflow client method with the same name as the signal
method and the workflow starter calls the client method to pass data to the workflow. For an example,
see AWS Flow Framework Recipes

API Version 2012-01-25
37

AWS Flow Framework for Java Developer Guide
Data Converters and Marshaling

http://jackson.codehaus.org/
http://aws.amazon.com/code/2535278400103493

Amazon SWF Timeout Types
To ensure that workflow executions run correctly, Amazon SWF enables you to set different types of
timeouts. Some timeouts specify how long the workflow can run in its entirety. Other timeouts specify
how long activity tasks can take before being assigned to a worker and how long they can take to complete
from the time they are scheduled. All timeouts in the Amazon SWF API are specified in seconds. Amazon
SWF also supports the string "NONE" as a timeout value, which indicates no timeout.

For timeouts related to decision tasks and activity tasks, Amazon SWF adds an event to the workflow
execution history. The attributes of the event provide information about what type of timeout occurred
and which decision task or activity task was affected. Amazon SWF also schedules a decision task.When
the decider receives the new decision task, it will see the timeout event in the history and take an
appropriate action by calling the RespondDecisionTaskCompleted action.

A task is considered open from the time that it is scheduled until it is closed. Therefore a task is reported
as open while a worker is processing it. A task is closed when a worker reports it as completed, canceled,
or failed. A task may also be closed by Amazon SWF as the result of a timeout.

Timeouts in Workflow and Decision Tasks
The following diagram shows how workflow and decision timeouts are related to the lifetime of a workflow:

There are two timeout types that are relevant to workflow and decision tasks:

• Workflow Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the maximum
time that a workflow execution can take to complete. It is set as a default during workflow registration,
but it can be overridden with a different value when the workflow is started. If this timeout is exceeded,
Amazon SWF closes the workflow execution and adds an event of type WorkflowExecutionTimedOut
to the workflow execution history. In addition to the timeoutType, the event attributes specify the
childPolicy that is in effect for this workflow execution.The child policy specifies how child workflow
executions are handled if the parent workflow execution times out or otherwise terminates. For example,
if the childPolicy is set to TERMINATE, then child workflow executions will be terminated. Once a
workflow execution has timed out, you cannot take any action on it other than visibility calls.

• Decision Task Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the maximum
time that the corresponding decider can take to complete a decision task. It is set during workflow type
registration. If this timeout is exceeded, the task is marked as timed out in the workflow execution
history, and Amazon SWF adds an event of type DecisionTaskTimedOut to the workflow history. The
event attributes will include the IDs for the events that correspond to when this decision task was

API Version 2012-01-25
38

AWS Flow Framework for Java Developer Guide
Timeout Types

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

scheduled (scheduledEventId) and when it was started (startedEventId). In addition to adding
the event, Amazon SWF also schedules a new decision task to alert the decider that this decision task
timed out. After this timeout occurs, an attempt to complete the timed-out decision task using
RespondDecisionTaskCompleted will fail.

Timeouts in Activity Tasks
The following diagram shows how timeouts are related to the lifetime of an activity task:

There are four timeout types that are relevant to activity tasks:

• Activity Task Start to Close (timeoutType: START_TO_CLOSE): This timeout specifies the maximum
time that an activity worker can take to process a task after the worker has received the task. Attempts
to close a timed out activity task using RespondActivityTaskCanceled, RespondActivityTaskCompleted,
and RespondActivityTaskFailed will fail.

• Activity Task Heartbeat (timeoutType: HEARTBEAT): This timeout specifies the maximum time that
a task can run before providing its progress through the RecordActivityTaskHeartbeat action.

• Activity Task Schedule to Start (timeoutType: SCHEDULE_TO_START): This timeout specifies
how long Amazon SWF waits before timing out the activity task if no workers are available to perform
the task. Once timed out, the expired task will not be assigned to another worker.

• Activity Task Schedule to Close (timeoutType: SCHEDULE_TO_CLOSE): This timeout specifies
how long the task can take from the time it is scheduled to the time it is complete. As a best practice,
this value should not be greater than the sum of the task schedule-to-start timeout and the task
start-to-close timeout.

Note
Each of the timeout types has a default value, which is generally set to NONE (infinite). The
maximum time for any activity execution is limited to one year, however.

You set default values for these during activity type registration, but you can override them with new
values when you schedule the activity task. When one of these timeouts occurs, Amazon SWF will add
an event of type ActivityTaskTimedOut to the workflow history. The timeoutType value attribute of this

API Version 2012-01-25
39

AWS Flow Framework for Java Developer Guide
Timeouts in Activity Tasks

http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

event will specify which of these timeouts occurred. For each of the timeouts, the value of timeoutType
is shown in parentheses. The event attributes will also include the IDs for the events that correspond to
when the activity task was scheduled (scheduledEventId) and when it was started (startedEventId).
In addition to adding the event, Amazon SWF also schedules a new decision task to alert the decider
that the timeout occurred.

API Version 2012-01-25
40

AWS Flow Framework for Java Developer Guide
Timeouts in Activity Tasks

AWS Flow Framework for Java
Programming Guide

This section provides details about how to use the features of the AWS Flow Framework for Java to
implement workflow applications.

Topics

• Implementing Workflow Applications with the AWS Flow Framework (p. 41)

• Workflow and Activity Contracts (p. 42)

• Workflow and Activity Type Registration (p. 44)

• Activity and Workflow Clients (p. 46)

• Workflow Implementation (p. 57)

• Activity Implementation (p. 60)

• Running Programs Written with the AWS Flow Framework for Java (p. 62)

• Execution Context (p. 66)

• Child Workflow Executions (p. 69)

• Continuous Workflows (p. 70)

• DataConverters (p. 71)

• Passing Data to Asynchronous Methods (p. 72)

• Testability and Dependency Injection (p. 74)

• Error Handling (p. 84)

• Daemon Tasks (p. 100)

• AWS Flow Framework for Java Replay Behavior (p. 101)

Implementing Workflow Applications with the
AWS Flow Framework

The typical steps involved in developing a workflow with the AWS Flow Framework are:

1. Define activity and workflow contracts. Analyze your application's requirements and determine
the required activities, and the workflow topology.The workflow topology defines the workflows basic
structure and business logic and the activities handle the required processing tasks. For example,

API Version 2012-01-25
41

AWS Flow Framework for Java Developer Guide
Implementing Workflow Applications

a media processing application needs to download a file, process it, and upload the processed file
to an Amazon Simple Storage Service (S3) bucket. This can broken down into four activity tasks:
download the file, process the file, upload the file to the S3 bucket, and perform clean up by deleting
the local files.The workflow would have an entry point method and implement a simple linear topology
that runs the activities in sequence, much like HelloWorldWorkflow Application (p. 8).

2. Implement activity and workflow interfaces. The workflow and activity contracts are defined by
Java interfaces, which decouples the implementation from its consumers. For example, you can
define a FileProcessingWorkflow workflow interface and provide different workflow
implementations for video encoding, compression, thumbnails, and so on. Each of those workflows
could have different control flows and call different activity methods; the workflow starter doesn't
need to know. Interfaces also makes it easy to test your workflows by using mock implementations.

3. Generate clients. The AWS Flow Framework eliminates the need for you to implement the details
of managing asynchronous execution, sending HTTP requests, marshaling data, and so on. Instead,
the workflow starter executes a workflow instance by calling a method on the workflow client and the
workflow implementation executes activities by calling methods on the activities client.The framework
handles the details in the background. If you are using Eclipse and you have configured your project
as described in Setting up the Development Environment (p. 2), the AWS Flow Framework annotation
processor uses the interface definitions to automatically generate workflow and activities clients that
expose the same set of methods as the corresponding interface.

4. Implement activity and workflow hosts.Your workflow and activities implementations must be
embedded in host applications that poll Amazon SWF for tasks, marshal any data, and call the
appropriate implementation methods. AWS Flow Framework for Java includes WorkflowWorker and
ActivityWorker classes that make implementing host applications straightforward.

5. Test your workflow. AWS Flow Framework for Java provides JUnit integration that you can use to
test your workflows inline and locally.

6. Deploy the workers.You can deploy your workers as appropriate—for example, you can deploy
them to Amazon EC2 instances or to computers in your data center. Once deployed and started, the
workers start polling Amazon SWF for tasks and handle them as required.

7. Start executions. An application starts a workflow instance by using the workflow client to call the
workflow's entry point.You can also start workflows by using the Amazon SWF console. Regardless
of how you start a workflow instance, you can use Amazon SWF console to monitor running workflow
instance and examine the workflow history for running, completed, and failed instances.

The AWS SDK for Java includes a set of AWS Flow Framework for Java samples that you can browse
and run by following the instructions in the readme.html file in the root folder. There are also a set of
recipes —simple applications — that show how to handle a variety of specific programming issue, which
are available from AWS Flow Framework Recipes.

Workflow and Activity Contracts
Java interfaces are used to declare the signatures of workflows and activities. The interface forms the
contract between the implementation of the workflow (or activity) and the client of that workflow (or activity).
For example, a workflow type MyWorkflow is defined using an interface that is annotated with the
@Workflow annotation:

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface MyWorkflow {

 @Execute(version = "1.0")
 void startMyWF(int a,

API Version 2012-01-25
42

AWS Flow Framework for Java Developer Guide
Workflow and Activity Contracts

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
http://aws.amazon.com/sdkforjava/
http://aws.amazon.com/code/2535278400103493

 String b);

 @Signal
 void signal1(int a,
 int b,
 String c);

 @GetState
 MyWorkflowState getState();
}

The contract has no implementation-specific settings.This use of implementation-neutral contracts allows
clients to be decoupled from the implementation and hence provides the flexibility to change the
implementation details without breaking the client. Conversely, you may also change the client without
necessitating changes to the workflow or activity being consumed. For example, the client may be modified
to call an activity asynchronously using promises (Promise<T>) without requiring a change to the activity
implementation. Similarly, the activity implementation may be changed so that it is completed
asynchronously, for example, by a person sending an email—without requiring the clients of the activity
to be changed.

In the example above, the workflow interface MyWorkflow contains a method, startMyWF, for starting
a new execution. This method is annotated with the @Execute annotation and must have a return type
of void or Promise<>. In a given workflow interface, at most one method can be annotated with this
annotation. This method is the entry point of the workflow logic, and the framework calls this method to
execute the workflow logic when a decision task is received.

The workflow interface also defines the signals that may be sent to the workflow. The signal method gets
invoked when a signal with a matching name is received by the workflow execution. For example, the
MyWorkflow interface declares a signal method, signal1, annotated with the @Signal annotation.

The @Signal annotation is required on signal methods.The return type of a signal method must be void.
A workflow interface may have zero or more signal methods defined in it.You may declare a workflow
interface without an @Execute method and some @Signal methods to generate clients that cannot start
their execution but can send signals to running executions.

Methods annotated with @Execute and @Signal annotations may have any number of parameters of
any type other than Promise<T> or its derivatives. This allows you to pass strongly typed inputs to a
workflow execution at start and while it is running.The return type of the @Execute method must be void
or Promise<>.

Additionally, you may also declare a method in the workflow interface to report the latest state of a workflow
execution, for instance, the getState method in the previous example. This state is not the entire
application state of the workflow. The intended use of this feature is to allow you to store up to 32 KB of
data to indicate the latest status of the execution. For example, in an order processing workflow, you may
store a string that indicates that the order has been received, processed, or canceled. This method is
called by the framework every time a decision task is completed to get the latest state.The state is stored
in Amazon Simple Workflow Service (Amazon SWF) and can be retrieved using the generated external
client.This allows you to check the latest state of a workflow execution. Methods annotated with @GetState
must not take any arguments and must not have a void return type.You can return any type, which fits
your needs, from this method. In the above example, an object of MyWorkflowState (see definition
below) is returned by the method that is used to store a string state and a numeric percent complete.The
method is expected to perform read-only access of the workflow implementation object and is invoked
synchronously, which disallows use of any asynchronous operations like calling methods annotated with
@Asynchronous. At most one method in a workflow interface can be annotated with @GetState
annotation.

API Version 2012-01-25
43

AWS Flow Framework for Java Developer Guide
Workflow and Activity Contracts

public class MyWorkflowState {
 public String status;
 public int percentComplete;
}

Similarly, a set of activities are defined using an interface annotated with @Activities annotation. Each
method in the interface corresponds to an activity—for example:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface MyActivities {

 // Overrides values from annotation found on the interface
 @ActivityRegistrationOptions(description = "This is a sample activity",
 defaultTaskScheduleToStartTimeoutSeconds = 100,

 defaultTaskStartTo
CloseTimeoutSeconds = 60)
 int activity1();

 void activity2(int a);
}

The interface allows you to group together a set of related activities.You can define any number of
activities within an activities interface, and you can define as many activities interfaces as you want.
Similar to @Execute and @Signal methods, activity methods can take any number of arguments of any
type other than Promise<T> or its derivatives. The return type of an activity must not be Promise<T>
or its derivatives.

Workflow and Activity Type Registration
Amazon SWF requires activity and workflow types to be registered before they can be used.The framework
automatically registers the workflows and activities in the implementations you add to the worker. The
framework looks for types that implement workflows and activities and registers them with Amazon SWF.
By default, the framework uses the interface definitions to infer registration options for workflow and
activity types. All workflow interfaces are required to have either the @WorkflowRegistrationOptions
annotation or the @SkipRegistration annotation. The workflow worker registers all workflow types it
is configured with that have the @WorkflowRegistrationOptions annotation. Similarly, each activity
method is required to be annotated with either the @ActivityRegistrationOptions annotation or
the @SkipRegistration annotation or one of these annotations must be present on the @Activities
interface. The activity worker registers all activity types that it is configured with that an
@ActivityRegistrationOptions annotation applies to. The registration is performed automatically
when you start one of the workers. Workflow and activity types that have the @SkipRegistration
annotation are not registered.@ActivityRegistrationOptions, and @SkipRegistration annotations
have override semantics and the most specific one is applied to an activity type.

Note that Amazon SWF does not allow you to re-register or modify the type after it has been registered
once. The framework will try to register all types, but if the type is already registered it will not be

API Version 2012-01-25
44

AWS Flow Framework for Java Developer Guide
Workflow and Activity Type Registration

re-registered and no error will be reported. If you need to modify registered settings, you should register
a new version of the type.You can also override registered settings when starting a new execution or
calling an activity using the generated clients.

The registration requires a type name and some other registration options. The default implementation
determines these as follows:

Workflow Type Name and Version
The framework determines the name of the workflow type from the workflow interface. The form of the
default workflow type name is {prefix}{name}. The {prefix} is set to the name of the @Workflow
interface followed by a '.' and the {name} is set to the name of the @Execute method. The default name
of the workflow type in the preceding example is MyWorkflow.startMyWF.You can override the default
name using the name parameter of the @Execute method. The default name of the workflow type in the
example is startMyWF. The name must not be an empty string. Note that when you override the name
using @Execute, the framework does not automatically prepend a prefix to it.You are free to use your
own naming scheme.

The workflow version is specified using the version parameter of the @Workflow annotation. There is
no default for version and it must be explicitly specified; versionis a free form string, and you are free
to use your own versioning scheme.

Signal Name
The name of the signal can be specified using the name parameter of the @Signal annotation. If not
specified, it is defaulted to the name of the signal method.

Activity Type Name and Version
The framework determines the name of the activity type from the activities interface. The form of the
default activity type name is {prefix}{name}. The {prefix} is set to the name of the @Activities
interface followed by a '.' and the {name} is set to the method name.The default {prefix} can be overridden
in the @Activities annotation on the activities interface.You can also specify the activity type name
using the @Activity annotation on the activity method. Note that when you override the name using
@Activity, the framework will not automatically prepend a prefix to it.You are free to user your own
naming scheme.

The activity version is specified using the version parameter of the @Activities annotation.This version
is used as the default for all activities defined in the interface and can be overridden on a per-activity
basis using the @Activity annotation.

Default Task List
The default task list can be configured using the @WorkflowRegistrationOptions and
@ActivityRegistrationOptions annotations and setting the defaultTaskList parameter. By
default, it is set to USE_WORKER_TASK_LIST. This is a special value that instructs the framework to use
the task list that is configured on the worker object that is used to register the activity or workflow type.
You can also choose to not register a default task list by setting the default task list to
NO_DEFAULT_TASK_LIST using these annotations.This can be used in cases where you want to require
that the task list be specified at run time. If no default task list has been registered, then you must specify
the task list when starting the workflow or calling the activity method using the StartWorkflowOptions
and ActivitySchedulingOptions parameters on the respective method overload of the generated
client.

API Version 2012-01-25
45

AWS Flow Framework for Java Developer Guide
Workflow Type Name and Version

Other Registration Options
All workflow and activity type registration options that are allowed by the Amazon SWF API can be
specified through the framework.

For a complete list of workflow type registration options, see the sections on @Workflow (p. 113),
@Execute (p. 114), @WorkflowRegistrationOptions (p. 114), and @Signal (p. 115) annotations.

For a complete list of activity type registration options, see the sections on @Activity (p. 115),
@Activities (p. 115), and @ActivityRegistrationOptions (p. 116) annotations.

If you want to have complete control over type registration, see Worker Extensibility (p. 65).

Activity and Workflow Clients
Workflow and activity clients are generated by the framework based on the @Workflow and @Activities
interfaces. Separate client interfaces are generated that contain methods and settings that make sense
only on the client. If you are developing using Eclipse, this is done by the Amazon SWF Eclipse plug-in
every time you save the file containing the appropriate interface. The generated code is placed in the
generated sources directory in your project in the same package as the interface.

Note
Note that the default directory name used by Eclipse is .apt_generated. Eclipse does not show
directories whose names start with a '.' in Package Explorer. Use a different directory name if
you want to view the generated files in Project Explorer. In Eclipse, right-click the package in
Package Explorer, and then click Properties > Java Compiler > Annotation processing, and
modify the Generate source directory setting.

Workflow Clients
The generated artifacts for the workflow contain three client-side interfaces and the classes that implement
them. The generated clients include:

• A client intended to be consumed from within a workflow implementation and provides asynchronous
methods to start workflow executions and send signals

• An external client that can be used to start executions and send signals and retrieve workflow state
from outside the scope of a workflow implementation

• A self client that can be used to create continuous workflows

For example, the generated client interfaces for the example MyWorkflow interface are:

//Client for use from within a workflow
public interface MyWorkflowClient extends WorkflowClient
{
 Promise<Void> startMyWF(int a,
 String b);
 Promise<Void> startMyWF(int a,
 String b,
 Promise<?>... waitFor);
 Promise<Void> startMyWF(int a,
 String b,
 StartWorkflowOptions optionsOverride,

API Version 2012-01-25
46

AWS Flow Framework for Java Developer Guide
Other Registration Options

 Promise<?>... waitFor);
 Promise<Void> startMyWF(Promise<Integer> a,
 Promise<String> b);
 Promise<Void> startMyWF(Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);
 Promise<Void> startMyWF(Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void signal1(int a,
 int b,
 String c);
}

//External client for use outside workflows
public interface MyWorkflowClientExternal extends WorkflowClientExternal
{
 void startMyWF(int a,
 String b);
 void startMyWF(int a,
 String b,
 StartWorkflowOptions optionsOverride);

 void signal1(int a,
 int b,
 String c);

 MyWorkflowState getState();
}

//self client for creating continuous workflows
public interface MyWorkflowSelfClient extends WorkflowSelfClient
{
 void startMyWF(int a,
 String b);
 void startMyWF(int a,
 String b,
 Promise<?>... waitFor);
 void startMyWF(int a,
 String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);
 void startMyWF(Promise<Integer> a,
 Promise<String> b);
 void startMyWF(Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);
 void startMyWF(Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);
}

The interfaces have overloaded methods corresponding to each method in the @Workflow interface that
you declared.

API Version 2012-01-25
47

AWS Flow Framework for Java Developer Guide
Workflow Clients

The external client mirrors the methods on the @Workflow interface with one additional overload of the
@Execute method that takes StartWorkflowOptions.You can use this overload to pass additional
options when starting a new workflow execution. These options allow you to override the default task list,
timeout settings, and associate tags with the workflow execution.

On the other hand, the asynchronous client has methods that allow asynchronous invocation of the
@Execute method.The following method overloads are generated in the client interface for the @Execute
method in the workflow interface:

1. An overload that takes the original arguments as is. The return type of this overload will be
Promise<Void> if the original method returned void; otherwise, it will be the Promise<> as declared
on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<Void> startMyWF(int a, String b);

This overload should be used when all the arguments of the workflow are available and don’t need to
be waited for.

2. An overload that takes the original arguments as is and additional variable arguments of type
Promise<?>. The return type of this overload will be Promise<Void> if the original method returned
void; otherwise, it will be the Promise<> as declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<void> startMyWF(int a, String b, Promise<?>...waitFor);

This overload should be used when all the arguments of the workflow are available and don’t need to
be waited for, but you want to wait for some other promises to become ready. The variable argument
can be used to pass such Promise<?> objects that were not declared as arguments, but you want to
wait for before executing the call.

3. An overload that takes the original arguments as is, an additional argument of type
StartWorkflowOptions and additional variable arguments of type Promise<?>. The return type
of this overload will be Promise<Void> if the original method returned void; otherwise, it will be the
Promise<> as declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<void> startMyWF(int a,
 String b,

API Version 2012-01-25
48

AWS Flow Framework for Java Developer Guide
Workflow Clients

 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

This overload should be used when all the arguments of the workflow are available and don’t need to
be waited for, when you want to override default settings used to start the workflow execution, or when
you want to wait for some other promises to become ready. The variable argument can be used to
pass such Promise<?> objects that were not declared as arguments, but you want to wait for before
executing the call.

4. An overload with each argument in the original method replaced with a Promise<> wrapper. The
return type of this overload will be Promise<Void> if the original method returned void; otherwise, it
will be the Promise<> as declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<Void> startMyWF(Promise< Integer > a,
 Promise<String> b);

This overload should be used when the arguments to be passed to the workflow execution are to be
evaluated asynchronously. A call to this method overload will not execute until all arguments passed
to it become ready.

If some of the arguments are already ready, then convert them to a Promise that is already in ready
state through the Promise.asPromise(value) method. For example:

Promise<Integer> a = getA();
String b = getB();
startMyWF(a, Promise.asPromise(b));

5. An overload with each argument in the original method is replaced with a Promise<> wrapper. The
overload also has additional variable arguments of type Promise<?>. The return type of this overload
will be Promise<Void> if the original method returned void; otherwise, it will be the Promise<> as
declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<void> startMyWF(Promise< Integer > a,
 Promise<String> b,
 Promise<?>...waitFor);

This overload should be used when the arguments to be passed to the workflow execution are to be
evaluated asynchronously and you want to wait for some other promises to become ready as well. A
call to this method overload will not execute until all arguments passed to it become ready.

API Version 2012-01-25
49

AWS Flow Framework for Java Developer Guide
Workflow Clients

6. An overload with each argument in the original method replaced with a Promise<?> wrapper. The
overload also has an additional argument of type StartWorkflowOptions and variable arguments
of type Promise<?>. The return type of this overload will be Promise<Void> if the original method
returned void; otherwise, it will be the Promise<> as declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<void> startMyWF(Promise< Integer > a,
 Promise<String> b,
 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

Use this overload when the arguments to be passed to the workflow execution will be evaluated
asynchronously and you want to override default settings used to start the workflow execution. A call
to this method overload will not execute until all arguments passed to it become ready.

A method is also generated corresponding to each signal in the workflow interface—for example:

Original method:

void signal1(int a, int b, String c);

Generated method:

void signal1(int a, int b, String c);

The asynchronous client does not contain a method corresponding to the method annotated with
@GetState in the original interface. Since retrieval of state requires a web service call, it is not suitable
for use within a workflow. Hence, it is provided only through the external client.

The self client is intended to be used from within a workflow to start a new execution on completion of
the current execution. The methods on this client are similar to the ones on the asynchronous client, but
return void. This client does not have methods corresponding to methods annotated with @Signal and
@GetState. For more details, see the Continuous Workflows (p. 70).

The generated clients derive from base interfaces: WorkflowClient and WorkflowClientExternal,
respectively, which provide methods that you can use to cancel or terminate the workflow execution. For
more details about these interfaces, see the AWS SDK for Java documentation.

The generated clients allow you to interact with workflow executions in a strongly typed fashion. Once
created, an instance of a generated client is tied to a specific workflow execution and can be used only
for that execution. In addition, the framework also provides dynamic clients that are not specific to a
workflow type or execution. The generated clients rely on this client under the covers.You may also
directly use these clients. See the section on Dynamic Clients (p. 55).

The framework also generates factories for creating the strongly typed clients. The generated client
factories for the example MyWorkflow interface are:

//Factory for clients to be used from within a workflow

API Version 2012-01-25
50

AWS Flow Framework for Java Developer Guide
Workflow Clients

public interface MyWorkflowClientFactory
 extends WorkflowClientFactory<MyWorkflowClient> {

}

//Factory for clients to be used outside the scope of a workflow
public interface MyWorkflowClientExternalFactory {
 GenericWorkflowClientExternal getGenericClient();
 void setGenericClient(GenericWorkflowClientExternal genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 MyWorkflowClientExternal getClient();
 MyWorkflowClientExternal getClient(String workflowId);
 MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution);
 MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution,
 GenericWorkflowClientExternal genericClient,
 DataConverter dataConverter,
 StartWorkflowOptions options);
}

The WorkflowClientFactory base interface is:

public interface WorkflowClientFactory<T> {
 GenericWorkflowClient getGenericClient();
 void setGenericClient(GenericWorkflowClient genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 T getClient();
 T getClient(String workflowId);
 T getClient(WorkflowExecution execution);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options,
 DataConverter dataConverter);
}

You should use these factories to create instances of the client. The factory allows you to configure the
generic client (the generic client should be used for providing custom client implementation) and the
DataConverter used by the client to marshal data, as well as the options used to start the workflow
execution. For more details, see the DataConverters (p. 71) and Child Workflow Executions (p. 69)
sections. The StartWorkflowOptions contains settings that you can use to override the defaults—for
example, timeouts—specified at registration time. For more details about the StartWorkflowOptions
class, see the AWS SDK for Java documentation.

The external client can be used to start workflow executions from outside of the scope of a workflow while
the asynchronous client can be used to start a workflow execution from code within a workflow. In order
to start an execution, you simply use the generated client to call the method that corresponds to the
method annotated with @Execute in the workflow interface.

API Version 2012-01-25
51

AWS Flow Framework for Java Developer Guide
Workflow Clients

The framework also generates implementation classes for the client interfaces. These clients create and
send requests to Amazon SWF to perform the appropriate action. The client version of the @Execute
method either starts a new workflow execution or creates a child workflow execution using Amazon SWF
APIs. Similarly, the client version of the @Signal method uses Amazon SWF APIs to send a signal.

Note: The external workflow client must be configured with the Amazon SWF client and domain.You
can either use the client factory constructor that takes these as parameters or pass in a generic client
implementation that is already configured with the Amazon SWF client and domain.

Note: The framework walks the type hierarchy of the workflow interface and also generates client interfaces
for parent workflow interfaces and derives from them.

Activity Clients
Similar to the workflow client, a client is generated for each interface annotated with @Activities. The
generated artifacts include a client side interface and a client class. The generated interface for the
example @Activities interface above (MyActivities) is as follows:

public interface MyActivitiesClient extends ActivitiesClient
{
 Promise<Integer> activity1();
 Promise<Integer> activity1(Promise<?>... waitFor);
 Promise<Integer> activity1(ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a);
 Promise<Void> activity2(int a,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a);
 Promise<Void> activity2(Promise<Integer> a,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
}

The interface contains a set of overloaded methods corresponding to each activity method in the
@Activities interface. These overloads are provided for convenience and allow calling activities
asynchronously. For each activity method in the @Activities interface, the following method overloads
are generated in the client interface:

1. An overload that takes the original arguments as is. The return type of this overload is Promise<T>,
where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(int foo);

API Version 2012-01-25
52

AWS Flow Framework for Java Developer Guide
Activity Clients

This overload should be used when all the arguments of the workflow are available and don’t need to
be waited for.

2. An overload that takes the original arguments as is, an argument of type
ActivitySchedulingOptions and additional variable arguments of type Promise<?>. The return
type of this overload is Promise<T>, where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(java.lang.Integer foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);

This overload should be used when all the arguments of the workflow are available and don’t need to
be waited for, when you want to override the default settings, or when you want to wait for additional
Promises to become ready.The variable arguments can be used to pass such additional Promise<?>
objects that were not declared as arguments, but you want to wait for before executing the call.

3. An overload with each argument in the original method replaced with a Promise<> wrapper. The
return type of this overload is Promise<T>, where T is the return type of the original method. For
example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(Promise<Integer> foo);

This overload should be used when the arguments to be passed to the activity will be evaluated
asynchronously. A call to this method overload will not execute until all arguments passed to it become
ready.

4. An overload with each argument in the original method replaced with a Promise<> wrapper. The
overload also has an additional argument of type ActivitySchedulingOptions and variable
arguments of type Promise<?>.The return type of this overload is Promise<T>, where T is the return
type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

This overload should be used when the arguments to be passed to the activity will be evaluated
asynchronously, when you want to override the default settings registered with the type, or when you

API Version 2012-01-25
53

AWS Flow Framework for Java Developer Guide
Activity Clients

want to wait for additional Promises to become ready. A call to this method overload will not execute
until all arguments passed to it become ready. The generated client class implements this interface.
The implementation of each interface method creates and sends a request to Amazon SWF to schedule
an activity task of the appropriate type using Amazon SWF APIs.

5. An overload that takes the original arguments as is and additional variable arguments of type
Promise<?>.The return type of this overload is Promise<T>, where T is the return type of the original
method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise< Void > activity2(int foo,
 Promise<?>...waitFor);

This overload should be used when all the activity's arguments are available and don’t need to be
waited for, but you want to wait for other Promise objects to become ready.

6. An overload with each argument in the original method replaced with a Promise wrapper and additional
variable arguments of type Promise<?>. The return type of this overload is Promise<T>, where T is
the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(java.lang.Integer foo,
 Promise<?>... waitFor);

This overload should be used when all the arguments of the activity will be waited for asynchronously
and you also want to wait for some other Promises to become ready. A call to this method overload
will execute asynchronously when all Promise objects passed become ready.

The generated activity client also has a protected method corresponding to each activity method, named
{activity method name}Impl(), that all activity overloads call into.You can override this method
to create mock client implementations.This method takes as arguments: all the arguments to the original
method in Promise<> wrappers, ActivitySchedulingOptions, and variable arguments of type
Promise<?>. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2Impl(Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

API Version 2012-01-25
54

AWS Flow Framework for Java Developer Guide
Activity Clients

Scheduling Options
The generated activity client allows you to pass in ActivitySchedulingOptions as an argument.The
ActivitySchedulingOptions structure contains settings that determine the configuration of the activity
task that the framework schedules in Amazon SWF.These settings override the defaults that are specified
as registration options. To specify scheduling options dynamically, create an
ActivitySchedulingOptions object, configure it as desired, and pass it to the activity method. In the
following example, we have specified the task list that should be used for the activity task.This will override
the default registered task list for this invocation of the activity.

public class OrderProcessingWorkflowImpl implements OrderProcessingWorkflow {

 OrderProcessingActivitiesClient activitiesClient
 = new OrderProcessingActivitiesClientImpl();

 // Workflow entry point
 @Override
 public void processOrder(Order order) {
 Promise<Void> paymentProcessed = activitiesClient.processPayment(order);

 ActivitySchedulingOptions schedulingOptions
 = new ActivitySchedulingOptions();
 if (order.getLocation() == "Japan") {
 schedulingOptions.setTaskList("TasklistAsia");
 } else {
 schedulingOptions.setTaskList("TasklistNorthAmerica");
 }

 activitiesClient.shipOrder(order,
 schedulingOptions,
 paymentProcessed);
 }
}

Dynamic Clients
In addition to the generated clients, the framework also provides general purpose
clients—DynamicWorkflowClient and DynamicActivityClient—that you can use to dynamically
start workflow executions, send signals, schedule activities, etc. For instance, you may want to schedule
an activity whose type is not known at design time.You can use the DynamicActivityClient for
scheduling such an activity task. Similarly, you can dynamically schedule a child workflow execution by
using the DynamicWorkflowClient. In the following example, the workflow looks up the activity from
a database and uses the dynamic activity client to schedule it:

//Workflow entrypoint
@Override
public void start() {
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<ActivityType> activityType
 = client.lookUpActivityFromDB();
 Promise<String> input = client.getInput(activityType);

API Version 2012-01-25
55

AWS Flow Framework for Java Developer Guide
Scheduling Options

 scheduleDynamicActivity(activityType,
 input);
}
@Asynchronous
void scheduleDynamicActivity(Promise<ActivityType> type,
 Promise<String> input){
 Promise<?>[] args = new Promise<?>[1];
 args[0] = input;
 DynamicActivitiesClient activityClient
 = new DynamicActivitiesClientImpl();
 activityClient.scheduleActivity(type.get(),
 args,
 null,
 Void.class);
}

For more details, see the AWS SDK for Java documentation.

Signaling and Canceling Workflow Executions
The generated workflow client has methods corresponding to each signal that can be sent to the workflow.
You can use them from within a workflow to send signals to other workflow executions. This provides a
typed mechanism for sending signals. However, sometimes you may need to dynamically determine the
signal name—for example, when the signal name is received in a message.You can use the dynamic
workflow client to dynamically send signals to any workflow execution. Similarly, you can use the client
to request cancellation of another workflow execution.

In the following example, the workflow looks up the execution to send a signal to from a database and
sends the signal dynamically using the dynamic workflow client.

//Workflow entrypoint
public void start() {
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<WorkflowExecution> execution
 = client.lookUpExecutionInDB();
 Promise<String> signalName = client.getSignalToSend();
 Promise<String> input = client.getInput(signalName);
 sendDynamicSignal(execution,
 signalName,
 input);
}
@Asynchronous
void sendDynamicSignal(Promise<WorkflowExecution> execution,
 Promise<String> signalName,
 Promise<String> input){
 DynamicWorkflowClient workflowClient
 = new DynamicWorkflowClientImpl(execution.get());
 Object[] args = new Promise<?>[1];
 args[0] = input.get();
 workflowClient.signalWorkflowExecution(signalName.get(),
 args);
}

API Version 2012-01-25
56

AWS Flow Framework for Java Developer Guide
Dynamic Clients

Workflow Implementation
In order to implement a workflow, you write a class that implements the desired @Workflow interface.
For instance, the example workflow interface (MyWorkflow) can be implemented like so:

public class MyWFImpl implements MyWorkflow
{
 MyActivitiesClient client = new MyActivitiesClientImpl();
 @Override
 public void startMyWF(int a, String b){
 Promise<Integer> result = client.activity1();
 client.activity2(result);
 }
 @Override
 public void signal1(int a, int b, String c){
 //Process signal
 client.activity2(a + b);
 }
}

The @Execute method in this class is the entry point of the workflow logic. Since the framework uses
replay to reconstruct the object state when a decision task is to be processed, a new object is created
for each decision task.

The use of Promise<T> as a parameter is disallowed in the @Execute method within a @Workflow
interface. This is done because making an asynchronous call is purely a decision of the caller. The
workflow implementation itself doesn’t depend on whether the invocation was synchronous or
asynchronous.Therefore, the generated client interface has overloads that take Promise<T> parameters
so that these methods can be called asynchronously.

The return type of an @Execute method can only be void or Promise<T>. Note that a return type of the
corresponding external client is void and not Promise<>. Since the external client is not intended to be
used from the asynchronous code, the external client does not return Promise objects. For getting results
of workflow executions stated externally, you can design the workflow to update state in an external data
store through an activity. Amazon SWF’s visibility APIs can also be used to retrieve the result of a workflow
for diagnostic purposes. It is not recommended that you use the visibility APIs to retrieve results of workflow
executions as a general practice since these API calls may get throttled by Amazon SWF. The visibility
APIs require you to identify the workflow execution using a WorkflowExecution structure.You can get
this structure from the generated workflow client by calling the getWorkflowExecution method. This
method will return the WorkflowExecution structure corresponding to the workflow execution that the
client is bound to. See the Amazon Simple Workflow Service API Reference for more details about the
visibility APIs.

When calling activities from your workflow implementation, you should use the generated activities client.
Similarly, to send signals, use the generated workflow clients.

Decision Context
The framework provides an ambient context anytime workflow code is executed by the framework. This
context provides context-specific functionality that you may access in your workflow implementation, such
as creating a timer. See the section on Execution Context (p. 66) for more information.

API Version 2012-01-25
57

AWS Flow Framework for Java Developer Guide
Workflow Implementation

http://docs.aws.amazon.com/amazonswf/latest/apireference/

Exposing Execution State
Amazon SWF allows you to add custom state in the workflow history. The latest state reported by the
workflow execution is returned to you through visibility calls to the Amazon SWF service and in the Amazon
SWF console. For example, in an order processing workflow, you may report the order status at different
stages like ‘order received’, ‘order shipped’, and so on. In the AWS Flow Framework for Java, this is
accomplished through a method on your workflow interface that is annotated with the @GetState
annotation. When the decider is done processing a decision task, it calls this method to get the latest
state from the workflow implementation. Besides visibility calls, the state can also be retrieved using the
generated external client (which uses the visibility API calls internally).

The following example demonstrates how to set the execution context.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();

 @GetState
 String getState();
}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();

}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 private PeriodicActivityClient activityClient
 = new PeriodicActivityClientImpl();

 private String state;

 @Override
 public void periodicWorkflow() {
 state = "Just Started";
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor)
 {

API Version 2012-01-25
58

AWS Flow Framework for Java Developer Guide
Exposing Execution State

 if(count == 100) {
 state = "Finished Processing";
 return;
 }

 // call activity
 activityClient.activity1();

 // Repeat the activity after 1 hour.
 Promise<Void> timer = clock.createTimer(3600);
 state = "Waiting for timer to fire. Count = "+count;
 callPeriodicActivity(count+1, timer);
 }

 @Override
 public String getState() {
 return state;
 }
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public static void activity1()
 {
 ...
 }
}

The generated external client can be used to retrieve the latest state of the workflow execution at any
time.

PeriodicWorkflowClientExternal client
 = new PeriodicWorkflowClientExternalFactoryImpl().getClient();
System.out.println(client.getState());

In the above example, the execution state is reported at various stages. When the workflow instance
starts, periodicWorkflow reports the initial state as 'Just Started'. Each call to callPeriodicActivity
then updates the workflow state. Once activity1 has been called 100 times, the method returns and
the workflow instance completes.

Workflow Locals
Sometimes, you may have a need for the use of static variables in your workflow implementation. For
example, you may want to store a counter that is to be accessed from various places (possibly different
classes) in the implementation of the workflow. However, you cannot rely on static variables in your
workflows because static variables are shared across threads, which is problematic because a worker
may process different decision tasks on different threads at the same time. Alternatively, you may store
such state in a field on the workflow implementation, but then you will need to pass the implementation
object around. To address this need, the framework provides a WorkflowExecutionLocal<> class.
Any state that needs to have static variable like semantics should be kept as an instance local using
WorkflowExecutionLocal<>.You can declare and use a static variable of this type. For example, in
the following snippet, a WorkflowExecutionLocal<String> is used to store a user name.

API Version 2012-01-25
59

AWS Flow Framework for Java Developer Guide
Workflow Locals

public class MyWFImpl implements MyWF {
 public static WorkflowExecutionLocal<String> username
 = new WorkflowExecutionLocal<String>();

 @Override
 public void start(String username){
 this.username.set(username);
 Processor p = new Processor();
 p.updateLastLogin();
 p.greetUser();
 }

 public static WorkflowExecutionLocal<String> getUsername() {
 return username;
 }

 public static void setUsername(WorkflowExecutionLocal<String> username) {
 MyWFImpl.username = username;
 }
}

public class Processor {
 void updateLastLogin(){
 UserActivitiesClient c = new UserActivitiesClientImpl();
 c.refreshLastLogin(MyWFImpl.getUsername().get());
 }
 void greetUser(){
 GreetingActivitiesClient c = new GreetingActivitiesClientImpl();
 c.greetUser(MyWFImpl.getUsername().get());
 }
}

Activity Implementation
Activities are implemented by providing an implementation of the @Activities interface.The AWS Flow
Framework for Java uses the activity implementation instances configured on the worker to process
activity tasks at run time.The worker automatically looks up the activity implementation of the appropriate
type.

You can use properties and fields to pass resources to activity instances, such as database connections.
Since the activity implementation object may be accessed from multiple threads, shared resources must
be thread safe.

Note that the activity implementation does not take parameters of type Promise<> or return objects of
that type. This is because the implementation of the activity should not depend on how it was invoked
(synchronously or asynchronously).

The activities interface shown before can be implemented like this:

public class MyActivitiesImpl implements MyActivities {

 @Override
 @ManualActivityCompletion

API Version 2012-01-25
60

AWS Flow Framework for Java Developer Guide
Activity Implementation

 public int activity1(){
 //implementation
 }

 @Override
 public void activity2(int foo){
 //implementation
 }
}

A thread local context is available to the activity implementation that can be used to retrieve the task
object, data converter object being used, etc. The current context can be accessed through
ActivityExecutionContextProvider.getActivityExecutionContext(). For more details, see
the AWS SDK for Java documentation for ActivityExecutionContext and the section Execution
Context (p. 66).

Manually Completing Activities
The @ManualActivityCompletion annotation in the example above is an optional annotation. It is
allowed only on methods that implement an activity and is used to configure the activity to not automatically
complete when the activity method returns. This could be useful when you want to complete the activity
asynchronously—for example, manually after a human action has been completed.

By default, the framework considers the activity completed when your activity method returns.This means
that the activity worker reports activity task completion to Amazon SWF and provides it with the results
(if any). However, there are use cases where you don’t want the activity task to be marked completed
when the activity method returns. This is especially useful when you are modeling human tasks. For
example, the activity method may send an email to a person who must complete some work before the
activity task is completed. In such cases, you can annotate the activity method with
@ManualActivityCompletion annotation to tell the activity worker that it should not complete the
activity automatically. In order to complete the activity manually, you can either use the
ManualActivityCompletionClient provided in the framework or use the
RespondActivityTaskCompleted method on the Amazon SWF Java client provided in the Amazon
SWF SDK. For more details, see the AWS SDK for Java documentation.

In order to complete the activity task, you need to provide a task token.The task token is used by Amazon
SWF to uniquely identify tasks.You can access this token from the ActivityExecutionContext in
your activity implementation.You must pass this token to the party that is responsible for completing the
task. This token can be retrieved from the ActivityExecutionContext by calling
ActivityExecutionContextProvider.getActivityExecutionContext().getTaskToken().

The getName activity of the Hello World example can be implemented to send an email asking someone
to provide a greeting message:

@ManualActivityCompletion
@Override
public String getName() throws InterruptedException {
 ActivityExecutionContext executionContext
 = contextProvider.getActivityExecutionContext();
 String taskToken = executionContext.getTaskToken();
 sendEmail("abc@xyz.com",
 "Please provide a name for the greeting message and close task with
token: " + taskToken);
 return "This will not be returned to the caller";
}

API Version 2012-01-25
61

AWS Flow Framework for Java Developer Guide
Manually Completing Activities

The following code snippet can be used to provide the greeting and close the task by using the
ManualActivityCompletionClient. Alternatively, you can also fail the task:

public class CompleteActivityTask {

 public void completeGetNameActivity(String taskToken) {

 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(…); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 String result = "Hello World!";
 manualCompletionClient.complete(result);
 }

 public void failGetNameActivity(String taskToken, Throwable failure) {
 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(…); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 manualCompletionClient.fail(failure);
 }

}

Running Programs Written with the AWS Flow
Framework for Java

Topics

• WorkflowWorker (p. 63)

• ActivityWorker (p. 64)

• Worker Threading Model (p. 64)

• Worker Extensibility (p. 65)

The framework provides worker classes to initialize the AWS Flow Framework for Java runtime and
communicate with Amazon SWF. In order to implement a workflow or an activity worker, you must create
and start an instance of a worker class. These worker classes are responsible for managing ongoing
asynchronous operations, invoking asynchronous methods that become unblocked, and communicating
with Amazon SWF. They can be configured with workflow and activity implementations, the number of
threads, the task list to poll, and so on.

API Version 2012-01-25
62

AWS Flow Framework for Java Developer Guide
Running Programs Written with the AWS Flow

Framework for Java

The framework comes with two worker classes, one for activities and one for workflows. In order to run
the workflow logic, you use the WorkflowWorker class. Similarly for activities the ActivityWorker
class is used.These classes automatically poll Amazon SWF for activity tasks and invoke the appropriate
methods in your implementation.

The following example shows how to instantiate a WorkflowWorker and start polling for tasks:

AmazonSimpleWorkflow swfClient = new AmazonSimpleWorkflowClient(awsCredentials);
WorkflowWorker worker = new WorkflowWorker(swfClient, "domain1", "tasklist1");
// Add workflow implementation types
worker.addWorkflowImplementationType(MyWorkflowImpl.class);

// Start worker
worker.start();

The basic steps to create an instance of the ActivityWorker and starting polling for tasks are as follows:

AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(awsCredentials);
ActivityWorker worker = new ActivityWorker(swfClient,
 "domain1",
 "tasklist1");
worker.addActivitiesImplementation(new MyActivitiesImpl());

// Start worker
worker.start();

When you want to shut down an activity or decider, your application should shut down the instances of
the worker classes being used as well as the Amazon SWF Java client instance. This will ensure that all
resources used by the worker classes are properly released.

worker.shutdown();
worker.awaitTermination(1, TimeUnit.MINUTES);

In order to start an execution, simply create an instance of the generated external client and call the
@Execute method.

MyWorkflowClientExternalFactory factory = new MyWorkflowClientExternalFactory
Impl();
MyWorkflowClientExternal client = factory.getClient();
client.start();

WorkflowWorker
As the name suggests, this worker class is intended for use by the workflow implementation. It is configured
with a task list and the workflow implementation type. The worker class runs a loop to poll for decision
tasks in the specified task list. When a decision task is received, it creates an instance of the workflow
implementation and calls the @Execute method to process the task.

API Version 2012-01-25
63

AWS Flow Framework for Java Developer Guide
WorkflowWorker

ActivityWorker
For implementing activity workers, you can use the ActivityWorker class to conveniently poll a task
list for activity tasks.You configure the activity worker with activity implementation objects. This worker
class runs a loop to poll for activity tasks in the specified task list. When an activity task is received, it
looks up the appropriate implementation that you provided and calls the activity method to process the
task. Unlike the WorkflowWorker, which calls the factory to create a new instance for every decision
task, the ActivityWorker simply uses the object you provided.

The ActivityWorker class uses the AWS Flow Framework for Java annotations to determine the
registration and execution options.

Worker Threading Model
In the AWS Flow Framework for Java, the embodiment of an activity or decider is an instance of the
worker class.Your application is responsible for configuring and instantiating the worker object on each
machine and process that should act as a worker. The worker object then automatically receives tasks
from Amazon SWF, dispatches them to your activity or workflow implementation and reports results to
Amazon SWF. It is possible for a single workflow instance to span many workers. When Amazon SWF
has one or more pending activity tasks, it assigns a task to the first available worker, then the next one,
and so on. This makes it possible for tasks belonging to the same workflow instance to be processed on
different workers concurrently.

Moreover, each worker can be configured to process tasks on multiple threads. This means that the
activity tasks of a workflow instance can run concurrently even if there is only one worker.

Decision tasks behave similarly with the exception that Amazon SWF guarantees that for a given workflow
execution only one decision can be executed at a time. A single workflow execution will typically require
multiple decision tasks; hence, it may end up executing on multiple processes and threads as well. The
decider is configured with the type of the workflow implementation. When a decision task is received by
the decider, it creates an instance (object) of the workflow implementation. The framework provides an
extensible factory pattern for creating these instances. The default workflow factory creates a new object
every time.You can provide custom factories to override this behavior.

API Version 2012-01-25
64

AWS Flow Framework for Java Developer Guide
ActivityWorker

Contrary to deciders, which are configured with workflow implementation types, activity workers are
configured with instances (objects) of the activity implementations. When an activity task is received by
the activity worker, it is dispatched to the appropriate activity implementation object.

The workflow worker maintains a single pool of threads and executes the workflow on the same thread
that was used to poll Amazon SWF for the task. Since activities are long running (at least when compared
to the workflow logic), the activity worker class maintains two separate pools of threads; one for polling
Amazon SWF for activity tasks and the other for processing tasks by executing the activity implementation.
This allows you to configure the number of threads to poll for tasks separate from the number of threads
to execute them. For example, you can have a small number of threads to poll and a large number of
threads to execute the tasks. The activity worker class polls Amazon SWF for a task only when it has a
free poll thread as well as a free thread to process the task.

This threading and instancing behavior implies that:

1. Activity implementations must be stateless.You should not use instance variables to store application
state in activity objects.You may, however, use fields to store resources such as database connections.

2. Activity implementations must be thread safe. Since the same instance may be used to process tasks
from different threads at the same time, access to shared resources from the activity code must be
synchronized.

3. Workflow implementation can be stateful, and instance variables may be used to store state. Even
though a new instance of the workflow implementation is created to process each decision task, the
framework will ensure that state is properly recreated. However, the workflow implementation must be
deterministic. See the section Under the Hood (p. 104) for more details.

4. Workflow implementations don’t need to be thread safe when using the default factory. The default
implementation ensures that only one thread uses an instance of the workflow implementation at a
time.

Worker Extensibility
The AWS Flow Framework for Java also contains a couple of low-level worker classes that give you
fine-grained control as well as extensibility. Using them, you can completely customize workflow and
activity type registration and set factories for creating implementation objects. These workers are
GenericWorkflowWorker and GenericActivityWorker.

The GenericWorkflowWorker can be configured with a factory for creating workflow definition factories.
The workflow definition factory is responsible for creating instances of the workflow implementation and
for providing configuration settings such as registration options. Under normal circumstances, you should
use the WorkflowWorker class directly. It will automatically create and configure implementation of the
factories provided in the framework, POJOWorkflowDefinitionFactoryFactory and
POJOWorkflowDefinitionFactory.The factory requires that the workflow implementation class must
have a no argument constructor. This constructor is used to create instances of the workflow object at
run time. The factory looks at the annotations you used on the workflow interface and implementation to
create appropriate registration and execution options.

API Version 2012-01-25
65

AWS Flow Framework for Java Developer Guide
Worker Extensibility

You may provide your own implementation of the factories by implementing
WorkflowDefinitionFactory, WorkflowDefinitionFactoryFactory, and WorkflowDefinition.
The WorkflowDefinition class is used by the worker class to dispatch decision tasks and signals. By
implementing these base classes, you can completely customize the factory and the dispatch of requests
to the workflow implementation. For example, you can use these extensibility points to provide a custom
programming model for writing workflows, for instance, based on your own annotations or generating it
from WSDL instead of the code first approach used by the framework. In order to use your custom
factories, you will have to use the GenericWorkflowWorker class. For more details about these classes,
see the AWS SDK for Java documentation.

Similarly, GenericActivityWorker allows you to provide a custom activity implementation factory. By
implementing the ActivityImplementationFactory and ActivityImplementation classes you
can completely control activity instantiation as well as customize registration and execution options. For
more details of these classes, see the AWS SDK for Java documentation.

Execution Context
Topics

• Decision Context (p. 66)

• Activity Execution Context (p. 68)

The framework provides an ambient context to workflow and activity implementations. This context is
specific to the task being processed and provides some utilities that you can use in your implementation.
A context object is created every time a new task is processed by the worker.

Decision Context
When a decision task is executed, the framework provides the context to workflow implementation through
the DecisionContext class. DecisionContext provides context-sensitive information like workflow
execution run Id and clock and timer functionality.

Accessing DecisionContext in Workflow Implementation
You can access the DecisionContext in your workflow implementation using the
DecisionContextProviderImpl class. Alternatively, you can inject the context in a field or property
of your workflow implementation using Spring as shown in the Testability and Dependency Injection
section.

DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();
DecisionContext context = contextProvider.getDecisionContext();

Creating a Clock and Timer
The DecisionContext contains a property of type WorkflowClock that provides timer and clock
functionality. Since the workflow logic needs to be deterministic, you should not directly use the system
clock in your workflow implementation.The currentTimeMills method on the WorkflowClock returns
the time of the start event of the decision being processed.This ensures that you get the same time value
during replay, hence, making your workflow logic deterministic.

WorkflowClock also has a createTimer method which returns a Promise object that becomes ready
after the specified interval.You can use this value as a parameter to other asynchronous methods to

API Version 2012-01-25
66

AWS Flow Framework for Java Developer Guide
Execution Context

delay their execution by the specified period of time.This way you can effectively schedule an asynchronous
method or activity for execution at a later time.

The example in the following listing demonstrates how to periodically call an activity.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();
}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();
}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void periodicWorkflow() {
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor) {
 if (count == 100) {
 return;
 }
 PeriodicActivityClient client = new PeriodicActivityClientImpl();
 // call activity
 Promise<Void> activityCompletion = client.activity1();

 Promise<Void> timer = clock.createTimer(3600);

 // Repeat the activity either after 1 hour or after previous activity
run
 // if it takes longer than 1 hour
 callPeriodicActivity(count + 1, timer, activityCompletion);
 }
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public void activity1() {

API Version 2012-01-25
67

AWS Flow Framework for Java Developer Guide
Decision Context

 ...
 }
}

In the above listing, the callPeriodicActivity asynchronous method calls activity1 and then
creates a timer using the current AsyncDecisionContext. It passes the returned Promise as an
argument to a recursive call to itself. This recursive call waits until the timer fires (1 hour in this example)
before executing.

Activity Execution Context
Just as the DecisionContext provides context information when a decision task is being processed,
ActivityExecutionContext provides similar context information when an activity task is being
processed. This context is available to your activity code through
ActivityExecutionContextProviderImpl class.

ActivityExecutionContextProvider provider
 = new ActivityExecutionContextProviderImpl();
ActivityExecutionContext aec = provider.getActivityExecutionContext();

Using ActivityExecutionContext, you can perform the following:

Heartbeat a Long Running Activity
If the activity is long running, it must periodically report its progress to Amazon SWF to let it know that
the task is still making progress. In the absence of such a heartbeat, the task may timeout if a task
heartbeat timeout was set at activity type registration or while scheduling the activity. In order to send a
heartbeat, you can use the recordActivityHeartbeat method on ActivityExecutionContext.
Heartbeat also provides a mechanism for canceling ongoing activities. See the Error Handling (p. 84)
section for more details and an example.

Get Details of the Activity Task
If you want, you can get all the details of the activity task that were passed by Amazon SWF when the
executor got the task. This includes information regarding the inputs to the task, task type, task token,
etc. If you want to implement an activity that is manually completed—for example, by a human action—then
you must use the ActivityExecutionContext to retrieve the task token and pass it to the process
that will eventually complete the activity task. See the section on Manually Completing Activities (p. 61)
for more details.

Get the Amazon SWF Client Object that is Being Used by
the Executor
The Amazon SWF client object being used by the executor can be retrieved by calling getService
method on ActivityExecutionContext.This is useful if you want to make a direct call to the Amazon
SWF service.

API Version 2012-01-25
68

AWS Flow Framework for Java Developer Guide
Activity Execution Context

Child Workflow Executions
In the examples so far, we have started workflow execution directly from an application. However, a
workflow execution may be started from within a workflow by calling the workflow entry point method on
the generated client.When a workflow execution is started from the context of another workflow execution,
it is called a child workflow execution. This allows you to refactor complex workflows into smaller units
and potentially share them across different workflows. For example, you can create a payment processing
workflow and call it from an order processing workflow.

Semantically, the child workflow execution behaves the same as a standalone workflow except for the
following differences:

1. When the parent workflow terminates due to an explicit action by the user—for example, by calling the
TerminateWorkflowExecution Amazon SWF API, or it is terminated due to a timeout—then the
fate of the child workflow execution will be determined by a child policy.You can set this child policy
to terminate, cancel, or abandon (keep running) child workflow executions.

2. The output of the child workflow (return value of the entry point method) can be used by the parent
workflow execution just like the Promise<T> returned by an asynchronous method. This is different
from standalone executions where the application must get the output by using Amazon SWF APIs.

In the following example, the OrderProcessor workflow creates a PaymentProcessor child workflow:

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface OrderProcessor {

 @Execute(version = "1.0")
 void processOrder(Order order);
}

public class OrderProcessorImpl implements OrderProcessor {
 PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();

 @Override
 public void processOrder(Order order) {
 float amount = order.getAmount();
 CardInfo cardInfo = order.getCardInfo();

 PaymentProcessorClient childWorkflowClient = factory.getClient();
 childWorkflowClient.processPayment(amount, cardInfo);
 }

}

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PaymentProcessor {

 @Execute(version = "1.0")
 void processPayment(float amount, CardInfo cardInfo);

}

API Version 2012-01-25
69

AWS Flow Framework for Java Developer Guide
Child Workflow Executions

public class PaymentProcessorImpl implements PaymentProcessor {
 PaymentActivitiesClient activitiesClient = new PaymentActivitiesClientImpl();

 @Override
 public void processPayment(float amount, CardInfo cardInfo) {
 Promise<PaymentType> payType = activitiesClient.getPaymentType(cardInfo);

 switch(payType.get()) {
 case Visa:
 activitiesClient.processVisa(amount, cardInfo);
 break;
 case Amex:
 activitiesClient.processAmex(amount, cardInfo);
 break;
 default:
 throw new UnSupportedPaymentTypeException();
 }
 }

}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 3600,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PaymentActivities {

 PaymentType getPaymentType(CardInfo cardInfo);

 void processVisa(float amount, CardInfo cardInfo);

 void processAmex(float amount, CardInfo cardInfo);

}

Continuous Workflows
In some use cases, you may need a workflow that executes forever or runs for a long duration, for example,
a workflow that monitors the health of a server fleet. Since Amazon SWF keeps the entire history of a
workflow execution, the history will keep growing over time. The framework retrieves this history from
Amazon SWF when it performs a replay and this will become expensive if the history size is too large. In
such long running or continuous workflows, you should periodically close the current execution and start
a new one to continue processing.This is a logical continuation of the workflow execution.The generated
self client can be used for this purpose. In your workflow implementation, simply call the @Execute
method on the self client. Once the current execution completes, the framework will start a new execution
using the same workflow Id.

You can also continue the execution by calling the continueAsNewOnCompletion method on the
GenericWorkflowClient that you can retrieve from the current DecisionContext. For example, the
following workflow implementation sets a timer to fire after a day and calls its own entry point to start a
new execution.

public class ContinueAsNewWorkflowImpl implements ContinueAsNewWorkflow {

API Version 2012-01-25
70

AWS Flow Framework for Java Developer Guide
Continuous Workflows

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private ContinueAsNewWorkflowSelfClient selfClient
 = new ContinueAsNewWorkflowSelfClientImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void startWorkflow() {
 Promise<Void> timer = clock.createTimer(86400);
 continueAsNew(timer);
 }

 @Asynchronous
 void continueAsNew(Promise<Void> timer) {
 selfClient.startWorkflow();
 }
}

When a workflow recursively calls itself, the framework will close the current workflow when all pending
tasks have completed and start a new workflow execution. Note that as long as there are pending tasks,
the current workflow execution will not close. The new execution will not automatically inherit any history
or data from the original execution; if you want to carry over some state to the new execution, then you
must pass it explicitly as input.

DataConverters
When your workflow implementation calls a remote activity, the inputs passed to it and the result of
executing the activity must be serialized so they can be sent over the wire. The framework uses the
DataConverter class for this purpose. This is an abstract class that you can implement to provide your
own serializer. A default Jackson serializer–based implementation, JsonDataConverter, is provided
in the framework. For more details, see the AWS SDK for Java documentation. Refer to the Jackson
JSON Processor documentation for details about how Jackson performs serialization as well as Jackson
annotations that can be used to influence it. The wire format used is considered part of the contract.
Hence, you can specify a DataConverter on your activities and workflow interfaces by setting the
DataConverter property of the @Activities and @Workflow annotations.

The framework will create objects of the DataConverter type you specified on @Activities annotation
to serialize the inputs of to the activity and to deserialize its result. Similarly, objects of the DataConverter
type you specify on @Workflow annotation will be used to serialize parameters you pass to the workflow,
and in the case of child workflow, to deserialize the result. In addition to inputs, the framework also passes
additional data to Amazon SWF—for example, exception details—the workflow serializer will be used for
serializing this data as well.

You can also provide an instance of the DataConverter if you don’t want the framework to automatically
create it. The generated clients have constructor overloads that take a DataConverter.You can also
provide it to the worker classes by having your activity or workflow implement the DataConverterFactory
interface.

If you don’t specify a DataConverter type and don’t pass a DataConverter object, the
JsonDataConverter will be used by default.

API Version 2012-01-25
71

AWS Flow Framework for Java Developer Guide
DataConverters

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

Passing Data to Asynchronous Methods
Topics

• Passing Collections and Maps to Asynchronous Methods (p. 72)

• Settable<T> (p. 73)

• @NoWait (p. 74)

• Promise<Void> (p. 74)

• AndPromise and OrPromise (p. 74)

The use of Promise<T> has been explained in previous sections. Some advanced use cases of
Promise<T> are discussed here.

Passing Collections and Maps to Asynchronous
Methods
The framework supports passing arrays, collections, and maps as Promise types to asynchronous
methods. For example, an asynchronous method may take Promise<ArrayList<String>> as an
argument as shown in the following listing.

@Asynchronous
public void printList(Promise<List<String>> list) {
 for (String s: list.get()) {
 activityClient.printActivity(s);
 }
}

Semantically, this behaves as any other Promise typed parameter and the asynchronous method will
wait until the collection becomes available before executing. If the members of a collection are Promise
objects, then you can make the framework wait for all members to become ready as shown in the following
snippet. This will make the asynchronous method wait on each member of the collection to become
available.

@Asynchronous
public void printList(@Wait List<Promise<String>> list) {
 for (Promise<String> s: list) {
 activityClient.printActivity(s);
 }
}

Note that the @Wait annotation must be used on the parameter to indicate that it contains Promise
objects.

Note also that the activity printActivity takes a String argument but the matching method in the
generated client takes a Promise<String>. We are calling the method on the client and not invoking the
activity method directly.

API Version 2012-01-25
72

AWS Flow Framework for Java Developer Guide
Passing Data to Asynchronous Methods

Settable<T>
Settable<T> is a derived type of Promise<T> that provides a set method that allows you to manually
set the value of a Promise. For example, the following workflow waits for a signal to be received by
waiting on a Settable<>, which is set in the signal method:

public class MyWorkflowImpl implements MyWorkflow{
 final Settable<String> result = new Settable<String>();

 //@Execute method
 @Override
 public Promise<String> start() {
 return done(result);
 }

 //Signal
 @Override
 public void manualProcessCompletedSignal(String data) {
 result.set(data);
 }

 @Asynchronous
 public Promise<String> done(Settable<String> result){
 return result;
 }
}

A Settable<> can also be chained to another promise at a time.You can use AndPromise and
OrPromise to group promises.You can unchain a chained Settable by calling the unchain() method
on it. When chained, the Settable<> automatically becomes ready when the promise that it is chained
to becomes ready. Chaining is especially useful when you want to use a promise returned from within
the scope of a doTry() in other parts of your program. Since TryCatchFinally is used as a nested
class, you cannot declare a Promise<> in the parent’s scope and set it in doTry(). This is because
Java requires variables to be declared in parent scope and used in nested classes to be marked final.
For example:

@Asynchronous
public Promise<String> chain(final Promise<String> input) {
 final Settable<String> result = new Settable<String>();

 new TryFinally() {

 @Override
 protected void doTry() throws Throwable {
 Promise<String> resultToChain = activity1(input);
 activity2(resultToChain);

 // Chain the promise to Settable
 result.chain(resultToChain);
 }

 @Override
 protected void doFinally() throws Throwable {
 if (result.isReady()) { // Was a result returned before the excep

API Version 2012-01-25
73

AWS Flow Framework for Java Developer Guide
Settable<T>

tion?
 // Do cleanup here
 }
 }
 };

 return result;
}

A Settable can be chained to one promise at a time.You can unchain a chained Settable by calling
the unchain() method on it.

@NoWait
When you pass a Promise to an asynchronous method, by default, the framework will wait for the
Promise(s) to become ready before executing the method (except for collection types).You may override
this behavior by using the @NoWait annotation on parameters in the declaration of the asynchronous
method.This is useful if you are passing in Settable<T>, which will be set by the asynchronous method
itself.

Promise<Void>
Dependencies in asynchronous methods are implemented by passing the Promise returned by one
method as an argument to another. However, there may be cases where you want to return void from a
method, but still want other asynchronous methods to execute after its completion. In such cases, you
can use Promise<Void> as the return type of the method. The Promise class provides a static Void
method that you can use to create a Promise<Void> object.This Promise will become ready when the
asynchronous method finishes execution.You can pass this Promise to another asynchronous method
just like any other Promise object. If you are using Settable<Void>, then call the set method on it with
null to make it ready.

AndPromise and OrPromise
AndPromise and OrPromise allow you to group multiple Promise<> objects into a single logical promise.
An AndPromise becomes ready when all promises used to construct it become ready. An OrPromise
becomes ready when any promise in the collection of promises used to construct it becomes ready.You
can call getValues() on AndPromise and OrPromise to retrieve the list of values of the constituent
promises.

Testability and Dependency Injection
Topics

• Spring Integration (p. 75)

• JUnit Integration (p. 80)

The framework is designed to be Inversion of Control (IoC) friendly. Activity and workflow implementations
as well as the framework supplied workers and context objects can be configured and instantiated using
containers like Spring. Out of the box, the framework provides integration with the Spring Framework. In
addition, integration with JUnit has been provided for unit testing workflow and activity implementations.

API Version 2012-01-25
74

AWS Flow Framework for Java Developer Guide
@NoWait

Spring Integration
The com.amazonaws.services.simpleworkflow.flow.spring package contains classes that make it easy
to use the Spring framework in your applications.These include a custom Scope and Spring-aware activity
and workflow workers: WorkflowScope, SpringWorkflowWorker and SpringActivityWorker.
These classes allow you to configure your workflow and activity implementations as well as the workers
entirely through Spring.

WorkflowScope
WorkflowScope is a custom Spring Scope implementation provided by the framework.This scope allows
you to create objects in the Spring container whose lifetime is scoped to that of a decision task.The beans
in this scope are instantiated every time a new decision task is received by the worker.You should use
this scope for workflow implementation beans and any other beans it depends on. The Spring-provided
singleton and prototype scopes should not be used for workflow implementation beans because the
framework requires that a new bean be created for each decision task. Failure to do so will result in
unexpected behavior.

The following example shows a snippet of Spring configuration that registers the WorkflowScope and
then uses it for configuring a workflow implementation bean and an activity client bean.

 <!-- register &awsflow-java; WorkflowScope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">

 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope"
 />
 </entry>
 </map>
 </property>
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">

 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

The line of configuration: <aop:scoped-proxy proxy-target-class="false" />, used in the
configuration of the workflowImpl bean, is required because the WorkflowScope does not support
proxying using CGLIB.You should use this configuration for any bean in the WorkflowScope that is
wired to another bean in a different scope. In this case, the workflowImpl bean needs to be wired to a
workflow worker bean in singleton scope (see complete example below).

You can learn more about using custom scopes in the Spring Framework documentation.

API Version 2012-01-25
75

AWS Flow Framework for Java Developer Guide
Spring Integration

Spring-Aware Workers
When using Spring, you should use the Spring-aware worker classes provided by the framework:
SpringWorkflowWorker and SpringActivityWorker. These workers can be injected in your
application using Spring as shown in the next example. The Spring-aware workers implement Spring’s
SmartLifecycle interface and, by default, automatically start polling for tasks when the Spring context
is initialized.You can turn off this functionality by setting the disableAutoStartup property of the
worker to true.

The following example shows how to configure a decider. This example uses MyActivities and
MyWorkflow interfaces (not shown here) and corresponding implementations, MyActivitiesImpl and
MyWorkflowImpl. The generated client interfaces and implementations are
MyWorkflowClient/MyWorkflowClientImpl and MyActivitiesClient/MyActivitiesClientImpl
(also not shown here).

The activities client is injected in the workflow implementation using Spring’s auto wire feature:

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;

 @Override
 public void start() {
 client.activity1();
 }
}

The Spring configuration for the decider is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">

 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope"
 />
 </entry>
 </map>
 </property>

API Version 2012-01-25
76

AWS Flow Framework for Java Developer Guide
Spring Integration

 </bean>
 <context:annotation-config/>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- &SWF; client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">

 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- workflow worker -->
 <bean id="workflowWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringWorkflowWorker">

 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 </bean>
</beans>

Since the SpringWorkflowWorker is fully configured in Spring and automatically starts polling when
the Spring context is initialized, the host process for the decider is simple:

public class WorkflowHost {
 public static void main(String[] args){
 ApplicationContext context

API Version 2012-01-25
77

AWS Flow Framework for Java Developer Guide
Spring Integration

 = new FileSystemXmlApplicationContext("resources/spring/WorkflowHost
Bean.xml");
 System.out.println("Workflow worker started");
 }
}

Similarly, the activity worker can be configured as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">

 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope"
/>
 </entry>
 </map>
 </property>
 </bean>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- &SWF; client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities impl -->
 <bean name="activitiesImpl" class="asadj.spring.test.MyActivitiesImpl">
 </bean>

API Version 2012-01-25
78

AWS Flow Framework for Java Developer Guide
Spring Integration

 <!-- activity worker -->
 <bean id="activityWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringActivityWorker">

 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="activitiesImplementations">
 <list>
 <ref bean="activitiesImpl" />
 </list>
 </property>
 </bean>
</beans>

The activity worker host process is similar to the decider:

public class ActivityHost {
 public static void main(String[] args) {
 ApplicationContext context = new FileSystemXmlApplicationContext(
 "resources/spring/ActivityHostBean.xml");
 System.out.println("Activity worker started");
 }
}

Injecting Decision Context
If your workflow implementation depends on the context objects, then you can easily inject them through
Spring as well. The framework automatically registers context-related beans in the Spring container. For
example, in the following snippet, the various context objects have been auto wired. No other Spring
configuration of the context objects is required.

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;
 @Autowired
 public WorkflowClock clock;
 @Autowired
 public DecisionContext dcContext;
 @Autowired
 public GenericActivityClient activityClient;
 @Autowired
 public GenericWorkflowClient workflowClient;
 @Autowired
 public WorkflowContext wfContext;
 @Override
 public void start() {
 client.activity1();
 }

API Version 2012-01-25
79

AWS Flow Framework for Java Developer Guide
Spring Integration

}

If you want to configure the context objects in the workflow implementation through Spring XML
configuration, then use the bean names declared in the WorkflowScopeBeanNames class in the
com.amazonaws.services.simpleworkflow.flow.spring package. For example:

<!-- workflow implementation -->
<bean id="workflowImpl" class="asadj.spring.test.MyWorkflowImpl" scope="work
flow">
 <property name="client" ref="activitiesClient"/>
 <property name="clock" ref="workflowClock"/>
 <property name="activityClient" ref="genericActivityClient"/>
 <property name="dcContext" ref="decisionContext"/>
 <property name="workflowClient" ref="genericWorkflowClient"/>
 <property name="wfContext" ref="workflowContext"/>
 <aop:scoped-proxy proxy-target-class="false" />
</bean>

Alternatively, you may inject a DecisionContextProvider in the workflow implementation bean and
use it to create the context. This can be useful if you want to provide custom implementations of the
provider and context.

Injecting Resources in Activities
You can instantiate and configure activity implementations using an Inversion of Control (IoC) container
and easily inject resources like database connections by declaring them as properties of the activity
implementation class. Such resources will typically be scoped as singletons. Note that activity
implementations are called by the activity worker on multiple threads. Therefore, access to shared
resources must be synchronized.

JUnit Integration
The framework provides JUnit extensions as well as test implementations of the context objects, such
as a test clock, that you can use to write and run unit tests with JUnit. With these extensions, you can
test your workflow implementation locally inline.

Writing a Simple Unit Test
In order to write tests for your workflow, use the WorkflowTest class in the
com.amazonaws.services.simpleworkflow.flow.junit package. This class is a framework-specific JUnit
MethodRule implementation and runs your workflow code locally, calling activities inline as opposed to
going through Amazon SWF. This gives you the flexibility to run your tests as frequently as you desire
without incurring any charges.

In order to use this class, simply declare a field of type WorkflowTest and annotate it with the @Rule
annotation. Before running your tests, create a new WorkflowTest object and add your activity and
workflow implementations to it.You can then use the generated workflow client factory to create a client
and start an execution of the workflow. The framework also provides a custom JUnit runner,
FlowBlockJUnit4ClassRunner, that you must use for your workflow tests. For example:

API Version 2012-01-25
80

AWS Flow Framework for Java Developer Guide
JUnit Integration

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Register activity implementation to be used during test run
 BookingActivities activities = new BookingActivitiesImpl(trace);
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);

 }

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEquals("invalid booking", expected, trace, booked);
 }
}

You can also specify a separate task list for each activity implementation that you add to WorkflowTest.
For example, if you have a workflow implementation that schedules activities in host-specific task lists,
then you can register the activity in the task list of each host:

for (int i = 0; i < 10; i++) {
 String hostname = "host" + i;
 workflowTest.addActivitiesImplementation(hostname,
 new ImageProcessingActivities(host
name));
}

Notice that the code in the @Test is asynchronous.Therefore, you should use the asynchronous workflow
client to start an execution. In order to verify the results of your test, an AsyncAssert help class is also
provided. This class allows you to wait for promises to become ready before verifying results. In this
example, we wait for the result of the workflow execution to be ready before verifying the test output.

API Version 2012-01-25
81

AWS Flow Framework for Java Developer Guide
JUnit Integration

If you are using Spring, then the SpringWorkflowTest class can be used instead of the WorkflowTest
class. SpringWorkflowTest provides properties that you can use to configure activity and workflow
implementations easily through Spring configuration. Just like the Spring-aware workers, you should use
the WorkflowScope to configure workflow implementation beans. This ensures that a new workflow
implementation bean is created for every decision task. Make sure to configure these beans with the
scoped-proxy proxy-target-class setting set to false. See the Spring Integration section for more details.
The example Spring configuration shown in the Spring Integration section can be changed to test the
workflow using SpringWorkflowTest:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="ht
tp://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">
 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">

 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.Workflow
Scope" />
 </entry>
 </map>
 </property>
 </bean>
 <context:annotation-config />
 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}" />
 <constructor-arg value="{AWS.Secret.Key}" />
 </bean>
 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>
 <!-- &SWF; client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>
 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>
 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl"
 scope="workflow">
 <property name="client" ref="activitiesClient" />
 <aop:scoped-proxy proxy-target-class="false" />

API Version 2012-01-25
82

AWS Flow Framework for Java Developer Guide
JUnit Integration

 </bean>
 <!-- WorkflowTest -->
 <bean id="workflowTest"
 class="com.amazonaws.services.simpleworkflow.flow.junit.spring.SpringWork
flowTest">
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 <property name="taskListActivitiesImplementationMap">
 <map>
 <entry>
 <key>
 <value>list1</value>
 </key>
 <ref bean="activitiesImplHost1" />
 </entry>
 </map>
 </property>
 </bean>
</beans>

Mocking Activity Implementations

You may use the real activity implementations during testing, but if you want to unit test just the workflow
logic, you should mock the activities.This can do this by providing a mock implementation of the activities
interface to the WorkflowTest class. For example:

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Create and register mock activity implementation to be used during
test run
 BookingActivities activities = new BookingActivities() {

 @Override
 public void sendConfirmationActivity(int customerId) {
 trace.add("sendConfirmation-" + customerId);
 }

 @Override
 public void reserveCar(int requestId) {

API Version 2012-01-25
83

AWS Flow Framework for Java Developer Guide
JUnit Integration

 trace.add("reserveCar-" + requestId);
 }

 @Override
 public void reserveAirline(int requestId) {
 trace.add("reserveAirline-" + requestId);
 }
 };
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);

 }

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEquals("invalid booking", expected, trace, booked);
 }
}

Alternatively, you can provide a mock implementation of the activities client and inject that into your
workflow implementation.

Test Context Objects
If your workflow implementation depends on the framework context objects—for example, the
DecisionContext—you don't have to do anything special to test such workflows. When a test is run
through WorkflowTest, it automatically injects test context objects.When your workflow implementation
accesses the context objects—for example, using DecisionContextProviderImpl—it will get the
test implementation.You can manipulate these test context objects in your test code (@Test method) to
create interesting test cases. For example, if your workflow creates a timer, you can make the timer fire
by calling the clockAdvanceSeconds method on the WorkflowTest class to move the clock forward
in time.You can also accelerate the clock to make timers fire earlier than they normally would using the
ClockAccelerationCoefficient property on WorkflowTest. For example, if your workflow creates
a timer for one hour, you can set the ClockAccelerationCoefficient to 60 to make the timer fire in
one minute. By default, ClockAccelerationCoefficient is set to 1.

For more details about the com.amazonaws.services.simpleworkflow.flow.test and
com.amazonaws.services.simpleworkflow.flow.junit packages, see the AWS SDK for Java documentation.

Error Handling
Topics

• TryCatchFinally Semantics (p. 86)

API Version 2012-01-25
84

AWS Flow Framework for Java Developer Guide
Error Handling

• Cancellation (p. 87)

• Nested TryCatchFinally (p. 90)

• Retry Failed Activities (p. 91)

The try/catch/finally construct in Java makes it simple to handle errors and is used ubiquitously. It
allows you to associate error handlers to a block of code. Internally, this works by stuffing additional
metadata about the error handlers on the call stack. When an exception is thrown, the runtime looks at
the call stack for an associated error handler and invokes it; and if no appropriate error handler is found,
it propagates the exception up the call chain.

This works well for synchronous code, but handling errors in asynchronous and distributed programs
poses additional challenges. Since an asynchronous call returns immediately, the caller is not on the call
stack when the asynchronous code executes.This means that unhandled exceptions in the asynchronous
code cannot be handled by the caller in the usual way.Typically, exceptions that originate in asynchronous
code are handled by passing error state to a callback that is passed to the asynchronous method.
Alternatively, if a Future<> is being used, it reports an error when you try to access it. This is less than
ideal because the code that receives the exception (the callback or code that uses the Future<>) does
not have the context of the original call and may not be able to handle the exception adequately.
Furthermore, in a distributed asynchronous system, with components running concurrently, more than
one error may occur simultaneously. These errors could be of different types and severities and need to
be handled appropriately.

Cleaning up resource after an asynchronous call is also difficult. Unlike synchronous code, you cannot
use try/catch/finally in the calling code to clean up resources since work initiated in the try block may still
be ongoing when the finally block executes.

The framework provides a mechanism that makes error handling in distributed asynchronous code similar
to, and almost as simple as, Java’s try/catch/finally.

ImageProcessingActivitiesClient activitiesClient
 = new ImageProcessingActivitiesClientImpl();

public void createThumbnail(final String webPageUrl) {

 new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 List<String> images = getImageUrls(webPageUrl);
 for (String image: images) {
 Promise<String> localImage
 = activitiesClient.downloadImage(image);
 Promise<String> thumbnailFile
 = activitiesClient.createThumbnail(localImage);
 activitiesClient.uploadImage(thumbnailFile);
 }
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {

 // Handle exception and rethrow failures
 LoggingActivitiesClient logClient = new LoggingActivitiesClientImpl();
 logClient.reportError(e);
 throw new RuntimeException("Failed to process images", e);

API Version 2012-01-25
85

AWS Flow Framework for Java Developer Guide
Error Handling

 }

 @Override
 protected void doFinally() throws Throwable {
 activitiesClient.cleanUp();
 }
 };
}

The TryCatchFinally class and its variants, TryFinally and TryCatch, work similar to Java’s
try/catch/finally. Using it, you can associate exception handlers to blocks of workflow code that may
execute as asynchronous and remote tasks.The doTry() method is logically equivalent to the try block.
The framework automatically executes the code in doTry(). A list of Promise objects can be passed
to the constructor of TryCatchFinally.The doTry method will be executed when all Promise objects
passed in to the constructor become ready. If an exception is raised by code that was asynchronously
invoked from within doTry(), any pending work in doTry() is canceled and doCatch() is called to
handle the exception. For instance, in the listing above, if downloadImage throws an exception, then
createThumbnail and uploadImage will be canceled. Finally, doFinally() is called when all
asynchronous work is done (completed, failed, or canceled). It can be used for resource cleanup.You
can also nest these classes to suit your needs.

When an exception is reported in doCatch(), the framework provides a complete logical call stack that
includes asynchronous and remote calls. This can be helpful when debugging, especially if you have
asynchronous methods calling other asynchronous methods. For example, an exception from
downloadImage will produce an exception like this:

RuntimeException: error downloading image
 at downloadImage(Main.java:35)
 at ---continuation---.(repeated:1)
 at errorHandlingAsync$1.doTry(Main.java:24)
 at ---continuation---.(repeated:1)
…

TryCatchFinally Semantics
The execution of an AWS Flow Framework for Java program can be visualized as a tree of concurrently
executing branches. A call to an asynchronous method, an activity, and TryCatchFinally itself creates
a new branch in this tree of execution. For example, the image processing workflow can be viewed as
the tree shown in the following figure.

An error in one branch of execution will cause the unwinding of that branch, just as an exception causes
the unwinding of the call stack in a Java program. The unwinding keeps moving up the execution branch
until either the error is handled or the root of the tree is reached, in which case the workflow execution is
terminated.

The framework reports errors that happen while processing tasks as exceptions. It associates the exception
handlers (doCatch() methods) defined in TryCatchFinally with all tasks that are created by the code

API Version 2012-01-25
86

AWS Flow Framework for Java Developer Guide
TryCatchFinally Semantics

in the corresponding doTry(). If a task fails—for example, due to a timeout or an unhandled
exception—then the appropriate exception will be raised and the corresponding doCatch() will be
invoked to handle it. To accomplish this, the framework works in tandem with Amazon SWF to propagate
remote errors and resurrects them as exceptions in the caller’s context.

Cancellation
When an exception occurs in synchronous code, the control jumps directly to the catch block, skipping
over any remaining code in the try block. For example:

try {
 a();
 b();
 c();
}
catch (Exception e) {
 e.printStackTrace();
}

In this code, if b() throws an exception, then c() is never invoked. Compare that to a workflow:

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 activityA();
 activityB();
 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

In this case, calls to activityA, activityB, and activityC all return successfully and result in the
creation of three tasks that will be executed asynchronously. Let’s say at a later time that the task for
activityB results in an error. This error is recorded in the history by Amazon SWF. In order to handle
this, the framework will first try to cancel all other tasks that originated within the scope of the same
doTry(); in this case, activityA and activityC. When all such tasks complete (cancel, fail, or
successfully complete), the appropriate doCatch() method will be invoked to handle the error.

Unlike the synchronous example, where c() was never executed, activityC was invoked and a task
was scheduled for execution; hence, the framework will make an attempt to cancel it, but there is no
guarantee that it will be canceled. Cancellation cannot be guaranteed because the activity may have
already completed, may ignore the cancellation request, or may fail due to an error. However, the framework
does provide the guarantee that doCatch() is called only after all tasks started from the corresponding
doTry() have completed. It also guarantees that doFinally() is called only after all tasks started from
the doTry() and doCatch() have completed. If, for instance, the activities in the above example depend
on each other, say activityB depends on activityA and actvityC on activityB, then the
cancellation of activityC will be immediate because it is not scheduled in Amazon SWF until activityB
completes:

API Version 2012-01-25
87

AWS Flow Framework for Java Developer Guide
Cancellation

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 Promise<Void> a = activityA();
 Promise<Void> b = activityB(a);
 activityC(b);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

Activity Heartbeat
The AWS Flow Framework for Java's cooperative cancellation mechanism allows in-flight activity tasks
to be canceled gracefully.When cancellation is triggered, tasks that blocked or are waiting to be assigned
to a worker are automatically canceled. If, however, a task is already assigned to a worker, the framework
will request the activity to cancel.Your activity implementation must explicitly handle such cancellation
requests. This is done by reporting heartbeat of your activity.

Reporting heartbeat allows the activity implementation to report the progress of an ongoing activity task,
which is useful for monitoring, and it lets the activity check for cancellation requests. The
recordActivityHeartbeat method will throw a CancellationException if a cancellation has been
requested. The activity implementation can catch this exception and act on the cancellation request, or
it can ignore the request by swallowing the exception. In order to honor the cancellation request, the
activity should perform the desired clean up, if any, and then rethrow CancellationException. When
this exception is thrown from an activity implementation, the framework records that the activity task has
been completed in canceled state.

The following example shows an activity that downloads and processes images. It heartbeats after
processing each image, and if cancellation is requested, it cleans up and rethrows the exception to
acknowledge cancellation.

@Override
public void processImages(List<String> urls) {
 int imageCounter = 0;
 for (String url: urls) {
 imageCounter++;
 Image image = download(url);
 process(image);
 try {
 ActivityExecutionContext context
 = contextProvider.getActivityExecutionContext();
 context.recordActivityHeartbeat(Integer.toString(imageCounter));
 } catch(CancellationException ex) {
 cleanDownloadFolder();
 throw ex;
 }
 }

API Version 2012-01-25
88

AWS Flow Framework for Java Developer Guide
Cancellation

}

Reporting activity heartbeat is not required, but it is recommended if your activity is long running or may
be performing expensive operations that you wish to be canceled under error conditions.You should call
heartbeatActivityTask periodically from the activity implementation.

If the activity times out, the ActivityTaskTimedOutException will be thrown and getDetails on
the exception object will return the data passed to the last successful call to heartbeatActivityTask
for the corresponding activity task. The workflow implementation may use this information to determine
how much progress was made before the activity task was timed out.

Note: It is not a good practice to heartbeat too frequently because Amazon SWF may throttle heartbeat
requests. See the Amazon Simple Workflow Service Developer Guide for limits placed by Amazon SWF.

Explicitly Canceling a Task
Besides error conditions, there are other cases where you may explicitly cancel a task. For example, an
activity to process payments using a credit card may need to be canceled if the user cancels the order.
The framework allows you to explicitly cancel tasks created in the scope of a TryCatchFinally. In the
following example, the payment task is canceled if a signal is received while the payment was being
processed.

public class OrderProcessorImpl implements OrderProcessor {
 private PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();
 boolean processingPayment = false;
 private TryCatchFinally paymentTask = null;

 @Override
 public void processOrder(int orderId, final float amount) {
 paymentTask = new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 processingPayment = true;

 PaymentProcessorClient paymentClient = factory.getClient();
 paymentClient.processPayment(amount);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 if (e instanceof CancellationException) {
 paymentClient.log("Payment canceled.");
 } else {
 throw e;
 }
 }

 @Override
 protected void doFinally() throws Throwable {
 processingPayment = false;
 }
 };

API Version 2012-01-25
89

AWS Flow Framework for Java Developer Guide
Cancellation

http://docs.aws.amazon.com/amazonswf/latest/developerguide/

 }

 @Override
 public void cancelPayment() {
 if (processingPayment) {
 paymentTask.cancel(null);
 }
 }
}

Receiving Notification of Canceled Tasks
When a task is completed in canceled state, the framework informs the workflow logic by throwing a
CancellationException.When an activity completes in canceled state, a record is made in the history
and the framework calls the appropriate doCatch() with a CancellationException. As shown in the
previous example, when the payment processing task is canceled, the workflow receives a
CancellationException.

An unhandled CancellationException is propagated up the execution branch just like any other
exception. However, the doCatch() method will receive the CancellationException only if there is
no other exception in the scope; other exceptions are prioritized higher than cancellation.

Nested TryCatchFinally
You may nest TryCatchFinally’s to suit your needs. Since each TryCatchFinally creates a new
branch in the execution tree, you can create nested scopes. Exceptions in the parent scope will cause
cancellation attempts of all tasks initiated by nested TryCatchFinally’s within it. However, exceptions
in a nested TryCatchFinally don’t automatically propagate to the parent. If you wish to propagate an
exception from a nested TryCatchFinally to its containing TryCatchFinally, you should rethrow
the exception in doCatch(). In other words, only unhandled exceptions are bubbled up, just like Java’s
try/catch. If you cancel a nested TryCatchFinally by calling the cancel method, the nested
TryCatchFinally will be canceled but the containing TryCatchFinally will not automatically get
canceled.

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 activityA();

 new TryCatch() {

API Version 2012-01-25
90

AWS Flow Framework for Java Developer Guide
Nested TryCatchFinally

 @Override
 protected void doTry() throws Throwable {
 activityB();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
 };

 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
};

Retry Failed Activities
Activities sometimes fail for ephemeral reasons, such as a temporary loss of connectivity. At another
time, the activity might succeed, so the appropriate way to handle activity failure is often to retry the
activity, perhaps multiple times.

There are a variety of strategies for retrying activities; the best one depends on the details of your workflow.
The strategies fall into three basic categories:

• The retry-until-success strategy simply keeps retrying the activity until it completes.

• The exponential retry strategy increases the time interval between retry attempts exponentially until
the activity completes or the process reaches a specified stopping point, such as a maximum number
of attempts.

• The custom retry strategy decides whether or how to retry the activity after each failed attempt.

The following sections describe how to implement these strategies. The example workflow workers all
use a single activity, unreliableActivity, which randomly does one of following:

• Completes immediately

• Fails intentionally by exceeding the timeout value

• Fails intentionally by throwing IllegalStateException

For complete working code for these examples, see XYZ.

Retry-Until-Success Strategy
The simplest retry strategy is to keep retrying the activity each time it fails until it eventually succeeds.
The basic pattern is:

1. Implement a nested TryCatch or TryCatchFinally class in your workflow's entry point method.

2. Execute the activity in doTry

3. If the activity fails, the framework calls doCatch, which runs the entry point method again.

API Version 2012-01-25
91

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

4. Repeat Steps 2 - 3 until the activity completes successfully.

The following workflow implements the retry-until-success strategy.The workflow interface is implemented
in RetryActivityRecipeWorkflow and has one method, runUnreliableActivityTillSuccess,
which is the workflow’s entry point. The workflow worker is implemented in
RetryActivityRecipeWorkflowImpl, as follows:

public class RetryActivityRecipeWorkflowImpl implements RetryActivityRecipeWork
flow {
 ...
 @Override
 public void runUnreliableActivityTillSuccess() {

 final Settable<Boolean> retryActivity = new Settable<Boolean>();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 Promise<Void> activityRanSuccessfully = client.unreliableActiv
ity();
 setRetryActivityToFalse(activityRanSuccessfully, retryActivity);

 }
 @Override
 protected void doCatch(Throwable e) throws Throwable {
 retryActivity.set(true);
 }
 };
 restartRunUnreliableActivityTillSuccess(retryActivity);
 }
 @Asynchronous
 private void setRetryActivityToFalse(Promise<Void> activityRanSuccessfully,
 Settable<Boolean> retryActivity) {
 retryActivity.set(false);
 }
 @Asynchronous
 private void restartRunUnreliableActivityTillSuccess(Settable<Boolean>
retryActivity) {
 if (retryActivity.get()) {
 runUnreliableActivityTillSuccess();
 }
 }
}

The workflow works as follows:

1. runUnreliableActivityTillSuccess creates a Settable<Boolean> object named
retryActivity which is used to indicate whether the activity failed and should be retried.
Settable<T> is derived from Promise<T> and works much the same way, but you set a Settable<T>
object's value manually.

2. runUnreliableActivityTillSuccess implements an anonymous nested TryCatch class to
handle any exceptions that are thrown by the unreliableActivity activity. For more discussion of
how to handle exceptions thrown by asynchronous code, see Error Handling (p. 84).

3. doTry executes the unreliableActivity activity, which returns a Promise<Void> object named
waitFor.

API Version 2012-01-25
92

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

4. doTry calls the asynchronous setRetryActivityToFalse method, which has two parameters:

• activityRanSuccessfully takes the Promise<Void> object returned by the
unreliableActivity activity.

• retryActivity takes the retryActivity object.

If unreliableActivity completes, activityRanSuccessfully becomes ready and
setRetryActivityToFalse sets retryActivity to false. Otherwise, activityRanSuccessfully
never becomes ready and setRetryActivityToFalse does not execute.

5. If unreliableActivity throws an exception, the framework calls doCatch and passes it the exception
object. doCatch sets retryActivity to true.

6. runUnreliableActivityTillSuccess calls the asynchronous
restartRunUnreliableActivityTillSuccess method and passes it the retryActivity object.
Because retryActivity is a Promise<T> type, restartRunUnreliableActivityTillSuccess
defers execution until retryActivity is ready, which occurs after TryCatch completes.

7. When retryActivity is ready, restartRunUnreliableActivityTillSuccess extracts the
value.

• If the value is false, the retry succeeded.restartRunUnreliableActivityTillSuccess does
nothing and the retry sequence terminates.

• If the value is true, the retry failed. restartRunUnreliableActivityTillSuccess calls
runUnreliableActivityTillSuccess to execute the activity again.

8. Steps 1 - 7 repeat until unreliableActivity completes.

Note
doCatch does not handle the exception; it simply sets the retryActivity object to true to
indicate that the activity failed. The retry is handled by the asynchronous
restartRunUnreliableActivityTillSuccess method, which defers execution until
TryCatch completes. The reason for this approach is that, if you retry an activity in doCatch,
you cannot cancel it. Retrying the activity in restartRunUnreliableActivityTillSuccess
allows you to execute cancellable activities.

For a complete working example of this workflow, see XYZ.

Exponential Retry Strategy
With the exponential retry strategy, the framework executes a failed activity again after a specified period
of time, N seconds. If that attempt fails the framework executes the activity again after 2N seconds, and
then 4N seconds and so on. Because the wait time can get quite large, you typically stop the retry attempts
at some point rather than continuing indefinitely.

The framework provides three ways to implement an exponential retry strategy:

• The @ExponentialRetry annotation is the simplest approach, but you must set the retry configuration
options at compile time.

• The RetryDecorator class allows you to set retry configuration at run time and change it as needed.

• The AsyncRetryingExecutor class allows you to set retry configuration at run time and change it
as needed. In addition, the framework calls a user-implemented AsyncRunnable.run method to run
each retry attempt.

All approaches support the following configuration options, where time values are in seconds:

• The initial retry wait time.

• The back-off coefficient, which is used to compute the retry intervals, as follows:

API Version 2012-01-25
93

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

retryInterval = initialRetryIntervalSeconds * Math.pow(backoffCoefficient,
numberOfTries - 2)

The default value is 2.0.

• The maximum number of retry attempts. The default value is unlimited.

• The maximum retry interval. The default value is unlimited.

• The expiration time. Retry attempts stop when the total duration of the process exceeds this value.The
default value is unlimited.

• The exceptions that will trigger the retry process. By default, every exception triggers the retry process.

• The exceptions that will not trigger a retry attempt. By default, no exceptions are excluded.

The following sections describe the various ways that you can implement an exponential retry strategy.
For complete working code for the examples, see XYZ.

Exponential Retry with @ExponentialRetry

The simplest way to implement an exponential retry strategy for an activity is to apply an
@ExponentialRetry annotation to the activity in the interface definition. If the activity fails, the framework
handles the retry process automatically, based on the specified option values. The basic pattern is:

1. Apply @ExponentialRetry to the appropriate activities and specify the retry configuration.

2. If an annotated activity fails, the framework automatically retrys the activity according to the configuration
specified by the annotation's arguments.

The ExponentialRetryAnnotationWorkflow workflow worker implements the exponential retry
strategy by using an @ExponentialRetry annotation. It uses an unreliableActivity activity whose
interface definition is implemented in ExponentialRetryAnnotationActivities, as follows:

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 30,
defaultTaskStartToCloseTimeoutSeconds = 30)
public interface ExponentialRetryAnnotationActivities {

 @ExponentialRetry(initialRetryIntervalSeconds = 5, maximumAttempts = 5,
exceptionsToRetry = IllegalStateException.class)
 public void unreliableActivity();
}

The @ExponentialRetry options specify the following strategy:

• Retry only if the activity throws IllegalStateException.

• Use an initial wait time of 5 seconds.

• No more than 5 retry attempts.

The workflow interface is implemented in RetryWorkflow and has one method, process, which is the
workflow’s entry point. The workflow worker is implemented in
ExponentialRetryAnnotationWorkflowImpl, as follows:

public class ExponentialRetryAnnotationWorkflowImpl implements RetryWorkflow {

API Version 2012-01-25
94

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

 ...
 public void process() {
 handleUnreliableActivity();
 }
 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

The workflow works as follows:

1. process runs the synchronous handleUnreliableActivity method.

2. handleUnreliableActivity executes the unreliableActivity activity.

If the activity fails by throwing IllegalStateException, the framework automatically runs the retry
strategy specified in ExponentialRetryAnnotationActivities.

Exponential Retry with the RetryDecorator Class

@ExponentialRetry is simple to use. However, the configuration is static and set at compile time, so
the framework uses the same retry strategy every time the activity fails.You can implement a more flexible
exponential retry strategy by using the RetryDecorator class, which allows you to specify the
configuration at run time and change it as needed. The basic pattern is:

1. Create and configure an ExponentialRetryPolicy object that specifies the retry configuration.

2. Create a RetryDecorator object and pass the ExponentialRetryPolicy object from Step 1 to
the constructor.

3. Apply the decorator object to the activity by passing the activity client’s class name to the
RetryDecorator object’s decorate method.

4. Execute the activity.

If the activity fails, the framework retries the activity according to the ExponentialRetryPolicy object's
configuration.You can change the retry configuration as needed by modifying this object.

Note
The @ExponentialRetry annotation and the RetryDecorator class are mutually exclusive.
You cannot use RetryDecorator to dynamically override a retry policy specified by an
@ExponentialRetry annotation.

The following workflow implementation shows how to use the RetryDecorator class to implement an
exponential retry strategy. It uses an unreliableActivity activity that does not have an
@ExponentialRetry annotation. The workflow interface is implemented in RetryWorkflow and has
one method, process, which is the workflow’s entry point. The workflow worker is implemented in
DecoratorRetryWorkflowImpl, as follows:

public class DecoratorRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 ExponentialRetryPolicy retryPolicy = new ExponentialRetryPolicy(ini
tialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);

API Version 2012-01-25
95

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

 Decorator retryDecorator = new RetryDecorator(retryPolicy);
 client = retryDecorator.decorate(RetryActivitiesClient.class, client);

 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

The workflow works as follows:

1. process creates and configures an ExponentialRetryPolicy object by:

• Passing the initial retry interval to the constructor.

• Calling the object’s withMaximumAttempts method to set the maximum number of attempts to 5.
ExponentialRetryPolicy exposes other withXYZ objects that you can use to specify other
configuration options.

2. process creates a RetryDecorator object named retryDecorator and passes the
ExponentialRetryPolicy object from Step 1 to the constructor.

3. process applies the decorator to the activity by calling the retryDecorator.decorate method
and passing it the activity client’s class name.

4. handleUnreliableActivity executes the activity.

If the activity fails, the framework retries it according to the configuration specified in Step 1.

Note
Several of the ExponentialRetryPolicy class’s withXYZ methods have a corresponding
setXYZ method that you can call to modify the corresponding configuration option at any time:
setBackoffCoefficient, setMaximumAttempts, setMaximumRetryIntervalSeconds,
and setMaximumRetryExpirationIntervalSeconds.

Exponential Retry with the AsyncRetryingExecutor Class

The RetryDecorator class provides more flexibility in configuring the retry process than
@ExponentialRetry, but the framework still runs the retry attempts automatically, based on the
ExponentialRetryPolicy object’s current configuration. A more flexible approach is to use the
AsyncRetryingExecutor class. In addition to allowing you to configure the retry process at run time,
the framework calls a user-implemented AsyncRunnable.run method to run each retry attempt instead
of simply executing the activity.

The basic pattern is:

1. Create and configure an ExponentialRetryPolicy object to specify the retry configuration.

2. Create an AsyncRetryingExecutor object, and pass it the ExponentialRetryPolicy object and
an instance of the workflow clock.

3. Implement an anonymous nested TryCatch or TryCatchFinally class.

4. Implement an anonymous AsyncRunnable class and override the run method to implement custom
code for running the activity.

5. Override doTry to call the AsyncRetryingExecutor object’s execute method and pass it the
AsyncRunnable class from Step 4.The AsyncRetryingExecutor object calls AsyncRunnable.run
to run the activity.

API Version 2012-01-25
96

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

6. If the activity fails, the AsyncRetryingExecutor object calls the AsyncRunnable.run method
again, according to the retry policy specified in Step 1.

The following workflow shows how to use the AsyncRetryingExecutor class to implement an exponential
retry strategy. It uses the same unreliableActivity activity as the DecoratorRetryWorkflow
workflow discussed earlier. The workflow interface is implemented in RetryWorkflow and has one
method, process, which is the workflow’s entry point. The workflow worker is implemented in
AsyncExecutorRetryWorkflowImpl, as follows:

public class AsyncExecutorRetryWorkflowImpl implements RetryWorkflow {
 private final RetryActivitiesClient client = new RetryActivitiesClientImpl();

 private final DecisionContextProvider contextProvider = new DecisionContex
tProviderImpl();
 private final WorkflowClock clock = contextProvider.getDecisionContext().get
WorkflowClock();

 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 handleUnreliableActivity(initialRetryIntervalSeconds, maximumAttempts);

 }
 public void handleUnreliableActivity(long initialRetryIntervalSeconds, int
 maximumAttempts) {

 ExponentialRetryPolicy retryPolicy = new ExponentialRetryPolicy(ini
tialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);
 final AsyncExecutor executor = new AsyncRetryingExecutor(retryPolicy,
clock);

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 executor.execute(new AsyncRunnable() {
 @Override
 public void run() throws Throwable {
 client.unreliableActivity();
 }
 });
 }
 @Override
 protected void doCatch(Throwable e) throws Throwable {
 }
 };
 }
}

The workflow works as follows:

1. process calls the handleUnreliableActivity method and passes it the configuration settings.

2. handleUnreliableActivity uses the configuration settings from Step 1 to create an
ExponentialRetryPolicy object, retryPolicy.

API Version 2012-01-25
97

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

3. handleUnreliableActivity creates an AsyncRetryExecutor object, executor, and passes
the ExponentialRetryPolicy object from Step 2 and an instance of the workflow clock to the
constructor

4. handleUnreliableActivity implements an anonymous nested TryCatch class and overrides the
doTry and doCatch methods to run the retry attempts and handle any exceptions.

5. doTry creates an anonymous AsyncRunnable class and overrides the run method to implement
custom code to execute unreliableActivity. For simplicity, run just executes the activity, but you
can implement more sophisticated approaches as appropriate.

6. doTry calls executor.execute and passes it the AsyncRunnable object. execute calls the
AsyncRunnable object’s run method to run the activity.

7. If the activity fails, executor calls run again, according to the retryPolicy object configuration.

For more discussion of how to use the TryCatch class to handle errors, see AWS Flow Framework for
Java Exceptions (p. 117).

Custom Retry Strategy
The most flexible approach to retrying failed activities is a custom strategy, which recursively calls an
asynchronous method that runs the retry attempt, much like the retry-until-success strategy. However,
instead of simply running the activity again, you implement custom logic that decides whether and how
to run each successive retry attempt. The basic pattern is:

1. Create a Settable<T> status object, which is used to indicate whether the activity failed.

2. Implement a nested TryCatch or TryCatchFinally class.

3. doTry executes the activity.

4. If the activity fails, doCatch sets the status object to indicate that the activity failed.

5. Call an asynchronous failure handling method and pass it the status object.The method defers execution
until TryCatch or TryCatchFinally completes.

6. The failure handling method decides whether to retry the activity, and if so, when.

The following workflow shows how to implement a custom retry strategy. It uses the same
unreliableActivity activity as the DecoratorRetryWorkflow and AsyncExecutorRetryWorkflow
workflows. The workflow interface is implemented in RetryWorkflow and has one method, process,
which is the workflow’s entry point. The workflow worker is implemented in
CustomLogicRetryWorkflowImpl, as follows:

public class CustomLogicRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 callActivityWithRetry();
 }
 @Asynchronous
 public void callActivityWithRetry() {
 final Settable<Throwable> failure = new Settable<Throwable>();
 new TryCatchFinally() {
 protected void doTry() throws Throwable {
 client.unreliableActivity();
 }
 protected void doCatch(Throwable e) {
 failure.set(e);
 }
 protected void doFinally() throws Throwable {

API Version 2012-01-25
98

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

 if (!failure.isReady()) {
 failure.set(null);
 }
 }
 };
 retryOnFailure(failure);
 }
 @Asynchronous
 private void retryOnFailure(Promise<Throwable> failureP) {
 Throwable failure = failureP.get();
 if (failure != null && shouldRetry(failure)) {
 callActivityWithRetry();
 }
 }
 protected Boolean shouldRetry(Throwable e) {
 //custom logic to decide to retry the activity or not
 return true;
 }
}

The workflow works as follows:

1. process calls the asynchronous callActivityWithRetry method.

2. callActivityWithRetry creates a Settable<Throwable> object named failure which is used to
indicate whether the activity has failed. Settable<T> is derived from Promise<T> and works much
the same way, but you set a Settable<T> object's value manually.

3. callActivityWithRetry implements an anonymous nested TryCatchFinally class to handle
any exceptions that are thrown by unreliableActivity. For more discussion of how to handle
exceptions thrown by asynchronous code, see AWS Flow Framework for Java Exceptions (p. 117).

4. doTry executes unreliableActivity.

5. If unreliableActivity throws an exception, the framework calls doCatch and passes it the exception
object. doCatch sets failure to the exception object, which indicates that the activity failed and puts
the object in a ready state.

6. doFinally checks whether failure is ready, which will be true only if failure was set by doCatch.

• If failure is ready, doFinally does nothing.

• If failure is not ready, the activity completed and doFinally sets failure to null.

7. callActivityWithRetry calls the asynchronous retryOnFailure method and passes it failure.
Because failure is a Settable<T> type, callActivityWithRetry defers execution until failure is
ready, which occurs after TryCatchFinally completes.

8. retryOnFailure gets the value from failure.

• If failure is set to null, the retry attempt was successful. retryOnFailure does nothing, which
terminates the retry process.

• If failure is set to an exception object and shouldRetry returns true, retryOnFailure calls
callActivityWithRetry to retry the activity.

shouldRetry implements custom logic to decide whether to retry a failed activity. For simplicity,
shouldRetry always returns true and retryOnFailure executes the activity immediately, but
you can implement more sophisticated logic as needed.

9. Steps 2 - 8 repeat until unreliableActivity completes or shouldRetry decides to stop the
process.

API Version 2012-01-25
99

AWS Flow Framework for Java Developer Guide
Retry Failed Activities

Note
doCatch does not handle the retry process; it simply sets failure to indicate that the activity
failed. The retry process is handled by the asynchronous retryOnFailure method, which
defers execution until TryCatch completes. The reason for this approach is that, if you retry an
activity in doCatch, you cannot cancel it. Retrying the activity in retryOnFailure allows you
to execute cancellable activities.

Daemon Tasks
The AWS Flow Framework for Java allows the marking of certain tasks as daemon. This allows you to
create tasks that do some background work that should get canceled when all other work is done. For
example, a health monitoring task should be canceled when the rest of the workflow is complete.You
can accomplish this by setting the daemon flag on an asynchronous method or an instance of
TryCatchFinally. In the following example, the asynchronous method monitorHealth() is marked
as daemon.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 monitorHealth();
 }

 @Asynchronous(daemon=true)
 void monitorHealth(Promise<?>... waitFor) {
 activitiesClient.monitoringActivity();
 }
}

In the above example, when doUsefulWorkActivity completes, monitoringHealth will be
automatically canceled. This will in turn cancel the whole execution branch rooted at this asynchronous
method. The semantics of cancellation are the same as described in TryCatchFinally. Similarly, you
can mark a TryCatchFinally daemon by passing a Boolean flag to the constructor.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 new TryFinally(true) {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.monitoringActivity();
 }

 @Override
 protected void doFinally() throws Throwable {
 // clean up
 }
 };

API Version 2012-01-25
100

AWS Flow Framework for Java Developer Guide
Daemon Tasks

 }
}

A daemon task started within a TryCatchFinally is scoped to the context it is created in—that is, it
will be scoped to either the doTry(), doCatch(), or doFinally() methods. For example, in the
following example the startMonitoring asynchronous method is marked daemon and called from doTry().
The task created for it will be canceled as soon as the other tasks (doUsefulWorkActivity in this
case) started within doTry() are complete.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 new TryFinally() {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.doUsefulWorkActivity();
 startMonitoring();
 }

 @Override
 protected void doFinally() throws Throwable {
 // Clean up
 }
 };
 }

 @Asynchronous(daemon = true)
 void startMonitoring(){
 activitiesClient.monitoringActivity();
 }
}

AWS Flow Framework for Java Replay Behavior
This topic discusses examples of replay behavior, using the examples in the Introduction (p. 1) section.
Both synchronous (p. 101) and asynchronous (p. 103) scenarios are discussed.

Example 1: Synchronous Replay
For an example of how replay works in a synchronous workflow, modify the HelloWorldWorkflow (p. 8)
workflow and activity implementations by adding println calls within their respective implementations,
as follows:

public class GreeterWorkflowImpl implements GreeterWorkflow {
...
 public void greet() {
 System.out.println("greet executes");
 Promise<String> name = operations.getName();
 System.out.println("client.getName returns");

API Version 2012-01-25
101

AWS Flow Framework for Java Developer Guide
Replay Behavior

 Promise<String> greeting = operations.getGreeting(name);
 System.out.println("client.greeting returns");
 operations.say(greeting);
 System.out.println("client.say returns");
 }
}

public class GreeterActivitiesImpl implements GreeterActivities {
 public String getName() {
 System.out.println("activity.getName completes");
 return "World";
 }

 public String getGreeting(String name) {
 System.out.println("activity.getGreeting completes");
 return "Hello " + name + "!";
 }

 public void say(String what) {
 System.out.println(what);
 }
}

For details about the code, see HelloWorldWorkflow Application (p. 8). The following is an edited version
of the output, with comments that indicate the start of each replay episode.

//Episode 1
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getName completes
//Episode 2
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getGreeting completes
//Episode 3
greet executes
client.getName returns
client.greeting returns
client.say returns

Hello World! //say completes
//Episode 4
greet executes
client.getName returns
client.greeting returns
client.say returns

The replay process for this example works as follows:

• The first episode schedules the getName activity task, which has no dependencies.

API Version 2012-01-25
102

AWS Flow Framework for Java Developer Guide
Example 1: Synchronous Replay

• The second episode schedules the getGreeting activity task, which depends on getName.

• The third episode schedules the say activity task, which depends on getGreeting.

• The final episode schedules no additional tasks and finds no uncompleted activities, which terminates
the workflow execution.

Note
The three activities client methods are called once for each episode. However, only one of those
calls results in an activity task, so each task is performed only once.

Example 2: Asynchronous Replay
Similarly to the synchronous replay example (p. 101), you can modify HelloWorldWorkflowAsync
Application (p. 20) to see how an asynchronous replay works. It produces the following output:

//Episode 1
greet executes
client.name returns
workflow.getGreeting returns
client.say returns

activity.getName completes
//Episode 2
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Hello World! //say completes
//Episode 3
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

HelloWorldAsync uses three replay episodes because there are only two activities. The getGreeting
activity was replaced by the getGreeting asynchronous workflow method, which does not initiate a replay
episode when it completes.

The first episode does not call getGreeting, because it depends on the completion of the name activity.
However, after getName completes, replay calls getGreeting once for each succeeding episode.

See Also
• AWS Flow Framework Basic Concepts: Distributed Execution (p. 32)

API Version 2012-01-25
103

AWS Flow Framework for Java Developer Guide
Example 2: Asynchronous Replay

Under the Hood

Topics

• Task (p. 104)

• Order of Execution (p. 105)

• Workflow Execution (p. 106)

• Nondeterminism (p. 108)

Task
The underlying primitive that the AWS Flow Framework for Java uses to manage the execution of
asynchronous code is the Task class. An object of type Task represents work that has to be performed
asynchronously. When you call an asynchronous method, the framework creates a Task to execute the
code in that method and puts it in a list for execution at a later time. Similarly, when you invoke an
Activity, a Task is created for it. The method call returns after this, usually returning a Promise<T>
as the future result of the call.

The Task class is public and may be used directly. For example, we can rewrite the Hello World example
to use a Task instead of an asynchronous method.

@Override
public void startHelloWorld(){
 final Promise<String> greeting = client.getName();
 new Task(greeting) {
 @Override
 protected void doExecute() throws Throwable {
 client.printGreeting("Hello " + greeting.get() +"!");
 }
 };
}

The framework calls the doExecute() method when all the Promises passed to the constructor of the
Task become ready. For more details about the Task class, see the AWS Java SDK documentation.

The framework also includes a class called Functor which represents a Task that is also a Promise<T>.
The Functor object becomes ready when the Task completes. In the following example, a Functor is
created to get the greeting message:

API Version 2012-01-25
104

AWS Flow Framework for Java Developer Guide
Task

Promise<String> greeting = new Functor<String>() {
 @Override
 protected Promise<String> doExecute() throws Throwable {
 return client.getGreeting();
 }
};
client.printGreeting(greeting);

Order of Execution
Tasks become eligible for execution only when all Promise<T> typed parameters, passed to the
corresponding asynchronous method or activity, become ready. A Task that is ready for execution is
logically moved to a ready queue. In other words, it is scheduled for execution.The worker class executes
the task by invoking the code that you wrote in the body of the asynchronous method, or by scheduling
an activity task in Amazon Simple Workflow Service (AWS) in case of an activity method.

As tasks execute and produce results, they cause other tasks to become ready and the execution of the
program keeps moving forward. The way the framework executes tasks is important to understand the
order in which your asynchronous code executes. Code that appears sequentially in your program may
not actually execute in that order.

Promise<String> name = getUserName();
printHelloName(name);
printHelloWorld();
System.out.println("Hello, Amazon!");

@Asynchronous
private Promise<String> getUserName(){
 return Promise.asPromise("Bob");
}
@Asynchronous
private void printHelloName(Promise<String> name){
 System.out.println("Hello, " + name.get() + "!");
}
@Asynchronous
private void printHelloWorld(){
 System.out.println("Hello, World!");
}

The code in the listing above will print the following:

Hello, Amazon!
Hello, World!
Hello, Bob

API Version 2012-01-25
105

AWS Flow Framework for Java Developer Guide
Order of Execution

This may not be what you expected but can be easily explained by thinking through how the tasks for the
asynchronous methods were executed:

1. The call to getUserName creates a Task. Let’s call it Task1. Since getUserName does not take any
parameters, Task1 is immediately put in the ready queue.

2. Next, the call to printHelloName creates a Task that needs to wait for the result of getUserName.
Let’s call it Task2. Since the requisite value isn’t ready yet, Task2 is put in the wait list.

3. Then a task for printHelloWorld is created and added to the ready queue. Let’s call it Task3.

4. The println statement then prints “Hello, Amazon!” to the console.

5. At this point, Task1 and Task3 are in the ready queue and Task2 is in the wait list.

6. The worker executes Task1, and its result makes Task2 ready. Task2 gets added to ready queue
behind Task3.

7. Task3 and Task2 are then executed in that order.

The execution of activities follows the same pattern. When you call a method on the activity client, it
creates a Task that, upon execution, schedules an activity in Amazon SWF.

The framework relies on features like code generation and dynamic proxies to inject the logic for converting
method calls to activity invocations and asynchronous tasks in your program.

Workflow Execution
The execution of the workflow implementation is also managed by the worker class. When you call a
method on the workflow client, it calls Amazon SWF to create a workflow instance. The tasks in Amazon
SWF should not be confused with the tasks in the framework. A task in Amazon SWF is either an activity
task or a decision task.The execution of activity tasks is simple.The activity worker class receives activity
tasks from Amazon SWF, invokes the appropriate activity method in your implementation, and returns
the result to Amazon SWF.

The execution of decision tasks is more involved. The workflow worker receives decision tasks from
Amazon SWF. A decision task is effectively a request asking the workflow logic what to do next. The first
decision task is generated for a workflow instance when it is started through the workflow client. Upon
receiving this decision task, the framework starts executing the code in the workflow method annotated
with @Execute. This method executes the coordination logic that schedules activities. When the state of
the workflow instance changes—for example, when an activity completes—further decision tasks get
scheduled. At this point, the workflow logic can decide to take an action based on the result of the activity;
for example, it may decide to schedule another activity.

The framework hides all these details from the developer by seamlessly translating decision tasks to the
workflow logic. From a developer’s point of view, the code looks just like a regular program. Under the
covers, the framework maps it to calls to Amazon SWF and decision tasks using the history maintained
by Amazon SWF. When a decision task arrives, the framework replays the program execution plugging
in the results of the activities completed so far. Asynchronous methods and activities that were waiting
for these results get unblocked, and the program execution moves forward.

The execution of the example image processing workflow and the corresponding history is shown in the
following table.

Execution of thumbnail workflow

History maintained by Amazon SWFWorkflow program execution

Initial execution

API Version 2012-01-25
106

AWS Flow Framework for Java Developer Guide
Workflow Execution

History maintained by Amazon SWFWorkflow program execution

1. Workflow instance started, id="1"

2. downloadImage scheduled

1. Dispatch loop

2. getImageUrls

3. downloadImage

4. createThumbnail (task in wait queue)

5. uploadImage (task in wait queue)

6. <next iteration of the loop>

Replay

1. Workflow instance started, id="1"

2. downloadImage scheduled

3. downloadImage completed, return="foo"

4. createThumbnail scheduled

1. Dispatch loop

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail

5. uploadImage (task in wait queue)

6. <next iteration of the loop>

Replay

1. Workflow instance started, id="1"

2. downloadImage scheduled

3. downloadImage completed, return="foo"

4. createThumbnail scheduled

5. createThumbnail completed, return="bar"

6. uploadImage scheduled

1. Dispatch loop

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail thumbnail path="bar"

5. uploadImage

6. <next iteration of the loop>

Replay

1. Workflow instance started, id="1"

2. downloadImage scheduled

3. downloadImage completed, return="foo"

4. createThumbnail scheduled

5. createThumbnail completed, return="bar"

6. uploadImage scheduled

7. uploadImage completed

...

1. Dispatch loop

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail thumbnail path="bar"

5. uploadImage

6. <next iteration of the loop>

When a call to processImage is made, the framework creates a new workflow instance in Amazon SWF.
This is a durable record of the workflow instance being started. The program executes until the call to
the downloadImage activity, which asks Amazon SWF to schedule an activity. The workflow executes
further and creates tasks for subsequent activities, but they cannot be executed until the downloadImage
activity completes; hence, this episode of replay ends. Amazon SWF dispatches the task for
downloadImage activity for execution, and once it is completed, a record is made in the history along
with the result. The workflow is now ready to move forward and a decision task is generated by Amazon

API Version 2012-01-25
107

AWS Flow Framework for Java Developer Guide
Workflow Execution

SWF. The framework receives the decision task and replays the workflow plugging in the result of the
downloaded image as recorded in the history. This unblocks the task for createThumbnail, and the
execution of the program continues farther by scheduling the createThumbnail activity task in Amazon
SWF. The same process repeats for uploadImage. The execution of the program continues this way
until the workflow has processed all images and there are no pending tasks. Since no execution state is
stored locally, each decision task may be potentially executed on a different machine. This allows you to
easily write programs that are fault tolerant and easily scalable.

Nondeterminism
Since the framework relies on replay, it is important that the orchestration code (all workflow code with
the exception of activity implementations) be deterministic. For example, the control flow in your program
should not depend on a random number or the current time. Since these things will change between
invocations, the replay may not follow the same path through the orchestration logic. This will lead to
unexpected results or errors. The framework provides a WorkflowClock that you can use to get the
current time in a deterministic way. See the section on Execution Context (p. 66) for more details.

Note
Incorrect Spring wiring of workflow implementation objects can also lead to nondeterminism.
Workflow implementation beans as well as beans that they depend on must be in the workflow
scope (WorkflowScope). For example, wiring a workflow implementation bean to a bean that
keeps state and is in the global context will result in unexpected behavior. See the Spring
Integration (p. 75) section for more details.

API Version 2012-01-25
108

AWS Flow Framework for Java Developer Guide
Nondeterminism

Troubleshooting and Debugging
Tips

Topics

• Compilation Errors (p. 109)

• Unknown Resource Fault (p. 109)

• Exceptions When Calling get() on a Promise (p. 110)

• Non Deterministic Workflows (p. 110)

• Problems Due to Versioning (p. 110)

• Troubleshooting and Debugging a Workflow Execution (p. 110)

• Lost Tasks (p. 112)

This section describes some common pitfalls that you might run into while developing workflows using
AWS Flow Framework for Java. It also provides some tips to help you diagnose and debug problems.

Compilation Errors
If you are using the AspectJ compile time weaving option, you may run into compile time errors in which
the compiler is not able to find the generated client classes for your workflow and activities. The likely
cause of such compilation errors is that the AspectJ builder ignored the generated clients during
compilation.You can fix this issue by removing AspectJ capability from the project and reenabling it. Note
that you will need to do this every time your workflow or activities interfaces change. Because of this
issue, we recommend that you use the load time weaving option instead. See the section Setting up the
Development Environment (p. 2) for more details.

Unknown Resource Fault
Amazon SWF returns unknown resource fault when you try to perform an operation on a resource that
is not available. The common causes for this fault are:

• You configure a worker with a domain that does not exist. To fix this, first register the domain using the
Amazon SWF console or the Amazon SWF service API.

API Version 2012-01-25
109

AWS Flow Framework for Java Developer Guide
Compilation Errors

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-register-domain-console.html
http://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html

• You try to create workflow execution or activity tasks of types that have not been registered. This can
happen if you try to create the workflow execution before the workers have been run. Since workers
register their types when they are run for the first time, you must run them at least once before attempting
to start executions (or manually register the types using the Console or the service API). Note that once
types have been registered, you can create executions even if no worker is running.

• A worker attempts to complete a task that has already timed out. For example, if a worker takes too
long to process a task and exceeds a timeout, it will get an UnknownResource fault when it attempts
to complete or fail the task. The AWS Flow Framework workers will continue to poll Amazon SWF and
process additional tasks. However, you should consider adjusting the timeout. Adjusting the timeout
requires that you register a new version of the activity type.

Exceptions When Calling get() on a Promise
Unlike Java Future, Promise is a non-blocking construct and calling get() on a Promise that is not
ready yet will throw an exception instead of blocking. The correct way to use a Promise is to pass it to
an asynchronous method (or a task) and access its value in the asynchronous method. AWS Flow
Framework for Java ensures that an asynchronous method is called only when all Promise arguments
passed to it have become ready. If you believe your code is correct or if you run into this while running
one of the AWS Flow Framework samples, then it is most likely due to AspectJ not being properly
configured. For details, see the section Setting up the Development Environment (p. 2).

Non Deterministic Workflows
As described in the section Nondeterminism (p. 108), the implementation of your workflow must be
deterministic. Some common mistakes that can lead to nondeterminism are use of system clock, use of
random numbers, and generation of GUIDs. Since these constructs may return different values at different
times, the control flow of your workflow may take different paths each time it is executed (see the sections
AWS Flow Framework Basic Concepts: Distributed Execution (p. 32) and Under the Hood (p. 104) for
details). If the framework detects nondeterminism while executing the workflow, an exception will be
thrown.

Problems Due to Versioning
When you implement a new version of your workflow or activity—for instance, when you add a new
feature—you should increase the version of the type by using the appropriate annotation: @Workflow,
@Activites, or @Activity. When new versions of a workflow are deployed, often times you will have
executions of the existing version that are already running.Therefore, you need to make sure that workers
with the appropriate version of your workflow and activities get the tasks.You can accomplish this by
using a different set of task lists for each version. For example, you can append the version number to
the name of the task list. This ensures that tasks belonging to different versions of the workflow and
activities are assigned to the appropriate workers.

Troubleshooting and Debugging a Workflow
Execution

The first step in troubleshooting a workflow execution is to use the Amazon SWF console to look at the
workflow history.The workflow history is a complete and authoritative record of all the events that changed
the execution state of the workflow execution.This history is maintained by Amazon SWF and is invaluable

API Version 2012-01-25
110

AWS Flow Framework for Java Developer Guide
Exceptions When Calling get() on a Promise

for diagnosing problems. The Amazon SWF console enables you to search for workflow executions and
drill down into individual history events.

AWS Flow Framework provides a WorkflowReplayer class that you can use to replay a workflow
execution locally and debug it. Using this class, you can debug closed and running workflow executions.
WorkflowReplayer relies on the history stored in Amazon SWF to perform the replay.You can point it
to a workflow execution in your Amazon SWF account or provide it with the history events (for example,
you can retrieve the history from Amazon SWF and serialize it locally for later use). When you replay a
workflow execution using the WorkflowReplayer, it does not impact the workflow execution running in
your account.The replay is done completely on the client.You can debug the workflow, create breakpoints,
and step into code using your debugging tools as usual. If you are using Eclipse, consider adding step
filters to filter AWS Flow Framework packages.

For example, the following code snippet can be used to replay a workflow execution:

 String workflowId = "testWorkflow";
 String runId = "<run id>";
 Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
 WorkflowExecution workflowExecution = new WorkflowExecution();
 workflowExecution.setWorkflowId(workflowId);
 workflowExecution.setRunId(runId);

 WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer>HelloWorldIm
pl>(swfService, domain, workflowExecution,
 workflowImplementationType);

 System.out.println("Beginning workflow replay for " + workflowExecution);
 Object workflow = replayer.loadWorkflow();
 System.out.println("Workflow implementation object:");
 System.out.println(workflow);
 System.out.println("Done workflow replay for " + workflowExecution);

AWS Flow Framework also allows you to get an asynchronous thread dump of your workflow execution.
This thread dump gives you the call stacks of all open asynchronous tasks.This information can be useful
to determine which tasks in the execution are pending and possibly stuck. For example:

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer>HelloWorldImpl> replayer = new WorkflowReplayer>HelloWorldIm
pl>(swfService, domain, workflowExecution,
 workflowImplementationType);

try {
 String flowThreadDump = replayer.getAsynchronousThreadDumpAsString();
 System.out.println("Workflow asynchronous thread dump:");
 System.out.println(flowThreadDump);
}
catch (WorkflowException e) {
 System.out.println("No asynchronous thread dump available as workflow has

API Version 2012-01-25
111

AWS Flow Framework for Java Developer Guide
Troubleshooting and Debugging a Workflow Execution

failed: " + e);
}

Lost Tasks
Sometimes you may shut down workers and start new ones in quick succession only to discover that
tasks get delivered to the old workers. This can happen due to race conditions in the system, which is
distributed across several processes. The problem can also appear when you are running unit tests in a
tight loop. Stopping a test in Eclipse can also sometimes cause this because shutdown handlers may not
get called.

In order to make sure that the problem is in fact due to old workers getting tasks, you should look at the
workflow history to determine which process received the task that you expected the new worker to
receive. For example, the DecisionTaskStarted event in history contains the identity of the workflow
worker that received the task. The id used by the Flow Framework is of the form: {processId}@{host
name}. For instance, following are the details of the DecisionTaskStarted event in the Amazon SWF
console for a sample execution:

Mon Feb 20 11:52:40 GMT-800 2012Event Timestamp

2276@ip-0A6C1DF5Identity

33Scheduled Event Id

In order to avoid this situation, use different task lists for each test. Also, consider adding a delay between
shutting down old workers and starting new ones.

API Version 2012-01-25
112

AWS Flow Framework for Java Developer Guide
Lost Tasks

AWS Flow Framework for Java
Reference

Topics

• AWS Flow Framework for Java Annotations (p. 113)

• AWS Flow Framework for Java Exceptions (p. 117)

• AWS Flow Framework for Java Packages (p. 120)

AWS Flow Framework for Java Annotations
Topics

• @Workflow (p. 113)

• @Execute (p. 114)

• @WorkflowRegistrationOptions (p. 114)

• @SkipRegistration (p. 115)

• @Signal (p. 115)

• @GetState (p. 115)

• @Activities (p. 115)

• @Activity (p. 115)

• @ActivityRegistrationOptions (p. 116)

• @ManualActivityCompletion (p. 116)

• @Asynchronous (p. 116)

• @ExponentialRetry (p. 117)

• @Wait and @NoWait (p. 117)

@Workflow
This annotation can be used on an interface to declare a workflow type. An interface annotated with this
annotation should contain exactly one method with the @Execute annotation. An interface cannot have
both @Workflow and @Activities annotations.

API Version 2012-01-25
113

AWS Flow Framework for Java Developer Guide
AWS Flow Framework for Java Annotations

The following parameters can be specified on this annotation:

dataConverter
Specifies the type of the DataConverter to use for serializing/deserializing data when sending
requests to and receiving results from workflow executions of this workflow type. Set to
NullDataConverter by default, which indicates that the JsonDataConverter should be used.

@Execute
When used on a method in an interface annotated with the @Workflow annotation, identifies the entry
point of the workflow. The annotation can be used on only one method in the interface.

The following parameters can be specified on this annotation:

Name
Specifies the name of the workflow type. If not set, the name will be defaulted to {prefix}{name},
where {prefix} is the name of the workflow interface followed by a '.' and {name} is the name of the
@Execute method.

Version
Specifies the version of the workflow type.

@WorkflowRegistrationOptions
When used on an interface annotated with the @Workflow annotation, provides default settings used to
register the workflow type with Amazon SWF. One of @WorkflowRegistrationOptions and
@SkipRegistrationOptions annotations must be used on an interface annotated with @Workflow,
but not both.

The following parameters can be specified on this annotation:

Description
An optional textual description of the workflow type.

defaultExecutionStartToCloseTimeoutSeconds
Specifies the defaultExecutionStartToCloseTimeout registered with Amazon SWF for the
workflow type. This specifies the total time a workflow execution of this type may take to complete.
See the Amazon Simple Workflow Service API Reference for more details.

defaultTaskStartToCloseTimeoutSeconds
Specifies the defaultTaskStartToCloseTimeout registered with Amazon SWF for the workflow
type. This specifies the time a single decision task for a workflow execution of this type may take to
complete. See the Amazon Simple Workflow Service API Reference for more details. The default is
30 seconds.

defaultTaskList
The default task list for the decision tasks for executions of this workflow type. The default can be
overridden using StartWorkflowOptions when starting a workflow execution. Set to
USE_WORKER_TASK_LIST by default. This is a special value which indicates that the task list used
by the worker, which is performing the registration, should be used.

defaultChildPolicy
Specifies the policy to use for the child workflows if an execution of this type is terminated.The default
value is ABANDON. The possible values are:

• ABANDON: Allow the child workflow executions to keep running

• TERMINATE: Terminate child workflow executions

• REQUEST_CANCEL: Request cancellation of the child workflow executions

API Version 2012-01-25
114

AWS Flow Framework for Java Developer Guide
@Execute

http://docs.aws.amazon.com/amazonswf/latest/apireference
http://docs.aws.amazon.com/amazonswf/latest/apireference

@SkipRegistration
When used on an interface annotated with the @Workflow annotation, indicates that the workflow type
should not be registered with Amazon SWF. One of @WorkflowRegistrationOptions and
@SkipRegistrationOptions annotations must be used on an interface annotated with @Workflow,
but not both.

@Signal
When used on a method in an interface annotated with the @Workflow annotation, identifies a signal
that can be received by executions of the workflow type declared by the interface. Use of this annotation
is required to define a signal method.

The following parameters can be specified on this annotation:

Name
Specifies the name portion of the signal name. If not set, the name of the method is used.

@GetState
When used on a method in an interface annotated with the @Workflow annotation, identifies that the
method is used to retrieve the latest workflow execution state. There can be at most one method with
this annotation in an interface with the @Workflow annotation. Methods with this annotation must not
take any parameters and must have a return type other than void.

@Activities
This annotation can be used on an interface to declare a set of activity types. Each method in an interface
annotated with this annotation represents an activity type. An interface cannot have both @Workflow
and @Activities annotations.

The following parameters can be specified on this annotation:

activityNamePrefix
Specifies the prefix of the name of the activity types declared in the interface. If set to empty string
(which is the default), the name of the interface followed by '.' is used as the prefix.

Version
Specifies the default version of the activity types declared in the interface. The default value is 1.0.

dataConverter
Specifies the type of the DataConverter to use for serializing/deserializing data when creating
tasks of this activity type and its results. Set to NullDataConverter by default, which indicates
that the JsonDataConverter should be used.

@Activity
This annotation can be optionally used on methods within an interface annotated with @Activities.

The following parameters can be specified on this annotation:

Name
Specifies the name of the activity type.The default is an empty string, which indicates that the default
prefix and the activity method name should be used to determine the name of the activity type (which

API Version 2012-01-25
115

AWS Flow Framework for Java Developer Guide
@SkipRegistration

is of the form {prefix}{name}). Note that when you specify a name in an @Activity annotation, the
framework will not automatically prepend a prefix to it.You are free to use your own naming scheme.

Version
Specifies the version of the activity type. This overrides the default version specified in the
@Activities annotation on the containing interface. The default is an empty string.

@ActivityRegistrationOptions
Specifies the registration options of an activity type.This annotation can be used on an interface annotated
with @Activities or the methods within. If specified in both places, then the annotation used on the
method takes effect.

The following parameters can be specified on this annotation:

defaultTasklist
Specifies the default task list to be registered with Amazon SWF for this activity type. This default
can be overridden when calling the activity method on the generated client using the
ActivitySchedulingOptions parameter. Set to USE_WORKER_TASK_LIST by default. This is a
special value which indicates that the task list used by the worker, which is performing the registration,
should be used.

defaultTaskScheduleToStartTimeoutSeconds
Specifies the defaultTaskScheduleToStartTimeout registered with Amazon SWF for this activity type.
This is the maximum time a task of this activity type is allowed to wait before it is assigned to a worker.
See the Amazon Simple Workflow Service API Reference for more details.

defaultTaskHeartbeatTimeoutSeconds
Specifies the defaultTaskHeartbeatTimeout registered with Amazon SWF for this activity type.
Activity workers must provide heartbeat within this duration; otherwise, the task will be timed out. Set
to -1 by default, which is a special value that indicates this timeout should be disabled. See the
Amazon Simple Workflow Service API Reference for more details.

defaultTaskStartToCloseTimeoutSecond
Specifies the defaultTaskStartToCloseTimeout registered with Amazon SWF for this activity type.
This timeout determines the maximum time a worker can take to process an activity task of this type.
See the Amazon Simple Workflow Service API Reference for more details.

defaultTaskScheduleToCloseTimeoutSeconds
Specifies the defaultScheduleToCloseTimeout registered with Amazon SWF for this activity
type. This timeout determines the total duration that the task can stay in open state. Set to -1 by
default, which is a special value that indicates this timeout should be disabled. See the Amazon
Simple Workflow Service API Reference for more details.

@ManualActivityCompletion
This annotation can be used on an activity method to indicate that the activity task should not be completed
when the method returns. The activity task will not be automatically completed and would need to be
completed manually directly using the Amazon SWF API. This is useful for use cases where the activity
task is delegated to some external system that is not automated or requires human intervention to be
completed.

@Asynchronous
When used on a method in the workflow coordination logic, indicates that the method should be executed
asynchronously. A call to the method will return immediately, but the actual execution will happen
asynchronously when all Promise<> parameters passed to the methods become ready. Methods annotated
with @Asynchronous must have a return type of Promise<> or void.

API Version 2012-01-25
116

AWS Flow Framework for Java Developer Guide
@ActivityRegistrationOptions

http://docs.aws.amazon.com/amazonswf/latest/apireference
http://docs.aws.amazon.com/amazonswf/latest/apireference
http://docs.aws.amazon.com/amazonswf/latest/apireference
http://docs.aws.amazon.com/amazonswf/latest/apireference
http://docs.aws.amazon.com/amazonswf/latest/apireference

daemon
Indicates if the task created for the asynchronous method should be a daemon task.False by default.

@ExponentialRetry
When used on an activity or asynchronous method, sets an exponential retry policy if the method throws
an unhandled exception. A retry attempt is made after a back-off period, which is calculated by the power
of the number of attempts.

The following parameters can be specified on this annotation:

intialRetryIntervalSeconds
Specifies the duration to wait before the first retry attempt. This value should not be greater than
maximumRetryIntervalSeconds and retryExpirationSeconds.

maximumRetryIntervalSeconds
Specifies the maximum duration between retry attempts. Once reached, the retry interval is capped
to this value. Set to -1 by default, which means unlimited duration.

retryExpirationSeconds
Specifies the duration after which exponential retry will stop. Set to -1 by default, which means there
is no expiration.

backoffCoefficient
Specifies the coefficient used to calculate the retry interval. Set to 2 by default.You can set this to 1
to get linear back-off or 0 to get a constant back-off.

maximumAttempts
Specifies the number of attempts after which exponential retry will stop. Set to -1 by default, which
means there is no limit on the number of retry attempts.

exceptionsToRetry
Specifies the list of exception types that should trigger a retry. Unhandled exception of these types
will not propagate further and the method will be retried after the calculated retry interval. By default,
the list contains Throwable.

excludeExceptions
Specifies the list of exception types that should not trigger a retry. Unhandled exceptions of this type
will be allowed to propagate. The list is empty by default.

@Wait and @NoWait
These annotations can be used on a parameter of type Promise<> to indicate whether the AWS Flow
Framework for Java should wait for it to become ready before executing the method. By default, Promise<>
parameters passed into @Asynchronous methods must become ready before method execution occurs.
In certain scenarios, it is necessary to override this default behavior. Promise<> parameters passed into
@Asynchronous methods and annotated with @NoWait are not waited for.

Collections parameters (or subclasses of) that contain promises, such as List<Promise<Int>>, must
be annotated with @Wait annotation. By default, the framework does not wait for the members of a
collection.

AWS Flow Framework for Java Exceptions
The following exceptions are used by the AWS Flow Framework for Java. This section provides an
overview of the exception. For more details, see the AWS SDK for Java documentation of the individual
exceptions.

API Version 2012-01-25
117

AWS Flow Framework for Java Developer Guide
@ExponentialRetry

ActivityFailureException
This exception is used by the framework internally to communicate activity failure. When an activity fails
due to an unhandled exception, it is wrapped in ActivityFailureException and reported to Amazon
SWF.You need to deal with this exception only if you use the activity worker extensibility points.Your
application code will never need to deal with this exception.

ActivityTaskException
This is the base class for activity task failure exceptions: ScheduleActivityTaskFailedException,
ActivityTaskFailedException, ActivityTaskTimedoutException. It contains the task Id and
activity type of the failed task.You can catch this exception in your workflow implementation to deal with
activity failures in a generic way.

ActivityTaskFailedException
Unhandled exceptions in activities are reported back to the workflow implementation by throwing an
ActivityTaskFailedException. The original exception can be retrieved from the cause property of
this exception. The exception also provides other information that is useful for debugging purposes, such
as the unique activity identifier in the history.

The framework is able to provide the remote exception by serializing the original exception from the
activity worker.

ActivityTaskTimedOutException
This exception is thrown if an activity was timed out by Amazon SWF. This could happen if the activity
task could not be assigned to the worker within the require time period or could not be completed by the
worker in the required time.You can set these timeouts on the activity using the
@ActivityRegistrationOptions annotation or using the ActivitySchedulingOptions parameter
when calling the activity method.

ChildWorkflowException
Base class for exceptions used to report failure of child workflow execution. The exception contains the
Ids of the child workflow execution as well as its workflow type.You can catch this exception to deal with
child workflow execution failures in a generic way.

ChildWorkflowFailedException
Unhandled exceptions in child workflows are reported back to the parent workflow implementation by
throwing a ChildWorkflowFailedException.The original exception can be retrieved from the cause
property of this exception. The exception also provides other information that is useful for debugging
purposes, such as the unique identifiers of the child execution.

ChildWorkflowTerminatedException
This exception is thrown in parent workflow execution to report the termination of a child workflow execution.
You should catch this exception if you want to deal with the termination of the child workflow, for example,
to perform cleanup or compensation.

API Version 2012-01-25
118

AWS Flow Framework for Java Developer Guide
ActivityFailureException

ChildWorkflowTimedOutException
This exception is thrown in parent workflow execution to report that a child workflow execution was timed
out and closed by Amazon SWF.You should catch this exception if you want to deal with the forced
closure of the child workflow, for example, to perform cleanup or compensation.

DataConverterException
The framework uses the DataConverter component to marshal and unmarshal data that is sent over
the wire. This exception is thrown if the DataConverter fails to marshal or unmarshal data. This could
happen for various reasons, for example, due to a mismatch in the DataConverter components being
used to marshal and unmarshal the data.

DecisionException
This is the base class for exceptions that represent failures to enact a decision by Amazon SWF.You
can catch this exception to generically deal with such exceptions.

ScheduleActivityTaskFailedException
This exception is thrown if Amazon SWF fails to schedule an activity task. This could happen due to
various reasons—for example, the activity was deprecated, or an Amazon SWF limit on your account
has been reached. The failureCause property in the exception specifies the exact cause of failure to
schedule the activity.

SignalExternalWorkflowException
This exception is thrown if Amazon SWF fails to process a request by the workflow execution to signal
another workflow execution. This happens if the target workflow execution could not be found—that is,
the workflow execution you specified does not exist or is in closed state.

StartChildWorkflowFailedException
This exception is thrown if Amazon SWF fails to start a child workflow execution. This could happen due
to various reasons—for example, the type of child workflow specified was deprecated, or a Amazon SWF
limit on your account has been reached.The failureCause property in the exception specifies the exact
cause of failure to start the child workflow execution.

StartTimerFailedException
This exception is thrown if Amazon SWF fails to start a timer requested by the workflow execution. This
could happen if the timer Id specified is already in use or an Amazon SWF limit on your account has been
reached. The failureCause property in the exception specifies the exact cause of failure to start the
child workflow execution.

TimerException
This is the base class for exceptions related to timers.

API Version 2012-01-25
119

AWS Flow Framework for Java Developer Guide
ChildWorkflowTimedOutException

WorkflowException
This exception is used internally by the framework to report failures in workflow execution.You need to
deal with this exception only if you are using a workflow worker extensibility point.

AWS Flow Framework for Java Packages
This section provides an overview of the packages included with the AWS Flow Framework for Java.

com.amazonaws.services.simpleworkflow.flow.aspectj
Contains AWS Flow Framework for Java components that are required for features such as
@Asynchronous and @ExponentialRetry.

com.amazonaws.services.simpleworkflow.flow.annotations
Contains the annotations used by the AWS Flow Framework for Java programming model.

com.amazonaws.services.simpleworkflow.flow.core
Contains core features such as Task and Promise.

com.amazonaws.services.simpleworkflow.flow
Contains components that integrate with Amazon SWF.

com.amazonaws.services.simpleworkflow.flow.common
Contains common utilities such as framework-defined constants.

com.amazonaws.services.simpleworkflow.flow.generic
Contains core components, such as generic clients, that other features build on.

com.amazonaws.services.simpleworkflow.flow.interceptors
Contains implementations of framework provided decorators including RetryDecorator.

com.amazonaws.services.simpleworkflow.flow.pojo
Contains classes that implement activity and workflow definitions for the annotation-based programing
model.

com.amazonaws.services.simpleworkflow.flow.test
Contains helper classes, such as TestWorkflowClock, for unit testing workflow implementations.

com.amazonaws.services.simpleworkflow.flow.worker
Contains implementations of activity and workflow workers.

com.amazonaws.services.simpleworkflow.flow.junit.
Contains components that provide Junit integration.

com.amazonaws.services.simpleworkflow.flow.spring
Contains components that provide Spring integration.

API Version 2012-01-25
120

AWS Flow Framework for Java Developer Guide
WorkflowException

Document History

The following table describes the documentation for this release of AWS Flow Framework for Java.

• API version: 2012-01-25

• Latest documentation update: June 28, 2013

Release DateDescriptionChange

June 28, 2013The documentation has been corrected in a number of places
due to customer feedback, and has been updated with setup
instructions (p. 2) for the latest versions of Eclipse (4.3
"Kepler") and AWS SDK for Java (1.4.7) at the time of this
release.

The Introduction (p. 1) has been updated with a new set of
walkthroughs that take the user step-by-step through building
a number of Hello-world scenarios, each building upon the
previous.

Documentation
Update

February 27,
2012

This is the initial public release of AWS Flow Framework for
Java.

Initial Release

API Version 2012-01-25
121

AWS Flow Framework for Java Developer Guide

	AWS Flow Framework for Java
	Introduction to the AWS Flow Framework for Java
	Setting up the AWS Flow Framework for Java Development Environment
	Installing the AWS Toolkit for Eclipse
	Installing the AWS SDK for Java
	Creating an AWS Flow Framework for Java Project
	Enable Annotation Processing
	Add the AWS Flow Framework for Java JAR to the Build Path
	Enable and Configure AspectJ
	AspectJ Load-Time Weaving (Recommended)
	AspectJ Compile-Time Weaving
	Working around issues with AspectJ and Eclipse

	HelloWorld Application
	HelloWorld Activities Worker
	HelloWorld Workflow Worker
	HelloWorld Workflow Starter

	HelloWorldWorkflow Application
	HelloWorldWorkflow Activities Worker
	HelloWorldWorkflow Workflow Worker
	Activities Client
	Promise<T> Type

	HelloWorldWorkflow Workflow and Activities Host
	HelloWorldWorkflow Starter

	HelloWorldWorkflowAsync Application
	HelloWorldWorkflowAsync Activities Implementation
	HelloWorldWorkflowAsync Workflow Implementation
	HelloWorldWorkflowAsync Workflow and Activities Host and Starter

	HelloWorldWorkflowDistributed Application
	HelloWorldWorkflowParallel Application
	HelloWorldWorkflowParallel Activities Worker
	HelloWorldWorkflowParallel Workflow Worker
	HelloWorldWorkflowParallel Workflow and Activities Host and Starter

	AWS Flow Framework for Java Basic Concepts
	AWS Flow Framework Basic Concepts: Application Structure
	Role of the Activities Worker
	Role of the Workflow Worker
	Role of the Workflow Starter
	How Amazon SWF Interacts with Your Application
	For More Information

	AWS Flow Framework Basic Concepts: Reliable Execution
	Providing Reliable Communication
	Ensuring that Results are Not Lost
	Maintaining Workflow History
	Stateless Execution

	Handling Failed Distributed Components

	AWS Flow Framework Basic Concepts: Distributed Execution
	Replaying Workflows
	Replay and Asynchronous Workflow Methods
	Replay and Workflow Implementation

	AWS Flow Framework Basic Concepts: Task Lists and Task Execution
	AWS Flow Framework Basic Concepts: Scalable Applications
	AWS Flow Framework Basic Concepts: Data Exchange Between Activities and Workflows
	The Promise<T> Type
	Data Converters and Marshaling

	AWS Flow Framework Basic Concepts: Data Exchange Between Applications and Workflow Executions
	Amazon SWF Timeout Types
	Timeouts in Workflow and Decision Tasks
	Timeouts in Activity Tasks

	AWS Flow Framework for Java Programming Guide
	Implementing Workflow Applications with the AWS Flow Framework
	Workflow and Activity Contracts
	Workflow and Activity Type Registration
	Workflow Type Name and Version
	Signal Name
	Activity Type Name and Version
	Default Task List
	Other Registration Options

	Activity and Workflow Clients
	Workflow Clients
	Activity Clients
	Scheduling Options
	Dynamic Clients
	Signaling and Canceling Workflow Executions

	Workflow Implementation
	Decision Context
	Exposing Execution State
	Workflow Locals

	Activity Implementation
	Manually Completing Activities

	Running Programs Written with the AWS Flow Framework for Java
	WorkflowWorker
	ActivityWorker
	Worker Threading Model
	Worker Extensibility

	Execution Context
	Decision Context
	Accessing DecisionContext in Workflow Implementation
	Creating a Clock and Timer

	Activity Execution Context
	Heartbeat a Long Running Activity
	Get Details of the Activity Task
	Get the Amazon SWF Client Object that is Being Used by the Executor

	Child Workflow Executions
	Continuous Workflows
	DataConverters
	Passing Data to Asynchronous Methods
	Passing Collections and Maps to Asynchronous Methods
	Settable<T>
	@NoWait
	Promise<Void>
	AndPromise and OrPromise

	Testability and Dependency Injection
	Spring Integration
	WorkflowScope
	Spring-Aware Workers
	Injecting Decision Context
	Injecting Resources in Activities

	JUnit Integration
	Writing a Simple Unit Test
	Mocking Activity Implementations

	Test Context Objects

	Error Handling
	TryCatchFinally Semantics
	Cancellation
	Activity Heartbeat
	Explicitly Canceling a Task
	Receiving Notification of Canceled Tasks

	Nested TryCatchFinally
	Retry Failed Activities
	Retry-Until-Success Strategy
	Exponential Retry Strategy
	Exponential Retry with @ExponentialRetry
	Exponential Retry with the RetryDecorator Class
	Exponential Retry with the AsyncRetryingExecutor Class

	Custom Retry Strategy

	Daemon Tasks
	AWS Flow Framework for Java Replay Behavior
	Example 1: Synchronous Replay
	Example 2: Asynchronous Replay
	See Also

	Under the Hood
	Task
	Order of Execution
	Workflow Execution
	Nondeterminism

	Troubleshooting and Debugging Tips
	Compilation Errors
	Unknown Resource Fault
	Exceptions When Calling get() on a Promise
	Non Deterministic Workflows
	Problems Due to Versioning
	Troubleshooting and Debugging a Workflow Execution
	Lost Tasks

	AWS Flow Framework for Java Reference
	AWS Flow Framework for Java Annotations
	@Workflow
	@Execute
	@WorkflowRegistrationOptions
	@SkipRegistration
	@Signal
	@GetState
	@Activities
	@Activity
	@ActivityRegistrationOptions
	@ManualActivityCompletion
	@Asynchronous
	@ExponentialRetry
	@Wait and @NoWait

	AWS Flow Framework for Java Exceptions
	ActivityFailureException
	ActivityTaskException
	ActivityTaskFailedException
	ActivityTaskTimedOutException
	ChildWorkflowException
	ChildWorkflowFailedException
	ChildWorkflowTerminatedException
	ChildWorkflowTimedOutException
	DataConverterException
	DecisionException
	ScheduleActivityTaskFailedException
	SignalExternalWorkflowException
	StartChildWorkflowFailedException
	StartTimerFailedException
	TimerException
	WorkflowException

	AWS Flow Framework for Java Packages

	Document History

