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Traditional harmonic analysis of tides is highly sensitive to omnipresent environmental noise. Robust

fitting is an extension of the ordinary least squares calculation of harmonic analysis that is more

resistant to broad spectrum noise. Since the variance of the amplitude and phase is calculated from the

power spectrum of the residual, a calculation that filters broad spectrum noise and reduces the residual

variance will increase the confidence of the computed parameters, and also allows more low-amplitude

constituents to be resolved from the background noise. Improvement in confidence and resolution of

more constituents has obvious benefits to the resolution of both seasonal and long-term variation of

amplitude and phase of tidal constituents. Using a 6 month calculation window, confidence intervals

were systematically reduced by 30–85% over results calculated with standard methods, with an

increase in resolved constituents of 20–75%. The analysis was carried out with Matlab, using the t-tide

package [Pawlowicz, R., Beardsley, B., Lentz, S., 2002. Classical tidal harmonic analysis with errors in

matlab using t-tide. Computers and Geosciences 28, 929–937], with modifications to accommodate

Matlab’s implementation of the Iteratively Reweighted Least Squares algorithm.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There is an increasing need to understand the dynamic
behavior of coastal and estuarine waters and the response of
these coastal systems to anthropogenic and climate changes. The
predevelopment state of many estuaries is of great interest for
management purposes, and understanding estuarine evolution
poses interesting dynamical challenges. Tides provide the longest
instrumental records available to address such questions. To fully
utilize historical tidal records, however, it is necessary to develop
better analysis strategies, because these records are often short,
sparse and/or noisy. Non-tidal noise is introduced into the tidal
signal by recording and transcription errors and climatic events.
Traditional ordinary least squares (OLS) minimization is highly
sensitive to these non-tidal components in the observed signal.
Essentially, OLS over-fits the non-tidal components in an attempt
to minimize the total residual error. This is not ideal, because it
causes the results to be quite sensitive to omnipresent environ-
mental noise. Noise affects not only the estimated tidal constitu-
ent amplitude and phase, but, equally importantly, the estimated
variance of these quantities (Munk and Hasselmann, 1964;
Pawlowicz et al., 2002).

It is tempting to exclude ‘bad’ data, and include only ‘good’
data in the calculations. This approach is impractical, for several
ll rights reserved.
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reasons. First, it is labor intensive and inherently subjective.
Without a consistent, reliable rejection method, only the most
egregious outliers may be conclusively identified as ‘bad’. At the
other extreme, removing all data contaminated by storm events
may leave insufficient data for analysis. For many analyses, it is
necessary to resolve K1, P1 and O1 from the diurnal band, and K2,
M2, N2 and S2 from the semi-diurnal band. Some of these
constituents (e.g. K1 and P1, K2 and S2Þ differ by �2 cycles=yr,
and resolution of these constituents requires approximately 190
days of nearly continuous hourly data (Foreman, 1977, revised
1996). Estuarine tidal records may show variation in tidal
parameters due to riverine flow variations and other causes, and
it is desirable to minimize the calculation window length, while
still resolving an adequate set of constituents.

A major objective of this work is to test the ‘Iteratively
Reweighted Least Squares’ (IRLS) algorithm, which consistently
and automatically reduces the influence of non-tidal variation and
minimizes data rejection, using only the tidal record itself. This is
especially important for historic records, which often consist of
partially complete, manually transcribed, high–low data (four
observations/tidal day). IRLS is a form of robust statistical fitting
that reduces the contribution of high-leverage data points, in order
to improve the overall fit. It has been successfully applied to other
geophysical problems (e.g. Bube and Langan, 1997). IRLS is a
common implementation of hybrid L1=L2 minimization, a subset of
the general Lp minimization problem. For low-noise data, the
algorithm retains the high frequency resolution of an L2 algorithm
(Jay and Flinchem, 1999), while the handling of high-amplitude
outliers approaches that of an L1 minimization, reducing their
onic analysis: Robust (hybrid L1=L2) solutions. Continental Shelf
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influence on the overall solution (Darche, 1989). By reducing the
influence of outliers, IRLS fitting reduces the estimated variance,
yielding increased confidence in the parameter estimates. We
present the mathematical details of the algorithm in Section 2,
followed, in Section 3, by numerical examples that show how
IRLS more accurately recovers a known signal contaminated
with outliers, Gaussian noise, and a simulated storm surge.
A comparison of the performance of OLS and IRLS methods applied
to observed tidal height data follows in Section 4. Implementations
for analysis of coastal records are discussed in Section 5.

The analyses presented here were performed using a modified
version of the t-tide Matlab package (Pawlowicz et al., 2002). To
simplify the development, we have restricted our investigations to
uniformly time-sampled tidal height, and have investigated
neither two-dimensional currents nor irregularly sampled data.
2. Mathematical background

Harmonic tidal analysis is usually conducted using OLS, which
gives each data point equal weight in the solution. It is well
known that tidal records include non-tidal events such as storm
surges. IRLS introduces an algorithmically calculated weighting
function to reduce the contribution of large residuals on the
overall solution. For tidal analysis, the weighting function reduces
the influence of non-tidal events. It is helpful to review the
mathematical background of OLS and IRLS fitting and the
harmonic tidal model as a prelude to tests of IRLS with artificial
and real data.

2.1. Ordinary and iteratively reweighted least squares

Common general regression techniques, including ordinary
and weighted least squares, are based on maximum likelihood
estimates, termed M-estimators (Fox, 2002). Assume a linear
model h ¼ Ax, with h the observed values, A the basis function and
x the set of unknown coefficients. For tidal analysis, the system is
overdetermined, since the number of observations will inevitably
exceed the number of constituents (Munk and Cartwright, 1966).
The normal course is to seek a solution for x that minimizes an
objective function r of the residual r, with the residual defined as
r ¼ h� xTA. The general M-estimator minimizes

Xn

i¼1

rðriÞ ¼
Xn

i¼1

rðhi � xT
i AÞ (1)

Letting c ¼ qr=qx, taking q=qx (1), and setting the result equal to
zero produces a set of equations (2) for the coefficients x:

Xn

i¼1

cðhi � xT
i AÞxT

i ¼ 0 (2)

By defining a weight function o as

oðrÞ ¼
cðrÞ

r
(3)

the estimating functions may be written

Xn

i¼1

oiðhi � xT
i AÞxT

i ¼ 0 (4)

which minimizes the sum of weighted residuals

Xn

i¼1

o2
i r2

i

Eq. (4) may be solved as (Moler, 2004)

x ¼ ðAToAÞ�1AToh (5)
Please cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal har
Research (2008), doi:10.1016/j.csr.2008.04.011
If o is set to the diagonal of the identity matrix I, the equation
reduces to the OLS solution (Moler, 2004):

x ¼ ðATAÞ�1ATh (6)

For the weighted case, o is implicitly defined, and Eq. (5) is solved
iteratively for x and w, while the OLS case (6) is directly solvable
for x. The weighting function w is defined recursively, by relating
the residual at iteration i to the weight at iteration iþ 1. The usual
course is to set o ¼ diagðIÞ for the first iteration.

The ‘traditional’ weighting functions are Huber’s function and
Tukey’s bisquare, defined in terms of a normalized residual R.
Huber’s weight function is defined as

ohuber ¼
1

maxð1; jRjÞ

while Tukey’s bisquare is defined as

obisquare ¼
ð1� R2

Þ
2; jRjo1

0; jRjX1

(

The normalized residual R is computed as function of generic
signal deviation statistic ŝ and tuning constant t. Standard
deviation is a non-robust statistic, because a single sample of
arbitrary deviation will affect the standard deviation by an
arbitrary amount. The median absolute deviation of the residual
MADðrÞ is a more robust statistic, as one half of the samples may
be affected by noise without affecting the statistic (Fox, 2002).
A common estimate of deviation is

ŝ ¼
MADðrÞ

0:6745
(7)

The constant 0.6745 makes the estimated parameters unbiased
for a normally distributed error (Mathworks, 2006). The
tuning constant t essentially controls the width of the weighting
window relative to the distribution of the residuals. A lower
value of tuning constant imposes a greater penalty on outlying

data.
Details of the IRLS algorithm and alternate weighting functions

are provided in Appendix A.

2.2. Harmonic tidal model

The traditional representation of the tidal height hi, at time ti,
with known tidal constituent frequencies y1...n and unknown
amplitudes a, b and c0 is

hi ¼ c0 þ
Xn

k¼1

ðak cosð2pyktiÞ þ bk sinð2pyktiÞÞ (8)

or h ¼ c0 þ Ax with basis function

A ¼

cosð2py1t1Þ � � � cosð2pynt1Þ sinð2py1t1Þ � � � sinð2pynt1Þ

..

.
� � � ..

. ..
.

� � � ..
.

cosð2py1tmÞ � � � cosð2pyntmÞ sinð2py1tmÞ � � � sinð2pyntmÞ

2
664

3
775

(9)

and unknown parameters

x ¼ ½a1 . . . an b1 . . . bn�
T (10)

The standard OLS solution is obtained from Eq. (6), while the IRLS
solution for x is obtained by iterative application of Eq. (5), using a
weight function as defined in Appendix A. The constituent
frequencies y are selected according to the length of record
(LOR) (Foreman, 1977, revised 1996). LOR and noise inevitably
limits the frequency resolution for any harmonic tidal analysis.
Given a record of n samples spaced evenly spaced by Dt in time,
the Rayleigh criterion states that the minimum resolvable
frequency difference is ðnDtÞ�1. The Foreman procedure selects
monic analysis: Robust (hybrid L1=L2) solutions. Continental Shelf
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constituents based on expected relative importance and fre-
quency separation. Because many constituents are separated by
1 cycles=yr or less, only a fraction of the 4500 astronomical
constituents can be resolved for any reasonable length record. The
Foreman procedure identifies 45 astronomical and 24 shallow
water candidate constituents for records up to 1.3 years in length,
though some constituents may be excluded from the final analysis
based on a signal-to-noise significance test, described below.
A record greater than 18.6 years of hourly data will resolve a
sizable fraction of the 500 astronomical constituents. However,
the necessary assumption that all constituents are constant for a
period of 18.6 years may not be justified for many coastal and
estuarine records.

Once the coefficients x are estimated, the amplitude a of
constituent j is found as aj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

j þ b2
j

q
, and the phase angle b is

found as bj ¼ Imagðlogðaj þ ibjÞÞ (Mathworks, 2006). Nodal, or
satellite, corrections are applied to correct for low-frequency
variations in constituent amplitudes, and phase angles are
corrected to Greenwich phase, as described by Pawlowicz et al.
(2002).

Constituent parameters calculated by harmonic methods are
statistical estimates, and hence have associated variances. Con-
fidence intervals for the amplitudes and phases of the tidal
constituents, and a signal-to-noise ratio (Pawlowicz et al., 2002)
are calculated from the estimated variance. Pawlowicz et al.
(2002) discusses methods of estimating parameter variance and
confidence intervals, including a linearized analysis and nonlinear
bootstrap procedures, assuming either white or colored noise. By
default, we assume colored noise, and use the corresponding
bootstrap method.

The nonlinear bootstrap method for colored noise bases the
error estimate on average spectral density of the residual within
bands centered on 0;1;2; . . . ;8 cycles=day (Pawlowicz et al.,
2002). Similarly, Munk and Hasselmann (1964) use the back-
ground noise spectrum to estimate variance, though by a different
method. A distinction needs to be made here between
the weighted residual Ro ¼ oðh� AxÞ, used by the algorithm
for calculating the estimated parameters and errors, and the
unweighted residual Ruw ¼ h� Ax, the difference between the
predicted and observed signals. The weighted least squares
calculation finds coefficients that minimize the sum of the
weighted residuals. It is therefore appropriate to estimate the
variance of the calculated amplitude and phase from the spectrum
of the weighted residual Rw ¼ oðy� AxÞ.

For a given constituent with estimated amplitude â, and
estimated variance ŝ2, the signal-to-noise ratio (SNR) can be
estimated as (Pawlowicz et al., 2002)

SNR ¼
â

ŝ

� �2

(11)

The nonlinear bootstrap method accurately estimates parameter
amplitudes down to SNR � 223. Only tidal constituents with an
estimated SNRX2 are included in the results presented here.
Parameters with an SNRo2 are excluded from the calculation of
predicted tidal height. As an example, the OLS calculation for
calendar year 1999 for Astoria rejects 16 of 67 constituents
because the SNR for these constituents is o2.
3. Numerical examples

In this section, we describe two examples that demonstrate
that IRLS fitting can reduce the influence of non-tidal signal
components on the overall solution. In the first, we use a simple
linear model, affected by Gaussian noise and extreme outliers,
placed to have maximum effect on the results. The OLS solution is
Please cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal harm
Research (2008), doi:10.1016/j.csr.2008.04.011
significantly different than the known signal, while IRLS fitting
removes most of the influence of the outliers and closely matches
the known signal. In the second, we simulate a simple tide
affected by noise, and then add a simulated storm surge. Though
the constituent amplitudes are not statistically different from the
known signal using either the OLS and IRLS methods, the
confidence intervals of these parameters are significantly smaller
for the IRLS analysis.
3.1. The impact of outliers: a simple example

The simplest data problem is a high-amplitude spike, a
common manifestation of transcription errors and instrument
glitches. To show the impact that well placed outliers can have,
we use a simple linear model

y ¼ at þ bþ Z (12)

with t is the time, a and b constant and Z the Gaussian noise
(m ¼ 0; s ¼ 0:5Þ. Outliers were added at early and late times in the
signal record, to maximize their influence, or leverage, on the
predicted slope of the line. The outliers, given the same weight as
the other samples by the OLS calculation, effectively rotates the
predicted line, as shown in Fig. 1a. The calculated fit differs from
the pattern described by the majority of the data. In contrast, IRLS
fitting down-weights the outliers, and closely matches the
majority of the data.

The estimated values of the parameters a and b, and their 95%
confidence are shown in Table 1. Notice the poor performance of
OLS in the presence of outliers: The correct value of the slope, 0.5,
is not within the 95% confidence interval (0:385� 0:064 for the
OLS/outliers case). Likewise, the correct value of the intercept, 1.0,
is not within the 95% confidence interval (6:83� 3:73). Fig. 1b
shows the distribution of residuals, with a scaled Huber weighting
curve overlaid for comparison. With this weighting curve, the
influence of the outliers is significantly reduced, but not totally
removed. The calculated values of the slope and intercept are
much closer to the noise-only cases, and the correct values
are within the 95% confidence interval. The confidence intervals of
the robust fit case are wider than the noise-only cases since the
outliers continue to have some influence, though it is significantly
reduced from the OLS case.
3.2. A simple tide model with a synthetic storm surge

Storm surges are a common source of large amplitude
environmental noise in tidal records. We construct a simple tide
signal comprised of a mean sea level Z0, a diurnal component K1,
semi-diurnal component M2, Gaussian noise Z, (m ¼ 0, s ¼ 0:1Þ
and synthetic storm surge s. K1 and M2 are each described by an
amplitude a, phase f and frequency y. The sampling interval is
given by Dt. At time step i, the height y is

yi ¼ Z0 þ aK1 cosð2pyK1iDt � fK1Þ

þ aM2 cosð2pyM2iDt � fM2Þ þ Zi þ si (13)

As a first example, the storm surge is set to zero. As a second
example the storm surge s builds exponentially over 10 h, peaks at
1 m, and exponentially decays over the next 48 h. A total of 144
hourly data points were used for the calculation. The noiseþ
surge observations and the surge are shown in Fig. 2a. For
comparison, histograms of the first-iteration residuals with a
scaled Huber weight function were overlaid for the noise-only
and noiseþ surge cases are shown in Fig. 2b and c, respectively.
The noiseþ surge histogram shows obvious skew introduced by
the surge.
onic analysis: Robust (hybrid L1=L2) solutions. Continental Shelf
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Fig. 1. A simple using artificial data. (a) Shows the OLS and IRLS fit and (b) shows a histogram of the initial (first iteration) residuals, with the scaled Huber weighting

function overlaid.

Table 1
Linear model: estimated amplitude and 95% confidence intervals

Known and estimated parameters, 95%

confidence intervals, by experiment

a 95% CI

on a

b 95% CI

on b

Model values 0.5 1

OLS: noise only 0.4993 �0:0030 1.0574 �0:1722

IRLS (Huber): noise only 0.4992 �0:0030 1.0767 �0:1764

OLS: noiseþ outliers 0.3848 �0:0641 6.8251 �3:7278

IRLS (Huber): noiseþ outliers 0.49 �0:0130 1.1940 �0:7539

The linear model is y ¼ axþ bþ Z, with a and b constant, and Z Gaussian noise.
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The estimated values of the amplitude and phase of the
constituents for the test cases are shown in Table 2, with
the corresponding 95% confidence intervals shown in Table 3.
The amplitudes computed by OLS for the noiseþ surge case are
shifted on the order of centimeters from the model values,
especially for the lower-frequency constituents Z0 and K1. The
IRLS fit values are closer to the noise-only model values, but are
still shifted to some degree. A dramatic difference occurs in the
confidence interval for K1. IRLS reduces the estimated confidence
interval width by a factor of 8 for the K1 amplitude, and a factor of
7 for the K1 phase. There is a small (factor 1.5) improvement in the
confidence interval of Z0, and minor reduction of the confidence
intervals for M2. This example clearly demonstrates that selective
rejection of broad-spectrum disturbances by IRLS can improve
tidal estimates from a synthetic signal.
4. Application of IRLS to estuarine tidal data

This section compares the performance of OLS and IRLS
calculations applied to instrumental data. A variety of analyses
were performed on a 6 month window (1 January – 1 July 1999) of
hourly tidal height data, from Astoria (Tongue Point), Oregon, USA.
Subsequently, 25 station years of Astoria data were analyzed to
examine the performance of OLS and robust fitting over a longer
record. This station is located at river mile 18 (river km 29) on the
Columbia River. The station experiences a significant seasonal
Please cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal har
Research (2008), doi:10.1016/j.csr.2008.04.011
river flow variation, ranging from roughly 2500 to 25;000 m3 s�1,
and is subject to storm surge from strong winter storms.

Fig. 3a shows the 1999 hourly data, with the residual of the
OLS harmonic fit overlaid. Examination of the residual reveals a
seasonal variation consistent with Pacific Northwest weather
patterns. Stronger and more frequent storms occur during the
winter, with relative calm during the summer. The residuals for
the winter months have higher amplitudes and greater variability.
We can assume that storm-induced height variations affect the
OLS calculated values of amplitude, phase and the associated
confidence intervals. Of the 67 candidate constituents (Foreman,
1977, revised 1996; Pawlowicz et al., 2002), 51 passed the
significance test of SNRX2. This is an important statement about
noise within the signal. The calculation discarded 25% of the
possible tidal constituents (though not 25% of the energy),
because they were unresolvable from background noise. Fig. 3b
shows the amplitudes of the significant constituents, overlaid on
the power spectrum of the observed signal. The harmonically fit
constituent amplitudes match the FFT power well in the tidal
species peaks, though there is energy in the spectrum at points
other than spectral lines.

Fig. 3c shows the power spectrum of the OLS residual. This
calculation again shows energy at non-tidal frequencies, and there
is still some energy above background levels in the tidal bands,
especially the semi-diurnal and higher frequencies. This is an
expected result. One year of hourly data does not provide
sufficient frequency resolution to resolve all constituents within
each band. In this case, only 24 of nearly 500 astronomical
constituents were used, along with 43 of approximately 145
shallow water constituents. The tidal record is affected by both
river flow variations and storms. Nonlinearities within the
estuarine system act to broaden the frequency spectrum, an
effect which is more pronounced at the higher frequencies.
Longer-term changes in the estuary, such as channel dredging,
diking and changes in sediment supply also occur. These factors
constitute one reason for implementing robust fitting methods.
Seasonal and interannual variations in tidal properties dictate that
the shortest possible record be used that is consistent with the
desired frequency resolution.

Use of IRLS brings about a decrease in the estimated parameter
error. Because the parameter error estimates are based on the
monic analysis: Robust (hybrid L1=L2) solutions. Continental Shelf
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Fig. 2. An example with a synthetic tide, noise and a synthetic surge. (a) Shows the ‘surge’ and the ’observed’ signal. (b) Shows the distribution of the initial residual with

the Huber function overlaid. (c) Shows the distribution of the initial residual for the tideþ surgeþ noise case.

Table 2
Simple tide model: estimated amplitude and phase

Estimated parameters, by experiment Z0 (m) K1 amp (m) K1 phase (deg) M2 amp (m) M2 phase (deg)

Model values 1.4 0.35 265 1.0 145

OLS: noise only 1.396 0.352 262.004 0.986 145.575

IRLS (Huber): noise only 1.396 0.351 262.005 0.985 145.637

OLS: noiseþ surge 1.482 0.396 268.696 0.967 147.066

IRLS (Huber): noiseþ surge 1.435 0.358 263.190 0.983 146.405

Table 3
Simple tide model, computed 95% confidence intervals of amplitude and phase

Parameter 95% confidence intervals, by experiment Z0 (m) K1 amp (m) K1 phase (deg) M2 amp (m) M2 phase (deg)

OLS: noise �0:015 m �0:014 �1:853 �0:047 �2:727

IRLS (Huber): noise �0:015 �0:018 �2:943 �0:043 �2:471

OLS: noiseþ surge �0:037 �0:108 �15:665 �0:103 �3:112

IRLS (Huber): noiseþ surge �0:025 �0:013 �2:148 �0:041 �2:373

K.E. Leffler, D.A. Jay / Continental Shelf Research ] (]]]]) ]]]–]]] 5
average residual power in the tidal species frequency band of each
constituent, any reduction in background energy should decrease
the estimated parameter error. Thus, application of IRLS fitting to
this data set should generate a decrease in estimated error, and an
increase in confidence in the estimate. Because the spectrum of
the residual is not flat, estimates of confidence limits requires of
the colored noise model to estimate parameter error. Several
weighting functions were evaluated, including the bisquare,
Cauchy, and Huber functions (Mathworks, 2006). Fig. 4a shows
the histograms of residuals of the first iteration, overlaid with a
scaled weighting curve for each method. Since the weights for the
first iteration are all equal to 1, the residual itself is the residual
from the OLS fit. The histograms show the data to be approxi-
Please cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal harm
Research (2008), doi:10.1016/j.csr.2008.04.011
mately normally distributed, with no obvious outliers. Fig. 4b
shows the final residuals and the calculated weights. Examination
of these results show that they are generally related to the
prevailing the weather pattern. There is more down-weighting in
the winter, with its frequent storms, and less down-weighting in
the summer, a period of relative calm. Close examination of the
weights shows differences between the methods. The Huber
method gives full weight to most of the samples during the
summer months. The Bisquare method imposes a less severe
penalty on lower residuals and a greater penalty on higher values,
compared to the Cauchy method, which penalizes the low values
relatively more severely, and the higher values relatively less
severely.
onic analysis: Robust (hybrid L1=L2) solutions. Continental Shelf
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Fig. 3. Results of an OLS analysis of 1 year of data. (a) Shows the observed tidal height from Astoria, from 1 January 1999 to 1 January 2000, in gray. The black trace is the

residual from the OLS fit. (b) Shows the power spectrum of the observed signal, with the OLS calculated amplitudes overlaid. (c) Shows the power spectrum of the residual.

Fig. 4. A comparison of weighting functions, showing residual distribution, weighting functions, final weights and weighted residual. The upper row of graphs show the

initial residual distributions, with weighting functions overlaid, for Bisquare, Cauchy and Huber functions. The lower row shows the final weights and unweighted residuals.

K.E. Leffler, D.A. Jay / Continental Shelf Research ] (]]]]) ]]]–]]]6
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Confidence intervals were computed from the average of
power spectral density within frequency bands centered on
0;1;2; . . . cycles=day, �0:1 cycles=day (M0 and M1), �0:2 cycles=
day (M2 to M5), �0:21 cycles=day (M6), 0:262 0:29 cycles=day
(M7), and 0:32 0:5 cycles=day (M8) (Pawlowicz et al., 2002)).
Fig. 5a shows the frequency band averages of the FFT-based power
spectrum of the final weighted residuals Rw ¼ oðy� AxÞ for
the different weighting functions, using a 6 month calculation
window. The band averages are systematically reduced from the
OLS values across all bands. Fig. 5b shows the percent reduction in
the band-averaged confidence interval width from OLS by the
bisquare, Cauchy, and Huber methods, using the default tuning
constants. The Cauchy method shows the greatest improvement,
with reductions in the range of 30–40% for the low frequency to
5 cycles/day band. The bisquare and Huber methods reduce the
confidence interval width by 10–30%, and are effective through
the 6 cycles/day band.

To examine the effect of varying the tuning constant t (refer to
Appendix A for a full description of the IRLS algorithm), the
default Cauchy tuning constant (2.385) was sequentially reduced
by a factor of 2,3,4 and 5. Lower values of the tuning constant
causes the algorithm to take more iterations to converge to a
stable set of weights, and very low tuning constants caused the
Fig. 5. A comparison of reduction in residual spectral energy and corresponding reduct

weighting functions. (a) Shows the frequency band average of the power spectrum of t

Please cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal harm
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algorithm to fail to converge. The maximum iteration limit was
increased from the default of 50 (Mathworks, 2006) to 250. With a
tuning constant of 2:385=5 ¼ 0:477, many 6 month windows of
hourly data did not converge. The absolute limit depends on the
non-tidal component of the tide signal, and more work is
necessary to find practical limits. A tuning constant of 2:385=3 ¼
0:795 converged for most 6 month windows of the long-term
analysis.

Fig. 6 compares the performance of OLS and IRLS fitting, using
the Cauchy weighting function, with sequentially reduced tuning
constant, applied to a 6 month record of hourly Astoria data.
Fig. 6a shows the change in constituent amplitude, including an
OLS fit, for the low-frequency, diurnal and semi-diurnal frequency
bands. The major, high amplitude constituents have stable
amplitudes. Smaller constituents show some change. Lower
tuning constant values reduce the background energy, and allow
more constituents to be resolved, based on a signal-to-noise test.
For a 6 month window, 51 constituents are theoretically
resolvable, using Foreman’s constituent selection method
(Foreman, 1977, revised 1996). The OLS fit resolved 29 constitu-
ents, based on a significance criteria of SNRX2. Use of progres-
sively smaller values of tuning constant in the Cauchy weight
function resolves a greater number of the candidate constituents.
ion in confidence interval from the OLS calculation for Huber, Bisquare and Cauchy

he residual and (b) shows the percent reduction in confidence interval width.

onic analysis: Robust (hybrid L1=L2) solutions. Continental Shelf
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Fig. 6. A comparison of amplitudes (a) and confidence interval reductions (b), for the low-frequency, diurnal and semi-diurnal tidal frequency bands.
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For a tuning constant ¼ 0:477, all 51 candidate constituents were
resolved. Fig. 6b shows the percent change in confidence interval
width from OLS, for the constituents resolved by OLS, in the low
frequency, diurnal and semi-diurnal frequency bands. Using IRLS
with the default Cauchy weight function gives a 30–40% reduction
of confidence interval width from OLS. Halving the tuning
constant increases the reduction to 50–70%. Reducing the tuning
constant by a factor of 5 yields an approximately 80% reduction in
the confidence interval width.

The long-term analysis compared the performance of OLS and
Cauchy weighted IRLS over time. A 190 day time window was
advanced by a 28 day step across the Astoria tidal record, from 1
January 1980 to 31 December 2005, using a tuning constant of
t ¼ 0:795 with the Cauchy weighting function. The estimated
amplitudes and percent reduction in confidence intervals for the
constituents K1, M2 and M4 are shown in Fig. 7. The results are
again consistent. Both analyses show little change in the
parameters estimated from one year of data, while the confidence
intervals of the parameters are systematically reduced. The mean
reduction for K1, M2 and M4 was 64.5, 67.1, and 58.9%,
respectively, with standard deviations of 7.58, 6.25 and 7.01,
respectively.

As a final comparison, the effects on the analysis of barometric
pressure fluctuation was considered. Barometric pressure causes
Please cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal har
Research (2008), doi:10.1016/j.csr.2008.04.011
sea level changes via the inverse barometer effect, and deviation
in barometric pressure may be considered a proxy for general
storminess. Winter storms at the entrance of the Columbia may
generate winds in excess of 80 km=h, with combined seas in
excess of 12 m, so storms play an obvious role in observed water
level. Fig. 8 shows the observed water level, the residual of the
IRLS predicted tide, the deviation from mean barometric pressure
b̂p ¼ bp� b̄p, and the final weights from the Cauchy function. It is
notable that b̂p and the final weight are roughly inversely
proportional. Intuitively, this makes sense. The greatest deviation
from the harmonic model is expected during storm periods and
during periods of strong river outflow. It is gratifying that low
weights usually correspond to a physical phenomenon, and that
periods of strong storms are algorithmically down-weighted,
without any direct input indicating presence of storms.
5. Discussion and further work

Robust methods have been shown to be a more efficient
method of identifying non-stationary components of the tidal
signal, reducing the influence of noise on harmonic constants
derived from non-stationary data and increasing confidence in the
resulting estimates. This is a clear improvement over standard
monic analysis: Robust (hybrid L1=L2) solutions. Continental Shelf
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Fig. 7. A comparison of amplitude (left column) and confidence interval reduction (right column), computed by OLS and Cauchy-weighted IRLS, for K1, M2 and M4 :
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harmonic analysis with OLS. Still, there is one potential issue that
arises from the seasonality of storminess; does down-weighting of
winter data systematically discriminate against certain small
constituents? Work to date does not answer this question. Clearly,
reliable determination of the smaller constituents requires
analysis of several years (preferably 19 years) of data, whether
one uses a Robust fit or OLS. Over a number of years, storm
occurrence will be variable, and impacts of weighting on
individual constituents will likely be averaged out. It is still
possible, however, that a Robust fit may achieve systematically
different answers in situations involving specific non-linear
interactions.

Further work is needed in several areas. Both OLS and Robust
analyses exhibit a characteristic failure mode as LOR is reduced,
holding the constituent ensemble constant. As the Rayleigh ratio
(the number of data points per frequency analyzed (Foreman,
1977, revised 1996) decreases, closely spaced constituent pairs
increase unrealistically in amplitude, yielding a solution that
(a) has more energy than the original signal and (b) is useless for
prediction. This failure occurs because, over a limited LOR, a
closely spaced constituent pair can partially cancel. While there
are real limits on frequency resolution set by the Heisenberg
uncertainty principle, a tidal analysis is normally conservative
relative to limits set by the uncertainty principle for the major
Please cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal harm
Research (2008), doi:10.1016/j.csr.2008.04.011
tidal constituents (Jay and Flinchem, 1999). Thus, this failure
mode is in part a function of the inverse methods used. We had
hoped that the resistance of Robust analyses to the adverse
influence of noise would allow postponement of the failure to
somewhat smaller LOR, but this was not the case. It appears that
tidal analysis would benefit from introduction of total energy
constraints, an approach used in image processing, where (like
tidal analysis) the frequency-domain support of the signal is
usually limited (Candés et al., 2006).

Experiments with various weight functions, especially
the Huber and Cauchy functions, have been performed in this
paper. However, a rigorous evaluation of weighting methods
across many tide stations should be conducted to determine
an optimal weighting method for tidal data. As noted in
Section 4, barometric pressure plays both direct and indirect
roles in water level variation. Cartwright (1968) investigated
atmospheric effects in the context of a response analysis.
Inclusion of atmospheric forcing in the basis functions of a
harmonic model, with the idea of avoiding the down-weighting of
all but the most extreme periods, might well be worthwhile. This
approach may be preferable to filtering out atmospheric dis-
turbances with a high-pass filter, both for short records, and in
cases where a consistent analysis of variance in all frequency
bands is desired.
onic analysis: Robust (hybrid L1=L2) solutions. Continental Shelf
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Fig. 8. A comparison of observed tidal signal (a), residual (b), deviation from mean barometric pressure (c) and final Cauchy weights (d) for Astoria Tongue Point, 1 January

1999–31 December 1999.
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6. Summary

Traditional harmonic analysis of tides is highly sensitive to
omnipresent instrumental and environmental noise. Hybrid L1=L2

fitting via an IRLS algorithm, an extension of the standard OLS
methodology of harmonic analysis, has been shown to reduce the
influence of broad-spectrum noise, including that caused by
storms and other atmospheric processes. Use of an algorithm
eliminates the subjective and labor intensive process of manually
separating ‘good’ data from ‘bad’, and incorporates all the
available data in weighted form into the parameter estimates.
Admittedly, this moves the point of judgment. Instead of
subjectively removing ‘bad’ data, the investigator is left with the
more subtle choice of algorithm and tuning parameters that
weight the data. On the whole, the authors believe an algorithmic
approach adds consistency and reduces overall effort, while
maximizing data utilization.

Experiments were performed using 6 month calculation
windows, on records from an estuarine tidal station that contain
influences from varying river flow and strong winter storm surges.
Use of IRLS with the Cauchy weighting function and default
tuning parameter reduces the confidence interval width from the
OLS value by 30–40%, with a 20% increase in resolved constitu-
Please cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal har
Research (2008), doi:10.1016/j.csr.2008.04.011
ents. Reducing the tuning parameter further decreases the
confidence interval width and increases constituent resolution.
Decreases in confidence interval width of 80%, and an increase in
constituent resolution of 75% were demonstrated. Decreasing the
tuning parameter eventually causes the calculation to fail to
converge, and more work is necessary to define practical limits.
Reductions of confidence intervals by 65% were consistently
demonstrated in a long-term analysis. The current work demon-
strates that hybrid L1=L2 fitting via the IRLS algorithm successfully
increases confidence in tidal parameter estimates and resolution
of low-amplitude constituents from background noise, which
should be helpful for studies of long-term tidal evolution and sea
level rise, while remaining consistent with existing analysis
methods.
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Appendix A. IRLS algorithm

Variables:
t

Please
Resear
Sample times

y
 Known constituent frequencies

A
 Basis matrix

R
 Residual

r
 Normalized residual

t
 Tuning constant for the weighting function

o
 Weights

x
 Tidal parameters

h
 Observed heights
MADðRÞ
 The median absolute deviation of R
s
 Deviation statistic

l
 Leverage vector
The basis matrix A is defined as:

A ¼

cosð2py1t1Þ � � � cosð2pynt1Þ sinð2py1t1Þ � � � sinð2pynt1Þ

..

.
� � � ..

. ..
.

� � � ..
.

cosð2py1tmÞ � � � cosð2pyntmÞ sinð2py1tmÞ � � � sinð2pyntmÞ

2
664

3
775

The leverage vector l is a measure of the influence of each point in
the sampled time series. Each value in the leverage vector can be
thought of as a measure of the change in response variables
resulting from the deletion of the corresponding sample from the
observed variable and is defined (Belsley et al., 1980)

l ¼ diagðhðhThÞ�1hT
Þ

For iteration 0,

w0 ¼ ½1 . . . 1�0; so the first iteration is the OLS

solution.

Then repeating the following steps until the residual R converges:

x ¼ ðAToAÞ�1AToh

R ¼ oðh� AxÞ

s ¼
MADðRÞ

0:6745

r ¼
R

ts
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
o ¼ f ðrÞ, with f ðrÞ and default values for t given by
cite this article as: Leffler, K.E., Jay, D.A., Enhancing tidal harm
ch (2008), doi:10.1016/j.csr.2008.04.011
onic analysis: Robus
t (hybrid L1=L2) solutions. Continenta
Method
 o
 Default t
Andrews
oandrews ¼

sinðrÞ

r
; jrjop

0; jrjXp

8<
:(
1.339
Bisquare

obisquare ¼

ð1� r2Þ
2; jrjo1

0; jrjX1
4.685
Cauchy

ocauchy ¼

1

1þ r2
2.385
Fair

ofair ¼

1

1þ jrj
1.400
Huber
 ohuber ¼
1

maxð1;jrjÞ

1.345
Logistic
 ologistic ¼
tanhðrÞ

r(
 1.205
Talwar

otalwar ¼

1; jrjo1

0; jrjX1
2.795
Welsch
 owelsch ¼ e�r2
 2.985
The tuning constant t controls the width of the weight function,
and may be adjusted from the default value. Lower values of t
penalize outliers more heavily, while higher values penalize
outliers less severely. From experiments, the authors found that
conservative (higher values of t) filters produce better output,
while severe filters essentially over-filter the data. In general, the
default tuning value constants suggested by Matlab have been
used. Further work is needed to define the optimal IRLS weight
function for tidal data.
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