
Statistically Rigorous Java Performance Evaluation

Andy Georges Dries Buytaert Lieven Eeckhout
Department of Electronics and Information Systems, Ghent University, Belgium

{ageorges,dbuytaer,leeckhou}@elis.ugent.be

Abstract
Java performance is far from being trivial to benchmark because
it is affected by various factors such as the Java application, its
input, the virtual machine, the garbage collector, the heap size, etc.
In addition, non-determinism at run-time causes the execution time
of a Java program to differ from run to run. There are a number of
sources of non-determinism such as Just-In-Time (JIT) compilation
and optimization in the virtual machine (VM) driven by timer-
based method sampling, thread scheduling, garbage collection, and
various system effects.

There exist a wide variety of Java performance evaluation
methodologies used by researchers and benchmarkers. These
methodologies differ from each other in a number of ways. Some
report average performance over a number of runs of the same
experiment; others report the best or second best performance ob-
served; yet others report the worst. Some iterate the benchmark
multiple times within a single VM invocation; others consider mul-
tiple VM invocations and iterate a single benchmark execution; yet
others consider multiple VM invocations and iterate the benchmark
multiple times.

This paper shows that prevalent methodologies can be mis-
leading, and can even lead to incorrect conclusions. The reason
is that the data analysis is not statistically rigorous. In this pa-
per, we present a survey of existing Java performance evaluation
methodologies and discuss the importance of statistically rigorous
data analysis for dealing with non-determinism. We advocate ap-
proaches to quantify startup as well as steady-state performance,
and, in addition, we provide the JavaStats software to automatically
obtain performance numbers in a rigorous manner. Although this
paper focuses on Java performance evaluation, many of the issues
addressed in this paper also apply to other programming languages
and systems that build on a managed runtime system.

Categories and Subject Descriptors D.2.8 [Software En-
gineering]: Metrics—Performance measures; D.3.4 [Pro-
gramming Languages]: Processors—Run-time environments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

General Terms Experimentation, Measurement, Perfor-
mance

Keywords Java, benchmarking, data analysis, methodol-
ogy, statistics

1. Introduction
Benchmarking is at the heart of experimental computer sci-
ence research and development. Market analysts compare
commercial products based on published performance num-
bers. Developers benchmark products under development to
assess their performance. And researchers use benchmark-
ing to evaluate the impact on performance of their novel re-
search ideas. As such, it is absolutely crucial to have a rig-
orous benchmarking methodology. A non-rigorous method-
ology may skew the overall picture, and may even lead to
incorrect conclusions. And this may drive research and de-
velopment in a non-productive direction, or may lead to a
non-optimal product brought to market.

Managed runtime systems are particularly challenging
to benchmark because there are numerous factors affect-
ing overall performance, which is of lesser concern when it
comes to benchmarking compiled programming languages
such as C. Benchmarkers are well aware of the difficulty in
quantifying managed runtime system performance which is
illustrated by a number of research papers published over the
past few years showing the complex interactions between
low-level events and overall performance [5, 11, 12, 17, 24].
More specifically, recent work on Java performance method-
ologies [7, 10] stressed the importance of a well chosen and
well motivated experimental design: it was pointed out that
the results presented in a Java performance study are subject
to the benchmarks, the inputs, the VM, the heap size, and
the hardware platform that are chosen in the experimental
setup. Not appropriately considering and motivating one of
these key aspects, or not appropriately describing the context
within which the results were obtained and how they should
be interpreted may give a skewed view, and may even be
misleading or at worst be incorrect.

The orthogonal axis to experimental design in a perfor-
mance evaluation methodology, is data analysis, or how
to analyze and report the results. More specifically, a per-
formance evaluation methodology needs to adequately deal

with the non-determinism in the experimental setup. In a
Java system, or managed runtime system in general, there
are a number of sources of non-determinism that affect over-
all performance. One potential source of non-determinism is
Just-In-Time (JIT) compilation. A virtual machine (VM) that
uses timer-based sampling to drive the VM compilation and
optimization subsystem may lead to non-determinism and
execution time variability: different executions of the same
program may result in different samples being taken and,
by consequence, different methods being compiled and op-
timized to different levels of optimization. Another source
of non-determinism comes from thread scheduling in time-
shared and multiprocessor systems. Running multithreaded
workloads, as is the case for most Java programs, requires
thread scheduling in the operating system and/or virtual ma-
chine. Different executions of the same program may in-
troduce different thread schedules, and may result in dif-
ferent interactions between threads, affecting overall per-
formance. The non-determinism introduced by JIT compi-
lation and thread scheduling may affect the points in time
where garbage collections occur. Garbage collection in its
turn may affect program locality, and thus memory system
performance as well as overall system performance. Yet an-
other source of non-determinism is various system effects,
such as system interrupts — this is not specific to managed
runtime systems though as it is a general concern when run-
ning experiments on real hardware.

From an extensive literature survey, we found that there
are a plethora of prevalent approaches, both in experimen-
tal design and data analysis for benchmarking Java perfor-
mance. Prevalent data analysis approaches for dealing with
non-determinism are not statistically rigorous though. Some
report the average performance number across multiple runs
of the same experiments; others report the best performance
number, others report the second best performance number
and yet others report the worst. In this paper, we argue that
not appropriately specifying the experimental design and not
using a statistically rigorous data analysis can be mislead-
ing and can even lead to incorrect conclusions. This paper
advocates using statistics theory as a rigorous data analysis
approach for dealing with the non-determinism in managed
runtime systems.

The pitfall in using a prevalent method is illustrated in
Figure 1 which compares the execution time for running
Jikes RVM with five garbage collectors (CopyMS, GenCopy,
GenMS, MarkSweep and SemiSpace) for the SPECjvm98
db benchmark with a 120MB heap size — the experi-
mental setup will be detailed later. This graph compares
the prevalent ‘best’ method which reports the best perfor-
mance number (or smallest execution time) among 30 mea-
surements against a statistically rigorous method which re-
ports 95% confidence intervals; the ‘best’ method does not
control non-determinism, and corresponds to the SPEC re-
porting rules [23]. Based on the best method, one would

mean w/ 95% confidence interval

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

C
o
p
yM

S

G
en

C
o
p
y

G
en

M
S

M
ar

kS
w

ee
p

S
em

iS
p
a
ce

ex
ec

u
ti
o
n
 t

im
e

(s
)

best of 30

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

C
o
p
yM

S

G
en

C
o
p
y

G
en

M
S

M
ar

kS
w

ee
p

S
em

iS
p
a
ce

ex
ec

u
ti
o
n
 t

im
e

(s
)

Figure 1. An example illustrating the pitfall of prevalent
Java performance data analysis methods: the ‘best’ method
is shown on the left and the statistically rigorous method is
shown on the right. This is for db and a 120MB heap size.

conclude that the performance for the CopyMS and Gen-
Copy collectors is about the same. The statistically rigorous
method though shows that GenCopy significantly outper-
forms CopyMS. Similarly, based on the best method, one
would conclude that SemiSpace clearly outperforms Gen-
Copy. The reality though is that the confidence intervals for
both garbage collectors overlap and, as a result, the per-
formance difference seen between both garbage collectors
is likely due to the random performance variations in the
system under measurement. In fact, we observe a large per-
formance variation for SemiSpace, and at least one really
good run along with a large number of less impressive runs.
The ‘best’ method reports the really good run whereas a sta-
tistically rigorous approach reliably reports that the average
scores for GenCopy and SemiSpace are very close to each
other.

This paper makes the following contributions:

• We demonstrate that there is a major pitfall associ-
ated with today’s prevalent Java performance evaluation
methodologies, especially in terms of data analysis. The
pitfall is that they may yield misleading and even in-
correct conclusions. The reason is that the data analysis
employed by these methodologies is not statistically rig-
orous.

• We advocate adding statistical rigor to performance eval-
uation studies of managed runtime systems, and in partic-
ular Java systems. The motivation for statistically rigor-
ous data analysis is that statistics, and in particular con-
fidence intervals, enable one to determine whether dif-
ferences observed in measurements are due to random
fluctuations in the measurements or due to actual differ-
ences in the alternatives compared against each other. We
discuss how to compute confidence intervals and discuss
techniques to compare multiple alternatives.

• We survey existing performance evaluation methodolo-
gies for start-up and steady-state performance, and ad-
vocate the following methods. For start-up performance,
we advise to: (i) take multiple measurements where each

measurement comprises one VM invocation and a sin-
gle benchmark iteration, and (ii) compute confidence in-
tervals across these measurements. For steady-state per-
formance, we advise to: (i) take multiple measurements
where each measurement comprises one VM invocation
and multiple benchmark iterations, (ii) in each of these
measurements, collect performance numbers for differ-
ent iterations once performance reaches steady-state, i.e.,
after the start-up phase, and (iii) compute confidence in-
tervals across these measurements (multiple benchmark
iterations across multiple VM invocations).

• We provide publicly available software, called JavaStats,
to enable a benchmarker to easily collect the information
required to do a statistically rigorous Java performance
analysis. In particular, JavaStats monitors the variability
observed in the measurements to determine the number
of measurements that need to be taken to reach a desired
confidence interval for a given confidence level. Java-
Stats readily works for both the SPECjvm98 and DaCapo
benchmark suites, and is available at
http://www.elis.ugent.be/JavaStats.

This paper is organized as follows. We first present a sur-
vey in Section 2 on Java performance evaluation method-
ologies in use today. Subsequently, in Section 3, we discuss
general statistics theory and how it applies to Java perfor-
mance analysis. Section 4 then translates these theoretical
concepts to practical methodologies for quantifying startup
and steady-state performance. After detailing our experi-
mental setup in Section 5, we then assess in Section 6 the
prevalent evaluation methodologies compared to the statis-
tically rigorous methodologies advocated in this paper. We
show that in many practical situations, prevalent methodolo-
gies can be misleading, or even yield incorrect conclusions.
Finally, we summarize and conclude in Section 7.

2. Prevalent Java Performance Evaluation
Methodologies

There is a wide range of Java performance evaluation
methodologies in use today. In order to illustrate this, we
have performed a survey among the Java performance pa-
pers published in the last few years (from 2000 onwards) in
premier conferences such as Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), Pro-
gramming Language Design and Implementation (PLDI),
Virtual Execution Environments (VEE), Memory Man-
agement (ISMM) and Code Generation and Optimization
(CGO). In total, we examined the methodology used in 50
papers.

Surprisingly enough, about one third of the papers (16
out of the 50 papers) does not specify the methodology
used in the paper. This not only makes it difficult for other
researchers to reproduce the results presented in the paper, it
also makes understanding and interpreting the results hard.

During our survey, we found that not specifying or only
partially specifying the performance evaluation methodol-
ogy is particularly the case for not too recent papers, more
specifically for papers between 2000 and 2003. More recent
papers on the other hand, typically have a more detailed
description of their methodology. This is in sync with the
growing awareness of the importance of a rigorous perfor-
mance evaluation methodology. For example, Eeckhout et
al. [10] show that Java performance is dependent on the in-
put set given to the Java application as well as on the virtual
machine that runs the Java application. Blackburn et al. [7]
confirm these findings and show that a Java performance
evaluation methodology, next to considering multiple JVMs,
should also consider multiple heap sizes as well as multiple
hardware platforms. Choosing a particular heap size and/or
a particular hardware platform may draw a fairly different
picture and may even lead to opposite conclusions.

In spite of these recent advances towards a rigorous Java
performance benchmarking methodology, there is no con-
sensus among researchers on what methodology to use. In
fact, almost all research groups come with their own method-
ology. We now discuss some general features of these preva-
lent methodologies and subsequently illustrate this using a
number of example methodologies.

2.1 General methodology features
In the following discussion, we make a distinction between
experimental design and data analysis. Experimental design
refers to setting up the experiments to be run and requires
good understanding of the system being measured. Data
analysis refers to analyzing the data obtained from the ex-
periments. As will become clear from this paper, both ex-
perimental design and data analysis are equally important in
the overall performance evaluation methodology.

2.1.1 Data analysis
Average or median versus best versus worst run. Some
methodologies report the average or median execution time
across a number of runs — typically more than 3 runs are
considered; some go up to 50 runs. Others report the best or
second best performance number, and yet others report the
worst performance number.

The SPEC run rules for example state that SPECjvm98
benchmarkers must run their Java application at least twice,
and report both the best and worst of all runs. The intuition
behind the worst performance number is to report a perfor-
mance number that represents program execution intermin-
gled with class loading and JIT compilation. The intuition
behind the best performance number is to report a perfor-
mance number where overall performance is mostly domi-
nated by program execution, i.e., class loading and JIT com-
pilation are less of a contributor to overall performance.

The most popular approaches are average and best —
8 and 10 papers out of the 50 papers in our survey, re-

spectively; median, second best and worst are less frequent,
namely 4, 4 and 3 papers, respectively.

Confidence intervals versus a single performance number.
In only a small minority of the research papers (4 out of
50), confidence intervals are reported to characterize the
variability across multiple runs. The others papers though
report a single performance number.

2.1.2 Experimental design
One VM invocation versus multiple VM invocations. The
SPECjvm98 benchmark suite as well as the DaCapo bench-
mark suite come with a benchmark harness. The harness al-
lows for running a Java benchmark multiple times within
a single VM invocation. Throughout the paper, we will re-
fer to multiple benchmark runs within a single VM invoca-
tion as benchmark iterations. In this scenario, the first iter-
ation of the benchmark will perform class loading and most
of the JIT (re)compilation; subsequent iterations will expe-
rience less (re)compilations. Researchers mostly interested
in steady-state performance typically run their experiments
in this scenario and report a performance number based on
the subsequent iterations, not the first iteration. Researchers
interested in startup performance will typically initiate mul-
tiple VM invocations running the benchmark only once.

Including compilation versus excluding compilation. Some
researchers report performance numbers that include JIT
compilation overhead, while others report performance
numbers excluding JIT compilation overhead. In a man-
aged runtime system, JIT (re)compilation is performed at
run-time, and by consequence, becomes part of the overall
execution. Some researchers want to exclude JIT compila-
tion overhead from their performance numbers in order to
isolate Java application performance and to make the mea-
surements (more) deterministic, i.e., have less variability in
the performance numbers across multiple runs.

A number of approaches have been proposed to exclude
compilation overhead. One approach is to compile all meth-
ods executed during a first execution of the Java application,
i.e., all methods executed are compiled to a predetermined
optimization level, in some cases the highest optimization
level. The second run, which is the timing run, does not
do any compilation. Another approach, which is becoming
increasingly popular, is called replay compilation [14, 20],
which is used in 7 out of the 50 papers in our survey. In
replay compilation, a number of runs are performed while
logging the methods that are compiled and at which opti-
mization level these methods are optimized. Based on this
logging information, a compilation plan is determined. Some
researchers select the methods that are optimized in the ma-
jority of the runs, and set the optimization level for the se-
lected methods at the highest optimization levels observed
in the majority of the runs; others pick the compilation plan
that yields the best performance. Once the compilation plan
is established, two benchmark runs are done in a single VM

invocation: the first run does the compilation according to
the compilation plan, the second run then is the timing run
with adaptive (re)compilation turned off.

Forced GCs before measurement. Some researchers per-
form a full-heap garbage collection (GC) before doing a per-
formance measurement. This reduces the non-determinism
observed across multiple runs due to garbage collections
kicking in at different times across different runs.

Other considerations. Other considerations concerning
the experimental design include one hardware platform ver-
sus multiple hardware platforms; one heap size versus mul-
tiple heap sizes; a single VM implementation versus multi-
ple VM implementations; and back-to-back measurements
(‘aaabbb’) versus interleaved measurements (‘ababab’).

2.2 Example methodologies
To demonstrate the diversity in prevalent Java performance
evaluation methodologies, both in terms of experimental de-
sign and data analysis, we refer to Table 1 which summa-
rizes the main features of a number of example methodolo-
gies. We want to emphasize up front that our goal is not
to pick on these researchers; we just want to illustrate the
wide diversity in Java performance evaluation methodolo-
gies around today. In fact, this wide diversity illustrates the
growing need for a rigorous performance evaluation method-
ology; many researchers struggle coming up with a method-
ology and, as a result, different research groups end up using
different methodologies. The example methodologies sum-
marized in Table 1 are among the most rigorous methodolo-
gies observed during our survey: these researchers clearly
describe and/or motivate their methodology whereas many
others do not.

For the sake of illustration, we now discuss three well de-
scribed and well motivated Java performance methodologies
in more detail.

Example 1. McGachey and Hosking [18] (methodology B
in Table 1) iterate each benchmark 11 times within a single
VM invocation. The first iteration compiles all methods at
the highest optimization level. The subsequent 10 iterations
do not include any compilation activity and are considered
the timing iterations. Only the timing iterations are reported;
the first compilation iteration is discarded. And a full-heap
garbage collection is performed before each timing iteration.
The performance number reported in the paper is the average
performance over these 10 timing iterations along with a
90% confidence interval.

Example 2: Startup versus steady-state. Arnold et al. [1,
2] (methodologies F and G in Table 1) make a clear distinc-
tion between startup and steady-state performance. They
evaluate the startup regime by timing the first run of a
benchmark execution with a medium input set (s10 for
SPECjvm98). They report the minimum execution time

methodology A B C D E F G H I J K L M
reference [4] [18] [21] [22] [25] [1] [2] [20] [7, 14] [23] [8] [3] [9]

Data analysis
average performance number from multiple runs √ √ √ √

median performance number from multiple runs √

best performance number from multiple runs √ √ √ √ √ √

second best performance number from multiple runs √

worst performance number from multiple runs √

confidence interval from multiple runs √ √

Experimental design
one VM invocation, one benchmark iteration √

one VM invocation, multiple benchmark iterations √ √ √ √

multiple VM invocations, one benchmark iteration √ √ √

multiple VM invocations, multiple benchmark iterations √ √

including JIT compilation √ √ √ √

excluding JIT compilation √ √ √ √

all methods are compiled before measurement √ √ √

replay compilation √ √

full-heap garbage collection before measurement √ √

a single hardware platform √ √ √ √ √ √ √ √ √ √

multiple hardware platforms √ √ √

a single heap size √ √ √

multiple heap sizes √ √ √ √ √ √ √ √ √ √

a single VM implementation √ √ √ √ √ √ √ √ √ √ √

multiple VM implementations √ √

back-to-back measurements
interleaved measurements √

Table 1. Characterizing prevalent Java performance evaluation methodologies (in the columns) in terms of a number of features
(in the rows): the ‘√’ symbol means that the given methodology uses the given feature; the absence of the ‘√’ symbol means
the methodology does not use the given feature, or, at least, the feature is not documented.

across five benchmark executions, each benchmark execu-
tion triggering a new VM invocation. For measuring steady-
state performance, in [1], Arnold et al. report the minimum
execution time across five benchmark executions with a
large input set (s100 for SPECjvm98) within a single VM
invocation. Arnold et al. [2] use a different methodology
for measuring steady-state performance. They do 10 ex-
periments where each benchmark runs for approximately
4 minutes; this results in 10 times N runs. They then take
the median execution time across these 10 experiments, re-
sulting in N median execution times and then report the
minimum median execution time. All the performance num-
bers reported include JIT compilation and optimization, as
well as garbage collection activity.

Example 3: Replay compilation. Our third example method-
ology uses replay compilation to drive the performance eval-
uation. The idea of replay compilation discussed in [5, 7, 14,
20] (methodologies H and I in Table 1) is to build a com-
pilation plan by running each benchmark n times with the
adaptive runtime system enabled, logging the names of the
methods that are optimized and their optimization levels.
They then select the best compilation plan. The benchmark-
ing experiment then proceeds as follows: (i) the first bench-
mark run performs compilation using the compilation plan,
(ii) a full-heap garbage collection is performed, and (iii) the

benchmark is run a second time with adaptive optimization
turned off. This is done m times, and the best run is reported.
Reporting the first benchmark run is called the mix method;
reporting the second run is called the stable method.

3. Statistically Rigorous Performance
Evaluation

We advocate statistically rigorous data analysis as an impor-
tant part of a Java performance evaluation methodology. This
section describes fundamental statistics theory as described
in many statistics textbooks, see for example [15, 16, 19],
and discusses how statistics theory applies to Java perfor-
mance data analysis. The next section then discusses how to
add statistical rigor in practice.

3.1 Errors in experimental measurements
As a first step, it is useful to classify errors as we observe
them in experimental measurements in two main groups:
systematic errors and random errors. Systematic errors are
typically due to some experimental mistake or incorrect pro-
cedure which introduces a bias into the measurements. These
errors obviously affect the accuracy of the results. It is up to
the experimenter to control and eliminate systematic errors.
If not, the overall conclusions, even with a statistically rig-
orous data analysis, may be misleading.

Random errors, on the other hand, are unpredictable and
non-deterministic. They are unbiased in that a random er-
ror may decrease or increase a measurement. There may be
many sources of random errors in the system. In practice, an
important concern is the presence of perturbing events that
are unrelated to what the experimenter is aiming at measur-
ing, such as external system events, that cause outliers to
appear in the measurements. Outliers need to be examined
closely, and if the outliers are a result of a perturbing event,
they should be discarded. Taking the best measurement also
alleviates the issue with outliers, however, we advocate dis-
carding outliers and applying statistically rigorous data anal-
ysis to the remaining measurements.

While it is impossible to predict random errors, it is
possible to develop a statistical model to describe the overall
effect of random errors on the experimental results, which
we do next.

3.2 Confidence intervals for the mean
In each experiment, a number of samples is taken from an
underlying population. A confidence interval for the mean
derived from these samples then quantifies the range of val-
ues that have a given probability of including the actual pop-
ulation mean. While the way in which a confidence interval
is computed is essentially similar for all experiments, a dis-
tinction needs to be made depending on the number of sam-
ples gathered from the underlying population [16]: (i) the
number of samples n is large (typically, n ≥ 30), and (ii) the
number of samples n is small (typically, n < 30). We now
discuss both cases.

3.2.1 When the number of measurements is large
(n ≥ 30)

Building a confidence interval requires that we have a num-
ber of measurements xi, 1 ≤ i ≤ n, from a population with
mean µ and variance σ2. The mean of these measurements
x̄ is computed as

x̄ =
∑n

i=1 xi

n
.

We will approximate the actual true value µ by the mean of
our measurements x̄ and we will compute a range of val-
ues [c1, c2] around x̄ that defines the confidence interval at
a given probability (called the confidence level). The con-
fidence interval [c1, c2] is defined such that the probability
of µ being between c1 and c2 equals 1 − α; α is called the
significance level and (1− α) is called the confidence level.

Computing the confidence interval builds on the central
limit theory. The central limit theory states that, for large
values of n (typically n ≥ 30), x̄ is approximately Gaussian
distributed with mean µ and standard deviation σ/

√
n, pro-

vided that the samples xi, 1 ≤ i ≤ n, are (i) independent and
(ii) come from the same population with mean µ and finite
standard deviation σ.

Because the significance level α is chosen a priori, we
need to determine c1 and c2 such that Pr[c1 ≤ µ ≤ c2] =

1 − α holds. Typically, c1 and c2 are chosen to form a
symmetric interval around x̄, i.e., Pr[µ < c1] = Pr[µ >
c2] = α/2. Applying the central-limit theorem, we find that

c1 = x̄− z1−α/2
s√
n

c2 = x̄ + z1−α/2
s√
n

,

with x̄ the sample mean, n the number of measurements and
s the sample standard deviation computed as follows:

s =

√∑n
i=1(xi − x̄)2

n− 1
.

The value z1−α/2 is defined such that a random variable Z
that is Gaussian distributed with mean µ = 0 and variance
σ2 = 1, obeys the following property:

Pr[Z ≤ z1−α/2] = 1− α/2.

The value z1−α/2 is typically obtained from a precomputed
table.

3.2.2 When the number of measurements is small
(n < 30)

A basic assumption made in the above derivation is that the
sample variance s2 provides a good estimate of the actual
variance σ2. This assumption enabled us to approximate z =
(x̄− µ)/(σ/

√
n) as a standard normally distributed random

variable, and by consequence to compute the confidence
interval for x̄. This is generally the case for experiments with
a large number of samples, e.g., n ≥ 30.

However, for a relatively small number of samples, which
is typically assumed to mean n < 30, the sample variance
s2 can be significantly different from the actual variance σ2

of the underlying population [16]. In this case, it can be
shown that the distribution of the transformed value t =
(x̄ − µ)/(s/

√
n) follows the Student’s t-distribution with

n − 1 degrees of freedom. By consequence, the confidence
interval can then be computed as:

c1 = x̄− t1−α/2;n−1
s√
n

c2 = x̄ + t1−α/2;n−1
s√
n

,

with the value t1−α/2;n−1 defined such that a random vari-
able T that follows the Student’s t distribution with n − 1
degrees of freedom, obeys:

Pr[T ≤ t1−α/2;n−1] = 1− α/2.

The value t1−α/2;n−1 is typically obtained from a precom-
puted table. It is interesting to note that as the number of
measurements n increases, the Student t-distribution ap-
proaches the Gaussian distribution.

3.2.3 Discussion
Interpretation. In order to interpret experimental results
with confidence intervals, we need to have a good under-
standing of what a confidence interval actually means. A
90% confidence interval, i.e., a confidence interval with a
90% confidence level, means that there is a 90% probability
that the actual distribution mean of the underlying popula-
tion, µ, is within the confidence interval. Increasing the con-
fidence level to 95% means that we are increasing the prob-
ability that the actual mean is within the confidence interval.
Since we do not change our measurements, the only way to
increase the probability of the mean being within this new
confidence interval is to increase its size. By consequence,
a 95% confidence interval will be larger than a 90% confi-
dence interval; likewise, a 99% confidence interval will be
larger than a 95% confidence interval.

Note on normality. It is also important to emphasize that
computing confidence intervals does not require that the un-
derlying data is Gaussian or normally distributed. The cen-
tral limit theory, which is at the foundation of the confidence
interval computation, states that x̄ is normally distributed ir-
respective of the underlying distribution of the population
from which the measurements are taken. In other words,
even if the population is not normally distributed, the av-
erage measurement mean x̄ is approximately Gaussian dis-
tributed if the measurements are taken independently from
each other.

3.3 Comparing two alternatives
So far, we were only concerned about computing the con-
fidence interval for the mean of a single system. In terms
of a Java performance evaluation setup, this is a single Java
benchmark with a given input running on a single virtual
machine with a given heap size running on a given hardware
platform. However, in many practical situations, a researcher
or benchmarker wants to compare the performance of two or
more systems. In this section, we focus on comparing two
alternatives; the next section then discusses comparing more
than two alternatives. A practical use case scenario could be
to compare the performance of two virtual machines running
the same benchmark with a given heap size on a given hard-
ware platform. Another example use case is comparing the
performance of two garbage collectors for a given bench-
mark, heap size and virtual machine on a given hardware
platform.

The simplest approach to comparing two alternatives is to
determine whether the confidence intervals for the two sets
of measurements overlap. If they do overlap, then we cannot
conclude that the differences seen in the mean values are
not due to random fluctuations in the measurements. In other
words, the difference seen in the mean values is possibly due
to random effects. If the confidence intervals do not overlap,
however, we conclude that there is no evidence to suggest
that there is not a statistically significant difference. Note

the careful wording here. There is still a probability α that
the differences observed in our measurements are simply due
to random effects in our measurements. In other words, we
cannot assure with a 100% certainty that there is an actual
difference between the compared alternatives. In some cases,
taking such ‘weak’ conclusions may not be very satisfying
— people tend to like strong and affirmative conclusions —
but it is the best we can do given the statistical nature of the
measurements.

Consider now two alternatives with n1 measurements
of the first alternative and n2 measurements of the second
alternative. We then first determine the sample means x̄1

and x̄2 and the sample standard deviations s1 and s2. We
subsequently compute the difference of the means as x̄ =
x̄1 − x̄2. The standard deviation sx of this difference of the
mean values is then computed as:

sx =

√
s2
1

n1
+

s2
2

n2
.

The confidence interval for the difference of the means is
then given by

c1 = x̄− z1−α/2sx

c2 = x̄ + z1−α/2sx.

If this confidence interval includes zero, we can conclude,
at the confidence level chosen, that there is no statistically
significant difference between the two alternatives.

The above only holds in case the number of measure-
ments is large on both systems, i.e., n1 ≥ 30 and n2 ≥ 30. In
case the number of measurements on at least one of the two
systems is smaller than 30, then we can no longer assume
that the difference of the means is normally distributed. We
then need to resort to the Student’s t distribution by replac-
ing the value z1−α/2 in the above formula with t1−α/2;ndf

;
the degrees of freedom ndf is then to be approximated by the
integer number nearest to

ndf =

(
s2
1

n1
+ s2

2
n2

)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

.

3.4 Comparing more than two alternatives: ANOVA
The approach discussed in the previous section to compar-
ing two alternatives is simple and intuitively appealing, how-
ever, it is limited to comparing two alternatives. A more gen-
eral and more robust technique is called Analysis of Vari-
ance (ANOVA). ANOVA separates the total variation in a set
of measurements into a component due to random fluctua-
tions in the measurements and a component due to the actual
differences among the alternatives. In other words, ANOVA
separates the total variation observed in (i) the variation ob-
served within each alternative, which is assumed to be a
result of random effects in the measurements, and (ii) the
variation between the alternatives. If the variation between

the alternatives is larger than the variation within each alter-
native, then it can be concluded that there is a statistically
significant difference between the alternatives. ANOVA as-
sumes that the variance in measurement error is the same
for all of the alternatives. Also, ANOVA assumes that the
errors in the measurements for the different alternatives are
independent and Gaussian distributed. However, ANOVA is
fairly robust towards non-normality, especially in case there
is a balanced number of measurements for each of the alter-
natives.

To present the general idea behind ANOVA it is conve-
nient to organize the measurements as shown in Table 2:
there are n · k measurements — n measurements for all k
alternatives. The column means are defined as:

ȳ.j =
∑n

i=1 yij

n
,

and the overall mean is defined as:

ȳ.. =

∑k
j=1

∑n
i=1 yij

n · k
.

It is then useful to compute the variation due to the effects
of the alternatives, sum-of-squares due to the alternatives
(SSA), as the sum of the squares of the differences between
the mean of the measurements for each alternative and the
overall mean, or:

SSA = n

k∑
j=1

(ȳ.j − ȳ..)2.

The variation due to random effects within an alternative
is computed as the sum of the squares of the differences
(or errors) between the individual measurements and their
respective alternative mean, or:

SSE =
k∑

j=1

n∑
i=1

(yij − ȳ.j)2.

Finally, the sum-of-squares total, SST, or the sum of squares
of the differences between the individual measurements and
the overall mean is defined as:

SST =
k∑

j=1

n∑
i=1

(yij − ȳ..)2.

It can be shown that

SST = SSA + SSE.

Or, in other words, the total variation observed can be split
up into a within alternative (SSE) component and a between
alternatives (SSA) component.

The intuitive understanding of an ANOVA analysis now
is to quantify whether the variation across alternatives, SSA,
is ‘larger’ in some statistical sense than the variation within

Alternatives
Measurements 1 2 . . . j . . . k Overall mean
1 y11 y12 . . . y1j . . . y1k

2 y21 y22 . . . y2j . . . y2k

...
...

...
. . .

...
. . .

...
i yi1 yi2 . . . yij . . . yik

...
...

...
. . .

...
. . .

...
n yn1 yn2 . . . ynj . . . ynk

Column means ȳ.1 ȳ.2 . . . ȳ.j . . . ȳ.k ȳ..

Table 2. Organizing the n measurements for k alternatives
in an ANOVA analysis.

each alternative, SSE, which is due to random measurement
errors. A simple way of doing this is to compare the fractions
SSA/SST versus SSE/SST . A statistically more rigor-
ous approach is to apply a statistical test, called the F-test,
which is used to test whether two variances are significantly
different. We will not go into further detail here about how
to apply the F-test, however, we refer the interested reader to
a reference textbook on statistics, such as [16].

After completing an ANOVA test, we may conclude that
there is a statistically significant difference between the al-
ternatives, however, the ANOVA test does not tell us be-
tween which alternatives there is a statistically significant
difference. There exists a number of techniques to find out
between which alternatives there is or there is not a statisti-
cally significant difference. One approach, which we will be
using in this paper, is called the Tukey HSD (Honestly Sig-
nificantly Different) test. The advantage of the Tukey HSD
test over simpler approaches, such as pairwise t-tests for
comparing means, is that it limits the probability of making
an incorrect conclusion in case there is no statistically signif-
icant difference between all the means and in case most of
the means are equal but one or two are different. For a more
detailed discussion, we refer to the specialized literature.

In summary, an ANOVA analysis allows for varying one
input variable within the experiment. For example, in case
a benchmarker wants to compare the performance of four
virtual machines for a given benchmark, a given heap size
and a given hardware platform, the virtual machine then is
the input variable and the four virtual machines are the four
alternatives. Another example where an ANOVA analysis
can be used is when a benchmarker wants to compare the
performance of various garbage collectors for a given virtual
machine, a given benchmark and a given system setup.

3.5 Multi-factor and multivariate experiments
Multi-factor ANOVA. The ANOVA analysis discussed in
the previous section is a so called one-factor ANOVA, mean-
ing that only a single input variable can be varied during
the setup. A multi-factor ANOVA allows for studying the
effect of multiple input variables and all of their interac-
tions, along with an indication of the magnitude of the mea-
surement error. For example, an experiment where both the

garbage collector and the heap size are varied, could provide
deep insight into the effect on overall performance of both
the garbage collector and the heap size individually as well
as the interaction of both the garbage collector and the heap
size.

Multivariate ANOVA. The ANOVA analyses discussed so
far only consider, what is called, a single dependent vari-
able. In a Java context, this means that an ANOVA analysis
only allows for making conclusions about a single bench-
mark. However, a benchmarker typically considers a num-
ber of benchmarks and is interested in the performance for
all the benchmarks — it is important for a performance eval-
uation study to consider a large enough set of representative
benchmarks. A multivariate ANOVA (MANOVA) allows for
considering multiple dependent variables, or multiple bench-
marks, within one single experiment. The key point of per-
forming a MANOVA instead of multiple ANOVA analyses
on the individual dependent variables, is that a MANOVA
analysis takes into account the correlation across the depen-
dent variables whereas multiple ANOVAs do not.

3.6 Discussion
In the previous sections, we explored a wide range of statis-
tical techniques and we discussed how to apply these tech-
niques within a Java performance evaluation context. How-
ever, using the more complex analyses, such as multi-factor
ANOVA and MANOVA, raises two concerns. First, their
output is often non-intuitive and in many cases hard to un-
derstand without deep background knowledge in statistics.
Second, as mentioned before, doing all the measurements re-
quired as input to the analyses can be very time-consuming,
up to the point where it becomes intractable. For these rea-
sons, we limit ourselves to a Java performance evaluation
methodology that is practical yet statistically rigorous. The
methodology that we present computes confidence intervals
which allows for doing comparisons between alternatives on
a per-benchmark basis, as discussed in sections 3.3 and 3.4.
Of course, a benchmarker who is knowledgeable in statistics
may perform more complex analyses.

4. A practical statistically rigorous
methodology

Having discussed the general theory of statistics and how
it relates to Java performance evaluation, we suggest more
practical and statistically rigorous methodologies for quan-
tifying startup and steady-state Java performance by com-
bining a number of existing approaches. The evaluation sec-
tion in this paper then compares the accuracy of prevalent
data analysis methodologies against these statistically rigor-
ous methodologies.

Notation. We refer to xij as the measurement of the j-th
benchmark iteration of the i-th VM invocation.

4.1 Startup performance
The goal of measuring start-up performance is to measure
how quickly a Java virtual machine can execute a relatively
short-running Java program. There are two key differences
between startup and steady-state performance. First, startup
performance includes class loading whereas steady-state
performance does not, and, second, startup performance is
affected by JIT compilation, substantially more than steady-
state performance.

For measuring startup performance, we advocate a two-
step methodology:

1. Measure the execution time of multiple VM invocations,
each VM invocation running a single benchmark itera-
tion. This results in p measurements xij with 1 ≤ i ≤ p
and j = 1.

2. Compute the confidence interval for a given confidence
level as described in Section 3.2. If there are more than
30 measurements, use the standard normal z-statistic;
otherwise use the Student t-statistic.

Recall that the central limit theory assumes that the mea-
surements are independent. This may not be true in prac-
tice, because the first VM invocation in a series of measure-
ments may change system state that persists past this first
VM invocation, such as dynamically loaded libraries persist-
ing in physical memory or data persisting in the disk cache.
To reach independence, we discard the first VM invocation
for each benchmark from our measurements and only retain
the subsequent measurements, as done by several other re-
searchers; this assumes that the libraries are loaded when
doing the measurements.

4.2 Steady-state performance
Steady-state performance concerns long-running applica-
tions for which start-up is of less interest, i.e., the appli-
cation’s total running time largely exceeds start-up time.
Since most of the JIT compilation is performed during start-
up, steady-state performance suffers less from variability
due to JIT compilation. However, the other sources of non-
determinism, such as thread scheduling and system effects,
still remain under steady-state, and thus need to be consid-
ered.

There are two issues with quantifying steady-state per-
formance. The first issue is to determine when steady-state
performance is reached. Long-running applications typically
run on large or streaming input data sets. Benchmarkers typ-
ically approximate long-running benchmarks by running ex-
isting benchmarks with short inputs multiple times within a
single VM invocation, i.e., the benchmark is iterated multi-
ple times. The question then is how many benchmark iter-
ations do we need to consider before we reach steady-state
performance within a single VM invocation? This is a dif-
ficult question to answer in general; the answer will differ

from application to application, and in some cases it may
take a very long time before steady-state is reached.

The second issue with steady-state performance is that
different VM invocations running multiple benchmark iter-
ations may result in different steady-state performances [2].
Different methods may be optimized at different levels of
optimization across different VM invocations, changing
steady-state performance.

To address these two issues, we advocate a four-step
methodology for quantifying steady-state performance:

1. Consider p VM invocations, each VM invocation running
at most q benchmark iterations. Suppose that we want to
retain k measurements per invocation.

2. For each VM invocation i, determine the iteration si

where steady-state performance is reached, i.e., once the
coefficient of variation (CoV)1 of the k iterations (si − k
to si) falls below a preset threshold, say 0.01 or 0.02.

3. For each VM invocation, compute the mean x̄i of the k
benchmark iterations under steady-state:

x̄i =
si∑

j=si−k

xij .

4. Compute the confidence interval for a given confidence
level across the computed means from the different VM
invocations. The overall mean equals x̄ =

∑p
i=1 x̄i, and

the confidence interval is computed over the x̄i measure-
ments.

We thus first compute the mean x̄i across multiple iter-
ations within a single VM invocation i, and subsequently
compute the confidence interval across the p VM invoca-
tions using the x̄i means, see steps 3 and 4 from above. The
reason for doing so is to reach independence across the mea-
surements from which we compute the confidence interval:
the various iterations within a single VM invocation are not
independent, however, the mean values x̄i across multiple
VM invocations are independent.

4.3 In practice
To facilitate the application of these start-up and steady-state
performance evaluation methodologies, we provide publicly
available software called JavaStats 2 that readily works with
the SPECjvm98 and DaCapo benchmark suites. For startup
performance, a script (i) triggers multiple VM invocations
running a single benchmark iteration, (ii) monitors the exe-
cution time of each invocation, and (iii) computes the confi-
dence interval for a given confidence level. If the confidence
interval achieves a desired level of precision, i.e., the confi-
dence interval is within 1% or 2% of the sample mean, the
script stops the experiment, and reports the sample mean and

1 CoV is defined as the standard deviation s divided by the mean x̄.
2 Available at http://www.elis.UGent.be/JavaStats/.

its confidence interval. Or, if the desired level of precision is
not reached after a preset number of runs, e.g., 30 runs, the
obtained confidence interval is simply reported along with
the sample mean.

For steady-state performance, JavaStats collects execu-
tion times across multiple VM invocations and across mul-
tiple benchmark iterations within a single VM invocation.
JavaStats consists of a script running multiple VM invoca-
tions as well as a benchmark harness triggering multiple iter-
ations within a single VM invocation. The output for steady-
state performance is similar to what is reported above for
startup performance.

SPECjvm98 as well as the DaCapo benchmark suite al-
ready come with a harness to set the desired number of
benchmark iterations within a single VM invocation. The
current version of the DaCapo harness also determines how
many iterations are needed to achieve a desired level of co-
efficient of variation (CoV). As soon as the observed CoV
drops below a given threshold (the convergence target) for a
given window of iterations, the execution time for the next it-
eration is reported. JavaStats extends the existing harnesses
(i) by enabling measurements across multiple VM invoca-
tions instead of a single VM invocation, and (ii) by comput-
ing and reporting confidence intervals.

These Java performance analysis methodologies do not
control non-determinism. However, a statistically rigorous
data analysis approach can also be applied together with an
experimental design that controls the non-determinism, such
as replay compilation. Confidence intervals can be used to
quantify the remaining random fluctuations in the system
under measurement.

A final note that we would like to make is that collecting
the measurements for a statistically rigorous data analysis
can be time-consuming, especially if the experiment needs a
large number of VM invocations and multiple benchmark
iterations per VM invocation (in case of steady-state per-
formance). Under time pressure, statistically rigorous data
analysis can still be applied considering a limited number
of measurements, however, the confidence intervals will be
looser.

5. Experimental Setup
The next section will evaluate prevalent data analysis ap-
proaches against statistically rigorous data analysis. For do-
ing so, we consider an experiment in which we compare var-
ious garbage collection (GC) strategies — similar to what is
being done in the GC research literature. This section dis-
cusses the experimental setup: the virtual machine configu-
rations, the benchmarks and the hardware platforms.

5.1 Virtual machine and GC strategies
We use the Jikes Research Virtual Machine (RVM) [1] which
is an open source Java virtual machine written in Java. Jikes
RVM employs baseline compilation to compile a method

upon its first execution; hot methods are sampled by an OS-
triggered sampling mechanism and subsequently scheduled
for further optimization. There are three optimization levels
in Jikes RVM: 0, 1 and 2. We use the February 12, 2007 SVN
version of Jikes RVM in all of our experiments.

We consider five garbage collection strategies in to-
tal, all implemented in the Memory Management Toolkit
(MMTk) [6], the garbage collection toolkit provided with
the Jikes RVM. The five garbage collection strategies are: (i)
CopyMS, (ii) GenCopy, (iii) GenMS, (iv) MarkSweep, and
(v) SemiSpace; the generational collectors use a variable-
size nursery. GC poses a complex space-time trade-off, and
it is unclear which GC strategy is the winner without doing
a detailed experimentation. We did not include the GenRC,
MarkCompact and RefCount collectors from MMTk, be-
cause we were unable to successfully run Jikes with the
GenRC and MarkCompact collector for some of the bench-
marks; and RefCount did yield performance numbers that
are statistically significantly worse than any other GC strat-
egy across all benchmarks.

5.2 Benchmarks
Table 3 shows the benchmarks used in this study. We use
the SPECjvm98 benchmarks [23] (first seven rows), as
well as seven DaCapo benchmarks [7] (next seven rows).
SPECjvm98 is a client-side Java benchmark suite consisting
of seven benchmarks. We run all SPECjvm98 benchmarks
with the largest input set (-s100). The DaCapo benchmark
is a recently introduced open-source benchmark suite; we
use release version 2006-10-MR2. We use the seven bench-
marks that execute properly on the February 12, 2007 SVN
version of Jikes RVM. We use the default (medium size)
input set for the DaCapo benchmarks.

In all of our experiments, we consider a per-benchmark
heap size range, following [5]. We vary the heap size from
a minimum heap size up to 6 times this minimum heap size,
in steps of 0.25 times the minimum heap size. The per-
benchmark minimum heap sizes are shown in Table 3.

5.3 Hardware platforms
Following the advice by Blackburn et al. [7], we consider
multiple hardware platforms in our performance evaluation
methodology: a 2.1GHz AMD Athlon XP, a 2.8GHz Intel
Pentium 4, and a 1.42GHz Mac PowerPC G4 machine. The
AMD Athlon and Intel Pentium 4 have 2GB of main mem-
ory; the Mac PowerPC G4 has 1GB of main memory. These
machines run the Linux operating system, version 2.6.18. In
all of our experiments we consider an otherwise idle and un-
loaded machine.

6. Evaluation
We now evaluate the proposed statistically rigorous Java
performance data analysis methodology in three steps. We
first measure Java program run-time variability. In a second

benchmark description min heap
size (MB)

compress file compression 24
jess puzzle solving 32
db database 32
javac Java compiler 32
mpegaudio MPEG decompression 16
mtrt raytracing 32
jack parsing 24
antlr parsing 32
bloat Java bytecode optimization 56
fop PDF generation from XSL-FO 56
hsqldb database 176
jython Python interpreter 72
luindex document indexing 32
pmd Java class analysis 64

Table 3. SPECjvm98 (top seven) and DaCapo (bottom
seven) benchmarks considered in this paper. The rightmost
column indicates the minimum heap size, as a multiple of
8MB, for which all GC strategies run to completion.

0.95

1.00

1.05

co
m

pr
es

s

je
ss db

ja
va

c

m
pe

ga
ud

io

m
tr

t

ja
ck

an
tlr

bl
oa

t

fo
p

hs
ql

db

jy
th

on

lu
in

de
x

pm
d

● ●
●

●
●

● ●
● ● ● ●

●
● ●

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Figure 2. Run-time variability normalized to the mean exe-
cution time for start-up performance. These experiments as-
sume 30 VM invocations on the AMD Athlon platform with
the GenMS collector and a per-benchmark heap size that is
twice as large as the minimal heap size reported in Table 3.
The dot represents the median.

step, we compare prevalent methods from Section 2 against
the statistically rigorous method from Section 3. And as a
final step, we demonstrate the use of the software provided
to perform a statistically rigorous performance evaluation.

6.1 Run-time variability
The basic motivation for this work is that running a Java
program introduces run-time variability caused by non-
determinism. Figure 2 demonstrates this run-time variability
for start-up performance, and Figure 3 shows the same for

0.9

1.0

1.1

1.2

1.3

1.4
co

m
pr

es
s

je
ss db

ja
va

c

m
pe

ga
ud

io

m
tr

t

ja
ck

bl
oa

t

fo
p

hs
ql

db

jy
th

on

lu
in

de
x

pm
d

●
●

●

●

●

● ●
●

● ●
● ●

●N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Figure 3. Run-time variability normalized to the mean ex-
ecution time for steady-state performance. These experi-
ments assume 10 VM invocations and 30 benchmark iter-
ations per VM invocation on the AMD Athlon platform with
the GenMS collector and a per-benchmark heap size that is
twice as large as the minimal heap size reported in Table 3.
The dot represents the median.

steady-state performance3. This experiment assumes 30 VM
invocations (and a single benchmark iteration) for start-up
performance and 10 VM invocations and 30 benchmark it-
erations per VM invocation for steady-state performance.
These graphs show violin plots [13]4; all values are nor-
malized to a mean of one. A violin plot is very similar to
a box plot. The middle point shows the median; the thick
vertical line represents the first and third quartile (50% of
all the data points are between the first and third quartile);
the thin vertical line represents the upper and lower adjacent
values (representing an extreme data point or 1.5 times the
interquartile range from the median, whichever comes first);
and the top and bottom values show the maximum and min-
imum values. The important difference with a box plot is
that the shape of the violin plot represents the density: the
wider the violin plot, the higher the density. In other words,
a violin plot visualizes a distribution’s probability density
function whereas a box plot does not.

There are a couple of interesting observations to be made
from these graphs. First, run-time variability can be fairly
significant, for both startup and steady-state performance.
For most of the benchmarks, the coefficient of variation
(CoV), defined as the standard deviation divided by the
mean, is around 2% and is higher for several benchmarks.
Second, the maximum performance difference between the
maximum and minimum performance number varies across
the benchmarks, and is generally around 8% for startup and
20% for steady-state. Third, most of the violin plots in Fig-

3 The antlr benchmark does not appear in Figure 3 because we were unable
to run more than a few iterations within a single VM invocation.
4 The graphs shown were made using R – a freely available statistical
framework – using the vioplot package available from the CRAN (at http:
//www.r-project.org).

ures 2 and 3 show that the measurement data is approxi-
mately Gaussian distributed with the bulk weight around the
mean. Statistical analyses, such as the Kolmogorov-Smirnov
test, do not reject the hypothesis that in most of our measure-
ments the data is approximately Gaussian distributed — in
fact, this is the case for more than 90% of the experiments
done in this paper involving multiple hardware platforms,
benchmarks, GC strategies and heap sizes. However, in a
minority of the measurements we observe non-Gaussian
distributed data; some of these have skewed distributions
or bimodal distributions. Note however that a non-Gaussian
distribution does not affect the generality of the proposed
statistically rigorous data analysis technique. As discussed
in section 3.2.3, the central limit theory does not assume the
measurement data to be Gaussian distributed; also, ANOVA
is robust towards non-normality.

6.2 Evaluating prevalent methodologies
We now compare the prevalent data analysis methodologies
against the statistically rigorous data analysis approach ad-
vocated in this paper. For doing so, we set up an experiment
in which we (pairwise) compare the overall performance of
various garbage collectors over a range of heap sizes. We
consider the various GC strategies as outlined in section 5,
a range of heap sizes from the minimum heap size up to six
times this minimum heap size in 0.25 minimum heap size
increments — there are 21 heap sizes in total. Computing
confidence intervals for the statistically rigorous methodol-
ogy is done, following section 3, by applying an ANOVA
and a Tukey HSD test to compute simultaneous 95% confi-
dence intervals for all the GC strategies per benchmark and
per heap size.

To evaluate the accuracy of the prevalent performance
evaluation methodologies we consider all possible pairwise
GC strategy comparisons for all heap sizes considered. For
each heap size, we then determine whether prevalent data
analysis leads to the same conclusion as statistically rigorous
data analysis. In other words, there are C2

5 = 10 pairwise GC
comparisons per heap size and per benchmark. Or, 210 GC
comparisons in total across all heap sizes per benchmark.

We now classify all of these comparisons in six cate-
gories, see Table 4, and then report the relative frequency of
each of these six categories. These results help us better un-
derstand the frequency of misleading and incorrect conclu-
sions using prevalent performance methodologies. We make
a distinction between overlapping confidence intervals and
non-overlapping confidence intervals, according to the sta-
tistically rigorous methodology.

Overlapping confidence intervals. Overlapping confidence
intervals indicate that the performance differences observed
may be due to random fluctuations. As a result, any con-
clusion taken by a methodology that concludes that one al-
ternative performs better than another is questionable. The
only valid conclusion with overlapping confidence intervals

prevalent methodology
performance difference < θ performance difference ≥ θ

statistically rigorous methodology
overlapping intervals indicative misleading

non-overlapping intervals, same order misleading but correct correct
non-overlapping intervals, not same order misleading and incorrect incorrect

Table 4. Classifying conclusions by a prevalent methodology in comparison to a statistically rigorous methodology.

is that there is no statistically significant difference between
the alternatives.

Performance analysis typically does not state that one al-
ternative is better than another when the performance dif-
ference is very small though. To mimic this practice, we in-
troduce a threshold θ to classify decisions: a performance
difference smaller than θ is considered a small performance
difference and a performance difference larger than θ is con-
sidered a large performance difference. We vary the θ thresh-
old from 1% up to 3%.

Now, in case the performance difference by the prevalent
methodology is considered large, we conclude the prevalent
methodology to be ‘misleading’. In other words, the preva-
lent methodology says there is a significant performance dif-
ference whereas the statistics conclude that this performance
difference may be due to random fluctuations. If the perfor-
mance difference is small based on the prevalent methodol-
ogy, we consider the prevalent methodology to be ‘indica-
tive’.

Non-overlapping confidence intervals. Non-overlapping
confidence intervals suggest that we can conclude that
there are statistically significant performance differences
among the alternatives. There are two possibilities for non-
overlapping confidence intervals. If the ranking by the statis-
tically rigorous methodology is the same as the ranking by
the prevalent methodology, then the prevalent methodology
is considered correct. If the methodologies have opposite
rankings, then the prevalent methodology is considered to
be incorrect.

To incorporate a performance analyst’s subjective judge-
ment, modeled through the θ threshold from above, we make
one more distinction based on whether the performance dif-
ference is considered small or large. In particular, if the
prevalent methodology states there is a small difference, the
conclusion is classified to be misleading. In fact, there is a
statistically significant performance difference, however, the
performance difference is small.

We have four classification categories for non-overlapping
confidence intervals, see Table 4. If the performance differ-
ence by the prevalent methodology is larger than θ, and the
ranking by the prevalent methodology equals the ranking
by the statistically rigorous methodology, then the prevalent
methodology is considered to be ‘correct’; if the prevalent
methodology has the opposite ranking as the statistically
rigorous methodology, the prevalent methodology is consid-
ered ‘incorrect’. In case of a small performance difference
according to the prevalent methodology, and the same rank-

ing as the statistically rigorous methodology, the prevalent
methodology is considered to be ‘misleading but correct’;
in case of an opposite ranking, the prevalent methodology is
considered ‘misleading and incorrect’.

6.2.1 Start-up performance
We first focus on start-up performance. For now, we limit
ourselves to prevalent methodologies that do not use replay
compilation. We treat steady-state performance and replay
compilation in subsequent sections.

Figure 4 shows the percentage GC comparisons by the
prevalent data analysis approaches leading to indicative,
misleading and incorrect conclusions for θ = 1% and
θ = 2% thresholds. The various graphs show different hard-
ware platforms and different θ thresholds. The various bars
in these graphs show various prevalent methodologies. There
are bars for reporting the best, the second best, the worst,
the mean and the median performance number; for 3, 5, 10
and 30 VM invocations and a single benchmark iteration —
for example, the ‘best of 3’ means taking the best perfor-
mance number out of 3 VM invocations. The statistically
rigorous methodology that we compare against considers 30
VM invocations and a single benchmark iteration per VM
invocation, and considers 95% confidence intervals.

There are a number of interesting observations to be made
from these graphs.

• First of all, prevalent methods can be misleading in a
substantial fraction of comparisons between alternatives,
i.e., the total fraction misleading comparisons ranges up
to 16%. In other words, in up to 16% of the comparisons,
the prevalent methodology makes too strong a statement
saying that one alternative is better than another.

• For a fair number of comparisons, the prevalent method-
ology can even lead to incorrect conclusions, i.e., the
prevalent methodology says one alternative is better (by
more than θ percent) than another, whereas the statisti-
cally rigorous methodology takes the opposite conclusion
based on non-overlapping confidence intervals. For some
prevalent methodologies, the fraction of incorrect com-
parisons can be more than 3%.

• We also observe that some prevalent methodologies per-
form better than others. In particular, mean and median
are consistently better than best, second best and worst.
The accuracy of the mean and median methods seems to
improve with the number of measurements, whereas the
best, second best and worst methods do not.

(a) AMD Athlon – θ = 1% (b) AMD Athlon – θ = 2%

0
5

10
15
20
25
30

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

0
5

10
15
20
25
30

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

(c) Intel Pentium 4 – θ = 1% (d) Intel Pentium 4 – θ = 2%

0
5

10
15
20
25
30

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

0
5

10
15
20
25
30

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

(e) PowerPC G4 – θ = 1% (f) PowerPC G4 – θ = 2%

0
5

10
15
20
25
30

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

0
5

10
15
20
25
30

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

Figure 4. Percentage GC comparisons by prevalent data analysis approaches leading to incorrect, misleading or indicative
conclusions. Results are shown for the AMD Athlon machine with θ = 1% (a) and θ = 2% (b), for the Intel Pentium 4
machine with θ = 1% (c) and θ = 2% (d), and for the PowerPC G4 with θ = 1% (e) and θ = 2% (f).

θ-threshold

0

10

20

30

40

50

60

70

0

0.2
5 0.5 0.7
5 1

1.2
5 1.5 1.7
5 2

2.2
5 2.5 2.7
5 3

Pe
rc

en
ta

ge
 o

f t
ot

al
 c

om
pa

ris
on

s

incorrect misleading misleading and incorrect misleading but correct indicative

Figure 5. The classification for javac as a function of the
threshold θ ∈ [0; 3] for the ‘best’ prevalent method, on the
AMD Athlon.

• Increasing the θ threshold reduces the number of in-
correct conclusions by the prevalent methodologies and
at the same time also reduces the number of mislead-
ing and correct conclusions. By consequence, the num-
ber of misleading-but-correct, misleading-and-incorrect
and indicative conclusions increases, or, in other words,
the conclusiveness of a prevalent methodology reduces
with an increasing θ threshold. Figure 5 shows the clas-
sification as a function of the θ threshold for the javac
benchmark, which we found to be a representative ex-
ample benchmark. The important conclusion here is that
increasing the θ threshold for a prevalent methodology
does not replace a statistically rigorous methodology.

• One final interesting observation that is consistent with
the observations made by Blackburn et al. [7], is that the
results presented in Figure 4 vary across different hard-
ware platforms. In addition, the results also vary across
benchmarks, see Figure 6 which shows per-benchmark

0

10

20

30

40

50

60

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
dpe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s

incorrect misleading misleading and incorrect misleading but correct indicative

Figure 6. Per-benchmark percentage GC comparisons by
the ‘best’ method classified as misleading, incorrect and
indicative on the AMD Athlon machine with θ = 1%.

0

5

10

15

20

25

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30

pe
rc

en
ta

ge
 o

f t
ot

al
 c

om
pa

ris
on

s

incorrect misleading misleading and incorrect misleading but correct indicative

Figure 7. The (in)accuracy of comparing the GenMS GC
strategy against four other GC strategies using prevalent
methodologies, for θ = 1% on the AMD Athlon machine.

results for the ‘best’ prevalent method; we obtained sim-
ilar results for the other methods. Some benchmarks are
more sensitive to the data analysis method than oth-
ers. For example, jess and hsqldb are almost insensitive,
whereas other benchmarks have a large fraction mislead-
ing and incorrect conclusions; db and javac for example
show more than 3% incorrect conclusions.

A VM developer use case. The evaluation so far quantified
comparing all GC strategies against all other GC strategies,
a special use case. Typically, a researcher or developer is
merely interested in comparing a new feature against already
existing approaches. To mimic this use case, we compare one
GC strategy, GenMS, against all other four GC strategies.
The results are shown in Figure 7 and are very much in line
with the results presented in Figure 4: prevalent data analysis
methods are misleading in many cases, and in some cases
even incorrect.

An application developer use case. Our next case study
takes a look from the perspective of an application devel-
oper by looking at the performance of a single benchmark.
Figure 8 shows two graphs for db for the best of 30 and the
confidence interval based performance evaluation methods.
The different curves represent different garbage collectors.
These graphs clearly show that different conclusions may be

(a) mean of 30 measurements with a 95% confidence interval

9
9.5
10

10.5
11

11.5
12

12.5
13

32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

heap size (MB)

ex
ec

ut
io

n
tim

e
(s

)

CopyMS GenCopy GenMS MarkSweep SemiSpace

(b) best of 30 measurements

9
9.5
10

10.5
11

11.5
12

12.5
13

32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

heap size (MB)
ex

ec
ut

io
n

tim
e

(s
)

CopyMS GenCopy GenMS MarkSweep SemiSpace

Figure 8. Startup execution time (in seconds) for db as a
function of heap size for five garbage collectors; mean of 30
measurements with 95% confidence intervals (top) and best
of 30 measurements (bottom).

taken depending on the evaluation method used. For exam-
ple, for heap sizes between 80MB and 120MB, one would
conclude using the ‘best’ method that CopyMS clearly out-
performs MarkSweep and performs almost equally well as
GenCopy. However, the confidence intervals show that the
performance difference between CopyMS and MarkSweep
could be due to random fluctuations, and in addition, the sta-
tistically rigorous method clearly shows that GenCopy sub-
stantially outperforms CopyMS.

Figure 9 shows similar graphs for antlr. Figure 10 sug-
gests that for large heap sizes (6 to 20 times the minimum)
most of the performance differences observed between the
CopyMS, GenCopy and SemiSpace garbage collectors are
due to non-determinism. These experiments clearly illus-
trate that both experimental design and data analysis are
important factors in a Java performance analysis method-
ology. Experimental design may reveal performance differ-
ences among design alternatives, but without statistical data
analysis, we do not know if these differences are meaningful.

6.2.2 Steady-state performance
Figure 11 shows normalized execution time (averaged over
a number of benchmarks) as a function of the number iter-
ations for a single VM invocation. This graph shows that it
takes a number of iterations before steady-state performance
is reached: the first 3 iterations obviously seem to be part

(a) mean of 30 measurements with a 95% confidence interval

5
5.2
5.4
5.6
5.8

6
6.2
6.4
6.6
6.8

7

32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

heap size (MB)

ex
ec

ut
io

n
tim

e
(s

)

CopyMS GenCopy GenMS MarkSweep SemiSpace

(b) best of 30 measurements

5

5.5

6

6.5

7

7.5

8

32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

heap size (MB)

ex
ec

ut
io

n
tim

e
(s

)

CopyMS GenCopy GenMS MarkSweep SemiSpace

Figure 9. Startup execution time (in seconds) for antlr as a
function of heap size for five garbage collectors; mean of 30
measurements with 95% confidence intervals (top) and best
of 30 measurements (bottom).

of startup performance, and it takes more than 10 iterations
before we actually reach steady-state performance.

For quantifying steady-state performance, following Sec-
tion 4.2, we retain k = 10 iterations per VM invocation
for which the CoV is smaller than 0.02. Figure 12 com-
pares three prevalent steady-state performance methodolo-
gies against the statistically rigorous approach: (i) best of
median (take the median per iteration across all VM invoca-
tions, and then select the best median iteration), (ii) best per-
formance number, and (iii) second best performance num-
ber across all iterations and across all VM invocations. For
these prevalent methods we consider 1, 3 and 5 VM invoca-
tions and 3, 5, 10 and 30 iterations per VM invocation. The
general conclusion concerning the accuracy of the prevalent
methods is similar to those for startup performance. Preva-
lent methods are misleading in more 20% of the cases for a
θ = 1% threshold, more than 10% for a θ = 2% threshold,
and more than 5% for a θ = 3% threshold. Also, the number
of incorrect conclusions is not negligible (a few percent for
small θ thresholds).

6.2.3 Replay compilation
Replay compilation is an increasingly popular experimental
design setup that removes the non-determinism from com-
pilation in the VM. It is particularly convenient for specific
topics of research. One such example is GC research: replay
compilation enables the experimenter to focus on GC per-

(a) mean of 30 measurements with a 95% confidence interval

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

54
4

57
6

60
8

64
0

heap size (MB)

ex
ec

ut
io

n
tim

e
(s

)

CopyMS GenCopy GenMS MarkSweep SemiSpace

(b) best of 30 measurements

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

54
4

57
6

60
8

64
0

heap size (MB)
ex

ec
ut

io
n

tim
e

(s
)

CopyMS GenCopy GenMS MarkSweep SemiSpace

Figure 10. Startup execution time (in seconds) for antlr
over a range of large heap sizes (6 to 20 times the minimum
heap size) for five garbage collectors; mean of 30 measure-
ments with 95% confidence intervals (top) and best of 30
measurements (bottom).

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

number of iterations

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

Figure 11. Normalized execution time as a function of the
number of iterations on the AMD Athlon machine.

formance while controlling non-determinism by the VM’s
adaptive compilation and optimization subsystem.

The goal of this section is twofold. First, we focus on
experimental design and quantify how replay compilation
compares against non-controlled compilation, assuming sta-
tistically rigorous data analysis. Second, we compare preva-
lent data analysis techniques against statistically rigorous
data analysis under replay compilation.

In our replay compilation approach, we analyze 7 bench-
mark runs in separate VM invocations and take the optimal
(yielding the shortest execution time) compilation plan. We
also evaluated the majority plan and obtained similar results.

(a) θ = 1%

0
5

10
15
20
25
30
35
40
45

be
st

of
 m

ed
ian

 o
f (

1,
3)

be
st

 of
 (1

, 3
)

se
co

nd
_b

es
t

of
 (1

, 3
)

be
st

of
 m

ed
ian

 o
f (

1,
5)

be
st

 of
 (1

, 5
)

se
co

nd
_b

es
t

of
 (1

, 5
)

be
st

of
 m

ed
ian

 o
f (

1,
10

)
be

st
 of

 (1
, 1

0)

se
co

nd
_b

es
t

of
 (1

, 1
0)

be
st

of
 m

ed
ian

 o
f (

1,
30

)
be

st
 of

 (1
, 3

0)

se
co

nd
_b

es
t

of
 (1

, 3
0)

be
st

of
 m

ed
ian

 o
f (

3,
3)

be
st

 of
 (3

, 3
)

se
co

nd
_b

es
t

of
 (3

, 3
)

be
st

of
 m

ed
ian

 o
f (

3,
5)

be
st

 of
 (3

, 5
)

se
co

nd
_b

es
t

of
 (3

, 5
)

be
st

of
 m

ed
ian

 o
f (

3,
10

)
be

st
 of

 (3
, 1

0)

se
co

nd
_b

es
t

of
 (3

, 1
0)

be
st

of
 m

ed
ian

 o
f (

3,
30

)
be

st
 of

 (3
, 3

0)

se
co

nd
_b

es
t

of
 (3

, 3
0)

be
st

of
 m

ed
ian

 o
f (

5,
3)

be
st

 of
 (5

, 3
)

se
co

nd
_b

es
t

of
 (5

, 3
)

be
st

of
 m

ed
ian

 o
f (

5,
5)

be
st

 of
 (5

, 5
)

se
co

nd
_b

es
t

of
 (5

, 5
)

be
st

of
 m

ed
ian

 o
f (

5,
10

)
be

st
 of

 (5
, 1

0)

se
co

nd
_b

es
t

of
 (5

, 1
0)

be
st

of
 m

ed
ian

 o
f (

5,
30

)
be

st
 of

 (5
, 3

0)

se
co

nd
_b

es
t

of
 (5

, 3
0)pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

(b) θ = 2%

0
5

10
15
20
25
30
35
40
45
50

be
st

of
 m

ed
ian

 o
f (

1,
3)

be
st

 of
 (1

, 3
)

se
co

nd
_b

es
t

of
 (1

, 3
)

be
st

of
 m

ed
ian

 o
f (

1,
5)

be
st

 of
 (1

, 5
)

se
co

nd
_b

es
t

of
 (1

, 5
)

be
st

of
 m

ed
ian

 o
f (

1,
10

)
be

st
 of

 (1
, 1

0)

se
co

nd
_b

es
t

of
 (1

, 1
0)

be
st

of
 m

ed
ian

 o
f (

1,
30

)
be

st
 of

 (1
, 3

0)

se
co

nd
_b

es
t

of
 (1

, 3
0)

be
st

of
 m

ed
ian

 o
f (

3,
3)

be
st

 of
 (3

, 3
)

se
co

nd
_b

es
t

of
 (3

, 3
)

be
st

of
 m

ed
ian

 o
f (

3,
5)

be
st

 of
 (3

, 5
)

se
co

nd
_b

es
t

of
 (3

, 5
)

be
st

of
 m

ed
ian

 o
f (

3,
10

)
be

st
 of

 (3
, 1

0)

se
co

nd
_b

es
t

of
 (3

, 1
0)

be
st

of
 m

ed
ian

 o
f (

3,
30

)
be

st
 of

 (3
, 3

0)

se
co

nd
_b

es
t

of
 (3

, 3
0)

be
st

of
 m

ed
ian

 o
f (

5,
3)

be
st

 of
 (5

, 3
)

se
co

nd
_b

es
t

of
 (5

, 3
)

be
st

of
 m

ed
ian

 o
f (

5,
5)

be
st

 of
 (5

, 5
)

se
co

nd
_b

es
t

of
 (5

, 5
)

be
st

of
 m

ed
ian

 o
f (

5,
10

)
be

st
 of

 (5
, 1

0)

se
co

nd
_b

es
t

of
 (5

, 1
0)

be
st

of
 m

ed
ian

 o
f (

5,
30

)
be

st
 of

 (5
, 3

0)

se
co

nd
_b

es
t

of
 (5

, 3
0)pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

Figure 12. The (in)accuracy of prevalent methodologies compared to steady-state performance: (x, y) denotes x VM invoca-
tions and y iterations per VM invocation; for SPECjvm98 on the AMD Athlon machine.

The compilation plan is derived for start-up performance us-
ing the GenMS configuration with a 512MB heap size. The
timing run consists of two benchmark iterations: the first
one, called mix, includes compilation activity, and the sec-
ond one, called stable, does not include compilation activity.
A full GC is performed between these two iterations. The
timing runs are repeated multiple times (3, 5, 10 and 30 times
in our setup).

Experimental design. Figure 13 compares mix replay ver-
sus startup performance as well as stable replay versus
steady-state performance, assuming non-controlled compi-
lation. We assume statistically rigorous data analysis for
both the replay compilation and non-controlled compila-
tion experimental setups. We classify all GC comparisons
in three categories: ‘agree’, ‘disagree’ and ‘inconclusive’,
see Table 5, and display the ‘disagree’ and ‘inconclusive’
categories in Figure 13. We observe replay compilation and
non-controlled compilation agree in 56% to 72% of all cases,
and are inconclusive in 17% (DaCapo mix versus startup) to
37% (SPECjvm98 stable versus steady-state) of all cases. In
up to 12% of all cases, see SPECjvm98 mix versus startup

(a) mix vs. startup (b) stable vs. steady-state

0

10

20

30

40

50

SP
EC

jv
m

98

Da
Ca

po

pe
rc

en
ta

ge
 o

f t
ot

al
 c

om
pa

ris
on

s

disagree inconclusive

0

10

20

30

40

50

SP
EC

jv
m

98

Da
Ca

po

pe
rc

en
ta

ge
 o

f t
ot

al
 c

om
pa

ris
on

s

disagree inconclusive

Figure 13. Comparing mix replay compilation versus
startup performance (a), and stable replay compilation ver-
sus steady-state performance (b) under non-controlled com-
pilation using statistically rigorous data analysis on the
AMD Athlon platform.

replay compilation
overlapping intervals non-overlapping intervals

A > B B > A

non-controlled compilation
overlapping intervals agree inconclusive

non-overlapping intervals, A > B inconclusive agree disagree
non-overlapping intervals, B > A inconclusive disagree agree

Table 5. Classifying conclusions by replay compilation versus non-controlled compilation.

0

5

10

15

20

25

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

Figure 14. Comparing prevalent data analysis versus statis-
tically rigorous data analysis under mix replay compilation,
assuming θ = 1% on the AMD Athlon platform.

0
2
4
6
8

10
12
14
16
18
20

be
st

of
 3

m
ea

n o
f 3

m
ed

ian
 of

 3
se

co
nd

_b
es

t o
f 3

wo
rst

 of
 3

be
st

of
 5

m
ea

n o
f 5

m
ed

ian
 of

 5
se

co
nd

_b
es

t o
f 5

wo
rst

 of
 5

be
st

of
 10

m
ea

n o
f 1

0
m

ed
ian

 of
 10

se
co

nd
_b

es
t o

f 1
0

wo
rst

 of
 10

be
st

of
 30

m
ea

n o
f 3

0
m

ed
ian

 of
 30

se
co

nd
_b

es
t o

f 3
0

wo
rst

 of
 30pe

rc
en

ta
ge

 o
f t

ot
al

 c
om

pa
ris

on
s incorrect misleading misleading and incorrect misleading but correct indicative

Figure 15. Comparing prevalent data analysis versus statis-
tically rigorous data analysis under stable replay compila-
tion, assuming θ = 1% on the AMD Athlon platform.

and DaCapo stable versus steady-state, both experimental
designs disagree. These two experimental designs offer dif-
ferent garbage collection loads and thus expose different
space-time trade-offs that the collectors make.

Data analysis. We now assume replay compilation as the
experimental design setup, and compare prevalent data anal-
ysis versus statistically rigorous data analysis. Figures 14
and 15 show the results for mix replay versus startup perfor-
mance, and stable replay versus steady-state performance,
respectively. These results show that prevalent data analysis
can be misleading under replay compilation for startup per-
formance: the fraction misleading conclusions is around 5%,
see Figure 14. For steady-state performance, the number of
misleading conclusions is less than 4%, see Figure 15.

(a) jess

0
1
2
3
4
5
6
7
8
9

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
number of measurements

co
nf

id
en

ce
 in

te
rv

al
 w

id
th

 a
s a

pe

rc
en

ta
ge

 o
f t

he
 m

ea
n

ex
ec

ut
io

n
tim

e

CopyMS GenCopy GenMS MarkSweep SemiSpace

(b) db

0
1
2
3
4
5
6
7
8
9

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
number of measurements

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 a
s a

pe

rc
en

ta
ge

 o
f t

he
 m

ea
n

ex
ec

ut
io

n
tim

e

CopyMS GenCopy GenMS MarkSweep SemiSpace

(c) mtrt

0
1
2
3
4
5
6
7
8
9

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
number of measurements

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 a
s a

pe

rc
en

ta
ge

 o
f t

he
 m

ea
n

ex
ec

ut
io

n
tim

e

CopyMS GenCopy GenMS MarkSweep SemiSpace

Figure 16. Confidence width as a percentage of the mean
(on the vertical axis) as a function of the number of measure-
ments taken (on the horizontal axis) for three benchmarks:
jess (top), db (middle) and mtrt (bottom).

6.3 Statistically rigorous performance evaluation in
practice

As discussed in Section 3, the width of the confidence inter-
val is a function of the number of measurements n. In gen-
eral, the width of the confidence interval decreases with an
increasing number of measurements as shown in Figure 16.
The width of the 95% confidence interval is shown as a per-
centage of the mean (on the vertical axis) and as a function of
the number of measurements taken (on the horizontal axis).
We show three example benchmarks: jess, db and mtrt for a

80MB heap size on the AMD Athlon machine. The various
curves represent different garbage collectors for start-up per-
formance. The interesting observation here is that the width
of the confidence interval largely depends on both the bench-
mark and the garbage collector. For example, the width of
the confidence interval for the GenCopy collector for jess is
fairly large, more than 3%, even for 30 measurements. For
the MarkSweep and GenMS collectors for db on the other
hand, the confidence interval is much smaller, around 1%
even after less than 10 measurements.

These observations motivated us to come up with an au-
tomated way of determining how many measurements are
needed to achieve a desired confidence interval width. For
example, for db and the MarkSweep and GenMS collectors,
a handful of measurements will suffice to achieve a very
small confidence interval, whereas for jess and the GenCopy
collector many more measurements are needed. JavaStats
consists of a script (to initiate multiple VM invocations) and
a harness (to initiate multiple benchmark iterations within a
single VM invocation) that computes the width of the con-
fidence interval while the measurements are being taken. It
takes as input the desired confidence interval width (for ex-
ample 2% or 3%) for a given confidence level and a maxi-
mum number of VM invocations and benchmark iterations.
JavaStats stops the measurements and reports the confidence
interval as soon as the desired confidence interval width is
achieved or the maximum number of VM invocations and
benchmark iterations is reached.

Figure 17 reports the number of VM invocations required
for start-up performance to achieve a 2% confidence interval
width with a maximum number of VM invocations, p = 30
for jess, db and mtrt on the AMD Athlon as a function of
heap size for the five garbage collectors. The interesting ob-
servation here is that the number of measurements taken
varies from benchmark to benchmark, from collector to col-
lector and from heap size to heap size. This once again shows
why an automated way of collecting measurements is desir-
able. Having to take fewer measurements for a desired level
of confidence speeds up the experiments compared to taking
a fixed number of measurements.

7. Summary
Non-determinism due to JIT compilation, thread schedul-
ing, garbage collection and various system effects, makes
quantifying Java performance far from being straightfor-
ward. Prevalent data analysis approaches deal with non-
determinism in a wide variety of ways. This paper showed
that prevalent data analysis approaches can be misleading
and can even lead to incorrect conclusions.

This paper introduced statistically rigorous Java per-
formance methodologies for quantifying Java startup and
steady-state performance. In addition, it presented JavaStats,
publicly available software to automatically perform rigor-
ous performance evaluation. For startup performance, we

(a) jess

32
104

176

256 CopyMS

GenCopy

GenMS

MarkSweep

SemiSpace

0

10

20

30

samples required
to reach

threshold

heap size

(b) db

32
104

176

256 CopyMS

GenCopy

GenMS

MarkSweep

SemiSpace

0

10

20

30

samples required
to reach

threshold

heap size

(c) mtrt

32
104

176

256 CopyMS

GenCopy

GenMS

MarkSweep

SemiSpace

0

10

20

30

samples required
to reach

threshold

heap size

Figure 17. Figure shows how many measurements are re-
quired before reaching a 2% confidence interval on the AMD
Athlon machine.

run multiple VM invocations executing a single benchmark
iteration and subsequently compute confidence intervals. For
steady-state performance, we run multiple VM invocations,
each executing multiple benchmark iterations. We then com-
pute a confidence interval based on the benchmark iterations
across the various VM invocations once performance vari-
ability drops below a given threshold.

We believe this paper is a step towards statistical rigor
in various performance evaluation studies. Java performance
analysis papers, and papers presenting experimental results
in general, very often report performance improvements be-
tween two or more alternatives. Most likely, if the perfor-

mance differences between the alternatives are large, a sta-
tistically rigorous method will not alter the overall picture
nor affect the general conclusions obtained using prevalent
methods. However, for relatively small performance differ-
ences (that are within the margin of experimental error), not
using statistical rigor may lead to incorrect conclusions.

Acknowledgments
We would like to thank Steve Blackburn, Michael Hind,
Matthew Arnold, Kathryn McKinley, and the anonymous
reviewers for their valuable comments — their detailed
suggestions greatly helped us improving this paper. Andy
Georges is supported by Ghent University. Dries Buytaert
is supported by the Institute for the Promotion of Innova-
tion by Science and Technology in Flanders (IWT). Lieven
Eeckhout is a Postdoctoral Fellow of the Fund for Scientific
Research–Flanders (Belgium) (FWO–Vlaanderen).

References
[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.

Adaptive optimization in the Jalapeño JVM. In OOPSLA,
pages 47–65, Oct. 2000.

[2] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-
directed optimization of Java. In OOPSLA, pages 111–129,
Nov. 2002.

[3] K. Barabash, Y. Ossia, and E. Petrank. Mostly concurrent
garbage collection revisited. In OOPSLA, pages 255–268,
Nov. 2003.

[4] O. Ben-Yitzhak, I. Goft, E. K. Kolodner, K. Kuiper, and
V. Leikehman. An algorithm for parallel incremental
compaction. In ISMM, pages 207–212, Feb. 2003.

[5] S. Blackburn, P. Cheng, and K. McKinley. Myths and
reality: The performance impact of garbage collection. In
SIGMETRICS, pages 25–36, June 2004.

[6] S. Blackburn, P. Cheng, and K. McKinley. Oil and water?
High performance garbage collection in Java with JMTk. In
ICSE, pages 137–146, May 2004.

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA,
pages 169–190, Oct. 2006.

[8] S. M. Blackburn and K. S. McKinley. In or out?: Putting
write barriers in their place. In ISMM, pages 281–290, June
2002.

[9] S. M. Blackburn and K. S. McKinley. Ulterior reference

counting: Fast garbage collection without a long wait. In
OOPSLA, pages 344–358, Oct. 2003.

[10] L. Eeckhout, A. Georges, and K. De Bosschere. How Java
programs interact with virtual machines at the microarchitec-
tural level. In OOPSLA, pages 169–186, Oct. 2003.

[11] D. Gu, C. Verbrugge, and E. M. Gagnon. Relative factors
in performance analysis of Java virtual machines. In VEE,
pages 111–121, June 2006.

[12] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind.
Vertical profiling: Understanding the behavior of object-
priented applications. In OOPSLA, pages 251–269, Oct.
2004.

[13] J.L. Hintze, and R.D. Nelson. Violin Plots: A Box Plot-
Density Trace Synergism In The American Statistician,
Volume 52(2), pages 181–184, May 1998.

[14] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z. Wang, and P. Cheng. The garbage collection advantage:
Improving program locality. In OOPSLA, pages 69–80, Oct.
2004.

[15] R.A. Johnson and D.W. Wichern Applied Multivariate
Statistical Analysis Prentice Hall, 2002

[16] D. J. Lilja. Measuring Computer Performance: A Practi-
tioner’s Guide. Cambridge University Press, 2000.

[17] J. Maebe, D. Buytaert, L. Eeckhout, and K. De Bosschere.
Javana: A system for building customized Java program
analysis tools. In OOPSLA, pages 153–168, Oct. 2006.

[18] P. McGachey and A. L. Hosking. Reducing generational copy
reserve overhead with fallback compaction. In ISMM, pages
17–28, June 2006.

[19] J. Neter, M. H. Kutner, W. Wasserman, and C. J. Nachtsheim
Applied Linear Statistical Models WCB/McGraw-Hill, 1996.

[20] N. Sachindran and J. E. B. Moss. Mark-copy: Fast copying
GC with less space overhead. In OOPSLA, pages 326–343,
Oct. 2003.

[21] K. Sagonas and J. Wilhelmsson. Mark and split. In ISMM,
pages 29–39, June 2006.

[22] D. Siegwart and M. Hirzel. Improving locality with parallel
hierarchical copying GC. In ISMM, pages 52–63, June 2006.

[23] Standard Performance Evaluation Corporation. SPECjvm98
Benchmarks. http://www.spec.org/jvm98.

[24] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan,
D. Grove, and M. Hind. Using hardware performance
monitors to understand the behavior of Java applications.
In VM, pages 57–72, May 2004.

[25] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and
M. Ogihara. Program-level adaptive memory management.
In ISMM, pages 174–183, June 2006.

