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Abstract

All high-performance production JVMs employ an adaptive
strategy for program execution. Methods are first executed
unoptimized and then an online profiling mechanism is used
to find a subset of methods that should be optimized during
the same execution. This paper empirically evaluates the de-
sign space of several profilers for initiating dynamic com-
pilation and shows that existing online profiling schemes
suffer from several limitations. They provide an insufficient
number of samples, are untimely, and have limited accu-
racy at determining the frequently executed methods. We de-
scribe and comprehensively evaluate HPM-sampling, a sim-
ple but effective profiling scheme for finding optimization
candidates using hardware performance monitors (HPMs)
that addresses the aforementioned limitations. We show that
HPM-sampling is more accurate; has low overhead; and im-
proves performance by 5.7% on average and up to 18.3%
when compared to the default system in Jikes RVM, without
changing the compiler.

Categories and Subject Descriptors D.3.4 [Programming
languages]: Processors—Compilers; Optimization; Run-
time environments

General Terms Measurement, Performance

Keywords Hardware Performance Monitors, Java, Just-in-
time compilation, Profiling

1. Introduction

Many of today’s commercial applications are written in dy-
namic, type-safe, object-oriented languages, such as Java,
because of the increased productivity and robustness these
languages provide. The dynamic semantics of such a lan-
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guage require a dynamic execution environment called a
virtual machine (VM). To achieve high performance, pro-
duction Java virtual machines contain at least two modes
of execution: 1) unoptimized execution, using interpreta-
tion [21, 28, 18] or a simple dynamic compiler [16, 6, 10, 8]
that produces code quickly, and 2) optimized execution us-
ing an optimizing dynamic compiler. Methods are first ex-
ecuted using the unoptimized execution strategy. An online
profiling mechanism is used to find a subset of methods to
optimize during the same execution. Many systems enhance
this scheme to provide multiple levels of optimized execu-
tion [6, 18, 28], with increasing compilation cost and bene-
fits at each level. A crucial component to this strategy is the
ability to find the important methods for optimization in a
low-overhead and accurate manner.

Two approaches that are commonly used to find optimiza-
tion candidates are method invocation counters [10, 18, 21,
28] and timer-based sampling [6, 8, 18, 28, 30]. The coun-
ters approach counts the number of method invocations and,
optionally, loop iterations. Timer-based sampling records the
currently executing method at regular intervals using an op-
erating system timer.

Although invocations counters can be used for profiling
unoptimized code, their overhead makes them a poor choice
for use in optimized code. As a result, VMs that use multi-
ple levels of optimization rely exclusively on sampling for
identifying optimized methods that need to be promoted to
higher levels. Having an accurate sampler is critical to en-
sure that methods do not get stuck at their first level of opti-
mization, or in unoptimized code if a sample-only approach
is employed [6, 8].

Most VMs rely on an operating system timer interrupt to
perform sampling, but this approach has a number of draw-
backs. First, the minimum timer interrupt varies depending
on the version of the OS, and in many cases can result in too
few samples being taken. Second, the sample-taking mecha-
nism is untimely and inaccurate because there is a delay be-
tween the timer going off and the sample being taken. Third,
the minimum sample rate does not change when moving to
newer, faster hardware; thus, the effective sample rate (rela-



tive to the program execution) continues to decrease as hard-
ware performance improves.

This work advocates a different approach, using the hard-
ware performance monitors (HPMs) on modern processors
to assist in finding optimization candidates. This HPM-
sampling approach measures the time spent in methods more
accurately than any existing sample-based approach, yet re-
mains low-overhead and can be used effectively for both
optimized and unoptimized code. In addition, it allows for
more frequent sampling rates compared to timer-based sam-
pling, and is more robust across hardware implementations
and operating systems.

This paper makes the following contributions:

e We describe and empirically evaluate the design space
of several existing sample-based profilers for driving dy-
namic compilation;

e We describe the design and implementation of an HPM-
sampling approach for driving dynamic compilation; and

e We empirically evaluate the proposed HPM approach in
Jikes RVM, demonstrating that it has higher accuracy
than existing techniques, and improves performance by
5.7% on average and up to 18.3%.

To the best of our knowledge, no production VM uses
HPM-sampling to identify optimization candidates to drive
dynamic compilation. This work illustrates that this tech-
nique results in significant performance improvement and
thus has the potential to improve existing VMs with minimal
effort and without any changes to the dynamic compiler.

The rest of this paper is organized as follows. Section 2
provides further background information for this work. Sec-
tion 3 details the HPM-sampling approach we propose.
After detailing our experimental setup in Section 4, Sec-
tion 5 presents a detailed evaluation of the HPM-sampling
approach compared to existing techniques; the evaluation in-
cludes overall performance, overhead, accuracy, and robust-
ness. Section 6 compares our contribution to related work
and Section 7 concludes and discusses future directions.

2. Background

This section describes background for this work. Specifi-
cally, it describes the design space of sampling techniques
for finding optimization candidates and discusses the short-
comings of these techniques; gives relevant details of Jikes
RVM; and summarizes hardware performance monitor fa-
cilities, focusing on the particular features we employ in this
work.

2.1 Sampling Design Space

Two important factors in implementing any method sam-
pling approach are 1) the trigger mechanism and 2) the sam-
pling mechanism. Figure 1 summarizes this 2-dimensional
design space for sampling-based profilers. The horizontal
axis shows the trigger mechanism choices and the vertical
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Figure 1. The design space for sampling profilers: sampling
versus trigger mechanism.

axis shows the sampling mechanism choices. The bullets in
Figure 1 represent viable design points in the design space
of sampling-based profilers — we will discuss the nonviable
design points later. Section 5 compares the performance of
these viable design points and shows that HPM-immediate
is the best performing sampling-based profiling approach.

2.1.1 Trigger Mechanisms

The trigger mechanism is the technique used to periodically
initiate the sample-taking process. All production JVMs that
we are aware of that use sampling to find optimization can-
didates use an operating system feature, such as nanosleep
or setitimer, as the trigger mechanism for finding methods to
optimize [6, 8, 30, 28, 18]. The nanosleep approach uses a
native thread running concurrently with the VM. When the
timer interrupt goes off, this native thread is scheduled to
execute and then set a bit in the VM. When the VM next ex-
ecutes and sees the bit is set, a sample is taken. The setitimer
approach does not use a native thread and thus has one less
level of indirection. Instead, the interrupt handler for the VM
sets the bit in the VM when the timer interrupt goes off. The
third option, HPM, will be described in Section 3.

Timer-based sampling (using nanosleep or setitimer) is
a low overhead profiling technique that can be used on all
forms of code, both unoptimized and optimized code. It al-
lows for the reoptimization of optimized code to higher lev-
els, as well as for performing online profile-directed opti-
mizations, when the profile changes, such as adaptive inlin-
ing [6].

However, timer-based sampling does have the following
limitations:

Not enough data points: The timer granularity is depen-
dent on the operating system settings, e.g., a mainstream
operating system, such as Linux 2.6, provides a common
granularity of 4 ms, which means that at most 250 sam-
ples/second can be taken. Other operating systems may
not offer such a fine granularity. For example, in earlier
versions of Linux the granularity was only 10 ms, result-
ing in at most 100 samples per second. Furthermore, the
granularity is not necessarily something that can be eas-
ily changed because it will likely require rebuilding the



kernel, which may not be feasible in all environments and
will not be possible when source code is not available.

Lack of robustness among hardware implementations:
Timer-based sampling is not robust among machines
with different clock speeds and different microarchitec-
tures because a faster machine will execute more instruc-
tions between timer-interrupts. Given a fixed operating
system granularity, a timer-based profiler will collect
fewer data points as microprocessors attain higher per-
formance. Section 5 demonstrates this point empirically.

Not timely: There is a delay from when the operating sys-
tem discovers that a thread needs to be notified about
a timer event and when it schedules the thread that re-
quested the notification for initiating the sample taking.

As we will see in Section 3, the HPM approach addresses all
of these shortcomings.

2.1.2 Sampling Mechanisms

Once the sample-taking process has been initiated by some
trigger mechanism, a sample can be taken. Two options
exist for taking the sample (the vertical axis in Figure 1):
immediate and polling. An immediate approach inspects the
executing thread(s) to determine which method(s) they are
executing. The polling approach sets a bit in the VM that the
executing threads check at well-defined points in the code,
called polling points. When a polling point is executed with
the bit set, a sample is taken.

Polling schemes are attractive for profiling because many
VMs already insert polling points into compiled code (some-
times called yieldpoints) to allow stopping the executing
thread(s) when system services need to be performed. The
sampling profiler can piggyback on these existing polling
points to collect profile data with essentially no additional
overhead.

Polling points are a popular mechanism for stopping ap-
plication threads because the VM often needs to enforce cer-
tain invariants when threads are stopped. For example, when
garbage collection occurs, the VM needs to provide the col-
lector with the set of registers, globals, and stack locations
that contain pointers. Stopping threads via polling signifi-
cantly reduces the number of program points at which these
invariants must be maintained.

However, using polling as a sampling mechanism does
have some shortcomings:

Not timely: Although the timer expires at regular intervals,
there is some delay until the next polling point is reached.
This is in addition to the delay imposed by timer-based
profiling as described in the previous section. In particu-
lar, the trigger mechanism sets a bit in the VM to notify
the VM that a sample needs to be taken. When the VM
gets scheduled for execution, the sample is not taken im-
mediately. The VM has to wait until the next polling point
is reached before a sample can be taken.

Limited accuracy: Untimely sampling at polling points
may also impact accuracy. For example, consider a
polling point that occurs after a time-consuming oper-
ation that is not part of Java, such as an I/O operation
or a call to native code. It is likely that the timer will
expire during the time-consuming operation so unless
the native code clears the sampling flag before returning
(or the VM somehow ensures that it was never set), the
next polling point executed in Java code will have an ar-
tificially high probability of being sampled. Essentially,
time spent in native code (which generally does not con-
tain polling points) may be incorrectly credited to the
caller Java method.

An additional source of inaccuracy is that some VMs,
such as Jikes RVM, do not insert polling points in
all methods and thus some methods cannot be sam-
pled. For example, native methods (not compiled by the
VM'’s compilers), small methods that are always inlined
(polling point elided for efficiency reasons), and low-
level VM methods do not have polling points.

Overhead: Polling requires the executing code to perform a
bit-checking instruction followed by a conditional branch
to sampling code. This bit-checking code must always be
executed, regardless of whether the bit has been set. Re-
ducing the number of bit-checking instructions can re-
duce this overhead (as Jikes RVM does for trivial meth-
ods), but it will also reduce the accuracy as mentioned
above.

To avoid these limitations we advocate an immediate
approach as described in Section 3.

2.2 Jikes RVM

Jikes RVM is an open source Java VM that is written in
Java and has been widely used for research on virtual ma-
chines [2, 3]. Methods running on Jikes RVM are initially
compiled by a baseline compiler, which produces unopti-
mized code quickly. An optimizing compiler is used to re-
compile important methods with one of its three optimiza-
tion levels: 0, 1, and 2 [6, 7].

Jikes RVM uses timer-based sampling with polling for
finding methods to be considered for optimization. Specifi-
cally, a timer-interrupt is used to set a bit in the virtual ma-
chine. On our platform, Linux/IA32, the default Jikes RVM
system does this every 20 ms, which was the smallest level
of granularity on Linux when that code was written several
years ago. However, current Linux 2.6 kernels allow for a
finer granularity of 4 ms by default.! Therefore, we also
compare our work to an improved default system, where the
timer-interrupt is smaller than 20 ms. Section 5 discusses the
performance improvements obtained by reducing this inter-

I The granularity provided by the OS is a tradeoff between system respon-
siveness and the overhead introduced by the OS scheduler. Hence, the timer
granularity cannot be too small.



rupt value. This illustrates an important shortcoming of an
OS timer-based approach: as new versions of the OS are
used, the sampling code in the VM may need to be adjusted.

Jikes RVM provides two implementation choices for
timer-based sampling: 1) nanosleep-polling, and 2) setitimer-
polling. The first strategy, which is the default, spawns a
auxiliary, native thread at VM startup. This thread uses the
nanosleep system call, and sets a bit in the VM when awo-
ken before looping to the next nanosleep call. The polling
mechanism checks this bit. The second strategy, setitimer,
initiates the timer interrupt handler at VM startup time to set
a bit in the VM when the timer goes off. Setitimer does not
require an auxiliary thread. In both cases, the timer resolu-
tion is limited by the operating system timer resolution.

When methods get compiled, polling instructions called
yield-points are inserted into the method entries, method
exits, and loop back edges. These instructions check to see
if the VM bit is set, and if so, control goes to the Jikes RVM
thread scheduler to schedule another thread. If the VM bit is
not set, execution continues in the method at the instruction
after the yield-point. Before switching to another thread, the
system performs some simple profiling by recording the top
method on the stack (for loop or exit yield-points) or the
second method on top of the stack (entry yield-points) into
a buffer. When N method samples have been recorded, an
organizer thread is activated to summarize the buffer and
pass this summary to the controller thread, which decides
whether any recompilation should occur. The default value
for N is 3.

The controller thread uses a cost/benefit analysis to de-
termine if a sampled method should be recompiled [6, 7]. It
computes the expected future execution time for the method
at each candidate optimization level. This time includes the
cost for performing the compilation and the time for exe-
cuting the method in the future at that level. The compila-
tion cost is estimated using the expected compilation rate
as a function of the size of the method for each optimiza-
tion level. The expected future execution time for a sampled
method is assumed to be the amount of time the method has
executed so far, scaled by the expected speedup of the can-
didate optimization level.?> For example, the model assumes
that a method that has executed for N seconds will execute
for N more seconds divided by the speedup of the level com-
pared to the current level. The system uses the profile data
to determine the amount of time that has been spent in a
method.

After considering all optimization levels greater than the
current level for a method, the model compares the sum of
the compilation cost and expected future execution time with
the expected future execution time at the current level, i.e.,
the future time for the method at a level versus performing no

2This speedup and the compilation rate are constants in the VM. They
are currently obtained offline by measuring their values in the SPECjvm98
benchmark suite.

recompilation. The action associated with the minimum fu-
ture execution time is chosen. Recompilations are performed
by a separate compilation thread.

2.3 Hardware Performance Monitors

Modern processors are usually equipped with a set of perfor-
mance event counter registers also known as hardware per-
formance monitors (HPMs). These registers can be used by
the microprocessor to count events that occur while a pro-
gram is executing. The HPM hardware can be configured to
count elapsed cycles, retired instructions, cache misses, etc.
Besides simple counting, the hardware performance counter
architecture can also be configured to generate an interrupt
when a counter overflows. This interrupt can be converted
to a signal that is delivered immediately to the process us-
ing the HPMs. This technique is known as event-based sam-
pling. The HPM-sampling approach proposed in this paper
uses event-based sampling using the elapsed cycle count as
its interrupt triggering event.

3. HPM-Immediate Sampling

This section describes our new sampling technique. It first
discusses the merits of immediate sampling and then de-
scribes HPM-based sample triggering. When combined, this
leads to HPM-immediate sampling, which we advocate in
this paper.

3.1 Benefits of Immediate Sampling

An advantage of using immediate sampling is that it avoids
an often undocumented source of overhead that is present
in polling-based profilers: the restrictions imposed on yield-
point placement.

VMs often place yield-points on method prologues and
loop backedges to ensure that threads can be stopped within
a finite amount of time to perform system services. How-
ever, this placement can be optimized further without affect-
ing correctness. For example, methods with no loops and
no calls do not require a yield-point because only a finite
amount of execution can occur before the method returns.

However, when using a polling-based profiler, removing
yield-points impacts profile accuracy. In fact, yield-points
need to be placed on method epilogues as well as prologues
to make a polling-based sampler accurate; without the epi-
logue yield-points, samples that are triggered during the ex-
ecution of a callee may be incorrectly attributed to the caller
after the callee returns. For this reason, Jikes RVM places
epilogue yield-points in all methods, except for the most triv-
ial methods that are always inlined.

There are no restrictions on yield-point placement when
using an immediate sampling mechanism. All epilogue
yield-points can be removed, and the prologue and backedge
yield-point placement can be optimized appropriately as
long as it maintains correctness for the runtime system. The
experimental results in Section 5 include a breakdown to



input : CPU context
output : void
begin

registers < GetRegisters (CPU context);
processor «— GetJikesProcessorAddress ();
if isJavaFrame (processor, registers) then
stackFrame < GetFrame (processor);
methodID < GetMethodID (stackFrame);
sampleCount < sampleCount + 1;
samplesArray [sampleCount ] < methodID;
end
HPMInterruptResumeResetCounter ()
end
Algorithm 1: HPM signal handler as implemented in
JikesRVM, where the method ID resides on the stack.

show how much performance is gained by removing epi-
logue yield-points.

3.2 HPM-based Sampling

HPM-based sampling relies on the hardware performance
monitors sending the executing process a signal when a
counter overflows. At VM startup, we configure a HPM
register to count cycles, and we define the overflow threshold
(the sampling interval or the reciprocal of the sample rate).
We also define which signal the HPM driver should send
to the VM process when the counter overflows.® Instead
of setting a bit that can later be checked by the VM, as is
done with polling, the VM acquires a sample immediately
upon receiving the appropriate signal from the HPM driver.
Several approaches can be used to determine the executing
method. For example, the program counter can be used to
determine the method in the VM’s compiled code index.
Alternatively, if the method ID is stored on the stack, as
is done in Jikes RVM, the method ID can be read directly
from the top of the stack. In our implementation, we take the
latter approach, as illustrated in Algorithm 1: the state of the
running threads is checked, the method residing on the top
of the stack is sampled, and the method ID is copied in the
sample buffer.

Because the executing method can be in any state, the
sampler needs to check whether the stack top contains a
valid Java frame; if the stack frame is not a valid Java frame,
the sample is dropped. On average, less than 0.5% of all
samples gathered in our benchmark suite using an immediate
technique are invalid.

3.3 How HPM-immediate Fits in the Design Space of
Sampling-Based Profiling

Having explained both immediate sampling and HPM-
sampling, we can now better understand how the HPM-
immediate sampling-based profiling approach relates to the

3 Our implementation uses SIGUSR1; any of the 32 POSIX real-time sig-
nals can be used.

other sampling-based approaches in the design space. HPM-
immediate sampling shows the following advantages over
timer-based sampling: (i) sample points can be collected
at a finer time granularity, (ii) performance is more robust
across platforms with different clock frequencies and thread
scheduling quanta, and (iii) it is more timely, i.e., a sample is
taken immediately, not at the next thread scheduling point.
Compared to polling-based sampling, HPM-immediate sam-
pling (i) is more accurate and (ii) incurs less overhead.

Referring back to Figure 1, there are two design points in
sampling-based profiling that we do not explore because
they are not desirable: nanosleep-immediate and HPM-
polling. The nanosleep-immediate approach does not offer
any advantage over setitimer-immediate: to get a sample,
nanosleep incurs an even larger delay compared to setitimer,
as explained previously. The HPM-polling approach is not
desirable because it would combine a timely trigger mech-
anism (HPM-sampling) with a non-timely sampling mecha-
nism (polling).

3.4 HPM Platform Dependencies

HPMs are present on virtually all modern microprocessors
and can be used by applications if they are accessible from
a user privilege level. Not all microprocessors offer the
same HPM events, or expose them in the same way. For
example, on IA-32 platforms, low overhead drivers pro-
vide access to the HPM infrastructure, but programming
the counters differs for each manufacturer and/or processor
model. One way in which a VM implementor can resolve
these differences is by encapsulating the HPM subsystem
in a platform-dependent dynamic library. As such, HPM-
sampling is portable across all common platforms.

Standardizing the HPM interfaces is desirable because it
can enable better synergy between the hardware and the vir-
tual machine. In many ways it is a chicken-and-egg problem;
without concrete examples of HPMs being used to improve
performance, there is little motivation for software and hard-
ware vendors to standardize their implementations. How-
ever, we hope this and other recent work [1, 23, 27] will
show the potential benefit of using HPMs to improve virtual
machine performance.

Furthermore, collecting HPM data can have different
costs on different processors or different microarchitectures.
As our technique does not require the software to read the
HPM counters, but instead relies on the hardware itself to
track the counters and to send the executing process a signal
only when a counter overflows, the performance of reading
the counters does not affect the portability of our technique.

4. Experimental Setup

Before evaluating the HPM-sampling approach, we first de-
tail our experimental setup: the virtual machine, the bench-
marks, and the hardware platforms.



4.1 Virtual machine

As mentioned before, we use Jikes RVM, in particular the
CVS version of Jikes RVM from April 10th, 2006. To ensure
a fair comparison between HPM-immediate sampling with
the other sampling-based profilers described in Section 2,
we replace only the sampling-based profiler in Jikes RVM.
The cost/benefit model for determining when to optimize to
a specific optimization level and the compilers itself remain
unchanged across all sampling-based profilers. In addition,
we ensure that Jikes RVM'’s thread scheduling quantum re-
mains unchanged at 20ms across different sampling-based
profilers with different sampling rates.

The experiments are run on a Linux 2.6 kernel. We use the
perfctr tool version 2.6.19 [22] for accessing the HPMs.

4.2 Benchmarks

Table 1 gives our benchmark suite. We use the SPECjvm98
benchmark suite [26] (first seven rows), the DaCapo bench-
mark suite [9] (next six rows), and the pseudojbb bench-
mark [25] (last row). SPECjvm98 is a client-side Java bench-
mark suite. We run all SPECjvm98 benchmarks with the
largest input set (-s100). The DaCapo benchmark is a re-
cently introduced open-source benchmark suite; we use re-
lease version 2006-10. We use only the benchmarks that
execute properly on our baseline system, the April 10th,
2006 CVS version of Jikes RVM. SPECjbb2000 emulates
the middle-tier of a three-tier system; we use pseudojbb,
which runs for a fixed amount of work, i.e., for a fixed num-
ber of transactions, in contrast to SPECjbb2000, which runs
for a fixed amount of time. We consider 35K transactions as
the input to pseudojbb. The second column in Table 1 shows
the number of application threads. The third column gives
the number of application methods executed at least once;
this does not include VM methods or library methods used
by the VM. The fourth column gives the running time on
our main hardware platform, the Athlon XP 3000+, using
the default Jikes RVM configuration.

We consider two ways of evaluating performance, namely
one-run performance and steady-state performance, and use
the statistical rigorous performance evaluation methodol-
ogy as described by Georges et al. [15]. For one-run per-
formance, we run each application 11 times each in a new
VM invocation, exclude the measurement of the first run,
and then report average performance across the remaining
10 runs. We use a Student ¢-test with a 95% confidence in-
terval to verify that performance differences are statistically
meaningful. For SPECjbb2000 we use a single warehouse
for measuring one-run performance.

For steady-state performance, we use a similar methodol-
ogy, but instead of measuring performance of a single run,
we measure performance for 50 consecutive iterations of
the same benchmark in 11 VM invocations, of which the
first invocation is discarded. Running a benchmark multiple

Application | No. methods | Running
Benchmark threads executed time (s)
compress 1 189 6.1
jess 1 590 2.9
db 1 184 12.1
javac 1 913 6.5
mpegaudio 1 359 5.8
mtrt 3 314 39
jack 1 423 33
antlr 1 1419 5.6
bloat 1 1891 14.2
fop 1 2472 6.1
hsqldb 13 1277 73
jython 1 3093 21.2
pmd 1 2117 14.8
pseudojbb 1 812 6.6

Table 1. Benchmark characteristics for the default Jikes
RVM configuration on the Athlon XP 3000+ hardware plat-
form.

Processor || Frequency L2 RAM Bus
1500+ 1.33GHz | 256KB | 1GB | 133MHz
3000+ 2.1GHz 512KB | 2GB | 166MHz

Table 2. Hardware platforms

times can be done easily for the SPECjvm98 and the DaCapo
benchmarks using the running harness.

4.3 Hardware platforms

We consider two hardware platforms, both are AMD Athlon
XP microprocessor-based computer systems. The important
difference between both platforms is that they run at dif-
ferent clock frequencies and have different memory hierar-
chies, see Table 2. The reason for using two hardware plat-
forms with different clock frequencies is to demonstrate that
the performance of HPM-sampling is more robust across
hardware platforms with different clock frequencies than
other sampling-based profilers.

5. Evaluation

This section evaluates the HPM-immediate sampling pro-
filer and compares it against existing sampling profilers.
This comparison includes performance along two dimen-
sions: one-run and steady-state, as well as measurements of
overhead, accuracy, and stability.

5.1 Performance Evaluation

We first evaluate the performance of the various sampling-
based profilers — we consider both one-run and steady-state
performance in the following two subsections.



5.1.1 One-run Performance

Impact of sampling rate. Before presenting per-benchmark
performance results, we first quantify the impact of the sam-
ple rate on average performance. Figure 2 shows the percent-
age average performance improvement on the Athlon XP
3000+ machine across all benchmarks as a function of the
sampling interval compared to the default Jikes RVM, which
uses a sampling interval of 20ms. The horizontal axis varies
the sampling interval from 0.1ms to 40ms for the nanosleep-
and setitimer-sampling approaches. For the HPM-sampling
approach, the sampling interval varies from 100K cycles up
to 90M cycles. On the Athlon XP 3000+, this is equivalent
to a sampling interval varying from 0.047ms to 42.85ms.
Curves are shown for all four sampling-based profilers; for
the immediate-sampling methods, we also show a version
including and excluding epilogue yield-points to help quan-
tify the reason for performance improvement. Because an
immediate approach does not require any polling points,
the preferred configuration for the immediate sampling ap-
proach is with no yield-points.

We make several observations from Figure 2. First, com-
paring the setitimer-immediate versus the setitimer-polling
curves clearly shows that an immediate sampling approach
outperforms a polling-based sampling mechanism on our
benchmark suite. The setitimer-immediate curve achieves a
higher speedup than setitimer-polling over the entire sample
rate range. Second, HPM-based sampling outperforms OS-
triggered sampling — the HPM-immediate curve achieves
higher speedups than setitimer-immediate. Third, removing
epilogue yield-points yields a slight performance improve-
ment for both the HPM-based and OS-triggered immediate
sampling approaches. So, in summary the overall perfor-
mance improvement for the HPM-sampling approach that
we advocate in this paper comes from three sources: (i)
HPM-based triggering instead of OS-triggered sampling, (ii)
immediate sampling instead of polling-based sampling, and
(iii) the removal of epilogue yield-points.

Each sampling-based profiler has a best sample rate for
our benchmark suite. Values below this rate result in too
much overhead. Values above the rate result in a less accu-
rate profile. We use an interval of 9M cycles (approximately
4.3ms) for the HPM-immediate approach in the remain-
der of this paper.* Other sampling-based profilers achieve
their best performance at different sample rates — in all
other results presented in this paper, we use the best sam-
ple rate per sampling-based profiler. For example, for the
setitimer-immediate approach with no yield-points the best
sampling interval on our benchmark suite is 4ms. The default

4 As Figure 2 shows, we explored a wide range of values between 2M
and 9M for the HPM-immediate approach. An ANOVA and a Tukey HSD
post hoc [15, 20] test with a confidence level of 95% reveal that in only
1.5% of the cases (7 out of 468 comparisons), the execution times differ
significantly. This means one can use any of the given rates in [2M; IM]
without suffering a significant performance penalty. Therefore, we chose
9M as the best value for HPM-immediate.

Jikes RVM with nanosleep-polling has a sampling interval of
20ms.

Per-benchmark results. Figure 3 shows the per-benchmark
percentage performance improvements of all sampling pro-
filer approaches (using each profiler’s best sample rate) rel-
ative to the default Jikes RVM’s nanosleep-polling sampling
approach, which uses a sampling interval of 20ms. The
graph on the left in Figure 3 is for the best sample rates
on the Athlon XP 1500+ machine. The graph on the right is
for the best sample rates on the Athlon XP 3000+.

The results in Figure 3 clearly show that HPM-immediate
sampling significantly outperforms the other sampling pro-
filer approaches. In particular, HPM-immediate results in an
average 5.7% performance speedup compared to the default
Jikes RVM nanosleep-polling approach on the Athlon XP
3000+ machine and 3.9% on the Athlon XP 1500+ machine.
HPM-immediate sampling results in a greater than 5% per-
formance speedup for many benchmarks (on the Athlon XP
3000+): antlr (5.9%), mpegaudio (6.5%), jack (6.6%), javac
(6.6%), hsqldb (7.8%), jess (9.6%) and mtrt (18.3%).

As mentioned before, this overall performance improve-
ment comes from three sources. First, immediate sampling
yields an average 3.0% speedup over polling-based sam-
pling. Second, HPM-sampling yields an additional average
2.1% speedup over OS-triggered sampling. Third, elimi-
nating the epilogue yield-points contributes an additional
0.6% speedup on average. For some benchmarks, removing
the epilogue yield-points results in significant performance
speedups, for example jack (4.1%) and bloat (3.4%) on the
Athlon XP 3000+ machine.

Statistical significance. Furthermore, these performance
improvements are statistically significant. We use a one-
sided Student t-test with a 95% confidence level following
the methodology proposed by Georges et al. [15] to verify
that HPM-immediate-no-yieldpoints does result in a signif-
icant performance increase over the non-HPM techniques.
For each comparison, we require one test where the null
hypothesis is that both compared techniques result in the
same execution time on average, the alternative hypothesis is
that HPM-immediate-no-yieldpoints has a smaller execution
time. The null hypothesis is rejected for 10 out of 14 bench-
marks when we compare to nanosleep-polling; it is rejected
for 8 out of 14 benchmarks when we compare to setitimer-
immediate-no-yieldpoints; and it is rejected for even 5 out of
14 benchmarks when we compare to HPM-immediate. This
means that HPM-immediate-no-yieldpoints outperforms the
best execution times compared to the other techniques with
95% certainty.

Robust performance across machines. The two graphs in
Figure 3 also show that the HPM-immediate sampling pro-
filer achieves higher speedups on the Athlon XP 3000+ ma-
chine than on the 1500+ machine. This observation supports
our claim that HPM-sampling is more robust across hard-
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Figure 2. Percentage average performance speedup on the Athlon XP 3000+ machine for the various sampling profilers as a
function of sample rate, relative to default Jikes RVM, which uses a sampling interval of 20ms.
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Figure 3. These figures show the percentage performance improvement relative to the default Jikes RVM configuration
(nanosleep-polling with a 20ms sampling interval). Each configuration uses the single best sampling interval as determined
from the data in Figure 2 for all benchmarks. The left and right graphs give improvement on the Athlon XP 1500+ with a 20M
sample interval and the Athlon XP 3000+ with a 9M sample interval, respectively. On the former, the nanosleep-polling bars
show no improvement, because the default configuration rate performed best for that particular technique; as a result, the left
graph has one bar less.



ware platforms, with potentially different clock frequencies.
The reason is that OS-triggered profilers collect relatively
fewer samples as clock frequency increases (assuming that
the OS time quantum remains unchanged). As such, the pro-
file collected by an OS-triggered profiler becomes relatively
less accurate compared to HPM-sampling when clock fre-
quency increases.

5.1.2 Steady-state Performance

We now evaluate the steady-state performance of HPM-
sampling for long-running Java applications. This is done
by iterating each benchmark 50 times in a single VM invo-
cation. This process is repeated 11 times (11 VM invocations
of 50 iterations each); the first VM invocation is a warmup
run and is discarded.

Figure 4 shows the average execution time per benchmark
iteration across all VM invocations and all benchmarks. Two
observations can be made: (i) it takes several benchmark iter-
ations before we reach steady-state behavior, i.e., the execu-
tion time per benchmark iteration slowly decreases with the
number of iterations, and (ii) while HPM-immediate is ini-
tially faster, the other sampling mechanisms perform equally
well for steady-state behavior. This suggests that HPM-
immediate is faster at identifying and compiling hot meth-
ods, but that if the hot methods of an application are stable
and the application runs long enough, the other mechanisms
also succeed at identifying these hot methods. Once all im-
portant methods have been fully optimized, no mechanism
has a significant competitive advantage over the other, and
they exhibit similar behavior. In summary, HPM-sampling
yields faster one-run times and does not hurt steady-state
performance. Nevertheless, in case a long-running applica-
tion would experience a phase change at some point during
the execution, we believe HPM-immediate will be more re-
sponsive to this phase change by triggering adaptive recom-
pilations more quickly.

5.2 Analysis

To get better insight into why HPM-sampling results in im-
proved performance, we now present a detailed analysis of
the number of method recompilations, the optimization level
these methods reach, the overhead of HPM-sampling, the
accuracy of a sampling profile, and the stability of HPM-
sampling across multiple runs.

5.2.1 Recompilation Activity

Table 3 shows a detailed analysis of the number of methods
sampled, the number of methods presented to the analytical
cost/benefit model, and the number of method recompila-
tions for the default system and the four sampling-based pro-
filers. The difference between default and nanosleep-polling
is that the default system uses 20ms as the sleep interval,
whereas nanosleep-polling uses the best sleep interval for
our benchmark suite, which is 4ms. Table 3 shows that
HPM-sampling collects more samples (2066 versus 344 to
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Figure 4. Quantifying steady-state performance of HPM-
immediate-no-yieldpoints sampling: average execution time
per run for 50 consecutive runs.
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Figure 5. The average number of method recompilations by
optimization level across all benchmarks on the Athlon XP
3000+

1249, on average) and also presents more samples to the an-
alytical cost/benefit model (594 versus 153 to 408, on aver-
age) than OS-triggered sampling. This also results in more
method recompilations (134 versus 63 to 109, on average).
Figure 5 provides more details by showing the number
of method recompilations by optimization level. These are
average numbers across all benchmarks on the Athlon XP
3000+ as reported by Jikes RVM’s logging system. This fig-
ure shows that HPM-immediate sampling results in more re-
compilations, and that more methods are compiled to higher
levels of optimization, i.e., compared to nanosleep polling,
HPM-immediate compiles 27% more methods to optimiza-
tion level 0 and 46% more methods to optimization level 1.
Figure 3 showed that HPM-immediate sampling resulted
in an 18.3% performance speedup for mtrt. To better under-
stand this speedup we performed additional runs of the base-



Default Nanosleep-polling Setitimer-polling Setitimer-immediate HPM-immediate
Benchmark S P C S P C S P C S P C S P C
compress 258 | 162 16 || 1010 173 15 || 1190 195 17 977 288 19 || 1536 | 437 23
jess 126 82 35 425 191 45 499 216 47 416 199 49 714 299 55
db 530 56 9 || 1950 87 9 || 2340 92 9 || 1959 159 9 || 3349 189 10
javac 251 | 147 80 893 447 | 139 || 1048 510 | 159 || 1004 | 426 | 150 || 1647 620 | 195
mpegaudio || 250 | 199 58 900 | 453 75 || 1065 526 80 906 634 81 || 1489 908 98
mtrt 128 98 33 460 204 54 529 230 | 58 538 281 63 847 382 82
jack 140 56 27 510 162 | 41 585 192 47 451 110 22 758 185 32
antlr 249 | 120 60 855 339 | 100 || 1040 | 402 | 112 750 269 | 105 || 1263 403 | 138
bloat 601 | 150 60 || 2145 404 | 111 || 2595 490 | 117 || 2255 329 | 111 || 3733 486 | 144
fop 273 60 37 995 199 63 || 1175 230 | 70 576 185 74 957 275 | 103
hsqldb 247 | 180 91 869 478 | 133 995 525 | 138 || 1117 500 | 152 || 1816 | 747 | 181
jython 928 | 426 | 203 || 3294 | 1079 | 342 || 3813 | 1220 | 357 || 3169 | 1145 | 350 || 5178 | 1667 | 426
pmd 565 | 244 93 || 1995 623 | 154 || 2355 721 | 165 || 2355 704 | 158 || 3938 989 | 206
pseudojbb 271 | 161 85 950 | 451 | 129 || 1114 521 | 146 || 1014 | 489 | 152 || 1697 729 | 190
average 344 | 153 63 || 1232 378 | 101 || 1453 433 | 109 || 1249 | 408 | 107 || 2066 594 | 134

Table 3. Detailed sample profile analysis for one-run performance on the Athlon XP 3000+: °S’ stands for the number of
method samples taken, "P’ stands for the number of methods that have been proposed to the analytical cost/benefit model and
’C’ stands for the number of method recompilations.

line and HPM-immediate configurations with Jikes RVM’s
logging level set to report the time of all recompilation
events.> We ran each configuration 11 times and the sig-
nificant speedup of HPM, relative to the baseline configu-
ration, occurred on all runs, therefore, we conclude that the
compilation decisions leading to the speedup were present
in all 11 HPM-immediate runs. There were 34 methods that
were compiled by the HPM-immediate configuration in all
runs, and of these 34 methods, only 13 were compiled on
all baseline runs. Taking the average time at which these 13
methods were compiled, HPM compiles these methods 28% § ,,9é¢ SRR $\§ ,$ ,§ »§ «$
sooner, with a maximum of 47% sooner and a minimum of HPM sample interval in cycles

3% sooner. Although this does not concretely explain why
HPM-immediate is improving performance, it does show
that HPM-immediate is more responsive in compiling the
important methods, which most likely explains the speedup.
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Figure 6. The average overhead through HPM-immediate-
no-yieldpoints sampling for collecting samples at various
sample rates.

5.2.2 Overhead

Collecting samples and recompiling methods obviously in-
curs overhead. To amortize this cost, dynamic compilation
systems need to balance code quality with the time spent
sampling methods and compiling them. To evaluate the over-
head this imposes on the system, we investigate its two com-
ponents: (i) the overhead of collecting the samples and (ii)
the overhead of consuming these samples by the adaptive
optimization system. As explained in Section 2.2, the latter
is composed of three parts implemented as separate threads

in Jikes RVM: (a) the organizer, (b) the controller, and (c) aged across all benchmarks; at the sampling interval of 9M

the compiler. . . .
les, th head added by HPM- diat 1
To identify the overhead of only collecting samples, we ;:i}r]gitees d toeoogg cad added by thmediate Samping 18

modified Jikes RVM to discard samples after they have been

captured in both an HPM-immediate configuration and the
baseline nanosleep-polling configuration. In both configu-
rations no samples are analyzed and no methods are re-
compiled by the optimizing compiler. By comparing the
execution times from the HPM-immediate configuration
with those of the default Jikes RVM configuration that uses
nanosleep-polling with the 20ms sample interval, we can
study the overhead of collecting HPM samples. Figure 6
shows this overhead for a range of HPM sample rates aver-

To identify the overhead of processing the samples we
3 This logging added a small amount of overhead to each configuration, but look at the time spent in the organizer, controller, and com-
the speedup remained about the same. piler. Because each of these subsystems runs in their own
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Figure 7. The average overhead of consuming the samples
across all benchmark. The default systems uses 20ms as the
sample interval, where as the other systems use their best
sample intervals for our benchmark suite.

thread, we use Jikes RVM’s logging system to capture each
thread’s execution time. Figure 7 shows the fraction of
the time spent in the organizer, controller, and the com-
piler for all sampling profiler approaches averaged across
all benchmarks. Based on Figure 7, we conclude that al-
though HPM-immediate collects many more samples, the
overhead of the adaptive optimization system increases by
only roughly 1% (mainly due to the compiler). This illus-
trates that Jikes RVM’s cost/benefit model successfully bal-
ances code quality with time spent collecting samples and
recompiling methods — even when presented with signif-
icantly more samples as discussed in the previous section.
We believe this property is crucial for the applicability of
HPM-immediate sampling.

5.2.3 Accuracy

To assess the accuracy of the profile collected through HPM-
immediate sampling, we would like to compare the various
sampling approaches with a perfect profile. A perfect profile
satisfies the property that the number of samples for each
method executed is perfectly correlated with the time spent
in that method. Such a profile cannot be obtained, short
of doing complete system simulation. Instead, we obtain a
detailed profile using a frequent HPM sample rate (a sample
is taken every 10K cycles) and compare the profiles collected
through the various sampling profiler approaches with this
detailed profile.

We determine accuracy as follows. We run each bench-
mark 30 times in a new VM instance for each sampling ap-
proach (including the detailed profile collection) and capture
how often each method is sampled in a profile. A profile is
a vector where each entry represents a method along with
its sample count. We subsequently compute an average pro-
file across these 30 benchmark runs. We then use the metrics
described below to determine the accuracy for a sampling
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Figure 8. This graph quantifies sampling accuracy using the
unweighted accuracy metric: the average overlap with the
detailed profile is shown on the vertical axis for the top NV
percent of hot methods on the horizontal axis.

approach by comparing its profile with the detailed profile.
We use both an unweighted and a weighted metric.

Unweighted metric. The unweighted metric gives the
percentage of methods that appear in both vectors, re-
gardless of their sample counts. For example, the vectors
z = ((a,5),(b,0),(c,2)) and y = ((a,30),(b,4),(c,0))
have corresponding presence vectors p, = (1,0,1) and
py = (1,1,0), respectively. The common presence vector
then is Peommon = (1,0, 0). Therefore, Peommon has a score
of .33, which is the sum of its elements divided by the num-
ber of elements.

This metric attempts to measure how many methods in
the detailed profile also appear in the profiles for the sam-
pling approach of interest. Because the metric ignores how
often a method is sampled in the detailed profile, it seems
appropriate to consider only the top N percent of most fre-
quently executed methods in the detailed profile.

Figure 8 shows the average unweighted metric for the
various sampling-based profilers for the top N percent of
hot methods. The horizontal axis shows the value of N.
The vertical axis shows the unweighted metric score, so
higher is better for this metric. For example, the accuracy
of the profilers finding the top 20% of methods found in
the detailed profile is 57.4%, 56.3%, 70.2%, and 74.5% for
nanosleep-polling, setitimer-polling, setitimer-immediate-
no-yieldpoints, and HPM-immediate-no-yieldpoints, respec-
tively. Immediate sampling techniques are clearly superior
to polling-based techniques on our benchmark suite.

Weighted metric. The weighted metric considers the sam-
ple counts associated with each method and computes an
overlap score. To determine the weighted overlap score, we
first normalize each vector with respect to the total num-
ber of samples taken in that vector. This yields two vectors
with relative sample counts. Taking the element-wise min-
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Figure 9. This figure shows the accuracy using the weighted
metric of various sampling-based profilers compared to the
detailed profile.

imum of these vectors gives the weighted presence vector.
The score then is the sum of the elements in the presence
vector. For example, for z and y as defined above, the score
is 0.71. Indeed, the only element that has samples in both
vectors, a, scores ﬁ =0.711in x and ﬁ = 0.88in
9.

Figure 9 demonstrates the accuracy using the weighted
metric for all benchmarks. This graph shows that polling-
based sampling achieves the lowest accuracy on average
(59.3%). The immediate techniques score much better, at-
taining 74.2% on average for setitimer. HPM improves this
even further to a 78.0% accuracy on average compared to the
detailed profile.

52.4 Stability

It is desirable for a sampling mechanism to detect hot meth-
ods in a consistent manner, i.e., when running a program
twice, the same methods should be sampled (in the same rel-
ative amount) and optimized so that different program runs
result in similar execution times. We call this sampling sta-
bility. To evaluate stability, we perform 30 runs holding the
sampling mechanism constant. We use the weighted metric
described in the previous section to pairwise compare all the
vectors for the different benchmark runs with the same sam-
pling mechanism. We report the stability score as the mean
of these values.

For example, given three vectors z = ((a, 5), (b, 1), (c,4)),

Yy = ((CL, 6)v (b7 O)’ (Cv 3)) and z = ((CL, 5)7 (bv 2)7 (C’ 3))
that correspond to three benchmark runs of a particular
configuration, the stability is computed as follows. First,
we normalize the vectors and take the element-wise min-
imum of all the different combinations of vectors. Com-
paring z and y yields ((a,1),(b,0),(c, 1)), comparing «
and z yields ((a, 1), (b, %), (¢, )) and comparing y and
z results in ((a, 3), (b,0), (c, )). Next, we compute the
sum of the elements in each of the vectors and compute the
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Figure 10. Quantifying sampling stability: higher is better.

final stability score as the mean of these values. That is,
0.83+0.9+0.8" _ () g4
3

Figure 10 compares the stability of the following five con-
figurations: (i) nanosleep-polling, (ii) setitimer-polling, (iii)
setitimer-immediate, (iv) HPM-immediate, and (v) the HPM
configuration with a sample rate of 10K cycles, i.e., the de-
tailed profile. The detailed profile is very stable (on average
the stability is 95.1%). On average, nanosleep-polling and
setitimer-polling have a stability score of 75.9% and 76.6%,
respectively. The average stability for setitimer-immediate
is 78.2%, and HPM-immediate has the best stability score
(83.3%) of the practical sampling approaches.

6. Related Work

This section describes related work. We focus mostly on pro-
filing techniques for finding important methods in language-
level virtual machines. We briefly mention other areas re-
lated to online profiling in dynamic optimization systems.

6.1 Existing Virtual Machines

As mentioned earlier, Jikes RVM [6] uses a compile-only
approach to program execution with multiple recompilation
levels. All recompilation is driven by a polling-based sam-
pler that is triggered by an operating system timer.

BEA’s JRockit [8, 24] VM also uses a compile-only ap-
proach. A sampler thread is used to determine methods to
optimize. This thread suspends the application threads and
takes a sample at regular intervals. Although full details are
not publicly available, the sampler seems to be triggered by
an operating system mechanism. It is not clear if the sam-
ples are taken immediately or if a polling approach is used.
Friberg’s MS thesis [14] extends JRockit to explore the use
of HPM events on an Itanium 2 to better perform specific
compiler optimizations in a JIT. The thesis reports that us-
ing HPM events improves performance by an average of
4.7%. This work also reports that using HPM events to drive
only recompilation (as we advocate in this work) does not
improve performance, but does compile fewer methods. In



a workshop presentation, Eastman et al. [13] report similar
work to Friberg’s work. The slides claim to extend JRockit to
use an HPM-immediate approach using Itanium 2 events to
drive optimization. Unlike Friberg they do not report how the
new approach compares to existing approach for finding op-
timization candidates, but instead focus on how HPM events
improve performance when used by compiler optimizations.

Whaley [30] describes a sampling profiler that is imple-
mented as a separate thread. The thread awakes periodically
and samples the application threads for the purpose of build-
ing a dynamic call graph. He mentions that this sampling
thread could be triggered by operating system or processor
mechanisms, but used an operating system sleep function
in his implementation. No performance results are reported
comparing the various trigger approaches. The IBM DK for
Java [28] interprets methods initially and uses method entry
and back edge counters to find methods to optimize. Multi-
ple optimization levels are used. A variant of the sampling
technique described by Whaley (without building the dy-
namic call graph) is used to detect compiled methods that
require further optimization.

IBM’s J9 VM [18] is similar to the IBM DK for Java in
that it is also interpreter-based with multiple optimization
levels. It uses a sampling thread to periodically take samples.
The implementation of the sampler is similar to Jikes RVM
in that it uses a polling-based approach that is triggered by
an operating system timer.

Intel’s ORP VM [10] employs a compile-only strategy
with one level of recompilation. Both the initial and the
optimizing compiler use per-method counters to track im-
portant methods. A method is recompiled when the counter
passes a threshold or when a separate thread finds a method
with a counter value that suggests compiling it in the back-
ground. Optimized methods are not recompiled. No sam-
pling is used.

In a technical report, Tam et al. [29] extend Intel’s ORP to
use HPMs to trigger dynamic code recompilation. They in-
strument method prologues and epilogues to read the HPM
cycle counter. The cycle counter value is read upon invo-
cation of a method and upon returning from the method,
and used to compute the time spent in each method. These
deltas are accumulated on a per method basis, and when
a method’s accumulated time exceeds a given threshold
(and that method has been executed at least two times), the
method is recompiled at the next optimization level. They
report large overheads, and conclude that this technique can-
not be used in practice. Our approach is different in that it
does not use instrumentation and relies on sampling to find
candidate methods.

Sun’s HotSpot VM [21] interprets methods initially and
uses method entry and back edge counters to find methods
to optimize. No published information is available on what,
if any, mechanism exists for recompiling optimized methods
and if sampling is used. However, HotSpot was greatly influ-

enced by the Self-93 system [16], which used a compile-only
approach triggered by decayed invocation counters. Opti-
mized methods were not further optimized at higher levels.
In summary, no production VMs use HPMs as a trig-
ger mechanism for finding optimization candidates. Two de-
scriptions of extending JRockit to use HPMs do exist in the
form of MS thesis and a slides-only workshop. In contrast
to our work, neither showed any improvement using this ap-
proach and no comprehensive evaluation was performed.

6.2 Other Related Work

Lu et al. [17] describe the ADORE dynamic binary opti-
mization system, which uses event-sampling of HPMs to
construct a path profile that is used to select traces for op-
timization. At a high level this is a similar approach to what
we advocate, HPM profiling for finding optimization candi-
dates, but details of the optimization system (a binary opti-
mizer versus a virtual machine) are quite different.

Adl-Tabatabai et al. [1] used HPMs as a profiling mecha-
nism to guide the placement of prefetch instructions in the
ORP virtual machine. We believe prefetching instructions
are inserted by forcing methods to be recompiled. Although
this work may compile a method more than once based on
HPM information, it does not rely on HPMs as a general
profiling mechanism to find optimization candidates. Su and
Lipasti [27] describe a hybrid hardware-software system that
relies on hardware support for detecting exceptions in spec-
ified regions of code. The virtual machine then performs
speculative optimizations on these guarded region. Schnei-
der et al. [23] show how hardware performance monitors
can be used to drive locality-improving optimizations in a
virtual machine. Although these works are positive exam-
ples of how hardware can be used to improve performance in
a virtual machine environment, neither address the specific
problem we address: finding candidates for recompilation.

Ammons et al. [4] show how HPMs can be incorporated
into an offline path profiler. Andersen et al. [5] describe
the DCPI profiler, which uses HPMs to trigger a sampling
approach to understand program performance. None of these
works use HPMs to find optimization candidates.

Zhang et al. [31] describe the Morph Monitor component
of an online binary optimizer that uses an operating sys-
tem kernel extension to implement an immediate profiling
approach. Duesterwald et al. [12] describe a low-overhead
software profiling scheme for finding hot paths in a binary
optimization systems. Although both works are tackling
the problem of finding optimization candidates, neither use
HPMs.

Merten et al. [19] propose hardware extensions to monitor
branch behavior for runtime optimization at the basic block
and trace stream level. Conte et al. [11] describe a hardware
extension for dedicated profiling. Our work differs in that we
use existing hardware mechanisms for finding hot methods.



7. Conclusions and Future Work

To our knowledge, this is the first work to empirically eval-
uate the design space of several sampling-based profilers
for dynamic compilation. We describe a technique, HPM-
sampling, that leverages hardware performance monitors
(HPMs) to identify methods for optimization. In addition,
we show that an immediate sampling approach is signif-
icantly more accurate in identifying hot methods than a
polling-based approach. Furthermore, an immediate sam-
pling approach allows for eliminating epilogue yield-points.
We show that, when put together, HPM-immediate sam-
pling with epilogue yield-point elimination outperforms all
other sampling techniques. Compared to the default Jikes
RVM configuration, we report a performance improvement
of 5.7% on average and up to 18.3% without modifying
the compiler. Moreover, we show that HPM-based sampling
consistently improves the accuracy, robustness, and stability
of the collected sample data.

We believe there are a number of potentially interesting
directions for future research. First, this paper used the cy-
cle counter event to sample methods. Other HPM events may
also be useful for identifying methods for optimization, such
as cache miss count events and branch misprediction count
events. Second, it may be interesting to apply the improved
accuracy of HPM-based sampling to other parts of the adap-
tive optimization system, such as method inlining.

This work has demonstrated that there is potential for
better synergy between the hardware and virtual machines.
Both try to exploit a program’s execution behavior, but little
synergy has been demonstrated to date. This is partially due
to the narrow communication channel between hardware and
software, as well as the lack of cross-subdiscipline innova-
tion in these areas. We hope this work encourages others to
explore this fruitful area of greater hardware-virtual machine

synergy.
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