
37

C h a p t e r T h r e e

Wordle
Jonathan Feinberg

Figure 3-1.  A Wordle of this chapter

By now, even people �who have never heard of “information visualization” are

familiar with the colorful word collage known as Wordle, “the gateway drug to textual

analysis.”* Like any such drug, Wordle was designed for pleasure, although its roots lie

in the utilitarian tag clouds popularized by such sites as del.icio.us and Flickr.

*	See http://www.profhacker.com/2009/10/21/wordles-or-the-gateway-drug-to-textual-analysis/.

http://www.profhacker.com/2009/10/21/wordles-or-the-gateway-drug-to-textual-analysis/

38 Beautiful Visualization

Wordle’s Origins
In 2004, my colleague Bernard Kerr and I made a social bookmarking application,

which Bernard named “dogear” (Millen, Feinberg, and Kerr, 2006). Any application

that lets users tag content is bound to provide a tag cloud, a vaguely rectangular collec-

tion of clickable keywords. So, when we designed dogear, we made sure to feature a

prominent tag cloud on every page (see Figure 3-2).

Figure 3-2.  The author’s tags as they appeared in dogear

I never found tag clouds to be particularly interesting or satisfying, visually. There’s not

much evidence that they’re all that useful for navigation or for other interaction tasks,

either.* But when blogger Matt Jones† posted his del.icio.us tags as a beautiful, typo-

graphically lively image (see Figure 3-3), I was thrilled. I thought that there was no

reason why a computer program couldn’t create something similar. At the very least,

I wanted to end up with something that could—like Jones’s cloud—put the dot of an

“i” into the lower counter of a “g”, something well beyond what tag clouds could do at

the time.

*	See http://doi.acm.org/10.1145/1240624.1240775.

†	See http://magicalnihilism.com/2004/07/04/my-delicious-tags-july-2004/.

http://doi.acm.org/10.1145/1240624.1240775
http://magicalnihilism.com/2004/07/04/my-delicious-tags-july-2004/

39chapter 3: wordle

Figure 3-3.  Matt Jones’s typographically aware tag cloud

I spent a week or so creating the code for what I called the “tag explorer” (see Figure

3-4), a Java applet that permitted users to navigate through dogear by clicking on tags

related to the current context.

Figure 3-4.  The dogear tag explorer*

*	See http://www.flickr.com/photos/koranteng/526642309/in/set-72157600300569893.

http://www.flickr.com/photos/koranteng/526642309/in/set-72157600300569893

40 Beautiful Visualization

It was immediately clear that the tag explorer was useful as a portrait of a person’s

interests, as when a number of my fellow IBMers used screenshots of the tag explorer

to illustrate their résumés and email signatures (see Figure 3-5).

Figure 3-5.  The author’s 2006 work email signature

When dogear became an IBM product,* the tag explorer did not go with it, and I for-

got all about it. When I found the tag explorer code by chance a couple of years later, I

thought it was worth developing.

The original tag explorer was intimately tied to dogear, and to the idea of tag clouds in

general. I wanted to find a way to decouple the word-cloud effect from the whole idea

of “tags,” since the pleasing and amusing qualities of the word cloud seemed generally

accessible, while “tags” were familiar only to a technologically sophisticated crowd.

This led to the idea of simply counting words. Once I had decided to build a system

for viewing text, rather than tags, it seemed superfluous to have the words do anything

other than merely exist on the page. I decided that I would design something primar-

ily for pleasure, in the spirit of Charles Eames’s remark, “Who would say that pleasure

is not useful?” This decision, in turn, made it easy to decide which features to keep,

which features to reject, and how to design the interface (shown in Figure 3-6).

Figure 3-6.  Wordle’s text-analytics user interface

Since Wordle (as it was now called) was meant to be pleasing, I had to give some

thought to the expressive qualities of fonts and color palettes (see Figure 3-7).

*	See http://www-01.ibm.com/software/lotus/products/connections/bookmarks.html.

http://www-01.ibm.com/software/lotus/products/connections/bookmarks.html

41chapter 3: wordle

Figure 3-7.  Wordle provides varied palettes, fonts, and layouts

I believe that my efforts to simplify Wordle, and to emphasize pleasure over business,

have been paid for many times over. Wordle has been used in ways I’d never antici-

pated, by far more people than I’d dared to expect. Some of Wordle’s success is due

to the design of the web application itself, with its one-paste/one-click instant grati-

fication. However, to the extent that the design of the Wordle visualization itself has

contributed to its ubiquity, it might be worth looking at what Wordle is not before we

examine in detail what it is and how it works.

Anatomy of a Tag Cloud
The typical tag cloud is organized around lines of text.* If one word on a line is larger

than another, the smaller word will have a disproportionate amount of whitespace

overhead, which can look awkward. For example, see Figure 3-8, where “everett hey”

has an enormous expanse of white above, because the line height is determined by its

neighbor “everett everett”.

Figure 3-8.  Lost in White Space†

One way to mitigate the ragged whitespace caused by such extreme contrasts in size

is to squash different word weights into a small number of bins, as del.icio.us does. In

Figure 3-9, the “programming” tag has been used 55 times and “scripting” only once,

but the font for the more frequently used word is only 50% larger. Notice also the use

of font weight (boldness) to enhance the contrast between different word weights.

*	For a thorough survey of tag cloud designs, with thoughtful commentary, see http://www.smashing-
magazine.com/2007/11/07/tag-clouds-gallery-examples-and-good-practices/.

†	See http://manyeyes.alphaworks.ibm.com/manyeyes/page/Tag_Cloud.html.

http://www.smashingmagazine.com/2007/11/07/tag-clouds-gallery-examples-and-good-practices/
http://www.smashingmagazine.com/2007/11/07/tag-clouds-gallery-examples-and-good-practices/
http://manyeyes.alphaworks.ibm.com/manyeyes/page/Tag_Cloud.html

42 Beautiful Visualization

Figure 3-9.  Squashing the scale of differences between word weights

In effect, del.icio.us is scaling the word weights—roughly—by logarithm. It’s sensi-

ble to scale weights using logarithms or square roots when the source data follows a

power-law distribution, as tags seem to do.*

Somewhere between these earnest, useful designs and the fanciful world that Wordle

inhabits, there are other, more experimental interfaces. The WP-Cumulus† blog plug-

in, for example, provides a rotating, three-dimensional sphere of tags (see Figure

3-10).

Figure 3-10.  WP-Cumulus: can’t…quite…click on “tag cloud”…

The desire to combine navigation with visualization imposes certain constraints on the

design of a word cloud. But once we are liberated from any pretense of “utility”—once

we’re no longer providing navigation—we can start to play with space.

Filling a Two-Dimensional Space
There are lots of computer science PhDs to be garnered in finding incremental

improvements to so-called bin-packing problems.‡ Luckily, the easy way has a respect-

able name: a randomized greedy algorithm. It’s randomized in that you throw stuff on

the screen somewhere near where you want it to be, and if that stuff intersects with

other stuff, you try again. It’s greedy in that big words get first pick.

*	See http://www.citeulike.org/user/andreacapocci/article/1326856.

†	See http://wordpress.org/extend/plugins/wp-cumulus/.

‡	See http://en.wikipedia.org/wiki/Bin_packing_problem.

http://www.citeulike.org/user/andreacapocci/article/1326856
http://wordpress.org/extend/plugins/wp-cumulus/
See http://en.wikipedia.org/wiki/Bin_packing_problem.

43chapter 3: wordle

Wordle’s specific character depends on a couple of constraints. First, we are given a list

of words, with associated (presumably meaningful) weights. We can’t show any word

more than once, and we don’t want to distort the shape of the word beyond choosing

its font size. If we remove those constraints, though, many other interesting and beau-

tiful effects are possible.

For example, you can use a randomized greedy strategy to fill almost any region (not

just a rectangle) as long as you have a set of words as a palette, from which you can

arbitrarily choose any word, at any size, any number of times (see Figure 3-11).

Figure 3-11.  Do not underestimate the power of the randomized greedy algorithm

Consider Jared Tarbell’s exquisite Emotion Fractal* (see Figure 3-12), which recur-

sively subdivides a space into ever-smaller random rectangles, filling the space with

ever-smaller words. This effect depends on a large set of candidate words, chosen at

random, with arbitrary weights.

*	See http://levitated.net/daily/levEmotionFractal.html.

http://levitated.net/daily/levEmotionFractal.html

44 Beautiful Visualization

Figure 3-12.  Jared Tarbell’s Emotion Fractal

If you don’t mind distorting your fonts by elongating or squashing the words as

needed, other effects are possible. For example, Figure 3-13 shows a variation on

the venerable treemap,* which uses text, rather than rectangles, to fill space. Each

word fills an area proportional to its frequency; each rectangular area contains words

strongly associated with each other in the source text.

Figure 3-13.  Word treemap of an Obama speech

*	See http://www.cs.umd.edu/hcil/treemap-history/.

http://www.cs.umd.edu/hcil/treemap-history/

45chapter 3: wordle

It must be said that long before there were Processing sketches and Flash applets, peo-

ple were exploring these sorts of typographical constructions in mass media and in fine

art (Figure 3-14); we have been probing the boundary between letters as forms and

letters as signs for a long time (Figure 3-15). The goal of these algorithmic explorations

is to allow the wit and elegance of such examples to influence the representation of tex-

tual data.

Given this rather brief tour of the technical and aesthetic environment in which

Wordle evolved, we’re now ready to look at Wordle’s technical and aesthetic choices in

a bit more detail.

Figure 3-14.  Herb Lubalin and Lou Dorfsman’s Typographicalassemblage (courtesy of the
Center for Design Study)

Figure 3-15.  Before we made pictures with words, we made words with pictures

46 Beautiful Visualization

How Wordle Works
Wordle is implemented as a Java applet. Some of the technical details I provide here

will be in terms of Java-specific features. Nothing described here is impossible in other

languages, using other libraries and frameworks, but Java’s strong support for Unicode

text processing and 2D graphics (via the Java2D API) makes these things pretty

straightforward.

Text Analysis
We’ll now take a step back and consider some of the fundamental assumptions that

determine Wordle’s character. In particular, we have to examine what “text” is, as far

as Wordle is concerned.

While this kind of text analysis is crude compared to what’s required for some natural-

language processing, it can still be tedious to implement. If you work in Java, you might

find my cue.language library* useful for the kinds of tasks described in this section. It’s

small enough, it’s fast enough, and thousands use it each day as part of Wordle.

Remember that natural-language analysis is as much craft as science,† and even given

state-of-the-art computational tools, you have to apply judgment and taste.

Finding words
Wordle is in the business of drawing pictures of words, each having some weight, which

determines its size. What does Wordle consider to be a “word”?

Wordle builds a regular expression (regex) that recognizes what it considers to be

words in a variety of scripts, and then iteratively applies that regex to the given text, as

illustrated in Example 3-1. The result is a list of words.

Example 3-1.  How to recognize “words”

private static final String LETTER = "[@+\\p{javaLetter}\\p{javaDigit}]";
private static final String JOINER = "[-.:/''\\p{M}\\u2032\\u00A0\\u200C\\u200D~]";
/*
A word is:
 one or more "letters" followed by
 zero or more sections of

 one or more "joiners" followed by one or more "letters"
*/
private static final Pattern WORD =
 Pattern.compile(LETTER + "+(" + JOINER + "+" + LETTER + "+)*");

*	See http://github.com/vcl/cue.language.

†	For an illuminating demonstration of this craft, see Peter Norvig’s chapter on natural-language
processing in the sister O’Reilly book Beautiful Data.

http://github.com/vcl/cue.language
http://oreilly.com/catalog/9780596157111/

47chapter 3: wordle

A letter is any character that the Java Character class considers to be either a “letter” or

a “digit,” along with @ (at sign) and + (plus sign). Joiners include the Unicode M class,

which matches a variety of nonspacing and combining marks, other pieces of punc-

tuation commonly found in URLs (since Wordle users expect to see URLs preserved as

“words”), the apostrophe, and several characters used as apostrophes in the wild (such

as U+2032, the PRIME character). Wordle accepts the tilde (~) as a word joiner but

replaces it with a space in the output, thereby giving users an easy way to say “keep

these words together” without having to find the magical key combination for a real

nonbreaking space character.

Determining the script
Having extracted a list of words (whatever we take “word” to mean), we need to know

how to display those words to the viewer. We first need to know what characters we’ll

be expected to display, so that we can choose a font that supports those characters.

Wordle’s collection of fonts is organized in terms of what scripts each can support,

where a script is what you might think of as an alphabet: a collection of glyphs that can

be used to visually represent sequences of characters in one or more languages. A given

script, in Unicode, is organized into one or more blocks. So, the task now is to deter-

mine which fonts the user might want to use by sniffing out which blocks are repre-

sented in the given text.

Java provides the static method UnicodeBlock.of(int codePoint) to determine which

block a given code point belongs to. Wordle takes the most frequent words in a text

and looks at the first character in each of those words. In the rather common case

that the character is in the Latin block, we further check the rest of the word to see

if it contains any Latin-1 Supplement characters (which would remove certain fonts

from consideration) or any of the Latin Extended blocks (which would bar even more

fonts). The most frequently seen block is the winner.

To keep it responsive and limit its use of network resources, Wordle is designed to per-

mit the use of only one font at a time. A more full-featured word cloud might choose

different fonts for different words; this could provide another visual dimension to rep-

resent, for example, different source texts.

As of this writing, Wordle supports the Latin, Cyrillic, Devanagari, Hebrew, Arabic,

and Greek scripts. By design, Wordle does not support the so-called CJKV scripts, the

scripts containing Chinese, Japanese, Korean, and Vietnamese ideographs. CJKV fonts

are quite large and would take too long for the average Wordle user to download (and

would cost a great deal in bandwidth charges). Also, determining word breaks for

ideographic languages requires sophisticated machine-learning algorithms and large

runtime data structures, which Wordle cannot afford.

48 Beautiful Visualization

know thy data

Unicode in a Nutshell
Since Wordle understands text in Unicode terms, here’s what you have to know in order to
understand some of the terms and notations you’ll see here.

The Unicode* standard provides a universal coded character set and a few specifications
for representing its characters in computers (as sequences of bytes).

A character is an abstract concept, meant to serve as an atom of written language. It is
not the same thing as a “letter”—for example, some Unicode characters (accents, umlauts,
zero-width joiners) are only meaningful in combination with other characters. Each charac-
ter has a name (such as GREEK CAPITAL LETTER ALPHA) and a number of properties,
such as whether it is a digit, whether it is an uppercase letter, whether it is rendered right-
to-left, whether it is a diacritic, and so on.

A character set or character repertoire is another abstraction: it is an unordered collection
of characters. A given character is either in, or not in, a given character set. Unicode at-
tempts to provide a universal character set—one that contains every character from every
written language in current and historical use—and the standard is constantly revised to
bring it closer to that ideal.

A coded character set uniquely assigns an integer—a code point—to each character. Once
you’ve assigned code points to the characters, you may then refer to those characters by their
numbers. The convention used is an uppercase U, a plus sign, and a hexadecimal number. For
example, the PRIME character mentioned earlier in this chapter has the code point U+2032.

Coded characters are organized according to the scripts in which they appear, and scripts
are further organized into blocks of strongly related characters. For example, the Latin script
(in which most European languages are written) is given in such blocks as Basic Latin (con-
taining sufficient characters to represent Latin and English), Latin-1 Supplement (containing
certain diacritics and combining controls), Latin Extended A, Latin Extended B, and so on.

When it comes time to actually put pixels onto a screen, a computer program interprets
a sequence of characters and uses a font to generate glyphs in the order and location
demanded by the context.

*	See http://unicode.org.

Guessing the language and removing stop words
It would be neither interesting nor surprising to see that your text consists mostly of

the words “the,” “it,” and “to.” To avoid a universe of boring Wordles, all alike, such

stop words need to be removed for each recognized language. To know which list of

stop words to remove for a given text, though, we have to guess what language that

text is in.

http://unicode.org

49chapter 3: wordle

Knowing the script is not the same as knowing the language, since many languages

might use the same script (e.g., French and Italian, which share the Latin script).

Wordle takes a straightforward approach to guessing a text’s language: it selects the 50

most frequent words from the text and counts how many of them appear in each lan-

guage’s list of stop words. Whichever stop word list has the highest hit count is consid-

ered to be the text’s language.

How do you create a list of stop words? As with the definition of a “word,” described

earlier, this kind of thing is a matter of taste, not science. You typically start by count-

ing all of the words in a large corpus and selecting the most frequently used words.

However, you might find that certain high-frequency words add a desirable flavor to

the output while other, lower-frequency words just seem to add noise, so you may

want to tweak the list a bit.

Many of Wordle’s stop word lists came from users who wanted better support for their

own languages. Those kind folks are credited on the Wordle website.

By default Wordle strips the chosen language’s stop words from the word list before

proceeding to the next steps, but Wordle users can override this setting via a menu

checkbox.

Assigning weights to words
Wordle takes the straight path in assigning a numeric weight to each word. The for-

mula is: weight = word count.

Layout
Once you’ve analyzed your text, you’re left with a list of words, each of which has

some numeric weight based on its frequency in the text. Wordle normalizes the weights

to an arbitrary scale, which determines the magnitude of various constants that affect

the resulting image (such as the minimum size of a hierarchical bounding box leaf, as

described later in this chapter). You’re now ready to turn words into graphical objects

and to position those objects in space.

Weighted words into shapes
For each word, Wordle constructs a font with a point size equal to the word’s scaled

weight, then uses the font to generate a Java2D Shape (see Example 3-2).

50 Beautiful Visualization

Example 3-2.  How to turn a String into a Shape

private static final FontRenderContext FRC
 = new FontRenderContext(null, true, true);

public Shape generate(final Font font, final double weight, final String word,
 final double orientation) {
 final Font sizedFont = font.deriveFont((float) weight);
 final char[] chars = word.toCharArray();
 final int direction = Bidi.requiresBidi(chars, 0, chars.length) ?
 Font.LAYOUT_RIGHT_TO_LEFT : Font.LAYOUT_LEFT_TO_RIGHT;
 final GlyphVector gv =
 sizedFont.layoutGlyphVector(FRC, chars, 0, chars.length, direction);
 Shape result = gv.getOutline();
 if (orientation != 0.0){
 result = AffineTransform.getRotateInstance(orientation)
 .createTransformedShape(result);
 }
 return result;
}

The playing field
Wordle estimates the total area to be covered by the finished word cloud by examin-

ing the bounding box for each word, summing the areas, and adjusting the sum to

account for the close packing of smaller words in and near larger words. The resulting

area is proportioned to match the target aspect ratio (which is, in turn, given by the

dimensions of the Wordle applet at the moment of layout).

The constants used to adjust the size of the playing field, the area in which Wordles are

laid out, were determined by the time-honored tradition of futzing around with differ-

ent numbers until things looked “good” and worked “well.” As it happens, the precise

size of the playing field is rather important, because the field boundaries are used as

constraints during layout. If your playing field is too small, your placement will run

slowly and most words will fall outside the field, leaving you with a circle (because

once a word can’t be placed on the field, Wordle relaxes that constraint and you wind

up with everything randomly distributed around some initial position). If it’s too large,

you’ll get an incoherent blob (because every nonintersecting position is acceptable).

One “gotcha” to look out for is an especially long word, which could have a dimension

far larger than the calculated width or height based on area. You must make sure that

your playing field is big enough to contain the largest word, at least.

Remember that the playing field is an abstract space, a coordinate system not corre-

sponding to pixels, inches, or any other unit of measurement. In this abstract space,

you can lay out the word shapes and check for intersections. When it comes time to

actually put pixels on the screen, you can do some scaling into screen units.

51chapter 3: wordle

Placement
Having created a place to put words, it’s time to position the words in that space.

The overall placement strategy is a randomized greedy algorithm in which words are

placed, one at a time, on the playing field. Once a word is placed, its position does not

change.

Wordle offers the user a choice of placement strategies. These strategies influence the

shape and texture of the completed Wordle, by determining where each word “wants”

to go. On the Wordle website, the choices are center-line and alphabetical center-line.

Both strategies place words near the horizontal center-line of the playing field (not

necessarily upon it, but scattered away from it by a random distribution). The alpha-

betical strategy sorts the words alphabetically and then distributes their preferred x

coordinates across the playing field.

Interesting effects are possible through the use of smarter placement strategies. For

example, given clustering data—information about which words tend to be used near

each other—the placement strategy can make sure that each word tries to appear near

the last word from its cluster that was placed on the field (see Figure 3-16).

Figure 3-16.  The result of a clustering placement strategy

52 Beautiful Visualization

The word shapes are sorted by their respective weights, in descending order. Layout

proceeds as in Example 3-3, with the result as illustrated in Figure 3-17.

Example 3-3.  The secret Wordle algorithm revealed at last!

For each word w in sorted words:
 placementStrategy.place(w)
 while w intersects any previously placed words:
 move w a little bit along a spiral path

Figure 3-17.  The path taken by the word “Denmark”

To make matters a bit more complicated, Wordle optionally tries to get the words to fit

entirely within the rectangular boundaries of the playing field—this is why it’s impor-

tant to guess how big the whole thing is going to be. If the rectangular constraint is

turned on, the intersection-handling routine looks like Example 3-4.

Example 3-4.  Constraining words to the playing field

while w intersects any previously placed words:
 do {
 move w a little bit along a spiral path
 } while any part of w is outside the playing field and
 the spiral radius is still smallish

53chapter 3: wordle

Intersection testing
The pseudocode in Example 3-4 breezily suggests that you move a word while it inter-

sects other words, but it does not suggest how you’d go about determining such a

thing. Testing spline-based shapes for intersection is expensive, and a naïve approach

to choosing pairs for comparison is completely unaffordable. Here are the techniques

that Wordle currently uses to make things fast enough:

Hierarchical bounding boxes

The first step is to reduce the cost of testing two words for intersection. A sim-

ple method for detecting misses is to compare the bounding boxes of two words,

but it’s not uncommon for two such boxes to intersect when the word glyphs do

not. Wordle exploits the cheapness of rectangle comparisons by recursively divid-

ing a word’s bounding box into ever-smaller boxes, creating a tree of rectangles

whose leaf nodes contain chunks of the word shape (see Figure 3-18). Although

it’s expensive to construct these hierarchical bounding boxes, the cost is recovered

by an order of magnitude during the layout. To test for collision, you recursively

descend into mutually intersecting boxes, terminating either when two leaf nodes

intersect (a hit) or when all possible intersecting branches are excluded (a miss).

By taking care with the minimum size of leaf rectangles and by “swelling” the leaf

boxes a bit, the layout gets a pleasing distance between words “for free.”

Figure 3-18.  Hierarchical bounding boxes

Broadphase collision detection

In choosing pairs of words to test for intersection, the simplest approach is to test

the current candidate word against all of the already-placed words. This approach

results in a hit test count around the order of N2, which is far too slow once you

get up to 100 words or so. Therefore, Wordle does some extra work to avoid as

much collision testing as possible.

Caching

One very simple improvement stems from the observation that if a word A

intersects some other word B, it’s very likely that A will still intersect B if A

is moved slightly. Therefore, Wordle caches a candidate word’s most recently

intersected word and tests it first.

54 Beautiful Visualization

Spatial indexing

To further reduce the number of hit tests, Wordle borrows from computational

geometry the region quadtree, which recursively divides a two-dimensional space

(in this case, the Wordle playing field) into four rectangular regions. Here,

a quadtree serves as a spatial index to efficiently cull shapes from the list of

words to be compared to some candidate shape. Once a word is placed on the

playing field, Wordle searches for the smallest quadtree node that entirely

contains the word, and adds the word to that node. Then, when placing the

next word, many already-placed words can be culled from collision testing by

querying the quadtree.

There’s an entire research field around efficient collision detection, much of which is

very well summarized in Christer Ericson’s (2005) book Real-Time Collision Detection. I

recommend that book to anyone who wants to play with randomized graphics algo-

rithms like Wordle’s; my own quadtree implementation is based on my understanding

of its discussion.

Is Wordle Good Information Visualization?
If you consider Wordle strictly as an information visualization tool, certain aspects of

its design could be criticized for their potential to mislead or distract its users. Here are

some of my own Wordle caveats.

Word Sizing Is Naïve
Wordle does not take into account the length of a word, or the glyphs with which

it’s drawn, when calculating its font size. The result is that, given two words used the

same number of times, the word with more letters will take up more space on the

screen, which may lead to the impression of the longer word being more frequent.

On the other hand, I don’t know of any studies on how relative word size corresponds

to perceived relative weight. What’s more, the commonly used trick of scaling by the

square root of the word’s weight (to compensate for the fact that words have area, and

not mere length) simply makes a Wordle look boring.

Color Is Meaningless
In a medium—your computer screen—that provides precious few dimensions, Wordle

is shockingly free with its use of color. Color means absolutely nothing in Wordle; it is

used merely to provide contrast between word boundaries and for aesthetic appeal.

Color could be used to code various dimensions, such as clustering (indicating which

words tend to be used near each other) or statistical significance (as in the inaugural

address word clouds—see Figure 3-19). Wordle could also use color to let two or more

different texts be represented in the same space.

55chapter 3: wordle

Figure 3-19.  “Government” was used a lot in this speech, but not much more than in the other
speeches; “pleasing” was used only a couple of times but is an unusual word in the corpus;
“people” was used a lot and is unusually frequent

It should also be mentioned that Wordle makes no provision for colorblind users,

although one can always create a custom palette via the applet’s Color menu.

Fonts Are Fanciful
Many of Wordle’s fonts strongly favor aesthetics and expressiveness over legibility. This

has to do, partly, with the design of the Wordle website—the gallery pages would be

monotonous without fairly broad letter-form diversity. Most importantly, a font has to

look good in a Wordle, which may mean that it wouldn’t necessarily work well for body

text.

For applications where legibility is paramount, Wordle provides Ray Larabie’s

Expressway font, which is modeled on the U.S. Department of Transportation’s

Standard Alphabets.

Word Count Is Not Specific Enough
I have seen Wordle used to summarize each book of the New Testament, leading to

one page after another of “Lord,” which tells you nothing about how the chapters are

distinct from one another. Merely counting words does not permit meaningful com-

parisons of like texts. Consider, for example, a blog post. It might be most revealing to

emphasize how the post differs from other blog posts by the same author, or to show

how it differs from posts on the same topic by other bloggers, or even to show how it

differs from the language of newspaper reporting.

56 Beautiful Visualization

There are plenty of statistical measures that one may apply to a “specimen” text versus

some “normative” body of text to reveal the specific character of the specimen, with

proper attention paid to whether some word use is statistically significant. Given a

more nuanced idea of word weight, beyond mere frequency, one could then apply the

Wordle layout algorithm to display the results.

I explored this idea in an analysis of every presidential inaugural address,* in which

each speech was compared to the 5 speeches nearest to it in time, the 10 nearest

speeches, and all other inaugural addresses. Such an analysis has the advantage of

revealing the unexpected absence of certain words. For example, Figure 3-20 is a visu-

alization of Harry Truman’s 1948 inaugural address. On the left is a Wordle-like repre-

sentation of the words he used, and on the right are the words that his contemporaries

used more than he did. This visualization reveals Truman’s emphasis on foreign policy.

Figure 3-20.  Harry Truman’s 1948 inaugural address: the words in red were conspicuously
absent from Harry Truman’s speech, relative to those of his contemporaries

*	See http://researchweb.watson.ibm.com/visual/inaugurals/.

http://researchweb.watson.ibm.com/visual/inaugurals/

57chapter 3: wordle

How Wordle Is Actually Used
Wordle was not designed for visualization experts, text analysis experts, or even expe-

rienced computer users. I tried to make Wordle as appliance-like as possible.

As of this writing, people have created and saved over 1,400,000 word clouds in the

Wordle gallery. They have been used to summarize and decorate business presenta-

tions and PhD theses, to illustrate news articles and television news broadcasts, and to

distill and abstract personal and painful memories for victims of abuse. Wordle has also

found an enthusiastic community in teachers of all stripes, who use Wordles to present

spelling lists, to summarize topics, and to engage preliterate youngsters in the enjoy-

ment of text.

As the survey results in Table 3-1 (Viégas, Wattenberg, and Feinberg, 2009) illustrate,

when people use Wordle they feel creative, as though they’re making something.

Table 3-1.  How people feel when they make a Wordle

Agree % Neutral % Disagree %

I felt creative 88 9 4

I felt an emotional reaction 66 22 12

I learned something new about the text 63 24 13

It confirmed my understanding of the text 57 33 10

It jogged my memory 50 35 15

The Wordle confused me 5 9 86

So, by one traditional academic measure of a visualization’s efficacy—“I learned some-

thing new about the text”—Wordle can at least be considered moderately successful.

But where Wordle shines is in the creation of communicative artifacts. People who use

Wordle feel as though they have created something, that the created thing succeeds

in representing something meaningful, and that it accurately reflects or intensifies the

source text. This sense of meaningfulness seems to be mostly intuitive, in that many

people do not realize that word size is related to word frequency (guessing, instead,

that the size indicates “emotional importance” or even “word meaning”).

The special qualities of Wordle are due to the special qualities of text. Simply putting a

single word on the screen, in some font that either complements or contrasts with the

sense of the word, immediately resonates with the viewer (indeed, there have been

many thousands of single-word Wordles saved to the public gallery). When you jux-

tapose two or more words, you begin to exploit the tendency of a literate person to

make sense of words in sequence. Wordle’s serendipitous word combinations create

delight, surprise, and perhaps some of the same sense of recognition and insight that

poetry evokes intentionally.

58 Beautiful Visualization

Using Wordle for Traditional Infovis
Notwithstanding Wordle’s special emotional and communicative properties, the ana-

lytic uses of information visualization are certainly available to the expert user. To

serve those who want to use Wordle as a visualization for their own weighted text,

where the weights are not necessarily based on word frequency, the Wordle website

provides an “advanced” interface, where one can enter tabular data containing arbi-

trarily weighted words or phrases, with (optional) colors.

Still more advanced use is possible through the “Word Cloud Generator” console

application, available through IBM’s alphaWorks website.*

The ManyEyes collaborative data visualization site also provides Wordle as a text-

visualization option beside its innovative Phrase Net and Word Tree visualizations (and

a more traditional tag cloud).†

Conclusion
People often want to preserve and share the Wordles they make; they use Wordles to

communicate. A beautiful visualization gives pleasure as it reveals something essential.

Acknowledgments
I would like to thank Martin Wattenberg and Irene Greif at IBM CUE for making pos-

sible my participation in this book. I am very grateful to Ben Fry, Katherine McVety,

Fernanda Viégas, and Martin Wattenberg, who each read this chapter with great care

and suggested many improvements. Please see http://www.wordle.net/credits for informa-

tion about the many people who have helped me create and improve Wordle.

References
Ericson, Christer. 2005. Real-Time Collision Detection. San Francisco, CA: Morgan

Kaufmann.

Millen, D. R., J. Feinberg, and B. Kerr. 2006. “Dogear: Social bookmark-

ing in the enterprise.” Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (Montréal, Québec, Canada, April 22–27, 2006). http://doi.acm.

org/10.1145/1124772.1124792.

Viégas, Fernanda B., Martin Wattenberg, and Jonathan Feinberg. 2009. “Participatory

visualization with Wordle.” IEEE Transactions on Visualization and Computer Graphics 15,

no. 6 (Nov/Dec 2009): 1137–1144. doi:10.1109/TVCG.2009.171.

*	See http://www.alphaworks.ibm.com/tech/wordcloud.

†	See http://manyeyes.alphaworks.ibm.com/manyeyes/page/Visualization_Options.html.

http://www.wordle.net/credits
http://doi.acm.org/10.1145/1124772.1124792
http://doi.acm.org/10.1145/1124772.1124792
http://www.alphaworks.ibm.com/tech/wordcloud
http://manyeyes.alphaworks.ibm.com/manyeyes/page/Visualization_Options.html

