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• I show you a picture of the night sky.

• You tell me where on the sky it  came from.

Basic Problem
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Rules of the game
• We start with a catalogue of stars in the sky, 

and from it build an index which is used to 
assist us in locating (‘solving’) new test images.

?
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Rules of the game

• We can spend as 
much time as we want 
building the index but 
solving should be fast. 

• Challenges:
1) The sky is big.
2) Both catalogues  
and pictures are noisy.

• We start with a catalogue of stars in the sky, 
and from it build an index which is used to 
assist us in locating (‘solving’) new test images.
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• Bad news:
Query images may contain 
some extra stars that are not 
in your index catalogue, and 
some catalogue stars may 
be missing from the image.

Distractors and Dropouts

• These “distractors” & “dropouts” mean that 
naïve matching techniques will not work.
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You try

Find this “field” on this “sky”.
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You try

Find this “field” on this “sky”.

Hint #1: Missing stars.
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You try

Find this “field” on this “sky”.

Hint #1: Missing stars.
Hint #2: Extra stars.



http://astrometry.net roweis@cs.toronto.edu

You try

Find this “field” on this “sky”.
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Robust Matching
• We need to do some sort

of robust matching of the
test image to any proposed 
location on the sky.

• Intuitively, we need to ask:
“Is there an alignment of the test image 
and the catalogue so that (almost*) every 
catalogue star in the field of view of the 
test image lies (almost*) exactly on top of 
an observed star?” 

[*The details depend on the rate of distractors/dropouts. ]
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Solving the search problem
• Even if we can succeed in 

finding a good robust matching 
algorithm, there is still a huge 
search problem.

• Which proposed location
should we match to?

• Exhaustive search?

too expensive!

The Sky is BigTM

?
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(Inverted) Index of Features
• To solve this problem, we will employ 

the classic idea of an “inverted index”.
• We define a set of “features” for any 

particular view of the sky (image).
• Then we make an (inverted) index, 

telling us which views on the sky 
exhibit certain (combinations of) 
feature values.

• This is like the question: 
Which web pages contain
the words “machine learning”?
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Matching a test image
• When we see a new test image, 

we compute which features are 
present, and use our inverted 
index to look up which possible 
views from the catalogue also 
have those feature values.

• Each feature generates a 
candidate list in this way,
and by intersecting the lists
we can zero in on the true
matching view.

The features in our inverted index act
as “hash codes” for locations on the sky.
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Caching Computation
• The idea of an inverted index is that is 

pushes the computation from search time
back to index construction time. 

• We actually do perform an exhaustive 
search of sorts, but it happens during the 
building of the inverted index and not at 
search time, so queries can still be fast.

• There are millions of patches of the scale 
of a test image on the sky (plus rotation), 
so we need to extract about 30 bits.
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Robust Features for Geometric Hashing
• In simple search domains like 

text, the inverted index idea 
can be applied directly.

• However, in our star matching 
task, the features we chose 
must be invariant to scale, 
rotation and translation.

• They must also be robust to 
small positional noise. 

• Finally, there is the additional 
problem of distractor & 
dropout stars. 

The features we 
use are the 

relative positions of 
nearby quadruples 

of stars.
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Quads as Robust Features
• We encode the relative positions 

of nearby quadruples of stars
(ABCD) using a coordinate 
system defined by the most 
widely separated pair (AB).

• Within this coordinate system, 
the positions of the remaining 
two stars form a 4-dimensional 
code for the shape of the quad.

• Swapping AB or CD does not 
change the shape but it does 
“reflect” the code, so there is 
some degeneracy.

A

B

C
D
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Quads as Robust Features
• This geometric hash code is 

invariant to scale, translation
and rotation.

• It also has the property that if 
stars are uniformly distributed
in space, codes are uniformly 
distributed in 4D.

• We compute codes for most 
nearby quadruples of stars, but 
not all; we require C&D to lie in 
the unit circle with diameter AB. 

A

B

C
D
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Catalogues: USNO-B 1.0 + TYCHO-2

• USNO-B is an all-sky 
catalogue compiled 
from scans of old 
Schmidt plates.
Contains about 109

objects, both stars 
and galaxies.

• TYCHO-2 is a tiny 
subset of 2.5M
brightest stars. 
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Making a uniform catalogue
• Starting with USNO+ 

TYCHO we “cut” to get a 
spatially uniform set of 
the ~150M brightest 
stars & galaxies.

• We do this by laying 
down a fine “healpix” 
grid and taking the 
brightest K unique 
objects in each pixel.



http://astrometry.net roweis@cs.toronto.edu

Building the index
• Start with the catalogue; build a 

kdtree on the 3D object positions.
• Place a fine healpix grid on the 

sky. Within each pixel, identify a 
valid quad whose size is near the 
target scale for the index.

• Compute 4D codes for those 
quads; enter them into another 
kdtree remembering their original 
locations. This is the index.
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A Typical Final Index
• 144M stars

(6 quads/star)
• 205M quads 

(4-5 arcmin)
• 12 healpixes

Codes 
in

4D

Quads
on the sky
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Solving a new test image
• Identify objects (stars+galaxies) in the image 

bitmap and create a list of their 2D positions.
• Cycle through all possible valid* quads (brightest 

first) and compute their corresponding codes.
• Look up the codes in the code KD-tree to find 

matches within some tolerance; this stage incurs 
some false positive and false negative matches.

• Each code match returns a candidate position & 
rotation on the sky. As soon as 2 quads agree 
on a candidate, we proceed to verify that 
candidate against all objects in the image.
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A Real Example from SDSS

Query image
(after object detection).

An all-sky catalogue.
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A Real Example from SDSS

Query image
(after object detection).

Zoomed in by a 
factor of ~ 1 million.
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A Real Example from SDSS

Query image
(after object detection).

The objects in our index.
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A Real Example from SDSS

All the quads in our index which
are present in the query image.
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A Real Example from SDSS

A single quad which we happened to try.
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A Real Example from SDSS

The query image scaled, translated & rotated 
as specified by the quad.
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A Real Example from SDSS

The proposed match, on 
which we run verification.
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A Real Example from SDSS

The verified answer, overlaid 
on the original catalogue.

The proposed match, on 
which we run verification.
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Final Verification
• After hash code 

matching, we are left with 
a list of candidate views 
that >1 codes agree on.

• If this list is empty, the 
search has failed.

• If this list is non-empty, 
we do a slower positional 
verification on each 
candidate to see if it 
really is the correct 
position in the catalogue.
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Preliminary Results: SDSS
• The Sloan Digital Sky 

Survey (SDSS) is an 
all-sky, multi-band 
survey which includes 
targeted spectroscopy 
of interesting objects.

• The telescope is 
located at Apache 
Point Observatory.

• Fields are 14x9arcmin
corresponding to 
2048x1361 pixels.
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Preliminary Results: SDSS
• 336,554 fields

science grade+
• 0 false positives
• 99.84% solved

530 unsolved
• 99.27% solve w/ 

60 brightest objs
Assume known pixel scale
(for speedup of solving only.)

Magnitudes used only 
to decide search order.
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Preliminary Results: GALEX
• GALEX is a space-based 

telescope, seeing only in 
the ultraviolet.

• It was launched in April 
2003 by Caltech&NASA
and is just about finished 
collecting data now.

• It takes huge (80 arcmin) 
circular fields with 5arcsec 
resolution and spectra
of all objects.
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Preliminary Results: GALEX

• GALEX NUV 
fields can be 
solved easily
using an index 
built from bright 
blue USNO 
stars. 
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Preliminary Results: GALEX

• GALEX FUV
fields are much 
harder to solve 
using USNO as 
a source 
catalogue.

Frequency band(s) of the test images must have 
some substantial overlap with those of the catalogue. 
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Speed/Memory/Disk
• Indexing takes ~12 hours, 

uses ~ 2 GB of memory
and ~100 GB of disk.

• Solving a test image 
almost always takes 
<<1sec (not including
object detection).

• Solving many fields is 
done by coarse 
parallelization on about 
100 shared CPUs. 

Reduces computation 
time from ~ 4months 
to overnight.

All the work 
is in the 
hardest 10% 
of fields

SDSS
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Algorithms & Data Structures
• Implementations are all in-core.
• Written in C & Python.
• Parallelization is at the

script level, which has 
many aggregation
& storage advantages.

• We make extensive use
of  mem-mapped files,
some fancy AVL lists and
a cool new “pointerless” 
KD-tree implementation.
[Mierle & Lang]
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Setting the System Parameters
• There are several 

system parameters to 
tune, including range 
search sizes in code-
space, agreement and 
verification tolerances on 
the sky, etc.

• Our approach has been 
to tune these by 
examining histograms of 
what happened across a 
large number of test 
cases where we know 
the ground truth.
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Googlers should love this!
• Massive indexing & 

pattern recognition.
• Coarsely parallel 

storage/processing.
• Cool algorithms & 

data structures.
• Organizes the sky’s 

information and 
makes it searchable. 
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astrometry.net
• The project has a 

website, which 
should go “live” in a 
few weeks.

• It will allow any user 
to recover (or verify) 
the positional 
information in their 
image headers, label 
specific stars, 
automatically link 
into other surveys 
and more.
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astrometry.net
• In the future, we plan to solve 

a wide range of images or 
image sets, using a variety of 
indexes.

• We also hope to insert the 
system into the observing 
pipeline of telescopes, debug 
standard catalogues, learn 
about individual instruments 
and facilitate “collaborative 
observing” tools.
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astrometry.net
• We are releasing all our code.

email code@astrometry.net if you want to 
be a beta tester.

• We are putting the engine on the web.
email hogg@astrometry.net if you want to 
be a beta tester.

• Our internal trac pages are public.
Check out trac.astrometry.net if you want 
to see all the gory details.
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Related Efforts
• automatch – John Thorstensen, Dartmouth
• Pinpoint – Robert Denny, DC-3
• TheSky/CCDSoft – Software Bisque
• Charon – Project Pluto
• imwcs (wcstools) – Doug Mink, Harvard CFA
• wcsfixer – IRAF-NVO@NOAO
• wcs correction service – NVO@U.Pitt
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The Core Team
David Hogg

Michael BlantonKeir MierleDustin Lang

Sam Roweis

The 
real 
talent!
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