
http://astrometry.net roweis@cs.toronto.edu

Making the Sky Searchable:
Fast Geometric Hashing for

Automated Astrometry

Sam Roweis, Dustin Lang & Keir Mierle
University of Toronto

David Hogg & Michael Blanton
New York University

http://astrometry.net roweis@cs.toronto.edu

• I show you a picture of the night sky.

• You tell me where on the sky it came from.

Basic Problem

http://astrometry.net roweis@cs.toronto.edu

Rules of the game
• We start with a catalogue of stars in the sky,

and from it build an index which is used to
assist us in locating (‘solving’) new test images.

?

http://astrometry.net roweis@cs.toronto.edu

Rules of the game

• We can spend as
much time as we want
building the index but
solving should be fast.

• Challenges:
1) The sky is big.
2) Both catalogues
and pictures are noisy.

• We start with a catalogue of stars in the sky,
and from it build an index which is used to
assist us in locating (‘solving’) new test images.

http://astrometry.net roweis@cs.toronto.edu

• Bad news:
Query images may contain
some extra stars that are not
in your index catalogue, and
some catalogue stars may
be missing from the image.

Distractors and Dropouts

• These “distractors” & “dropouts” mean that
naïve matching techniques will not work.

http://astrometry.net roweis@cs.toronto.edu

You try

Find this “field” on this “sky”.

http://astrometry.net roweis@cs.toronto.edu

You try

Find this “field” on this “sky”.

Hint #1: Missing stars.

http://astrometry.net roweis@cs.toronto.edu

You try

Find this “field” on this “sky”.

Hint #1: Missing stars.
Hint #2: Extra stars.

http://astrometry.net roweis@cs.toronto.edu

You try

Find this “field” on this “sky”.

http://astrometry.net roweis@cs.toronto.edu

Robust Matching
• We need to do some sort

of robust matching of the
test image to any proposed
location on the sky.

• Intuitively, we need to ask:
“Is there an alignment of the test image
and the catalogue so that (almost*) every
catalogue star in the field of view of the
test image lies (almost*) exactly on top of
an observed star?”

[*The details depend on the rate of distractors/dropouts.]

http://astrometry.net roweis@cs.toronto.edu

Solving the search problem
• Even if we can succeed in

finding a good robust matching
algorithm, there is still a huge
search problem.

• Which proposed location
should we match to?

• Exhaustive search?

too expensive!

The Sky is BigTM

?

http://astrometry.net roweis@cs.toronto.edu

(Inverted) Index of Features
• To solve this problem, we will employ

the classic idea of an “inverted index”.
• We define a set of “features” for any

particular view of the sky (image).
• Then we make an (inverted) index,

telling us which views on the sky
exhibit certain (combinations of)
feature values.

• This is like the question:
Which web pages contain
the words “machine learning”?

http://astrometry.net roweis@cs.toronto.edu

Matching a test image
• When we see a new test image,

we compute which features are
present, and use our inverted
index to look up which possible
views from the catalogue also
have those feature values.

• Each feature generates a
candidate list in this way,
and by intersecting the lists
we can zero in on the true
matching view.

The features in our inverted index act
as “hash codes” for locations on the sky.

http://astrometry.net roweis@cs.toronto.edu

Caching Computation
• The idea of an inverted index is that is

pushes the computation from search time
back to index construction time.

• We actually do perform an exhaustive
search of sorts, but it happens during the
building of the inverted index and not at
search time, so queries can still be fast.

• There are millions of patches of the scale
of a test image on the sky (plus rotation),
so we need to extract about 30 bits.

http://astrometry.net roweis@cs.toronto.edu

Robust Features for Geometric Hashing
• In simple search domains like

text, the inverted index idea
can be applied directly.

• However, in our star matching
task, the features we chose
must be invariant to scale,
rotation and translation.

• They must also be robust to
small positional noise.

• Finally, there is the additional
problem of distractor &
dropout stars.

The features we
use are the

relative positions of
nearby quadruples

of stars.

http://astrometry.net roweis@cs.toronto.edu

Quads as Robust Features
• We encode the relative positions

of nearby quadruples of stars
(ABCD) using a coordinate
system defined by the most
widely separated pair (AB).

• Within this coordinate system,
the positions of the remaining
two stars form a 4-dimensional
code for the shape of the quad.

• Swapping AB or CD does not
change the shape but it does
“reflect” the code, so there is
some degeneracy.

A

B

C
D

http://astrometry.net roweis@cs.toronto.edu

Quads as Robust Features
• This geometric hash code is

invariant to scale, translation
and rotation.

• It also has the property that if
stars are uniformly distributed
in space, codes are uniformly
distributed in 4D.

• We compute codes for most
nearby quadruples of stars, but
not all; we require C&D to lie in
the unit circle with diameter AB.

A

B

C
D

http://astrometry.net roweis@cs.toronto.edu

Catalogues: USNO-B 1.0 + TYCHO-2

• USNO-B is an all-sky
catalogue compiled
from scans of old
Schmidt plates.
Contains about 109

objects, both stars
and galaxies.

• TYCHO-2 is a tiny
subset of 2.5M
brightest stars.

http://astrometry.net roweis@cs.toronto.edu

Making a uniform catalogue
• Starting with USNO+

TYCHO we “cut” to get a
spatially uniform set of
the ~150M brightest
stars & galaxies.

• We do this by laying
down a fine “healpix”
grid and taking the
brightest K unique
objects in each pixel.

http://astrometry.net roweis@cs.toronto.edu

Building the index
• Start with the catalogue; build a

kdtree on the 3D object positions.
• Place a fine healpix grid on the

sky. Within each pixel, identify a
valid quad whose size is near the
target scale for the index.

• Compute 4D codes for those
quads; enter them into another
kdtree remembering their original
locations. This is the index.

http://astrometry.net roweis@cs.toronto.edu

A Typical Final Index
• 144M stars

(6 quads/star)
• 205M quads

(4-5 arcmin)
• 12 healpixes

Codes
in

4D

Quads
on the sky

http://astrometry.net roweis@cs.toronto.edu

Solving a new test image
• Identify objects (stars+galaxies) in the image

bitmap and create a list of their 2D positions.
• Cycle through all possible valid* quads (brightest

first) and compute their corresponding codes.
• Look up the codes in the code KD-tree to find

matches within some tolerance; this stage incurs
some false positive and false negative matches.

• Each code match returns a candidate position &
rotation on the sky. As soon as 2 quads agree
on a candidate, we proceed to verify that
candidate against all objects in the image.

http://astrometry.net roweis@cs.toronto.edu

A Real Example from SDSS

Query image
(after object detection).

An all-sky catalogue.

http://astrometry.net roweis@cs.toronto.edu

A Real Example from SDSS

Query image
(after object detection).

Zoomed in by a
factor of ~ 1 million.

http://astrometry.net roweis@cs.toronto.edu

A Real Example from SDSS

Query image
(after object detection).

The objects in our index.

http://astrometry.net roweis@cs.toronto.edu

A Real Example from SDSS

All the quads in our index which
are present in the query image.

http://astrometry.net roweis@cs.toronto.edu

A Real Example from SDSS

A single quad which we happened to try.

http://astrometry.net roweis@cs.toronto.edu

A Real Example from SDSS

The query image scaled, translated & rotated
as specified by the quad.

http://astrometry.net roweis@cs.toronto.edu

A Real Example from SDSS

The proposed match, on
which we run verification.

http://astrometry.net roweis@cs.toronto.edu

A Real Example from SDSS

The verified answer, overlaid
on the original catalogue.

The proposed match, on
which we run verification.

http://astrometry.net roweis@cs.toronto.edu

Final Verification
• After hash code

matching, we are left with
a list of candidate views
that >1 codes agree on.

• If this list is empty, the
search has failed.

• If this list is non-empty,
we do a slower positional
verification on each
candidate to see if it
really is the correct
position in the catalogue.

http://astrometry.net roweis@cs.toronto.edu

Preliminary Results: SDSS
• The Sloan Digital Sky

Survey (SDSS) is an
all-sky, multi-band
survey which includes
targeted spectroscopy
of interesting objects.

• The telescope is
located at Apache
Point Observatory.

• Fields are 14x9arcmin
corresponding to
2048x1361 pixels.

http://astrometry.net roweis@cs.toronto.edu

Preliminary Results: SDSS
• 336,554 fields

science grade+
• 0 false positives
• 99.84% solved

530 unsolved
• 99.27% solve w/

60 brightest objs
Assume known pixel scale
(for speedup of solving only.)

Magnitudes used only
to decide search order.

http://astrometry.net roweis@cs.toronto.edu

Preliminary Results: GALEX
• GALEX is a space-based

telescope, seeing only in
the ultraviolet.

• It was launched in April
2003 by Caltech&NASA
and is just about finished
collecting data now.

• It takes huge (80 arcmin)
circular fields with 5arcsec
resolution and spectra
of all objects.

http://astrometry.net roweis@cs.toronto.edu

Preliminary Results: GALEX

• GALEX NUV
fields can be
solved easily
using an index
built from bright
blue USNO
stars.

http://astrometry.net roweis@cs.toronto.edu

Preliminary Results: GALEX

• GALEX FUV
fields are much
harder to solve
using USNO as
a source
catalogue.

Frequency band(s) of the test images must have
some substantial overlap with those of the catalogue.

http://astrometry.net roweis@cs.toronto.edu

Speed/Memory/Disk
• Indexing takes ~12 hours,

uses ~ 2 GB of memory
and ~100 GB of disk.

• Solving a test image
almost always takes
<<1sec (not including
object detection).

• Solving many fields is
done by coarse
parallelization on about
100 shared CPUs.

Reduces computation
time from ~ 4months
to overnight.

All the work
is in the
hardest 10%
of fields

SDSS

http://astrometry.net roweis@cs.toronto.edu

Algorithms & Data Structures
• Implementations are all in-core.
• Written in C & Python.
• Parallelization is at the

script level, which has
many aggregation
& storage advantages.

• We make extensive use
of mem-mapped files,
some fancy AVL lists and
a cool new “pointerless”
KD-tree implementation.
[Mierle & Lang]

http://astrometry.net roweis@cs.toronto.edu

Setting the System Parameters
• There are several

system parameters to
tune, including range
search sizes in code-
space, agreement and
verification tolerances on
the sky, etc.

• Our approach has been
to tune these by
examining histograms of
what happened across a
large number of test
cases where we know
the ground truth.

http://astrometry.net roweis@cs.toronto.edu

Googlers should love this!
• Massive indexing &

pattern recognition.
• Coarsely parallel

storage/processing.
• Cool algorithms &

data structures.
• Organizes the sky’s

information and
makes it searchable.

http://astrometry.net roweis@cs.toronto.edu

astrometry.net
• The project has a

website, which
should go “live” in a
few weeks.

• It will allow any user
to recover (or verify)
the positional
information in their
image headers, label
specific stars,
automatically link
into other surveys
and more.

http://astrometry.net roweis@cs.toronto.edu

astrometry.net
• In the future, we plan to solve

a wide range of images or
image sets, using a variety of
indexes.

• We also hope to insert the
system into the observing
pipeline of telescopes, debug
standard catalogues, learn
about individual instruments
and facilitate “collaborative
observing” tools.

http://astrometry.net roweis@cs.toronto.edu

astrometry.net
• We are releasing all our code.

email code@astrometry.net if you want to
be a beta tester.

• We are putting the engine on the web.
email hogg@astrometry.net if you want to
be a beta tester.

• Our internal trac pages are public.
Check out trac.astrometry.net if you want
to see all the gory details.

http://astrometry.net roweis@cs.toronto.edu

Related Efforts
• automatch – John Thorstensen, Dartmouth
• Pinpoint – Robert Denny, DC-3
• TheSky/CCDSoft – Software Bisque
• Charon – Project Pluto
• imwcs (wcstools) – Doug Mink, Harvard CFA
• wcsfixer – IRAF-NVO@NOAO
• wcs correction service – NVO@U.Pitt

http://astrometry.net roweis@cs.toronto.edu

The Core Team
David Hogg

Michael BlantonKeir MierleDustin Lang

Sam Roweis

The
real
talent!

Pointer-Free KD-Trees

Pointer-Free KD-Trees

