MEASURING THE ELECTROSTATIC SUITABILITY OF MATERIALS

John Chubb

John Chubb Instrumentation, Unit 30, Lansdown Industrial Estate, Gloucester Road, Cheltenham, GL51 8PL, UK (Tel: +44 (0)1242 573347 Fax: +44 (0)1242 251388 email: jchubb@jci.co.uk Website: www.jci.co.uk)

1. INTRODUCTION

Many of the useful opportunities presented by static electricity and many of the risks and problems it can cause relate to retention of electrostatic charge.

The 'suitability' of a material may be that:

- it holds on to charge for an adequate time for its application
- that it dissipates the charge sufficiently quickly that no significant surface voltages arise and only briefly

We recognise there are other electrostatic features relevant to suitability of materials:

- opportunity for occurrence of shocks and spark discharges
- ability to shield items on one side from transient electrostatic events, such as sparks, on the other side

An appreciation of charge retention is hence a major aspect of assessing if materials are suitable for particular purposes.

In practice, what is important is not, primarily, the <u>charge</u> created and retained on a surface - but the influence this exerts on things nearby.

This 'influence' is the electric field at the item – and that relates to the surface potential.

To assess the practical suitability of materials in respect of triboelectrically generated charge we want to know:

- what surface potentials may arise
- how long does a high surface potential remain

I want to describe work I have been doing over the last few years to justify confidence in particular approaches for assessing the suitability of materials.

I hope my presentation will show the more practically minded amongst us that there are fair and reliable ways to assess the electrostatic suitability of materials.

For the more academic, I hope to raise interest and enthusiasm to examine the variety of questions that arise from making and trying to understand practical measurements.

Some very basic experimental studies.

2. SIMPLE TRIBOCHARGING STUDIES

Static charge arises on materials when these contact or are rubbed by other materials. If such charge can dissipate rapidly away to earth then little charge will be retained on the materials. There will then be little influence of retained charge on sensitive items nearby. 'Rapid' dissipation of charge means a timescale shorter than the timescale for separation of the surfaces – or for the charge to have a significant influence. This is a major way to 'control' static – and more appropriate than 'resitivity'

The logical way then to assess materials is to rub the surface and see what sort of surface voltages are generated and how quickly this goes away.

The following arrangement was set up for measurements:

Charge on Teflon rod measured in Faraday Pail.

Example of fieldmeter signal

One problem is that the charge and initial peak signal are expected to depend on how hard material is struck. Hence, measurement made of quantity of charge so observations could be normalised.

If one looks at the variation of signal with decay time one sees the peak decreasing as decay time gets shorter – as expected.

Note: Response times adequate relative to decay times

Noted that initial peak voltage per unit of charge varied greatly between materials.

Response of fieldmeter was to quantity of charge – not to local surface voltage.

Hence different materials were exhibiting different effective **capacitance loading** to charge at the surface to suppress electric fields on nearby items.

The term 'Capacitance loading' used as results are compared to results for thin film of good dielectric. This avoids needing to know the charge pattern – but an assumption of similarity.

Note that 'capacitance loading' means you cannot simply use fieldmeter readings near a web to judge 'charge density'.

The physics of capacitance loading seems worthy of fuller examination. Meanwhile the practical significance needs to be recognised.

Corona charging for easier and fuller studies.

Great advantage of using corona charging is ease of measurement on a wide variety of materials

Measurement of charge received as sum of 'induction' and 'conduction' components.

PPC 8 PPC 11 PPC 12 PPC 17 PPC 20 PPC 24 PPC 27	100% polyester - surface conductor 20mm stripe 65/34% poly/cot 1% core conductor 8x10mm grid 65/34% poly/cotton 1% St St conductor blended 100% cotton flame retardant (FR) finish 100% aramid 97/3% aramid/core condutor polyester with flame retardant and antistat finish
PPC 27	polyester with flame retardant and antistat finish
XP1	black conductive plastic bag
XP2	A4 transparent plastic document wallet

Sample:	Tribocharging performance features:			Corona performance features:	
	Initial Peak	Decay time	Сар	Decay time	Cap loading
	reading:	(s):	loading	<i>(s)</i> :	
PPC8	10	3-4	25-84	2	112
PPC11	12	7-8	25-37	4.5	37
PPC12	14	3-5.5	25-35	2.7	97-345
PPC17	350	0.65	3-3.5	0.3-0.35	4-11
PPC20	300	300-600	12-16	270-320	
PPC24	12	7-13	42-50	3.4-3.8	75
PPC27	2		115	0.64	2600-3000
XP1	3		220		
XP2	200	0.7-4	2.7-2.9	0.5	5-7
	Lowest peak	Shortest	Loading	Shortest	Loading
	volts:	time:		time:	
Best:	PPC27, XP1	PPC17	PPC27,	PPC17	PPC27
			XP1		
	PPC8	XP2	PPC24	XP2, PPC27	PPC12
	PPC11, PPC24	PPC8,	PPC8	PPC8	PPC8
		PPC12			
	PPC12	PPC11	PPC11,	PPC12	PPC24
			PPC12		
	XP2	PPC24	PPC17,	PPC24	PPC11
			XP2		
Worst:	PPC20, PPC17	PPC20	PPC20	PPC11	PPC17, XP2
				PPC20	

These results (and others reported) show comparability between performance of a variety of materials with tribo and corona charging.

> (It would be helpful if other methods of measurement promoted for assessing materials provided similar correlation to tribocharging observations).

3. RESULTS OF SOME STUDIES

Examples of decay curves - for paper

Open backing – paper sample Note: consistency from 2 locations, 2 repeats

Earthed backing - same sample as above

Residual air ionisation – air dam to reduce influence

Test sample

Metal surface

Variations with RH for papers

DECAY TIME VS HUMIDITY

CAPACITANCE LOADING VS HUMIDITY

Decay time vs humidity for cleanroom fabrics

Capacitance loading vs humidity for cleanroom fabrics

4. CONCLUSIONS:

1) Have shown comparability of results between tribo and corona charging.

This gives confidence that practical measurements using corona charging are valid.

2) Have introduced concept of 'capacitance loading'.

This is a new approach for assessing materials

3) The suitability of materials can be assessed by measuring the rate of charge dissipation and by measuring the capacitance loading.

Suggested: **decay times** need to be below ¼ s and/or **capacitance loading** greater than 100.

References:

[1] J. N. Chubb **"Measurement of tribo and corona charging features of** materials for assessment of risks from static electricity" Trans IEEE Ind Appl <u>36</u> (6) Nov/Dec 2000 p1515-1522

[2] J. N. Chubb "New approaches for electrostatic testing of materials" Paper presented at ESA meeting, Brock University, Niagara Falls, May 2000. To be published in J. Electrostatics

[3] J. N. Chubb **"Test method to assess the suitability of materials and** surfaces to avoid problems from static electricity by measurement of the ability to dissipate corona charge"

JCI Website: <u>www.jci.co.uk/Measurements/ChargeDecay.pdf</u>

[4] J. N. Chubb **"Test method to assess the suitability of materials and** surfaces to avoid problems from static electricity by measurement of capacitance loading"

JCI Website: www.jci.co.uk/Measurements/CapacitanceLoading.pdf