

BloxAlchemy

A toolkit for using logical databases with Python

Outline

● Datalog and SQL
● BloxAlchemy Architecture
● Metadata
● SQL Layer & Logic Generation
● ORM Layer
● BloxSoup

What is Datalog?

● Declarative, logical language
– Uses predicate logic

– Order of statements does not matter

● Predicates and Facts
– is_parent is a predicate (think of it as a class)

– is_parent(Rick, Matthew) is a fact (think of it as an
instance)

● Database Management System
– Predicates and facts are persistent

– Updates to fact database are done in transactions

Datalog Samples
● Declare an entity with a refmode

– user(u), user:user_name(u:n) -> string(n).

– department(d), department:name(d:n) -> string(n).

● Declare a predicate
– user:department(u;d) -> user(u),department(d).

– sales(pr,st,wk;s) -> product(pr), store(st), week(wk), float[32](s).

● Declare a predicate with a rule
– department:num_users(d;n) -> department(d),int[32](n).

– department:num_users(d;n) <- agg<<n=count()>>(

 department(d),user:department(u;d)).

Datalog vs. SQL
(30,000 foot view)

SQL

● Tables may have keys

● Tables may have
multiple value columns

● Query results are
generally unkeyed

● Foreign keys, views, and
triggers enforce integrity

Datalog

● Predicates must have
keys

● Predicates may have
zero or one value
columns

● Query results are
predicates and must
have keys

● Keys and derivation
rules enforce integrity

Datalog and Python

● LogicBlox (who makes our Datalog software)
provides:
– LDBC – minimal interface to use Datalog modeled

after ODBC and JDBC

– LogicBlox.py – SWIG-generated LDBC wrapper

● LDBC interface
– Datalog expressed as strings (unsafe!)

– Facts retrieved from predicates via iterators
● Support for iterating in sorted order

User Program

BloxAlchemy Architecture

LDBC

Engine and Connection Pooling

MetaData

Types

SQL Compatibility

Object/Relational Mapper

BloxAlchemy Metadata

● Purpose: Map SQL concepts onto Datalog
implementation

● SQL tables translate to...
– Entity – represents an entity and all predicates that

are keyed by that entity alone

– PredicateGroup – represents a collection of
predicates keyed by the same set of entities

SQL Layer and Logic Generation

● Convert this:
select([user.c.user_name, user.c.password],
 whereclause=and_(
 user.c.department==department.c.self,
 department.c.name=='development'))
● To this:
_filter(user,department) <-
 identity:user(user),
 identity:department(department),
 !identity:user:is_null(user),
 !identity:department:is_null(department),
 identity:user:department(user;department),
 identity:department:name(department:name),
 (name = “development”).
_0(user,department;user_name) <-
 _filter(user,department),identity:user:user_name(user:user_name).
_1(user,department;department) <-
 _filter(user,department),identity:user:department(user;department).

Logic Generation Approach
● “SQL” Query Structure

– “Inner” Part
● Set of inner join tables
● WHERE clause for inner join condition & filtering

– “Outer” Part
● Set of LEFT OUTER JOIN tables with ON clauses

– List of columns to be returned
● can come from either inner or outer parts

● Example
select([user.c.user_name, department.c.name],
 whereclause=user.c.user_name.like('r%'),
 from_obj=[user],
 outerjoin=[(department, department.c.self==user.c.department)])

Logic Generation Approach

● Inner Part: Generate keyspace
_filter_inner(user) <- string:like(user_name,"r%"),
 identity:user:user_name(user:user_name),
 identity:user(user),!identity:user:is_null(user).

● Outer Part: Add keys for outer tables
_exists0(user) <- _filter_inner(user),identity:user:department(user;_).
_outer0(user,department) <- _filter_inner(user),
 !identity:department:is_null(department),

identity:department(department),
 identity:user:department(user;department).
_outer0(user,department) <- _filter_inner(user),
 !_exists0(user),identity:department:is_null(department).
_filter(user,department) <- _outer0(user, department).

Logic Generation Approach

● List of Columns: “Join out” to column data
_0(user,department;user_name) <- _filter(user,department),
 identity:user:user_name(user:user_name).
_1(user,department;name) <- _filter(user,department),
 identity:department:name(department:name).

● Result set is a Python iterator that yields
instances of the BloxRow class

– Sorting (ORDER BY) handled by LDBC
– OFFSET and LIMIT handled by BloxAlchemy

ORM Layer

● Map application classes to SQL-layer “tables”
– Row in a table ==> instance of a class

– Column in a row ==> instance property

– 1:N, M:N join ==> instance collection property
(“department.users”)

– N:1 join ==> property that is an instance of another
class (“user.department”)

● Manage loading objects from the database and
flushing changes to objects back to the
database

ORM Example
user_group = Predicate('user_group', metadata,
 Column('user', EntityRef('user'), key=True),
 Column('group', EntityRef('group'), key=True))

class Group(object): pass
class Department(object): pass
class User(object): pass

session.mapper(Group, group)
session.mapper(User, user, properties=dict(
 groups=relation(Group, secondary=user_group, backref='users')))
session.mapper(Department, department, properties=dict(
 users=relation(User, backref=backref('department', lazy=False),
 cascade='all,delete-orphan')))

u0 = User.get('rick')
u0.department
users = User.query.filter(User.c.user_name.like('r%'))
[u.department for u in users]

ORM Performance Enhancements
● Unit of work pattern

– Make multiple changes to your objects, all updates
to the database will be performed when the session
is “flushed”

● Ability to be either “eager” or “lazy” when
loading properties
– Eager – load the property when the instance itself is

created

– Lazy – load the property when it is first accessed

– By default, columns are eagerly loaded and joins
are lazily loaded, but this can be customized on a
per-query basis

Schema Discovery with BloxSoup

● Problem
– Some people don't like to use Python to declare

their schema

– Some predicates are pre-defined by LogicBlox

● Solution
– Inspect the live database to determine the schema

BloxSoup Example
In [1]: from bloxalchemy.extensions.bloxsoup import DataStore

In [2]: soup = DataStore('ldbc:///./test', namespace_path=['identity'])

In [3]: soup.user
Out[3]: <class 'bloxalchemy.extensions.bloxsoup.AutoMappedTable[user]'>

In [4]: soup.user.table
Out[4]: <Entity identity:user>

In [5]: u = soup.user.get('rick')

In [6]: u.department
Out[6]: <AutoMappedTable[identity:department] name='Development'>

In [7]: u.department.users
Out[7]:
[<AutoMappedTable[user] user_name='rick' password='pw2'
user_password_copy='pw2'>,
 <AutoMappedTable[user] user_name='greg' password=None
user_password_copy=None>]

