
Russell deserves credit for finding a paradox with the naïve theory of classes. Contrary to popular 

characterizations, there isn’t just one paradox that he found. He found paradoxes for each of the three 

versions of the naïve theory of classes. The most well-known naïve theory, takes the relation sign “” of 

set membership is a primitive sign and adopts the following for the comprehension of classes: 

(Naïve) 

 (w)(x  w ≡𝑥Ax), 

where w is not free in the wff A. We have only to put x  x for the wff A and we arrive at the Russell 

paradox for this naïve theory. We have a set r such that: 

x  r ≡𝑥 x  x . 

The following contradiction follows: 

r  r ≡ r  r . 

As long as “” is taken as a primitive elation sign, Russell paradox does not involve any impredicative 

notions and neither does it involve ontological self-reference unique to Russell’s ontology of general 

propositions. The instance of (Naïve) that yields the Russell paradox is no more odd than the instance that 

yield the empty class— that is,  

x   ≡𝑥 x ≠ x . 

It is important to understand that showing that (Naïve) is inconsistent is not sufficient to have found a 

paradox in the naïve theory of classes. One must also show that there is no way to modify comprehension 

salvage the naïve notion.  

In 1904 Russell set out to evaluate Frege’s response to his reformulation of Russell paradox in the 

system of his Grundgesetze der Arithmetik. In a 1904 manuscript “Points about Meaning and 

Denotation,” Russell reveals that he had discovered an important theorem. For all one-one functions f 

such that, 

fx = fy 𝑥,𝑦 x = y 

the following yields a contradiction: 

(w)(x  w ≡𝑥 (z)( x = fz .&. x  z)) 

There are many instances of f. When fz = z, we have Russell’s paradox. When fz = z we have a 

contradiction as well. Indeed, this general form for generating contradictions undermines all hope to save 

the naïve notion. It shows that the following fails (Geach 1956): 

(Naïve)+1  

 (w)(x  w .≡𝑥. x ≠ w • Ax)), 

where w is not free in A. It also shows that the following fails (Quine, 1955): 

(Naïve)-1  



 (w)( x ≠ w .𝑥  . x  w ≡ Ax)), 

where w is not free in A.  It is Russell’s 1904 theorem that reveals that it is Russell alone that deserves the 

credit of having found the paradoxes that undermine the naïve notion of a class. (See Landini, 2013).  

Now Russell knew that a simple type theory of sets blocks contradictions from arising from the 

general form  

(w)(x  w ≡𝑥 (z)( x = fz .&. x  z)), 

where f is a one-one function. Simple type regimented form yields the following: 

 (𝑤(𝑡))(𝑥𝑡  𝑤(𝑡)  ≡𝑥𝑡 (𝑧(𝑡))( 𝑥𝑡 = f𝑧(𝑡) .&. 𝑥𝑡 𝑧(𝑡))). 

No function f can be found in simple type-theory to produce a contradiction. The same point applies to a 

simple type theory of attributes in intension. No contradiction arises from 

((𝑡))( (𝑡)(𝑥𝑡)  ≡𝑥𝑡 ((𝑡))( 𝑥𝑡 = f ((𝑡)).&.  (𝑡)(𝑥𝑡) ). 

But Russell’s 1904 theorem was originally couched in his quantification theory of propositions, not in a 

modern quantification theory. Indeed, the theorem emerged from a paradox he had set out in Appendix B 

of Principles. In Appendix B of Principles, Russell observed that the following yields a contradiction: 

(w)(x  w ≡x {(m)( x = {y  m Ͻy y} .•. x  m)) }). 

We arrive at the contradiction, 

 {p  w Ͻp p} w ≡ { p  w Ͻp p}  w . 

Moreover, in 1904 Russell quickly found an analog for attributes, namely this:  

()(x  w .≡x . ()( x = { p Ͻp p}.•. x)). 

This yields the contradiction 

{ p Ͻp p} ≡ { p Ͻp p}. 

As we see, a contradiction arises if we pair Russell’s theory of propositions with a theory of sets (or 

attributes)—even a simple type-theory of sets (or attributes).  

 Now it is easy to generalize and arrive at the result that, when couched in a theory of Russellian 

propositions, and when f is a one-one function, both of the following generate contradictions: 

(w)(x  w .≡x . (z)( x = fz .•. x  z)) 

()(x .≡x . ()( x = f .•. x)). 

This holds even in simple type theory. Russell drew precisely this conclusion. The contradictions that 

now arise from pairing his theory of propositions with a simple type theory of sets or with a simple type 

theory of attributes are not blocked.  The reason they arise, however, is that the one-one function f 

involved here is a function whose values are Russellian propositions. In the Appendix B paradox, f is a 

one-one function such that 

fm = {y  m Ͻy  y}.  



The proof of the Appendix B rests on the fact that identical Russellian propositions have identical 

constituents. In particular, Russell’s theory of propositional identity assures, 

  {y  w Ͻy  y}={y  m Ͻy  y} .Ͻ. w = m. 

This assures that the function f in question is one-one. The same point applies where the one-one function 

f involved is this 

 f = {p Ͻp p}. 

Russell’s ontology of propositions assures that 

{p Ͻp p} = {p Ͻp p}.. x ≡x x . 

This makes the function f one-one. The source of these paradoxes, unlike Russell’s paradox (when 

couched in a theory which takes membership “” as a primitive), is a violation of Cantor’s theorem that 

there can be no function from any subset of entities onto sets/attributes of those entities. Russell’s 

ontology of propositions, when paired with (a simple type) ontology of sets or of attributes, assures the 

existence of functions in violation of Cantor’s theorem. 

 Russell rightly concluded that his theory of propositions is incompatible with a type regimented 

ontology of attributes (or classes/sets). But, at the time, this seemed to him to pose no telling difficulty. 

Russell advanced a substitutional theory of propositional structure that showed the way to formulate a 

theory of cpLogic that avoids the adoption of any comprehension principles of attributes (or classes/sets) 

The theory accepts the existence of some universals, and indeed it takes some attributes (universals) to 

exist of logical necessity. Indeed, the sign “Ͻ” stands for a relation, and it is wholly type free. But the 

substitutional theory offers an approach to cpLogic that is a “no-comprehension principles for attributes 

(classes/sets). The substitutional theory endeavors to emulate a simple impredicative type theory of 

attributes in intension. Using scope distinctions, it constructs extensional contexts from the intensional 

contexts of propositions and thereby emulates a simple-type theory of classes and relations-in-extension.  

The language of the substitutional theory adheres to Russell’s fundamental principle that the 

calculus for logic should adopt only individual variables. All lower-case letters of the English alphabet are 

employed as individual variables. All variables are of the substitutional theory are genuine individual 

variables, and quantification is intended as objectual. There are no special propositional variables in the 

language. Thus, p, q, r, and so on, are individual variables no less so than x, y, z etc. The theory is built 

upon the language of the quantificational calculus of propositions by adding a new atomic wff 

  p 
𝑥

𝑎
 ! q 

which says that q is exactly like p but containing entity x wherever p contains entity a. More 

conveniently, Russell reads it as saying that q results by substituting x for a in p. But it is important to 

keep in mind that substitution is not something we do. It is about the entities involved and it makes no 



distinction between entities that are propositions and those that are not propositions. Russell was well 

aware that the replacement of the letters “x” and “a” in the wff 

 “p “ may well not track the ontological matter of substitution. For example, if the variables “a” and “v” 

are assigned to the same entity, then 

 {a = v} 
𝑥

𝑎
 !{x = v} 

is wrong. The proper outcome is {x = x}. 

 The substitutional theory has nothing to do with a substitutional semantics for quantification 

theory. It assumes that we are to accept a semantics for quantification theory that fully Realist (objectual). 

Moreover, the substitutional theory of propositional structure is not a theory of types of entities. It is an 

agnosticism about types of entities. It is an agnosticism about classes and relations-in-extension. The 

substitutional theory endeavors to show how to capture mathematics within the ontology of logic without 

adopting comprehension axioms schemas for universals and without comprehension axiom schemas for 

classes (and relations-in-extension). It emulates a theory of types of attributes (and thus it emulates a 

theory of classes as their extensions) in a wholly type-free theory. In this way, Russell intended it to offer 

a genuine solution of just those paradoxes impacting the Cantorian revolution in mathematics, e.g., the 

Russell paradoxes, Cantor’s greatest cardinal, the Burali-Forti greatest ordinal. (Recall the Richard, the 

Berry, the König-Dixon, are dismissed as semantic pseudo-paradoxes based on equivocations.)  

An outline of the axiom schema for a reconstruction of Russell’s 1905 substitutional theory of 

propositional structure is outlined below. The term vs wff distinction is rigidly adhered to. The letters ,  

, , and so forth are for any terms, quantifier-free or otherwise. We have: 

 1905S1   .Ͻ.  Ͻ  

1905S2   .Ͻ.  Ͻ  :Ͻ:  .Ͻ.  Ͻ  

1905S3   Ͻ  :Ͻ:  Ͻ  .Ͻ.  Ͻ  

1905S4   Ͻ  .Ͻ.  :Ͻ:   

1905S5 (x)Ax .Ͻ. A[ x], 

where  is free for free occurrences of x in A. 

1905S6  (x)(  Ͻ Ax) .Ͻ.  Ͻ (x)Ax, 

where x is not free in .  

1905S7   in {A}  

 1905S8   in {A1,…, n} .Ͻ.  = {A1,…, n } ..  in 1 . .,…,..  in n,  

where A is any wff all of whose distinct free terms are 1,…, n . 

 1905S9 (x, y)(x in y .•. y in x :Ͻ: x = y) 

1905S10 (x, y, z)(x in y . •. y in z :Ͻ: x in z) 



1905S11 (p, a)(q)(x, y)( p 
𝑥

𝑎
 !q .•. p 

𝑦

𝑎
 !q .•. a in p :Ͻ: x = y)  

1905S12 (p, a)(z)(q)( p 
𝑧

𝑎
 !q .•. a in p .•. a  p :Ͻ: z in q .•. z  q) 

1905S13 (x, y)( x 
𝑦

𝑥
 !y ) 

1905S14 (x, y)( x 
𝑦

𝑦
 !x )  

1905S15 (p, a)(x)(q)( p 
𝑧

𝑎
 !q .•. (r)( p 

𝑧

𝑎
 !r :Ͻ: q = r)) 

1905S16 (p)(q)(q ex p) 

1905S17 (u)( u out {Auv}) Ͻ (u)( {Av} 
𝑢

𝑎
 !{Auv}),  

where a and u are free for v in A. 

1905S18  (u1,…,un)(  out {Au1v1,…, unvn}) :•:   {Au1v1,…, unvn} 

        .•.   1 .•. ,…, .•.   n  .:Ͻ:.  

       (x)(u1,…, un)( {A1v1,…,nvn} 
𝑥

𝑎
 !{Auv}/;x!{Au1v1,…, unvn} :•: 

    1 
𝑥

𝑎
 u1 .•. ,…, .•. n 

𝑥

𝑎
 un ) 

where each ui and i , 1  i  N, are free for their respective vi in A, 

     and 1,…, n are all the terms occurring free in A. 

      1905S19  {(u)Au} = {(v)Avu}, where v is free for u in A. 

1905S20  {(u)Au} = {(u)Bu} .Ͻ. (u)({Au} = {Bu})  

1905S21  {(u)Au}  { Ͻ } 

1905S22  { Ͻ }  Ͻ .•. {(u)Au}  Ͻ 

1905S23   in {(u)Au} .•.   {(u)Au} .Ͻ. (u)(  in {Au}),  

where  is not the individual variable u and u is not free in . 

 Modus Ponens     

 From A and {A} Ͻ {B}, infer B 

 Universal Generalization 

  From Ax infer (x)Ax. 

Definition of logical particles are as before. But now Russell includes the following: 

 =  =df (p, a, q, r)( p 


𝑎
 !q • p 



𝑎
 !r :Ͻ: q Ͻ r). 

 out =df (x)(  
𝑥

𝑎
 !). 

 in  =df ~ ( out ). 

 ind  =df  out  .•.  out . 

 ex  =df ~ (x)( x in  .•. x in ). 



This reconstructs the system that Russell set out in a manuscript of 22 December 1905. The axiom 

schemata S19, S20 and S21 are adapted from Church (1984).  

Russell’s substitutional theory endeavors to extend the type-free quantificational calculus of 

propositions to emulate a simple type theory of universals (and thereby classes). As we can see, the 

discovery of the theory of definite descriptions was central to the theory. In the June 1905 manuscript “On 

Fundamentals” most of the details of the new symbolism and theory of definite descriptions, including the 

matter of scope, are already worked out. In the manuscript (already mentioned) called “On Substitution” 

dated 22 December 1905, we find Russell using the formalism for the theory of definite descriptions. The 

theory of definite descriptions is employed to form definite descriptions of propositions. The expression p 

𝑥

𝑎
 !q says that (proposition) q is structurally exactly like p except containing x where p contains a. Russell 

then has: 

 p 
𝑥

𝑎
 =df (q)( p 

𝑥

𝑎
 !q). 

The contextual definitions for definite descriptions apply. To emulate simple-type indexed predicate 

variables (o) Russell uses two individual variables p and a. Consider this pair:  

( (o))( xo )(o)(xo) 

 (p)(a)(x)( p 
𝑥

𝑎
 ). 

The first is in the simple type regimented language of predicate variables. The second is its translation 

into the language of substitution. Similarly, consider this: 

 ((o))( (o)(xo) 𝑥𝑜  (o)(xo)) 

 (p)(a)( p 
𝑥

𝑎
 Ͻx  p 

𝑥

𝑎
 ). 

When (o)(xo) is embedded, we can employ a definite description of a proposition. But when it is not, we 

have to write it out as (q)( p 
𝑥

𝑎
 !r ≡r r = q .•. q). Of course, since the substitutional theory has axiom 

1905S15 assuring the uniqueness of the outcome of a substitution, we can simply write  (q)( p 
𝑥

𝑎
 !q .•. q).  

Now the number of bound individual variables increases as we ascend logical types. The 

expression s 
𝑝,𝑎

𝑡,𝑤
 !q says that q is structurally exactly like s except containing p wherever s contains t and 

containing a wherever s contains w. This is defined by a careful succession of substitutions. The 

complicated definition needn’t detain us. Russell has 

s 
𝑝,𝑎

𝑡,𝑤
 =df  (q)( s 

𝑝,𝑎

𝑡,𝑤
 !q ). 

The substitutional theory emulates the binding a predicate variable of type  ((o)) by using three individual 

variables s, t and w. For example, consider the following transcription pair:  

( ((o)))(  ((o))((o)) (o)   ((o))((o)) ) 



 (s, t, w)( s 
𝑝,𝑎

𝑡,𝑤
  Ͻ p, a s 

𝑝,𝑎

𝑡,𝑤
 ). 

As we see, the language of an impredicative simple-type regimented theory of attributes is emulated by 

the substitutional theory.  

Every instance of the comprehension axiom schema for a simple-type theory of attributes is 

emulated within the substitutional theory. For example, the relation of identity is captured in a simple 

type theory of attributes by the following instance of comprehension. We have: 

((o))( (o)(xo, yo ) 𝑥𝑜,𝑦𝑜  xo = yo), 

 ( p ,a) ( p 
𝑥,𝑦

𝑎,𝑏
 ≡x,y {x = y}). 

To emulate the comprehension of attributes of attributes of individuals, consider the following attribute of 

attributes of entities: 

( ((o)))(  ((o))( (o) ) 𝑜 (xo)  (o)( xo) )  

 ( s, t ,w) ( s 
𝑝,𝑎

𝑡,𝑤
 ≡p,a {(x)( (p 

𝑥

𝑎
 )}). 

Observe that the number of substitutions does not fully track types of attributes. The way the substitution 

is used is important as well. But the substitutional theory shows why Russell says his theory of definite 

descriptions “…was the first step toward overcoming the difficulties which has baffled me for so long” 

(Auto, p. 229).  

The substitutional theory offers a genuine syntactic solution of the paradoxes that arise in naïve 

theories that assume comprehension principles for universals or classes. The paradoxical constructions are 

ungrammatical. Observe that the following expression is well-formed: 

  p 
𝑝

𝑥

𝑎

𝑎
 !t .  

We have only to recall that p 
𝑥

𝑎
 abbreviates the definite description (q)(p 

𝑥

𝑎
 !q). Hence, by applying a 

version of Russell’s contextual definition *14.01 we have: 

  p 
𝑝

𝑥

𝑎

𝑎
 !t =df  (q)( p 

𝑥

𝑎
 !r ≡𝑟 r = q .•. p 

𝑞

𝑎
 !t).  

In stark contrast, the expression () which violates simple-type theory cannot be emulated in the syntax 

of the substitutional theory. It would require the ungrammatical expression 

 p 
𝑥,𝑦

𝑎
 !q .  

It is meaningless to speak of substituting two entities x and y for one entity a in entity p. At the same time 

every formula of the simple impredicative type theory of universals in intension can be emulated in the 

substitutional theory. 


